

Former Tokanui Hospital

Detailed Site Investigation Factual Report

Toitū Te Whenua - Land Information New Zealand
19 January 2024

				035	976	aland	
Project na	ıme	LINZ - Former Toka	nui Hospital	N			
Documen	t title	Former Tokanui Hos	spital Detailed	Site Investigation	n Factua	al Report	
Project nu	ımber	12559090	N				
File name		2024.01.18_FTPH_	DSI_Rev2.docx)			
		Approved for	issue				
Code			Name	Signature	Name	Signature	Date
S4	Rev 0	D Jackson CEnvP #1711	M Ballard CEnvP-SC #41175		A Gray		02/11/23

File name		2024.01.18_FTPH_DSI_Rev2.docx					
Status	Revision	Author	Reviewer		Approved for	or issue	
Code			Name	Signature	Name	Signature	Date
S4	Rev 0	D Jackson CEnvP #1711	M Ballard CEnvP-SC #41175		A Gray		02/11/23
S4	Rev 1	D Jackson CEnvP #1711	M Ballard CEnvP-SC #41175		A Gray		14/11/23
S4	Rev 2	D Jackson CEnvP #1711	M Ballard CEnvP-SC #41175	Sen Blad	A Gray	4	19/01/24

GHD Limited

586 Victoria Street, Level 1

Hamilton, Waikato 3204, New Zealand

T +64 7 834 7900 | F +64 7 839 4278 | E hmnmail@ghd.com | ghd.com

© GHD 2024

Executive Summary

GHD Limited (GHD) has been engaged by Toitū Te Whenua Land Information New Zealand (LINZ) to undertake contaminated land investigations of the former Tokanui Hospital (the Site) located on Te Mawhai Road, Tokanui, Waikato. This investigation covers the whole site for the purposes of fulfilling a detailed site investigation (DSI) factual report requirement under the Ministry for the Environment's (MfE) Contaminated Land Management Guidelines (CLMG), however noting that the existing disposal sites have been investigated separately by Fraser Thomas Ltd (Fraser Thomas, 2022).

The former Tokanui Psychiatric Hospital is a Deferred Selection Property (DSP) in the Ngāti Maniapoto (herein referred to as Maniapoto) Deed of Settlement (the Deed). The Deed was signed by Maniapoto and the Minster of Treaty of Waitangi Negotiations, became effective on 11 November 2021 and forms part of the Maniapoto Settlement Claims Act 2022. Under the Deed, the Crown has committed to a standalone process within the Property Redress Schedule for the transfer of the Tokanui Hospital (the Tokanui Hospital Deferred Selection Process (THDSP)) which details specific requirements for the demolition and remediation of the Site before it is available for transfer to Maniapoto. LINZ is the Government agency responsible for delivery this project. For detailed project background and context, please refer to the Project Background Document prepared by LINZ (Toitū Te Whenua Land Information New Zealand, 2021). In regards to ground contamination and remediation standards, under Section 9.3 of the deed of settlement property redress schedule, the Crown has agreed to use best endeavours to remediate the Site to:

- 85% of the total land area of the Tokanui Hospital deferred selection properties to "the rural residential remediation standard" (defined in Section 9.1.22 of the Deed as "an acceptable standard or standards for rural residential use chosen in accordance with Contaminated Land Management Guidelines No. 2 Hierarchy and Application in New Zealand of Environmental Guideline Values (Revised 2011) (CLMG 2), or derived through a site-specific risk assessment); and
- A contiguous area not exceeding 15% of the total land area of the Tokanui Hospital deferred selection properties, to "the managed remediation standard" (defined in section 9.1.15 of The Deed as "an applicable standard or standards for recreational use chosen in accordance with CLMG 2, or derived through a site-specific risk assessment, but where use may be subject to controls (for example, in relation to excavating, erecting buildings, or domestic gardening)".

The Deed sets out a process that prior to demolition and remediation, commits the Crown to a number of reports including a Detailed Site Investigation (DSI) and Remedial Action Plan.

The DSI Factual Report (this report) contains reporting of the data collected in the fieldwork programme. This is limited to factual reporting of the fieldwork and is aligned with the requirements of CLMG 1 recommended table of contents for DSI reports. The interpretive parts of the investigation required under CLMG 1 are detailed separately in the **Site Specific Risk Assessment Report** being produced by HAIL Environmental Limited (HAIL).

The purpose of this DSI Factual Report is twofold:

- to provide a DSI Factual Report prior to commencing any demolition and remediation work as per paragraph 9.4 of the THDSP; and
- 2. to support application(s) for resource consent that may be required under the National environmental standard for assessing and managing contaminants in soil to protect human health (NES CS), for activities associated with the demolition and remediation works as set out in the Subpart B of the THDSP (this may include consent for land use change (from a commercial/industrial hospital site to a grassed site with no buildings) and ground disturbance).

The objectives of the DSI Factual Report are to:

- Collate the data obtained from the fieldwork and sampling
- Provide detail on any departures from the Sampling & Analysis Plan (SAP)
- Comment on field observations and quality control/quality assurance
- Provide the report in a format that aligns with CLMG 1 as per the requirements of the Deed

Fieldwork at the Site was undertaken in March, June, August and September 2023. Sampling was undertaken in accordance with the SAP developed by GHD, with some minor departures. These departures are considered minor and GHD considers that the sampling programme is sufficient to fulfil the goals of the SAP.

GHD has undertaken soil sampling at 192 locations, and sediment sampling in nine locations. Overall, 329 samples have been collected from the Site. Samples were collected with a combination of excavator, hand auger, sediment sampler and hand trowel. HAIL has undertaken X-Ray Fluorescence (XRF) analysis on 95 transects and individual sampling points, and composite samples from 10 areas of the Site. A combined XRF and leachate analysis was undertaken in the halos of three buildings.

HAIL samples were analysed in situ with an XRF, and composite samples were collected with a push sampler and composited on site. Samples for laboratory analysis were collected with a hand digging tool.

Underlying geology generally comprised of clays and sands in the northern part of the Site, and clay in the southwestern portion of the Site. Observed geology is broadly consistent with the published soil and geological information, although allophanic soils appear to reach further north than the published soil data. Groundwater was encountered in one location at a depth of 2.1 metres below ground level.

Demolition fill was observed in areas of the site where demolition had historically occurred, and in the horticultural area. Paint flakes were observed around several buildings.

contamir Samples were delivered to Hill Laboratories in Hamilton for analysis of the contaminants of concern identified during the PSI, namely:

- Metals
- **TPH**
- **BTEX**
- PAH
- **PCB**
- VOC
- **SVOC**
- **Pesticides**
- Dioxins
- Asbestos

Screening for volatile compounds with a photo ionisation detector (PID) did not detect the presence of soil vapours around the laundry (B74) (e.g. associated with dry cleaning chemicals) or the former service station (B17) (associated with fuels). Low levels of hydrocarbons were identified with the PID near where the former Store Building (B65) fuel bowser was located (with results ranging between 27 – 28 parts per million (ppm)). Of the 128 samples analysed for asbestos, 12 samples had detections of asbestos.

Full discussion and interpretation of soil and sediment sampling results are included in the accompanying Site Specific Risk Assessment Report.

A QA/QC programme has been undertaken, including field and laboratory procedures and duplicate sampling. Based on the results of this QA/QC sampling are considered to be acceptable and the data set suitable for use in the accompanying Site Specific Risk Assessment Report.

This report is subject to, and must be read in conjunction with, the limitations set out in section 7 and the assumptions and qualifications contained throughout the Report.

Contents

List	of appre	eviations/glossary	1
1.	Introdu	ıction	3
	1.1	Background: Ngati Maniapoto Deed of Settlement and the Tokanui Deferred Selection Process	3
	1.2	Background: Investigation Timeline to Date	3
	1.3	GHD and HAIL Environmental Investigations	4
	1.4	Purpose & Objectives	6
2.	Site de	scription	7
	2.1	Site identification	7
	2.2	Site layout	7
	2.3	Current site uses	8
	2.4	Proposed site use	8
	2.5	Surrounding land uses	8
	2.6	Site inspection	8
	2.7	Environmental setting	10
		2.7.1 Site topography	10
		2.7.2 Soils	10
		2.7.3 Geology	11
		2.7.4 Hydrogeology	11
	2.0	2.7.5 Hydrology	12
	2.8	Stormwater	12
3.		cal site use	14
	3.1	Summary of site history	14
	3.2	Previous sampling	14
		3.2.1 AECOM (2018) Underground Petroleum Storage System Removal at the Former Tokanui Hospital	14
		3.2.2 AECOM (2018) Underground Petroleum Storage System Decommissioning at Tokanui Hospital	14
		3.2.3 AECOM (2019) Tokanui Hospital: Detailed Site Investigation (draft)	15
		3.2.4 WSP (2019) Tokanui Village and Hospital Waste-water Upgrade Detailed Site Investigation	15
	3.3	GHD (2022) Former Tokanui Hospital Preliminary Site Investigation	16
4.	Sampli	ng and analysis plan	17
5.	Sampli	ng results	18
	5.1	Summary of field work	18
	5.2	Field observations	19
		5.2.1 Underlying soil and geology	19
		5.2.2 Groundwater	21
		5.2.3 Visual and olfactory observations	22
	5.3	GHD Soil sampling and analysis	22
		5.3.1 Soil Compositing – Horticultural area	23
		5.3.2 TCLP and SPLP analysis5.3.3 PID field screening	23 24
		3.3.3 File lielu screetiirig	24

	5.4	HAIL e	environmental sampling and analysis	24
		5.4.1	Halo sampling methodology	24
		5.4.2	Grazing area composite sampling	25
		5.4.3	Leachability sampling	25
	5.5	Field a	and laboratory quality assurance/quality control	26
		5.5.1	GHD Field quality control	26
		5.5.2	GHD Laboratory quality control	26
		5.5.3	GHD Quality control procedures	26
		5.5.4	Compliance with holding times	27
		5.5.5	GHD Field duplicate and triplicate analysis 5.5.5.1 Duplicate set analysis	27 27
			5.5.5.1 Duplicate set analysis5.5.5.2 Relative percentage difference calculations	27 27
			5.5.5.3 Triplicate blanks analysis	28
		5.5.6	HAIL Environmental quality assurance and control	28
6.	Discu	ssion an	nd conclusions	30
	6.1	Works	Completed	30
	6.2		Observations & Laboratory Analysis	30
7.	Limita	ations		32
8.	Suita	bly Qualit	fied and Experienced Practitioner (SQEP) Statement	33
	8.1	GHD S		33
	8.2	HAIL E	Environmental Review	33
9.	Rofor	ences		34
Tal	ole ir	ndex	917 01	
Table	o 1	Sito	e details.	7
Table			e details e Walkover Summary of Key Observations	/ C
Table			anges from the SAP	18
Table			ld observations	22
Table			nposite samples	23
Table			achability analysis schedule	23
Idbi	•		ionability analysis conocaid	20
		X		
:				
гıg	ure i	index		
Figui	re 1	Tok	kanui Site Investigation Process	4
Figui			ls map	10
Figu			derlying geology	11
•	igure 4 Stormwater discharge points		13	
Figu	igure 5 HT_COMP G1			19
Figu	re 6	B74	4_TP09	20
Figui	igure 7 B65_TP03			20
Figui	igure 8 B59_TP01			21

Appendices

Appendix A Site maps

Appendix B Sampling and analysis plan Appendix C Sampling location maps

Appendix D Geotechnical logs

Appendix E Photolog

Appendix F Results tables

Appendix G Laboratory certificates

Appendix H

Proactively Released Lealand
Pand Information
Pand Information
Pand Information

List of abbreviations/glossary

Acronym/term	Description
	elevant to this report copied from the Tokanui Hospital Deferred Selection Process, Subpart A:
ACM	Asbestos containing material, used to refer to material containing asbestos. These are usually building materials such as fibre cement, cladding material or insulation.
BTEX	Benzene, toluene, ethylbenzene and xylenes, a group of contaminants associated with petrol.
CEnvP SC	Certified Environmental Practitioner (Site Contamination), a professional accreditation for environmental practitioners. This accreditation is also a requirement for LINZ suppliers conducting contaminated land investigations.
CLMG	Contaminated Land Management Guidelines, a series of guidelines produced by the Ministry for Environment used for consistency of reporting and investigation of contaminated sites. The NES CS (see below) incorporates six documents by reference which include the CLMG. For example, interpretation of the NES CS requires preliminary site investigations and detailed site investigations to be prepared in accordance with CLMG 1.
CLMG 1*	means the Contaminated land management guidelines No. 1; reporting on contaminated sites in New Zealand, Ministry for the Environment, revised edition 2011;
CLMG 2*	means the Contaminated land management guidelines No. 2: hierarchy and application in New Zealand of environmental guideline values, Ministry for the Environment, revised edition 2011
CSM	Conceptual site model, a system of identifying contaminant sources, routes of potential exposure, and receptors who may be impacted by contamination. This model is used as the basis of investigation and is an iterative process that is updated as new information is gathered.
Deed of Settlement (the Deed)	The Ngāti Maniapoto Deed of Settlement signed by Maniapoto and the Crown, which was signed on 11 November 2021 and given effect by the Maniapoto Settlement Claims Act 2022, which came into force on 28 September 2022.
Demolition and remediation works*	means the physical works required to carry out the demolition and remediation of each Tokanui Hospital deferred selection property (excluding any new disposal site or existing disposal site on that property) as described in paragraph 9.16;
DSI	Detailed site investigation, as defined in the NES CS; "a detailed site investigation involves intrusive techniques to collect field data and soil samples for analytical testing to determine concentrations of contaminants of concern." The investigation must be done in accordance with CLMG 5 and reported in accordance with CLMG 1 (the DSI report is specifically defined in the Deed, see below).
Detailed Site Investigation report (DSI)*	means a detailed site investigation report as described in the CLMG 1
Existing Disposal Consents*	means the land use resource consents numbered 102269.01.01, 102270.01.01 and 102271.01.01.
Existing disposal sites*	means the two existing sites (as described in the existing disposal consents) located on one of the Tokanui Hospital deferred selection properties that the Crown historically used to dispose of waste; indicated as 'Existing disposal sites' on the plan (subject to survey) 'Tokanui Hospital deferred selection properties' in part 7 of the attachments;
HAIL	Hazardous activities and industries list, as defined in Regulation 3 of the NES CS as, "The current edition of the Hazardous Activities and Industries List, Wellington, Ministry for Environment." The HAIL is a list of 53 activities and industries that are considered likely to cause land contamination through the use, storage or disposal of hazardous substances.
Managed Remediation Standard*	Means an applicable standard or standards for recreational use chosen in accordance with CLMG 2, or derived through a site-specific risk assessment, but where use may be subject to controls (for example, in relation to excavating, erecting buildings or domestic gardening).
NES CS	Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011, a set of nationally consistent regulations for the resource consenting of contaminated sites.
OCP	Organochlorine pesticides, a group of pesticides.

Acronym/term	Description		
PAH	Polycyclic aromatic hydrocarbons, a group of contaminants associated with diesel fuel and burnt material		
PCB	Polychlorinated biphenyls, a group of contaminants associated with electrical transformers.		
PID	Photo-ionisation detector, a measurement tool for field screening soil for volatile vapours such as those associated with petrol or solvents.		
PSI	Preliminary site investigation, as defined in Regulation 3 of the NES CS as an investigation done by a SQEP, is reported on in accordance with CLMG 1 and results in a report that is certified by the practitioner. The NES CS also states, "the main objectives of the PSI are to gather information about a piece of land to assess the suitability of the land for its current or intended use, and to design a detailed site investigation (if required)."		
Rural residential remediation standard*	Means an applicable standard or standards for rural residential use chosen in accordance with CLMG 2 or derived through a site-specific risk assessment.		
SAP	Sampling and analysis plan, a plan setting out the proposed sampling programme for an environmental investigation and completed in accordance with CLMG 1 and CLMG 5.		
Settlement Date	Is defined as s12 of the Maniapoto Settlement Claims Act 2022, being 24 November 2022.		
Site-specific risk assessment*	Means the derivation of remedial criteria based on a conceptual site model in a manner generally consistent with CLMG 1.		
SQEP	Suitably Qualified and Experienced Practitioner. This is not defined within the NES CS regulations, but in the Users Guide, National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health (April 2012) which provides guidance on determining who is a SQEP. This is detailed in Section 2.1.1 of the NES CS Users Guide.		
SVOC	Semi-volatile organic compounds, a group of hydrocarbon contaminants which are commonly associated with industrial processes.		
THDSP	Tokanui Hospital Deferred Selection Process, a standalone process for the demolition and remediation of the Tokanui Hospital set out in Part 9 of the Deed of Settlement: Property Redress Schedule.		
TPH	Total petroleum hydrocarbons, a screening analysis used to assess the presence of hydrocarbons in soil.		
VOC	Volatile organic compounds, a group of hydrocarbon contaminants associated with fuels, solvents and cleaning products.		
WDC	Waipa District Council, the district council the Site is located in.		
WRC	Waikato Regional Council, the regional council the Site is located in.		
WWTP	Waste-water treatment plant		
XRF	X-ray fluorescence spectrometry, a method for screening soil for heavy elements.		

1. Introduction

1.1 Background: Ngati Maniapoto Deed of Settlement and the Tokanui Deferred Selection Process

The former Tokanui Hospital (the Site) is managed by Toitū Te Whenua/Land Information New Zealand (LINZ) on behalf of the Crown in the Treaty Settlements Landbank. Land held in the Landbank is Crown land which has been declared surplus and can be used as cultural or commercial redress in Tiriti o Waitangi Settlement claims. The Tokanui Hospital is a deferred selection property in the Ngāti Maniapoto Deed of Settlement (the Deed) and forms part of the Maniapoto Settlement Claims Act 2022, which gives effect to the Deed. The Tokanui situation is unique as no other property included in a Treaty settlement has required demolition and remediation on this scale or required a commitment to undertake remediation in a deed of settlement. Under the Deed, Maniapoto and the Crown have agreed to a standalone process within the Property Redress Schedule, Part 9: Tokanui Hospital Deferred Selection Process (THDSP), for the transfer of the Site which details specific requirements for the demolition and remediation of the Site before it is available for transfer to Maniapoto. LINZ is the Government agency responsible for delivering this project. For detailed project background and context, please refer to the Project Background Document (Toitū Te Whenua Land Information New Zealand, 2021).

Subpart B of the THDSP out sets out agreed standards for the demolition and remediation of the Site. While Opus Limited (Opus) and AECOM Limited (AECOM) have undertaken several previous investigations at the Site, which are further detailed in Section 1.2 of this report, the Crown and Maniapoto have acknowledged at the date of Deed signing, there was not enough information available for the Crown to commit to a particular remediation standard (paragraph 9.2 of the Deed). LINZ have therefore engaged GHD Limited (GHD) and HAIL Environmental Limited (HAIL Environmental) to undertake contaminated land investigations in accordance with the Ministry for the Environment's (MfE) Contaminated Land Management Guidelines (CLMG) to enable LINZ to meet the Crown's obligations in regard to the remediation of the Site as set out in the Remediation Standards, described in detail in Section 1.3. The GHD and HAIL Environmental works will support the demolition and remediation of the Site as part of the Former Tokanui Psychiatric Hospital Demolition and Remediation Project (the Project).

The land will be changed from a commercial/industrial land use to a rural residential land use in accordance with the Deed requirements. This means demolition and removal of the Site buildings, with the Site being left in a grassed state. LINZ will obtain the necessary resource consents under the Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011 (NES CS) for the demolition and remediation activities. Changes in land use as part of future redevelopment will require separate consenting and are not part of the Crown responsibility, that will be the responsibility of the future land owners.

1.2 Background: Investigation Timeline to Date

A number of previous investigations dating back to 2015 have been completed to gain an understanding of the Site to inform detailed demolition and remediation options and associated costings. The investigations from 2015 are summarised below, with further detail on sampling undertaken as part of historical reports provided in Section 3.2.

In 2015, the Ministry of Justice (MoJ) commissioned Opus to prepare a Demolition Plan for the safe and efficient removal of all subterranean infrastructure and services, roadways and terrestrial infrastructure, buildings and hardstanding from the Site, so that it can be returned to pasture. Opus' brief was to provide MoJ a comprehensive Demolition Plan. In the same year, Opus also prepared a Preliminary Site Inspection (PSI) (the Opus PSI) report which comprised an initial contamination assessment of the Site and potential effects on the potential future uses of the Site and was intended to be included as part of the Demolition Plan. The Opus PSI report highlighted areas for which further work was required, in addition to identifying parts of the Site that required a Detailed Site Investigation (DSI).

LINZ took over the responsibility of the Landbank from MoJ and management Site was also transferred. LINZ then became responsible for scoping of any demolition and remedial works. Over the course of 2018 – 2020, LINZ

commissioned several reports from AECOM to help inform the project feasibility, costings and agreed the Crown requirements as part of treaty settlement negotiations.

In 2018, AECOM completed a gap assessment of the Opus PSI which included review of the Opus PSI and identification of any gaps in the process that was completed which may have led to potentially contaminating historical activities and/or features, not being identified (AECOM, 2018b). Also in 2018, AECOM completed an onsite disposal feasibility study. The options assessment report identified two key variables affecting the final level of remediation:

- whether demolition waste from the site will be transported offsite or contained in a purpose-built landfill onsite;
 or.
- whether horizontal infrastructure, such as roading and below ground services, are removed or partially retained on Site.

In 2019, AECOM completed a DSI of the Site (the AECOM DSI). The purpose of the AECOM DSI was to assess the soil contaminant conditions at the Site and the associated risk to human health and the environment, for a proposed future agricultural land use. AECOM stated that given its size, it was not practical to investigate all areas of the Site, therefore the approach taken was to investigate soils associated with selected areas (features, which collectively are representative of the wider Site (AECOM, 2019).

The AECOM DSI included a conceptual site model (CSM) which considered source, pathway and receptor linkages, allowing an assessment of risk to human health and the environment. AECOM concluded that the CSM showed some complete and potentially complete source, pathway, receptor linkages, and that the soil contaminant conditions at the Site could pose some risk to human health and the environment if no soil remediation is completed (AECOM, 2019).

1.3 GHD and HAIL Environmental Investigations

GHD and HAIL Environmental have been engaged to undertake contaminated land investigations in accordance with the CLMG to enable LINZ to meet the Crown's obligations regarding the remediation of the Site.

The investigations comprise iterative steps as per the MfE's CLMG. These steps are summarised in Figure 1 with more detailed descriptions in the remainder of this section.

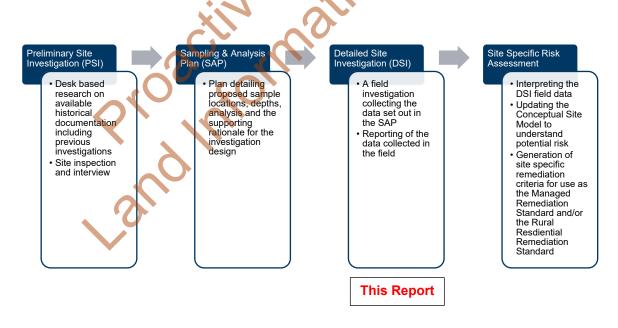


Figure 1 Tokanui Site Investigation Process

The first step was a PSI encompassing the entire Site, undertaken by GHD in 2022; the PSI comprised:

A thorough site walk over.

- An interview with a former hospital staff member.
- Research of council and other publicly available records.
- Review of existing reports to identify and close data gaps.
- Identification of historical activities that have the potential to have caused contamination that are listed on the MfE HAIL.
- The refinement of the conceptual site model developed by AECOM (2019) to reflect findings from the PSI and inform this Sampling and Analysis Plan (SAP).

In order to understand the degree and extent of contamination that may have occurred, an intrusive investigation including field screening and laboratory analysis is required across the Site as part of a DSI. Such investigations typically involve sampling different environmental media (e.g. soil and sediment) via a number of sampling techniques and the use of a variety of laboratory chemical analysis. CLMG No.5: Site Investigation and Analysis of Soils (Ministry for the Environment, 2021) recommends that an SAP be prepared as part of the investigation to provide the methodology for addressing the investigation objectives and data gaps identified during the PSI.

The SAP (GHD, 2022b) took the information from the PSI and previous reports in order to design a sampling programme for the identified HAIL activities. The proposed field work and sampling was then completed as part of this DSI.

Following completion of the field investigations, the next step of the project is to undertake a site-specific risk assessment in order to generate site specific remediation criteria for use as the Rural Residential Remediation Standard and/or Managed Remediation Standard as defined in the Deed.

Report Structure

As shown in Figure 1 (Tokanui Site Investigation Process), this DSI report includes the reporting of the data collected in the fieldwork programme. This report is limited to factual reporting of the fieldwork and is aligned with the requirements of CLMG 1 recommended table of contents for DSI reports. The interpretive parts of the investigation required under CLMG 1 are detailed separately in the **Site Specific Risk Assessment Report** being produced by HAIL Environmental. This report has therefore been named the **DSI Factual Report** and contains the following:

- Section 1: Introduction
- Section 2: Site Description
- Section 3: Historical Site Use
- Section 4: Sampling & Analysis Plan
- Section 5: Sampling Results limited to
 - Departures from the SAP
 - Field observations
 - Results of field and laboratory quality assurance/quality control
 - Provision of data tables

The HAIL Environmental **Site Specific Risk Assessment Report** will contain evaluation and interpretation of results, statistical analysis, generation of site specific remedial criteria, an updated conceptual site model and risk assessment. Combined, these two reports comprise the DSI for the Site.

The DSI Factual Report should be read in conjunction with the Site Specific Risk Assessment Report.

The GHD / HAIL Environmental DSI did not include an intrusive investigation into the existing disposal sites on the eastern side of the Wharekōrino Stream which has been investigated separately by Fraser Thomas Ltd (FTL). The report on the existing disposal sites should be read in conjunction with **DSI Factual Report** and **Site Specific Risk Assessment Report**.

1.4 **Purpose & Objectives**

The purpose of this document is twofold:

- To provide a DSI prior to commencing any demolition and remediation work as per paragraph 9.4 of the THDSP; and
- 2. To support resource consent(s) for the demolition and remediation works as set out in the Subpart B of the THDSP.

The objectives of the DSI Factual Report are to:

- Collate the data obtained from the fieldwork and sampling.
- Provide detail on any departures from the SAP.
- Comment on field observations and quality control/quality assurance.
- ments of the Deed.

 A control Provide the report in a format that aligns with CLMG 1 as per the requirements of the Deed.

2. Site description

2.1 Site identification

The Site is located at 149 Te Mawhai Road, Tokanui, Waikato, approximately 6.2 kilometres south of Te Awamutu. A map of the Site is included as Figure A1 in Appendix A. Table 1 below summarises the information about the Site.

Table 1 Site details

Attribute	Details
Site name	Former Tokanui Hospital
Address	149 Te Mawhai Road, Tokanui, Waipā
Legal description	Section 1, SO 44852
Site area	79.0175 Hectares
Regional council	Waikato Regional Council
District council	Waipā District Council
Zoning	Rural, under the Waipā District Plan

2.2 Site layout

There are 74 remaining buildings associated with the hospital; several buildings have already been demolished prior to LINZ management of the site. Structures originally onsite supported patient care as well as patient wards, housing/accommodation for hospital employees, waste-water treatment plant (WWTP), substations (some containing transformers), a swimming pool, a closed landfill (existing disposal site) and substantial roading and underground infrastructure such as three waters, electrical and communications, and steam ducts associated with the operations at the hospital.

A building identification system was adopted during previous investigations. Site buildings and the building identification system are listed with locations shown in Figure A2, Appendix A.

The buildings at the Site are mostly in a deteriorated condition, and asbestos and lead paint are known to be part of the building fabric.

The Site is predominantly grassed, with building structures, and asphalted roads central areas. There are small groups of trees along the roadways and amongst the buildings. Access to the Site is via the main access gate on Te Mawhai Road.

Services mostly follow the roads with some water and power infrastructure cutting across grazing areas. FTL has undertaken a detailed assessment to confirm the extent and location of the services throughout the Site as part of their horizontal infrastructure assessment (Fraser Thomas, 2023).

The northwestern boundary of the Site includes six residential tenanted houses; the eastern boundary of the Site adjoins a residential village of ~50 tenanted houses; and a second residential village and decommissioned WWTP, approximately 1 kilometre to the east of site. The residential villages are out of scope of the demolition and remediation project.

Following engagement with mana whenua and the completion of an archaeological assessment by CFG Heritage, several sites of archaeological and cultural significance have been identified. LINZ has therefore implemented accidental discovery protocols, engaged cultural monitors, and obtained archaeological authority under the Heritage New Zealand Pouhere Toanga (HNZPT) Act (2014) for ground disturbance in areas with potential for pre-1900 human occupation. These locations are shown on Figure A1, Appendix A. Further information regarding sites of cultural and archaeological significance can be found in the Cultural Impact Assessment (Te Muraahi & Maniapoto, 2021) the Archaeological Assessment (CFG Heritage, 2023) and the Waahi Tapu Investigation and Cultural Induction Summary (TAR Block Ltd., 2023). It is worth noting these documents were used to enable the

contaminated land investigations and that LINZ is continuing open dialogue with mana whenua representatives for the life of the project. New information regarding sites of cultural significance on the Site will be incorporated by LINZ into the remedial options and into any future archaeological authority application for ground disturbance associated with the remedial works.

2.3 Current site uses

Grassed areas of the Site are leased for stock grazing. Security and maintenance personnel are frequently working at the Site, and police training exercises (such as the training of police dogs) frequently occurs at the Site.

Building 59 (the gardener shed) is used as a base for the current lease holder for the site (see Figure A2, Appendix A for location). The shed contains old, empty IBCs and drums. An old concrete pad with weed spray storage signage is included on the eastern side.

A waste-water treatment plant previously operated at the Site (see Figure A2, Appendix A for location) until 2019 when it was decommissioned and replaced with a pump station.

2.4 Proposed site use

As per the THDSP, the Crown will, in carrying out the demolition and remediation works:

- Comply with all necessary consents and approvals for the demolition and remedial works.
- Remediate the land in accordance with the applicable remediation standard.
- Remove all vertical building structures from the property.
- Determine the extent of horizontal infrastructure to be removed, subject to Ministerial decisions.
- Ensure that where the land has been damaged by the impact of the demolition and remediation works, it is
 left free of building debris and is stabilised by grassing.

Future land use beyond the demolition and remediation of the Site is unknown but likely to be a rural residential use (e.g. agricultural land with farm houses), based on surrounding land uses. Any development of the Site in the future is beyond the scope of the Crown.

2.5 Surrounding land uses

The Site is located in a predominantly rural area. Some residential properties are located to the north and east, the AgResearch Tokanui Dairy research farm is located to the south-east, with the remainder of the surrounding land being in agricultural use, mostly as dairy farms. There are several wahi tapu sites located within 500 metres of the Site, including Waipuna/freshwater springs, cultural and archaeological sites 400 metres to the north-east, the Te Wawhai Road willow wetland located immediately north of the WWTP and a forest patch 250 metres east of Wharekino stream (Waipā District Council, 2016).

2.6 Site inspection

A site walkover was undertaken by a GHD Technical Director in August 2022 as part of the PSI. A summary of the findings of this walkover are included below in in Table 2.

Table 2 Site Walkover Summary of Key Observations

Building/area	Observations	
B8: Dentist building	A discharge pipe from routed from inside the building was observed to exit on the eastern side of the building at the edge of the concrete pad. This pipe discharges to ground.	
B16: Petrol station	The concrete island and some pipework are still visible. A manhole is located between the island and the building. Previous sampling undertaken by AECOM as part of the Z Energy Ltd. tank removal report have shown that the material beneath the concrete island and fuel lines had been impacted by the operation of the fuel tank but were suitable to remain on site. The workshop part of B16 still has vehicle inspection fits, these were filled with water. Some minor fly tipping was observed to the east, which shows some evidence of burning.	

Building/area	Observations
B57: Swimming pool	Evidence of chemical storage was observed in the form of drum storage in one of the outer buildings. This is likely to have been a pool-cleaning chemical, but this could not be confirmed via drum labels.
S2: Substation 2	Chicken wire is placed across the door. Equipment, including transformers can be observed inside.
Gully to the south of B8	The gully has a culvert which enters from the eastern side. Appears to be a surface water collection area. This location was sampled by AECOM as part of their site investigation.
B59: Gardeners Shed	Contains old, empty Intermediate Bulk Containers (IBCs) and drums. Currently used by the farmer for storage. An old concrete pad near the door with weed spray storage signage on it on the eastern side.
B61: Shed 11	A small square building in the commercial area of the Site. It has no windows and has vents on the outside. Initially not accessible at time of initial site inspection, but subsequent access has shown it contains a small above ground tank (potentially an air compressor) and associated pipework. Its exact use is unknown. The current utility service plans for the area do not show a piped connection to this building. Some minor oil staining on the internal floor was evident.
B63: Workshop	There is a large extraction chimney to the back of the workshop, which is a former wood working area. Sawdust was observed on the ground.
B65: Store	An old UST was present in the grass. The tank vent is still visible on the exterior of the building. The bowser footing is visible under the canopy.
B66: Assistant engineers office	Building has a vehicle ramp, with oil change/service pit outside. Oil filters were observed on the ground underneath the pit.
B67: Incinerator Shed 8	A small shed with a chimney. External pipe lagging on the northern external wall appears to contain asbestos fibres.
B68: Main boiler house	A hopper for coal was located on the eastern side. A sump is located beside the stairway below ground, filled with liquid and old plastic containers. On the northern side an old AST bund with pipework above ground entering the building. Old transformer units were located within the building.
B73: Shed 7	Appears to be a pump house associated with the laundry. The discharge point from the shed is unknown. There is a concrete plinth inside which has oil staining. A pipe tunnel with concrete paver covering in the paddock to the north appears to connect to the Laundry Building (B74). A scrub area in the paddock appears to have a discharge point within it, with stepped concrete surrounding it. This is heavily overgrown and may just be a stormwater drainage point.
B74: Laundry	A long building with a high glass roof. GHD was unable to access the building due to the risk of glass dropping inside. There are small concrete channels exiting the base of the building towards B73. On the western side of the laundry building is a blue stick up pipe, which looks like a monitoring well without a cap. There are piles of asphalt scrapings in the same area. On the south side near the pedestrian entrance there are downpipes to the ground which come from the inside of the building and may be a possible area of discharge to the ground.
B35: Shed 1	A corrugated iron shed with no internal floor. Inside is some internal wooden racking and concrete structures. Immediately to the west are the ruins of a larger building, which includes areas of concrete lined below ground pits.
Area between B34 and B35	A number of concrete foundations, believed to be from former glasshouses.
Eastern/ south- eastern edge of paddock	A linear concrete structure leading to the paddock fence in the direction of the stream. The use of this structure is unknown but may have been used as a livestock dip.
South-east of the paddock	An old chimney base and other depressions and hummocks are present in the ground.
WWTP Seepage	The WWTP pump station appears to discharge to the stream just south of the main road. Seepage was observed near the main discharge pipe, flowing from an area showing some ground collapse.
WWTP Discharge	During the walkover it was noted that a concrete discharge pipe flows into the Wharekōrino Stream from the pump station. This was associated with visibly poor water quality and algal growth.

2.7 Environmental setting

2.7.1 Site topography

The topography of the Site is gently undulating, with elevations ranging. Elevation ranges between 29 and 46 metres above sea level.

2.7.2 Soils

The Manaaki Whenua Landcare Research 'SoilsMapViewer' (Manaaki Whenua Landcare Research, 2022) identifies two main soil types underlying the Site, Orthic Gley soils ordinary Gley Soils, usually found on older land surfaces. They are strongly affected by waterlogging and have been chemically reduced. They have light grey subsoils, usually with reddish brown or brown mottles. The grey colours usually extend to more than 90 cm depth. Waterlogging occurs in winter and spring, and some soils remain wet all year.

Orthic Allophanic Soils are deep Allophanic Soils, dominated by allophane (also imogolite or ferrihydrite) minerals. These stiff, jelly-like minerals coat the sand and silt grains and maintain porous, low-density structure with weak strength. The soils are identified by a distinctly greasy feel when moistened and rubbed firmly between the fingers. The soil is easy to dig and samples crumble easily when crushed in the hand (Manaaki Whenua Landcare Research, 2022).

Due to their large specific surface area and small particle size, allophanes are very reactive and have a high ion exchange capability This may lead to charged contaminants such as metal ions adsorbing to the surface of these grains (Parfitt, 1990) (McLarren & Cameron, 1996).

Figure 2 below shows the soil units underlying the Site.

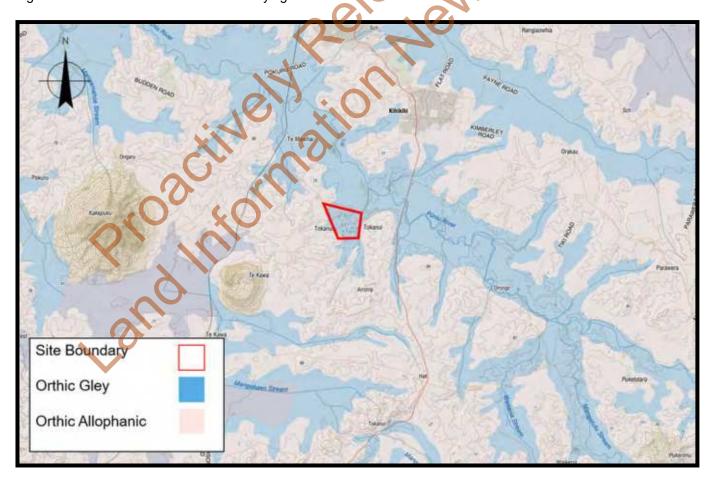


Figure 2 Soils map

2.7.3 Geology

The Institute of Geological and Nuclear Science (GNS) 1:250,000 map of the Waikato (Edbrooke, 2005) shows two main geological units underlying the Site, Typically unconsolidated alluvial sediments (Middle Pleistocene - Late Pleistocene river deposits of the Piako subgroup of the Tauranga group, described as locally derived pumiceous clays, sandy clays and gravels).

Distal ignimbrite deposits of the Tauranga group (Early Pleistocene - Middle Pleistocene river and igneous deposits of the Walton subgroup of the Tauranga group, being alluvium dominated by primary and reworked non-welded ignimbrite).

The basement rock underlying the Hamilton Basin consists of faulted greywacke (indurated sandstone, siltstone and mudstone) of the Waipapa Terrance.

Figure 3 below shows the underlying geology of the Site. Geological observations from this investigation are included in Section 5.2.1

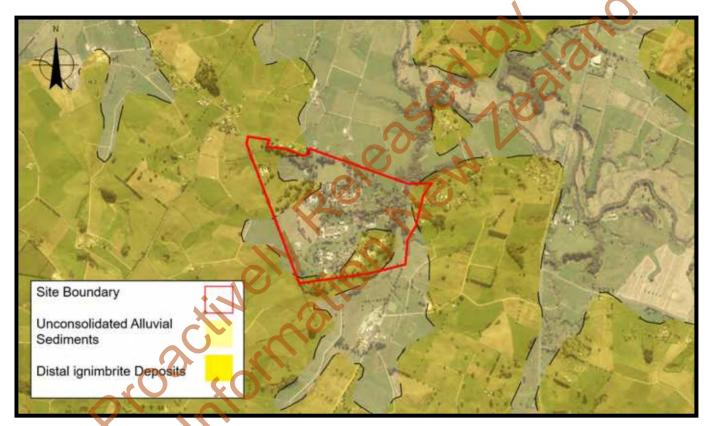


Figure 3 Underlying geology

2.7.4 Hydrogeology

The Site is located within the area classified by WRC as the Waipa Aquifer under Section 3.3 of the Waikato Regional Plan (Map 11) (Waikato Regional Council, 2012). This aquifer underlies an area of approximately 1,420 km² within the Waikato Region.

The site is located above the Waipa Aquifer, in the southern end of the Hamilton Basin. The Waipa Aquifer can be considered as a regional aquifer, with a single hydrogeological unit comprising groupings of multiple units of undifferentiated unconfined and leaky aquifers, making it difficult to establish high yielding wells in the aquifer (Schofield, 1972) (Perch & Marshall, 1988).

A search of the Wells Aotearoa New Zealand website (Te Uku Kahika, 2022) indicated a total of six groundwater bores were located within 500 metres of the Site. None of these bores are used to supply potable drinking water.

Groundwater observations made during the AECOM DSI investigation ranged between 1.3 and 2.4 m bgl. These measurements were from test pits within the commercial area of the Site and were collected between late May and September, implying that these are likely to be high winter groundwater levels (AECOM, 2019).

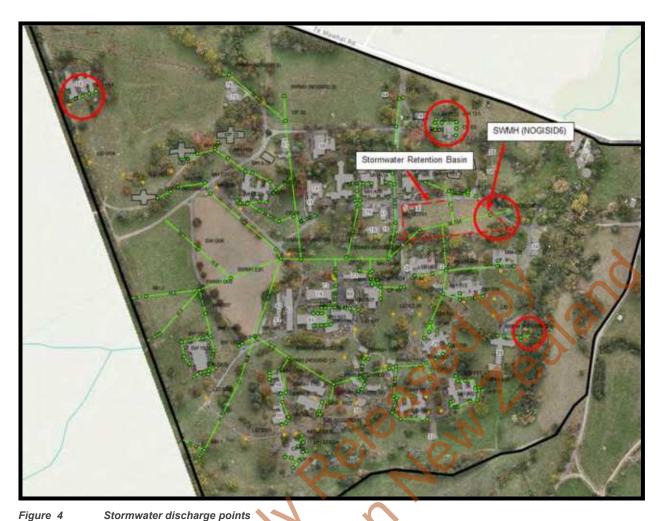
Annual monitoring of bores is undertaken by WSP as part of a resource consent (Number 102269) associated with the former disposal sites on the east side of the Wharekōrino Stream. Two bores known as P2 and P7 are sampled with groundwater levels measured. Groundwater is sampled to coincide with high and low groundwater levels (generally September and April). The WSP annual reports from 2020 and 2021 (WSP, 2020) (WSP, 2021) both indicated that the P2 and P7 bores were dry. Groundwater samples were collected from P2 and sent for laboratory analysis in both 2018 and 2019 (WSP, 2018) (WSP, 2019a), but no groundwater levels were recorded in either of the reports. The AECOM 2019 data is therefore the only groundwater level data within the Site.

No assessment or investigation to confirm groundwater flow direction has been undertaken to date; however, the regional groundwater is inferred to flow in a general northerly direction, towards the Pūniu River. Localised groundwater is inferred to flow to the east towards the Wharekorino Stream, which transects the Site.

2.7.5 Hydrology

The nearest surface water body is the Wharekorino Stream and flows south to north and through the Site, ultimately flowing into the Pūniu River, located approximately 600 metres north of the Site.

The Opus report (Opus, 2015) states that several drainage ditches across the Site flow into a larger gully, oriented west to east, which leads into the Wharekōrino stream. The AECOM DSI (AECOM, 2019) identified a low-lying area to the southeast of the bus shelter and carpark building (B09) as a suspected area where stormwater would collect.


2.8 Stormwater

A survey of horizontal infrastructure undertaken by FTL in 2023 included an assessment of the stormwater system at the Site. The majority of stormwater is routed to a retention basin in the centre-east of the Site and then to a tributary of the Wharekōrino Stream. This is known as the Trunk Stormwater System. Remaining stormwater was found to discharge via a separate discharge point or was cross connected to other services (e.g. discharged to the sewer). Key findings are as follows:

- The majority of site drainage discharges to the Trunk Stormwater System. This also takes drainage from land
 to the west outside of the Site and flows into the stormwater retention basin which drains to the east via a
 stormwater grate, identified as SWMH (NOGISID6). This then discharges eastwards to a tributary of the
 Wharekorino Stream.
- Building 26, Former Wards 21/21A: this area drains directly to the Wharekorino Stream via a separate drainage outlet
- Building 03: CCTV shows drainage heading to the north before being lost in a flooded section. The discharge point is unknown.
- Building 55: believed to have a cross connection to the wastewater pipe at this location

Direct stormwater discharge to surface water is therefore limited to two locations, the discharge from the Trunk Stormwater System via the stormwater retention basin, and the direct discharge from Building B26 (Fraser Thomas, 2023).

Figure 4 below shows the stormwater discharge points from the Site.

rigure 4 Stormwater discharge points

3. Historical site use

3.1 Summary of site history

The Site was first designated as a hospital in 1910 and was opened in July 1912; by the 1960s it was one of the largest psychiatric institutions in New Zealand (Swarbrick, 2022). The move towards deinstitutionalisation meant a shift towards community care, and smaller more decentralised psychiatric wards attached to general hospitals and the hospital eventually closed in March 1998 (Coleborne, 2012). Following its closure, the Site was transferred from the Waikato District Health Board (DHB) to the Office for Treaty Settlements Landbank, initially managed by Ministry of Justice and then transferred to LINZ in 2017.

Over the period of occupation, the Site expanded, with additional wards being constructed and site infrastructure being upgraded to support this expansion. The Site stopped expanding in the 1970s, with some buildings being demolished from the 1980s onwards.

3.2 Previous sampling

Sampling has been undertaken as part of four previous investigations at the Site, two underground storage tank (UST) removal reports, a DSI undertaken of the hospital site targeting the halos of the structures at the site and representative areas, and a DSI focusing on the decommissioning of the WWTP. The findings of these reports are summarised below. A map summarising the historical sampling locations at the Site in the above reports is included in Appendix A, Figure A3.

3.2.1 AECOM (2018) Underground Petroleum Storage System Removal at the Former Tokanui Hospital

This report documents AECOM's supervision of the removal of an underground petroleum storage system (UPSS) (AECOM, 2018a) located near the former store building (B65), the associated soil sampling and a risk assessment. The removal was undertaken on behalf of the UPSS owners, Z Energy. Sampling occurred after the removal of a 5,000 litre steel UST on 30 and 31 July 2018.

Hydrocarbon odours were noted in the base of the tank pit but no visual evidence of impacted material was noted. Six samples were analysed for total petroleum hydrocarbons (TPH) and benzene, toluene, ethylbenzene and xylenes (BTEX) suites and a metals suite. None of the samples remaining at the site exceeded acceptance criteria for a tier one residential/agricultural land use (all pathways and inhalation) and maintenance/excavation worker (soil acceptance criteria) when compared to the relevant guidelines.

Two samples were collected from stockpiled material and analysed for TPH, BTEX and a metals suite. These were compliant with the above criteria, however the material was removed from site.

3.2.2 AECOM (2018) Underground Petroleum Storage System Decommissioning at Tokanui Hospital

This report documents the decommissioning and removal of an UPSS from the former petrol station (Building B16), the associated soil sampling and a risk assessment. The work was commissioned by Z Energy Ltd as owner of the tanks between 26 and 30 July 2018 (AECOM, 2018c).

No soil discolouration was observed within the tank pits or UPSS components. Hydrocarbon odours were noted in the excavated bedding material that supports the tank. A steam pipe, constructed of potentially asbestos containing material was observed during excavation and remains in place.

A total of 21 samples were analysed for TPH and BTEX. None of the soil remaining at the Site exceeded soil acceptance criteria for a tier one commercial/industrial and agricultural land use. Minor hydrocarbon impacted material was removed from the site.

The excavation was reinstated with GAP40 Gravel. Due to the distance of surface water bodies from the UST removal area hydrocarbon soil impacts from the UST were not assessed against the soil acceptance criteria for protection of groundwater quality.

3.2.3 AECOM (2019) Tokanui Hospital: Detailed Site Investigation (draft)

This report outlines the DSI AECOM undertook at the Site in May and July 2019 (AECOM, 2019).

AECOM's approach to the investigation was to assess the soils associated with features of the site and use them as a representative sample of the activity undertaken in the location. These fell into four categories:

- Green space and undeveloped areas, then used for stock grazing (the grassed areas predominantly along the western and southern boundary of the Site
- The 'commercial area' of the Site, where the majority of identified HAIL activities were undertaken when the Site was operational
- The buildings, a selection of which were investigated
- A low-lying area where stormwater potentially collects

Buildings at the Site were grouped into seven categories based on their cladding, roof type and condition of guttering. Buildings halos were investigated to assess the lateral and vertical extent of the potential impacts. Samples were collected between 0.5 - 2.5 m from the building edge, with additional sampling at some buildings at a distance of 6.5 m from the building edge. Samples were collected from depths of 0, 0.25 and 0.5 m bgl.

Samples from the green space, stormwater collection area and commercial area were excavated with a combination of manual excavation and use of an excavator.

Field screening of samples was undertaken with an X-ray fluorescence (XRF) detector and photo-ionisation detector (PID). Results of the XRF screening for lead in the building halo showed exceedances of background concentrations of lead in all building types, and almost all building groups had exceedances of adopted human health guidelines for asbestos or lead (BRANZ asbestos guidelines and CCME Canadian Environmental Quality guidelines), with the most significant impacts being the structures with "asbestos roof, all guttering conditions, all cladding types" and "painted iron roof, no/damaged guttering, all cladding types". The full extent of the exceedances was not vertically or horizontally delineated in the majority of building halos.

Test pitting in the green space of the Site showed exceedances of background concentrations for several metals, and an exceedance of the adopted human health guidelines for copper, and asbestos (CCME Canadian Environmental Quality guidelines, BRANZ asbestos guidelines).

Test pitting in the commercial area of the Site showed exceedances of background concentrations for several metals, and an exceedance of the adopted human health guidelines for arsenic, chromium, copper, and nickel (CCME Canadian Environmental Quality guidelines).

Test pitting in the stormwater collection area of the Site showed exceedances of background concentrations for several metals, and an exceedance of the adopted human health guidelines for lead and copper (CCME Canadian Environmental Quality guidelines).

3.2.4 WSP (2019) Tokanui Village and Hospital Waste-water Upgrade Detailed Site Investigation

WSP undertook a DSI of the Hospital WWTP ahead of the WWTP decommissioning (WSP, 2018b). The WWTP is geographically separate from the main hospital site, with the two being separated by the Wharekorino Stream. The former hospital area lies to the west of the stream and the WWTP on the east of the stream.

A total of 12 samples were collected from six locations in the northern half of the WWTP site from the area around the drying beds prior to works being upgrade works being undertaken and analysed for a metals suite, volatile organic compound (VOC) suite and asbestos.

Metals were found to be above background concentrations, but below applicable human health guideline values (commercial/industrial). VOCs and asbestos were not detected in any of the samples.

3.3 GHD (2022) Former Tokanui Hospital Preliminary Site Investigation

GHD undertook a PSI of the Site in 2022 (GHD, 2022a). This investigation included:

- A review of the available information and data from the previous existing reports provided to GHD to identify and close any data gaps identified.
- Identify activities on the MfE Hazardous Activities and Industries List (HAIL) and potential sources of
 contamination for the purposes of change of land use under the Resource Management (National
 Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health)
 Regulations 2011 (NES CS) (changing from a commercial industrial hospital site to a grassed site with no
 buildings) and compliance with the terms of the Deed.
- Refine the conceptual site model developed by AECOM (2019) to reflect the findings from the PSI and inform the sampling plan.

The PSI identified 43 locations where HAIL activities have taken place were identified across the Site. These activities include:

- A2: Chemical bulk storage located in the water treatment plant.
- A5: Dry cleaning plants including dry-cleaning premises or the bulk storage of dry-cleaning solvents *located* in the Laundry.
- A8: Livestock dip operations located in the horticultural area.
- A10: persistent pesticide bulk storage or use including sport turfs, market gardens, orchards, glass houses or spray sheds – associated with the spray shed, horticultural areas, sports turfs.
- A14: Pharmaceutical manufacture including blending, mixing or formulation of pharmaceuticals located in the Pharmacy.
- A17: Storage tanks or drums for chemicals or liquid waste Swimming pool chemical store, water treatment plant, morgues, fuel storage tanks
- B4: Substations Associated with the substations
- E1: Asbestos products disposal including sites with buildings containing asbestos products known to be in a
 deteriorated condition associated with current and previously demolished buildings.
- F4: Motor vehicle workshops associated with the vehicle workshop.
- F7: Service stations including retail or commercial refuelling facilities associated with the refuelling area.
- G4: Landfilling Waste disposal to land the consented disposal sites.
- G6: waste or wastewater treatment Incinerator, hospital wastewater treatment plant.
- I: Any other land that has been subject to the intentional or accidental release of a hazardous substance in sufficient quantity that it could be a risk to human health or the environment – associated with the boiler, dentist, fly tipping, sawdust pile.

The existing conceptual site model (CSM) was updated based on the findings of the PSI. This CSM identified potentially complete linkages between contaminant sources on Site and sensitive human and ecological receptors, namely excavation workers, future land users, the Wharekōrino Stream and the cultural areas of the Site.

This CSM, and the rest of the findings of the PSI have been used to develop the SAP for the Site. This SAP is discussed in Section 4.

4. Sampling and analysis plan

Due to the size of the investigation GHD has developed a separate Sampling and Analysis Plan (GHD, 2022b), which is included in this report as Appendix B.

The SAP has been designed to achieve the following objectives:

- Ensure the DSI has been adequately scoped to address the remaining uncertainties or data gaps identified in the PSI.
- Detail the analytes to be investigated, field techniques, analytical techniques and methods, statistical methods to enable the development of site-specific remediation standards.
- Ensure the DSI will be fit for purpose to support resource consent application(s) associated with the demolition and remediation works.
- Ensure the DSI will provide the statistical level of confidence required to inform the remedial strategy and Assessment of Remedial Options for future decision making regarding remedial and/or management approaches for soils that are compliant with paragraph 9.3 of the THDSP.

The SAP has been produced in general accordance with CLMG 1 and 5 as per the requirements of the Deed.

The sampling programme was designed to address the data gaps identified in the PSI. This included assessing and delineating the impacts of the HAIL activities and deteriorating building fabric on the soil and sediments at the Site.

This sampling programme was informed by and builds on the existing data sets from the AECOM draft DSI, 4Sight Consulting Limited's Asbestos and Lead Paint Demolition Survey Reports (Areas 1 – 4), and the WSP DSI of the WWTP. It used a combination of field screening techniques (XRF and PID) and laboratory chemical analysis of soil and sediment samples.

A combination of targeted sampling (targeting point source locations and building halos) and systemic sampling (targeting the larger areas of the Site such as the grazing areas and the horticultural area) was undertaken. Compositing was undertaken where appropriate in these larger areas. Samples were analysed for contaminants associated with the relevant activity, and leachability analysis was undertaken on selected samples to assess the potential for soil leaching in landfill or soil leaching into the underlying groundwater.

Samples were collected via mechanical excavation, hand auger or other hand tool, or sediment sampler. Samples were handled under appropriate chain of custody controls, and a quality control/quality assurance programme will be put in place to provide further robustness.

The data from the sampling programme will subsequently be used to undertake a site-specific risk assessment to generate site specific remediation criteria for use as the Rural Residential Remediation Standard and Managed Remediation Standard as defined in the Deed.

5. Sampling results

5.1 Summary of field work

GHD's fieldwork were undertaken in three phases:

- Between 6 30 March 2023
- Between 7 29 June 2023
- Between 11 12 September 2023.

HAIL Environmental fieldworks were completed 6 – 15 March 2023, with additional sampling undertaken on 28 August 2023.

GHD has undertaken soil sampling at 192 locations, and sediment sampling at nine locations.

HAIL Environmental completed XRF analysis on 95 building transects and individual sampling points, as well as composite sampling of 10 open space areas of the Site. Additionally, three building halos were sampled for leachate analysis.

Maps showing the sampling locations for the soil sampling, sediment sampling, XRF soil analysis and open space soil composite sampling are included in Appendix C.

Samples were collected in line with the SAP as detailed in Section 4. Minor departures from the SAP are described in Table 3 below.

Table 3 Changes from the SAP

Location	Reason	GHD comment
B35_HA01 and 04 B35_HA02 and 03	Unable to hand auger through concrete slab.	The collection of sample B35_HA02 and 03 via breaking through the concrete slab with an excavator and use of an excavator to sample instead of a hand auger provided a sufficiently representative sample. B35_HA01 and B35_HA04 were therefore not collected. An excavator was used to break the surface and collect samples.
B57_TP01	Unable to drill through floor slab.	The slab thickness likely has protected the underlying soil and contaminants are unlikely to have entered the
B61_TP01	Cor William	soil profile.
B66_HA01 and 02	Unable to access through concrete slab and above ground structure.	A surface sample of the material on top of the concrete slab was collected.
SCH_TP 01 - 04	Unable to access location with excavator.	A hand auger was used to collect samples.
TRF_TP 01 - 03		
B7_TP 01 and 03		
CHP_TP 03		
B3_TP 01 and 03		
B67_HA 01 and 02	Unable to hand auger through asphalt seal	An excavator was used to break through the surface and collect samples.
Changes in compositing schedule	To assess the same underlying soil unit.	The sample depths outlined in the SAP are based on the observed geology and the published soil and geological maps of the area, as well as the assumed soil horizon depths. As the presence and depths of horizons differed from the SAP, scheduling had to be modified. Composite samples were collected at the same locations as per the SAP. The compositing process is further discussed in Section 5.3.1

Location	Reason	GHD comment
HT_Comp C1,	Additional sampling in order to assess	Bricks, tile, concrete and other fill material was observed
HT_Comp E2,	unanticipated fill material.	in the horticultural compositing area of the Site. To assess the potential impacts associated with this and in
HT_Comp E4		order to keep the composite samples representative of the undisturbed soil units, separate additional analysis for metals, PAH and asbestos was undertaken on the sub-samples containing this fill material and those sub-samples were not included within the composite analysis. This removal of these samples is reflected in the lower amount of sub-samples shown in Table 5.

GHD and HAIL Environmental considers that these changes are minor and that the sampling programme is sufficient to fulfil the goals of the SAP.

5.2 Field observations

5.2.1 Underlying soil and geology

Geological logs documented by GHD are included in Appendix D. A summary of the geology encountered and examples photos are provided below.

Generally, soil in northern areas of the Site consisted of a dark brown silty clay topsoil to a depth of approximately 0.4m bgl. A reddish-brown clay with fine trace sand between approximately 0.4 – 0.9 m bgl and a reddish-brown to grey sand underlying the clay. Figure 5, below, shows an indicative example of the soil profile in the northern areas, the photo is taken from location HT_COMP G1.

Figure 5 HT_COMP G1

The southern area of the Site in contrast was typically a sandy clay, an example of this material is provided in Figure 6. Where test pits were extended below 2.0 m bgl, a sandy silt was encountered.

Figure 6 B74_TP09

Parts of the south-western areas of the Site, specifically around the stores (B65) and Gardeners Shed (B59), tended to have a stronger blue colouring within the encountered clay. Figure 7 below shows an indicative example, from B65_TP03. Figure 8, below, shows a close-up example of the blue clay.

Figure 7 B65_TP03

Figure 8 B59_TP01

HAIL Environmental field observations included:

- Soil appeared to differ based on topography. Soils encountered at the more elevated areas of the site (outside of the centre) were generally described as comprising dark brown silt (topsoil) to a depth of between 0.1-0.4 m below ground level (bgl), underlain by an orange-brown silt.
- Soils encountered at the less elevated areas of the site (near the centre) were generally described as comprising brown silt (topsoil) to a depth of between 0.05-0.2 m bgl, underlain by light brown clayey silt with orange and grey mottling.
- Northern areas of the site were noticeably wetter, with reeds and other wetland plants noted within paddocks, and had field drainage installed. These areas were represented by COMP01 and COMP02. Only push sampling was undertaken in these areas, so the soil profile was not inspected. The topsoils appeared similar to those generally encountered across the site.

Overall soils in the northern portion of the Site (broadly the area north of the drainage gully, including the north-western area of the Site where the former Nurses' Home was located), the north-eastern area horticultural area, and around the original hospital area were consistent with the orthic gley soils described in the published soil map.

Soils in the southern portion of the Site (broadly the area south of the drainage gully, including the areas around the laundry (B 74), boiler (B 68), stores (B 65), and gardener shed (B 59)) were consistent with the orthic allophanic description in the published soil map. Additionally, one location to the north of the Former Ward F building (NW_Fill TP 04) was also consistent with this description. Overall the extent of allophanic soil appears to extend further north than on the published map, and may be in areas which historically were wetlands.

5.2.2 Groundwater

Groundwater was observed by GHD at approximately 2.1 m bgl in one location (B74 TP 02). No other groundwater was encountered during the fieldwork programme. Low levels of water were observed in the eastern end of the drainage gully, near the culvert, however it was unclear if this was water ponding on top of the ground or interacting with groundwater. The HAIL Environmental investigations did not encounter groundwater in any locations.

5.2.3 Visual and olfactory observations

Table 4 below outlines the significant visual and olfactory (odour) field observations during the DSI. A representative photolog from both GHD and HAIL Environmental field investigations are included in Appendix E.

Table 4 Field observations

Location	Location ID	Observations		
GHD	-			
Locations around former nursing home	NUR_TP 01 – TP 04.	Brick, concrete pipe, ceramics		
Northern portion of the horticultural area	HT_Comp C1, HT_Comp E2, HT_Comp E4.	Brick, concrete, asphalt		
Southern portion of the horticultural area	HT_TP25, TP 27 – TP 28.	Brick, concrete, pipe, ceramics		
Underlying Substation 2	SB2_TP03.	Asbestos sheeting		
Area around the demolished Ward 2	WD2_TP 03 – 05, TP 07 – TP 09.	Brick, pipe, ceramics		
The area around Demolished Structure 2	DS_TP03 – TP 05.	Brick, pipe		
The area north of B26	B26_TP 01 – TP 03.	Rubble and other fill material, brick, wire.		
Sampling location inside the petrol station	B16_TP01.	Faint hydrocarbon odours were noted during the excavation. Assessment with a photoionisation detector (PID) showed low levels of hydrocarbons (< 1 ppm).		
Wards F, G, H	WDF TP 01 – 03, WDG TP 01 – 03, WDH TP 01 – 03	Brick, concrete, asphalt, ceramics		
HAIL Environmental				
Paint flakes	B2, B5-B8, B11, B15, B17, B19, B21, B23, B27, B30, B35, B52, B55 and B59	Paint flakes		

No other visual or olfactory evidence of contamination was encountered by GHD or HAIL Environmental during the excavations.

5.3 GHD Soil sampling and analysis

Soil and sediment sampling locations and depths were selected as described in the SAP. Samples were collected from the near surface (0 - 0.1 m bgl), a deeper sample (at approximately 0.5 m bgl) and at depth (1.0 m bgl), and deeper in some locations such as around the former UST locations).

Soil sampling locations were excavated with the use of an excavator, hand auger or trowel. A sediment sampler was used to collect sediment samples.

The hand augers, trowels and sludge and sediment sampler were cleaned with a mixture of Decon-90® detergent and water between sampling locations. The sediment sampler used a plastic liner, which was replaced between sampling locations.

Sampling locations within the footprint of buildings were accessed by breaking the foundation slab with an excavator, or via concrete cutting. Samples were collected from these locations by hand auger.

Samples were placed directly into laboratory supplied containers and placed into a chilly bin. Samples were either delivered directly to Hill Laboratories (Hills) in Hamilton or stored in a refrigerator on site before delivery to the laboratory under standard GHD chain of custody protocols. Hills are International Accreditation New Zealand (IANZ) accredited for the analytical methods required in the SAP. Where appropriate, field screening samples were placed into a plastic ziploc bag before headspace analysis was undertaken with a PID.

Sampling was scheduled in general accordance with the sampling programme described in the SAP (excluding the departures from the SAP listed in Section 5.1).

Tabulated results of GHD soil and sediment sampling are included in Appendix F. Full laboratory certificates are included in Appendix G.

Areas with differing sampling methodologies are discussed in Sections 5.3.1 – 5.3.3.

5.3.1 Soil Compositing – Horticultural area

Subsamples were collected during the investigation as outlined in Section 5.3. These were sent to Hills who undertook compositing of between two and four of these subsamples into a composite sample as outlined in Table 5 below and then analysed for metals and pesticides (Organo-chlorine, -nitrogen, and -phosphorus pesticides and acid herbicides) as described in the SAP.

Table 5 Composite samples

Composite samples	Subsamples
HT_COMP A 0.1	HT_COMP A1 0.1, HT_COMP A2 0.1, HT_COMP A3 0.1, HT_COMP A4 0.1
HT_COMP A 0.5	HT_COMP A1 0.5, HT_COMP A2 0.5, HT_COMP A3 0.5, HT_COMP A4 0.5
HT_COMP B 0.1	HT_COMP B1 0.1, HT_COMP B2 0.1, HT_COMP B3 0.1, HT_COMP B4 0.1
HT_COMP B 0.5	HT_COMP B2 0.5, HT_COMP B4 0.5
HT_COMP C 0.1	HT_COMP C2 0.1, HT_COMP C3 0.1, HT_COMP C4 0.1
HT_COMP C 0.5	HT_COMP C1 0.5, HT_COMP C3 0.5, HT_COMP C4 0.5
HT_COMP D 0.1	HT_COMP D1 0,1, HT_COMP D2 0.1, HT_COMP D3 0.1, HT_COMP D4 0.1
HT_COMP D 0.5	HT_COMP D1 0.5, HT_COMP D2 0.5, HT_COMP D3 0.5
HT_COMP E 0.1	HT_COMP E1 0.1, HT_COMP E3 0.1
HT_COMP E 0.5	HT_COMP E1 0.5, HT_COMP E3 0.5, HT_COMP E4 0.5
HT_COMP F 0.1	HT_COMP F1 0.1, HT_COMP F2 0.1, HT_COMP F3 0.1, HT_COMP F4 0.1
HT_COMP F 0.5	HT_COMP F1 0.5, HT_COMP F2 0.5, HT_COMP F4 0.5
HT_COMP G 0.1	HT_COMP G1 0.1, HT_COMP G2 0.1, HT_COMP G3 0.1
HT_COMP G 0.5	HT_COMP G1 0.5, HT_COMP G2 0.5, HT_COMP G3 0.5
HT_COMP H 0.1	HT_COMP H1 0,1, HT_COMP H2 0.1, HT_COMP H3 0,1
HT_COMP H 0.5	HT_COMP H1 0.5, HT_COMP H2 0.5, HT_COMP H3 0.5

5.3.2 TCLP and SPLP analysis

Samples were selected for leachability analysis as described in the SAP. Samples selected for analysis are shown in Table 6. Laboratory certificates are included in Appendix G. Samples for toxic characteristic leaching procedure (TCLP) analysis were selected based on elevated concentrations of contaminants identified in the samples. A representative set of samples from across the Site were selected for synthetic precipitation leachate procedure (SPLP) analysis to assess the potential exposure pathway from soil leaching to groundwater.

Table 6 Leachability analysis schedule

Analysis	Samples
TCLP (metals)	B16_TP06 0.1
	B19_TP01 0.1
	B26_TP01 0,1
	B34_TP05 0.1
	B35_HA01 0.1
	B66_HA01

Analysis	Samples
	B66_HA02
	B66_TP01 0.1
	B67_HA02 0.1
	DIP_HA02 0.1
	DIP_TP03 0.2
	DS02_TP03 0.1
	DS02_TP03 0.5
	DS03_TP03 0.1
	HT_TP25 0.2
	HT_TP29 0.1
	WWTP_TP03 0.1
	CHP_TP01 0.2
	CHP_TP04 0.2
SPLP (metals)	B16_TP04 0.1
	B26_TP02 0.1
	B34_TP06 0.1
	B35_HA03 0.1
	B59_TP04 0.1
	B71_TP02 0.1
	B73_TP01 0.1
	DS02_TP05 0.1
	HSP_SED04 0.05
	PAV_TP01 0.1
	STR_SED03 0.3
	HSP_SED01 0.1
TCLP (PAH)	B66_HA02
	B67_HA02 0.1
	HT_TP30 0.1

5.3.3 PID field screening

PID field screening was undertaken at locations where hydrocarbons were suspected to be present, including the petrol station (B16), the laundry (B74), the store (B65), engineer's office (B66), Shed (B67) and Boiler House (B68).

B65 TP03 contained low PID readings between 27 – 28 parts per million (ppm). The PID did not detect any hydrocarbons in any of the remaining locations.

5.4 HAIL environmental sampling and analysis

5.4.1 Halo sampling methodology

Halo sampling was completed to assess the extent of lead contamination around site buildings. For consistency with the AECOM investigation, field screening was completed at 0.5, 1.5, 2.5, 3.5 and 6.5 m distances along transects set out perpendicular to each building. Field screening was also completed at 100 mm depth increments at the 0.5 m distance.

Up to two transects were set out at each building, excluding buildings previously assessed during the AECOM investigation. Buildings which were surrounded by impermeable surfacing or constructed from materials highly unlikely to include lead-paint e.g. galvanised steel sheds and units with uPVC cladding were also excluded from the current investigation.

The approximate locations of former buildings including Wards F and H, the Nurses' Home, the chapel (B4) and the sports pavilion (B64) were identified and assessed using the halo sampling methodology.

Field screening was completed using X-ray fluorescence (XRF) in situ: a non-destructive technique used to estimate the content of heavy elements in a sample by measuring the fluorescent (or secondary) X-rays emitted from a sample when it is excited by a primary X-ray source.

An Olympus Vanta VMW XRF instrument was used. Screening was undertaken in situ at beam energies of 15 and 40 keV and a duration of 20 seconds per beam. The user held a current radiation user license and the instrument held a current source license.

As XRF measurements vary to a certain extent depending on the soil matrix and water content, replicate measurements were collected at a minimum rate of 1 in every 10 measurements. XRF data is included as Appendix G.

As XRF is a semi-quantitative technique, matched soil samples were collected at a rate of 1 in every 10 measurements. Soil samples were collected to represent the lower, middle and upper range of lead concentrations identified by the XRF.

Soil samples were collected directly into laboratory-supplied glass jars and submitted to Hills in Hamilton under standard chain of custody documentation for lead analysis. The laboratory report is included as Appendix G.

Soils were logged to New Zealand Geotechnical Society (NZGS) standards. Soils that were predominantly gravel or had obvious contaminant particles (paint flakes) were excluded from halo sampling.

Discussion and interpretation of the halo sampling are included in the Site Specific Risk Assessment Report.

5.4.2 Grazing area composite sampling

Open space areas of the Site currently used for grazing were sampled for selected heavy elements and pesticide residues. The open space areas were divided into ten contiguous blocks (COMP01-COMP10) for sampling purposes.

Each block was sampled using the Fonterra DDT soil sampling protocol, which involves a composite formed in the field from at least 30 soil plugs collected in a Z-pattern across the full extent of the block using a 37.5 mm push sampler.

The composite samples were submitted to Hills in Hamilton under standard chain of custody documentation for standard heavy element, organochlorine pesticide (OCP) and pH analysis and, for COMP10 only (due to the proximity to the former dental surgery, B8), mercury. The laboratory report is included in Appendix G.

Discussion and interpretation of the open space composite sampling are included in the **Site Specific Risk Assessment Report.**

5.4.3 Leachability sampling

Leachability sampling was completed on a subset of 'Group A' buildings to assess soil for removal. Group A buildings included those constructed pre-1944 with weatherboard cladding or pre-1974 with iron cladding. Previous halo sampling had identified elevated soil lead concentrations around Group A buildings and the subset included in the leachate sampling were buildings B2, B11 and B59.

For consistency with the previous halo sampling, field screening was completed at 0.5, 1.5, 2.5, 3.5 and 6.5 m distances along a transect set out perpendicular to each building. Field screening was also completed at 100 mm depth increments at the 0.5 m distance.

Field screening was completed as per the previous methodology described in Section 5.4.1 including the collection of duplicate samples. XRF data is included as Appendix G.

Matched soil samples were collected to represent the lower, middle and upper range of lead concentrations identified by the XRF. Soil samples were collected directly into laboratory-supplied glass jars and submitted to Hills in Hamilton under standard chain of custody documentation for total recoverable and TCLP analysis for lead. The TCLP test simulates leaching from soil within a typical municipal landfill in operating phase. The laboratory report is included as Appendix G.

Soils were logged to NZGS standards. Soils that were predominantly gravel or had obvious contaminant particles (paint flakes) were excluded from leachate sampling.

Discussion and interpretation of the leachability sampling are included in the **Site Specific Risk Assessment Report**.

5.5 Field and laboratory quality assurance/quality control

As outlined in the SAP, a robust quality assurance/quality control program is important to demonstrate the appropriateness of the analysis. The GHD QA/QC programme is detailed in Sections 5.5.1 – 5.5.5, with the HAIL Environmental QA/QC programme discussed in Section 5.5.6. Based on the following QA/QC programme documented in Sections 5.5.1 – 5.5.6. GHD considers that the programme has been followed and that the results of the sampling are appropriate for assessment.

As the investigation included fieldwork from both GHD and HAIL Environmental, separate sections in relation to quality assurance/quality control are provided in the following sections.

5.5.1 GHD Field quality control

Soil and sediment sampling were completed under the supervision of a suitably qualified and experienced practitioner holding Certified Environmental Practitioner – Site Contamination specialist certification and with more than 23 years' experience in site contamination.

Calibration certificates for the PID were requested from the rental company. Certificates are included in Appendix G.

As discussed in Section 5.3, Decon90 was used to clean equipment between sampling locations in order to minimise cross contamination. Rinsate blanks were collected by running laboratory supplied deionised water across the surface of the sampling equipment (hand auger, excavator bucket, sediment sampler and hand trowel).

5.5.2 GHD Laboratory quality control

Hills has been selected by GHD to undertake the primary and duplicate analysis for the GHD sampling programme. Hills is accredited by IANZ which represent New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA), this accreditation is internationally recognised. Analyses were performed in accordance with the terms of the accreditation.

5.5.3 GHD Quality control procedures

The quality assurance and quality control (QA/QC) programme undertaken as part of the assessment by GHD included the following:

- Use of appropriately qualified and trained staff
- Preservation of samples with ice during transport from the field to the laboratory
- Transportation of samples to the laboratory with accompanying chain-of-custody documentation
- Compliance with sample holding times these were:
 - Metals 6 months
 - VOCs (includes BTEX/TPH) 14 days
 - SVOCs (includes PAHs) 14 days until sample extraction, 40 days after sample extraction
- Review of results of field duplicate and triplicate sample results
- All laboratory analysis was undertaken by IANZ accredited laboratories

5.5.4 Compliance with holding times

The majority of samples were analysed within laboratory holding times. Due to issues with laboratory communications there were limited exceptions that were not within holding times for volatile analysis. Despite this, there are additional samples in the same areas as listed below meaning that the data outcomes have not been compromised and there remains sufficient data coverage.

- WWTP_TP01 04: No visual or olfactory evidence of impact was observed in any of the test pits and previous sampling by WSP did not detect VOCs in any of the six samples analysed.
- B26 TP03: one location only, there are two other test pits with samples from the same location that were analysed – therefore there is appropriate data coverage.
- B73 TP01: the location of interest comprised a concrete pad with some surface oil staining. Despite several attempts, the concrete pad turned out to be too thick to excavate through. It therefore will have provided a barrier to contaminant migration. An additional sampling location is also present in the same area.
- B74 TP08/09: two locations, however there are another seven locations with samples from the same building that were analysed – therefore there is appropriate data coverage.
- Substations 2 and 4: SB4: two locations involved, however a third test pit from the same location that was analysed. Transformer oils were the contaminant of concern, however no evidence of staining or odours were observed at any of the locations. SB2 there are no additional samples at this location, however there was no visual or olfactory evidence of hydrocarbons at this location.
- B16: two locations, however there are another six locations with samples from the same building that were analysed – therefore there is appropriate data coverage.
- SCH and TRF: all locations. No potentially asbestos containing materials were observed in the soil profile during sampling in these areas. Contaminants associated with the activity identified in the areas (demolished building metals and metalloids and asbestos) and sport turf/tennis court (metals and metalloids, persistent pesticides, and asbestos) remain persistent in the environment and are unlikely to volatise or degrade during storage. Therefore results are considered representative of the soil conditions at the Site.

The Site Specific Risk Assessment will include consideration of the above in its interpretation.

5.5.5 GHD Field duplicate and triplicate analysis

5.5.5.1 Duplicate set analysis

Field duplicates were collected during the collection of the primary samples and submitted to the laboratory for analysis for metals, TPH and PAH (as applicable).

5.5.5.2 Relative percentage difference calculations

A quantitative measure of the precision and accuracy of the analyses was made using calculated relative percentage difference (RPD) values between primary samples and duplicate samples (precision) and primary samples and triplicate samples (accuracy). The RPD values were calculated using the following equation.

$$\frac{\langle Co - Cs \rangle}{\langle \frac{Co + Cs}{2} \rangle} \times 100$$

Where Co = concentration obtained from the original sample

Cs = concentration obtained from the duplicate sample

The usual acceptance criteria within the CLMG (No.5) for RPDs is between 0 and 30% in soils (rising to 50% for trace SVOCs). However, a large percentage differential can occur particularly in soils due to the following:

- A small analytical differential between two samples based on the low levels of detection from the primary and duplicate soil sample; and
- Samples analysed in soil collected from non-homogenous (heterogeneous) soil profile.

The relative percentage difference (RPD) values for the duplicate are included in Appendix H.

RPDs range between 0-108%, with most of the results being in the 0-30% range. Samples containing outliers (RPDs of > 50%) predominantly had the remainder of their analytes in the 0-30% range, with averages of RPDs for these samples all being >30%. Substances at very low concentrations, especially around laboratory limits of detection, will naturally have higher variations associated with them than samples with higher concentrations. This can lead to higher-than-normal RPD values, which can cause the data to look less reliable than it is.

Based on this, the duplicate sampling can be regarded as acceptable.

5.5.5.3 Triplicate blanks analysis

Triplicate samples were collected during the investigation and sent to an alternate IANZ accredited laboratory. Analytica Laboratories (Part of ALS Limited) was selected as an IANZ accredited laboratory, who are IANZ accredited for the required methods (metals, TPH, PAH). RPD were calculated as per the above method. Results are included in Appendix H

RPDs ranged between 0 - 113% with the majority or results in the 0 - 30% range. The triplicate sample collected from the Sediment Sample (HSP 01 0.05/Trip B) contained RPDs ranging between 10 - 113%, with all but one ranging between 10 - 34%. Due to the heterogeneous nature of the matrix of sediment samples, including the presence underwater and potential for higher concentration materials collecting in the sediment, can lead to higher RPDs. Based on this, the triplicate sampling can be regarded as acceptable.

5.5.6 HAIL Environmental quality assurance and control

Halo sampling and open space composite sampling were completed under the supervision of a suitably qualified and experienced practitioner holding Certified Environmental Practitioner – Site Contamination specialist certification and with more than 17 years' experience in site contamination, including extensive experience with XRF.

A blank and reference standards (NIST 2710a and 2711a) were scanned at the beginning of each field session and at each change of battery to confirm the reliability of the XRF measurements.

Following field work, XRF data was processed in order to remove incomplete scans with durations of less than 20 seconds per beam.

As described in Section 5.4.1, replicate measurements were collected at a minimum rate of 1 for every 10 measurements with the XRF, and matched soil samples were collected at a rate of 1 in every 10 measurements.

In order to assess the precision of the XRF data, the RPD between the mean of the replicate measurements and the standard deviation of the replicate measurements was calculated. The data quality objective was an overall RPD of no more than 30 %.

In order to assess the accuracy of the halo sampling data, the XRF data was evaluated against the results of the matched soil samples using linear least squares regression analysis with XRF data as the independent variable and laboratory results as the dependent variable.

Hills is accredited by International Accreditation New Zealand (IANZ) which represent New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA), this accreditation is internationally recognised. Analyses were performed in accordance with the terms of the accreditation.

The quality assurance reports provided by the laboratory indicated that all blank, standard and spike results were within acceptable tolerances.

Overall, the RPD for XRF replicates was 24%, which is within the 30% data quality objective. The average RPD of replicates with lead concentrations less than 2,000 ppm was 16 % and the average RPD of replicates with lead concentrations above 2,000 ppm was 31 %. Higher heterogeneity at high concentrations is consistent with the presence of flakes of lead-based paint in the most contaminated samples, which matches field observations and the conceptual site model.

In order to assess the precision of the XRF data, the RPD between the mean of the replicate measurements and the standard deviation of the replicate measurements was calculated. Overall, the RPD for XRF replicates was 13%, which is within the data quality objective.

Duplicate samples collected during the leachate analysis included the collection of DUP01 which was a field replicate of B2/3 A 0.0; replicates were analysed for total recoverable lead. The mean relative percentage difference for lead was 57 %, which is outside the data quality objective. Heterogeneity at high concentrations has been reported previously in lead samples from around these buildings. It is consistent with the presence of paint flakes in the most contaminated samples, which matches field observations and the conceptual site model.

6. Discussion and conclusions

6.1 Works Completed

Fieldwork at the Site was undertaken in March, June, August and September 2023.

Sampling was undertaken in accordance with the SAP developed by GHD, with some minor departures including change of sampling excavation methodology, inability to collect samples at depth due to hard ground, changes to the compositing schedule to better represent the underlying soil conditions, and additional sampling to assess unanticipated fill material. These departures are considered minor and GHD and HAIL Environmental considers that the sampling programme is sufficient to fulfil the goals of the SAP.

GHD has undertaken soil sampling at 192 locations, and sediment sampling in nine locations. Overall, 329 samples have been analysed from the Site. Samples were collected with a combination of excavator, hand auger, sediment sampler and hand trowel.

HAIL Environmental has undertaken XRF analysis on 98 building transects and individual sampling points, as well as composite sampling of 10 areas of the Site and collection of validation samples for the XRF analysis and TCLP analysis. HAIL Environmental samples were analysed in situ with an XRF, and composite samples were collected with a push sampler and composited on site.

6.2 Field Observations & Laboratory Analysis

Underlying geology generally comprised of clays and sands in the northern part of the Site, and clay in the southwestern portion of the Site. Observed geology is broadly consistent with the published soil and geological information, although Allophanic soils appear to reach further north than in shown in the map (to approximately the drainage gully bisecting the Site mentioned in Section 2.7.5, and incorporating the area around the laundry, boiler, and stores) Soils in the north-west of the Site (near the former Nurses Home) appear to be gley soils.

Groundwater was encountered in one location at a depth of approximately 2.1 m bgl. No other groundwater was encountered.

Demolition rubble containing brick, pipes (metal and ceramic), and other building materials was observed in the footprint of structures formerly located at the Site, including the Former Nurse's Home, the Former Ward 2, And Wards F, G, and H. No ACM pieces were observed in the soil profile. Fill and other demolition rubble was also observed in the horticultural areas, and in the area around Demolished Structure (north of B 26). This material is common on sites where uncontrolled demolition has occurred. Asbestos sheeting was observed in one test pit adjacent to Substation 2. HAIL environmental noted the presence of paint flakes around several buildings.

Screening for volatile compounds with a PID did not detect the presence of soil vapours around the laundry (e.g., associated with dry cleaning chemicals) or the former service station (associated with fuels). Low levels of hydrocarbons were identified with the PID near where the Store Building (B65) fuel bowser was located (with results ranging between 27 – 28 ppm).

Samples were delivered to Hills in Hamilton for analysis of the contaminants of concern identified during the PSI, namely:

- Metals
- TPH
- BTEX
- PAH
- PCB
- VOC
- SVOC
- Pesticides
- Dioxins

Asbestos

Laboratory reports containing the sampling results are included in this DSI report (see Appendix F).

A QA/QC programme has been undertaken, including field and laboratory procedures and duplicate sampling. Based on the results of this QA/QC sampling are considered to be acceptable and the data set suitable for use.

Discussion of relative soil and sediment concentrations, comparison with criteria or guidelines and their significance are not included in this report but are included in the accompanying **Site Specific Risk Assessment Report**.

Limitations 7.

This report: has been prepared by GHD for Toitū Te Whenua - Land Information New Zealand and may only be used and relied on by Toitū Te Whenua - Land Information New Zealand for the purpose agreed between GHD and Toitū Te Whenua - Land Information New Zealand as set out in section 1.4 of this report.

GHD otherwise disclaims responsibility to any person other than Toitū Te Whenua - Land Information New Zealand arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the Statement of Work (N00457) and are subject to the scope limitations set out in the underlying agreement with LINZ.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

The opinions, conclusions and any recommendations in this report are based on information obtained from, and testing undertaken at or in connection with, specific sample points. Site conditions at other parts of the site may be different from the site conditions found at the specific sample points.

Investigations undertaken in respect of this report are constrained by the particular site conditions, such as the location of buildings, services and vegetation. As a result, not all relevant site features and conditions may have been identified in this report.

This DSI does not include the Existing Disposal Sites to the east of the Wharekorino Stream which are being investigated by Fraser Thomas Ltd as part of a separate report (Fraser Thomas, 2022).

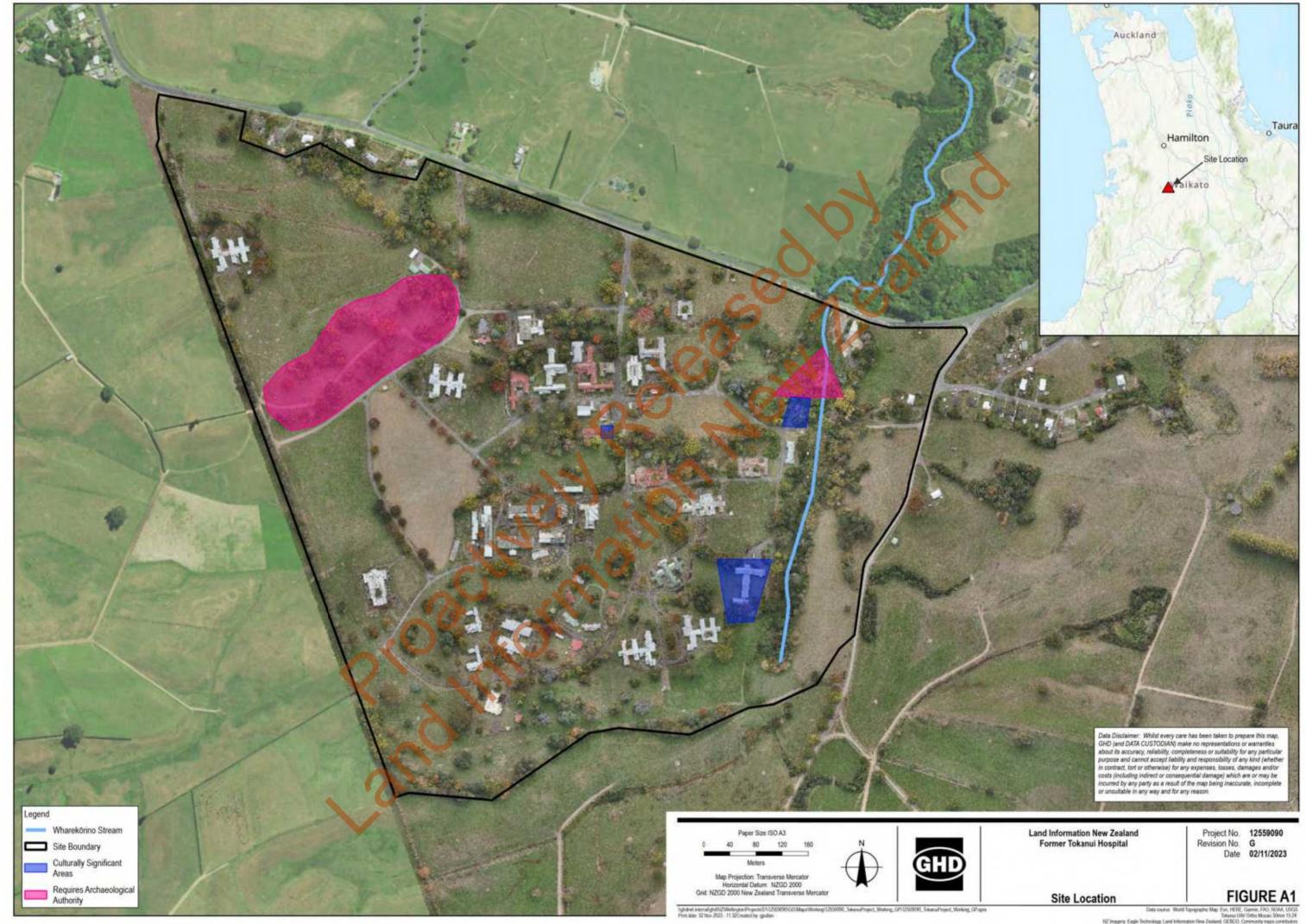
8. Suitably Qualified and Experienced **Practitioner (SQEP) Statement**

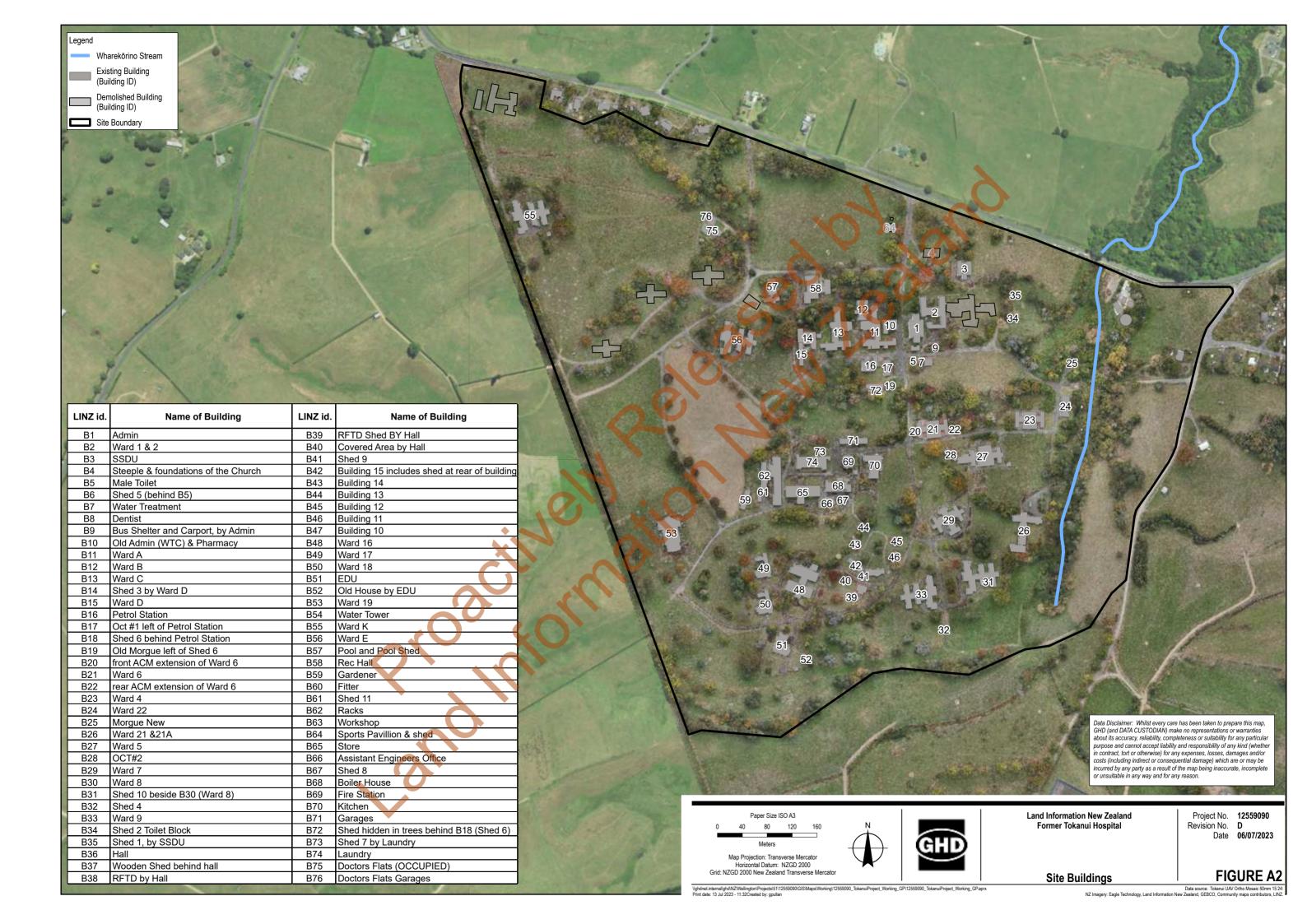
8.1 **GHD SQEP**

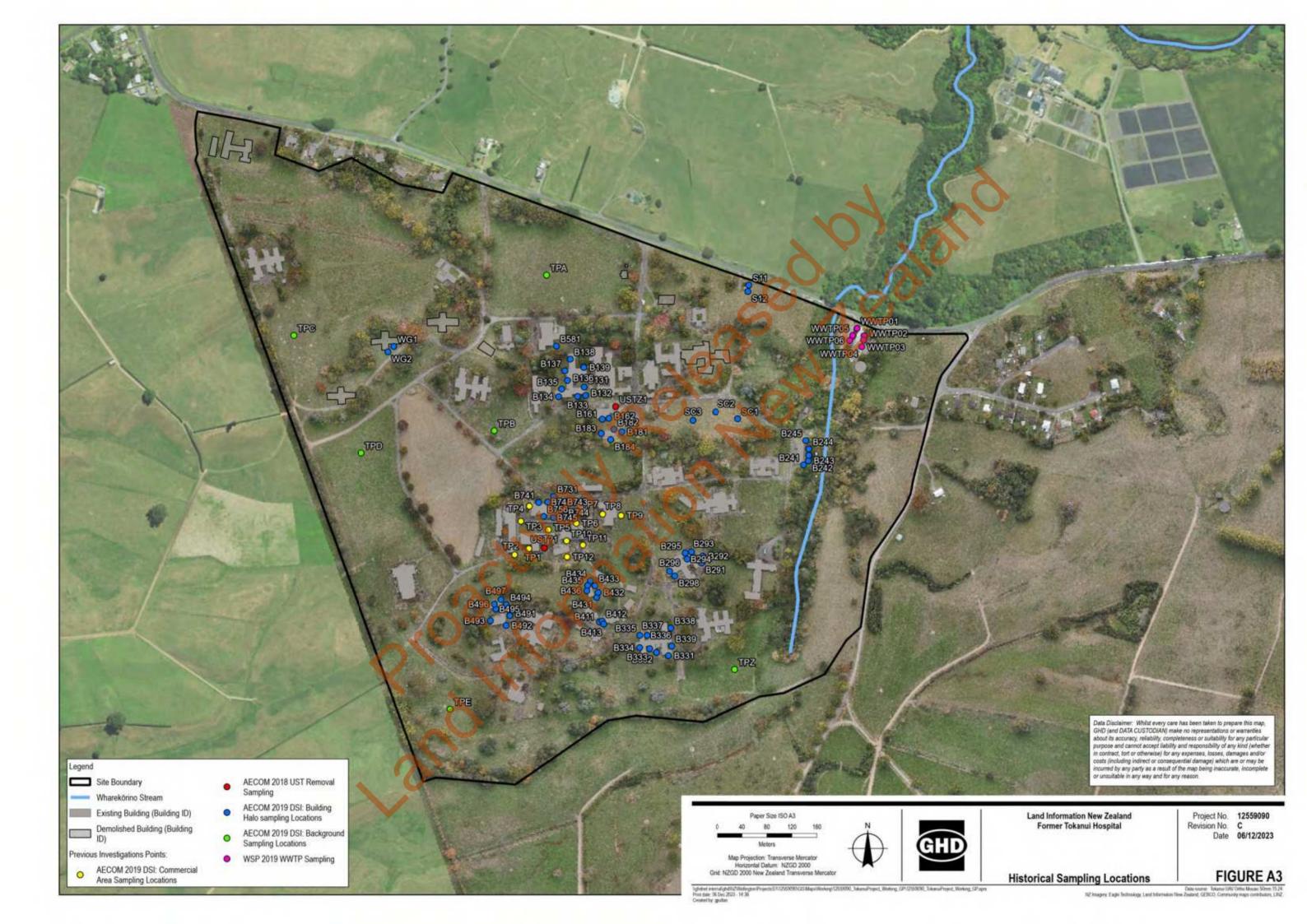
Mark Ballard is the GHD Technical Director for the project. Mark is a CEnvP-SC (#41175) under the Environment Institute of Australia and New Zealand (EIANZ) Certified Environmental Practitioner programme. He has 23 years' experience working on contaminated land and hydrogeological investigations and acts as the SQEP of this report.

HAIL Environmental Review 8.2

report. Day science and 2: Laland and England Control of the Contr Dr. Dave Bull of HAIL Environmental has acted as a third-party reviewer of this report. Dave is a CEnvP-SC (#40026), as well as a Chartered Chemist. He has a Ph.D in Environmental Science and 25 years of professional experience including 17 years in contaminated land consulting in New Zealand and England.


9. References


- AECOM. (2018a). Underground petroleum storage system (UPSS) removal at the former Tokanui hospital, 149 Te Mawhai Road, Tokanui, Waikato. Tauranga: AECOM.
- AECOM. (2018b). PSI gap assessment: Tokanui hospital. Hamilton: AECOM.
- AECOM. (2018c). Underground petroleum storage system (UPSS) decomissioning at Tokanui Hospital. Tauranga: AECOM.
- AECOM. (2019). Tokanui hospital: Detailed site investigation (draft). Hamilton: AECOM.
- CFG Heritage. (2023). *Tokanui Psychatric Hospital, site investigation: Archeological assessment.* Auckland: CFG Heritage.
- Coleborne, C. (2012). Changing times, changing places: from Tokanui Hospital to mental health services in the Waikato, 1910-2012. Auckland: Half Court Press.
- Edbrooke, S. (2005). Geology of the Waikato Area Institute of Geological and Nuclear Sciences 1:250 000 geological map 4. Lower Hutt: Institute of Geological and Nuclear Sciences.
- Fraser Thomas. (2022). Former Tokanui Psychiatric Hospital demolition and remediation existing disposal sites intrusive investigation report (draft). Auckland: Fraser Thomas.
- Fraser Thomas. (2023). Toitu Te Whenua Land Information New Zealand, Former Tokanui Hospital Demolition and Remediation, Horizontal Infrastructure Assessment Report, Project No. 33097. Auckland: Fraser Thomas.
- GHD. (2022a). Former Tokanui Hospital Preliminary Site Investigation, Hamilton: GHD.
- GHD. (2022b). Former Tokanui Hospital sampling and analysis plan. Hamilton: GHD.
- Manaaki Whenua Landcare Research. (2022, June 15). New Zealand Soil Classification. Retrieved from SOILSMAPVIEWER: https://soils-maps.landcareresearch.co.nz/
- Maniapoto Claims Settlement Act 2022. (n.d.).
- McLarren, R., & Cameron, K. (1996). Soil science sustainable production and environmental protection.


 Melbourne, Australia: Oxford University Press.
- Ministry for the Environment. (2011). Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand. Wellington: Ministry for the Environment.
- Ministry for the Environment. (2021). Contaminated Land Management Guidelines No. 5: Site investigation and analysis of soils (Revised 2021). Wellington: Ministry for the Environment.
- Opus. (2015). Tokanui psychaitric hospital; Site scoping, contamination Preliminaty site inspection report. Hamilton: Opus.
- Parfitt, R. L. (1990). Allophane in New Zealand a review. Australian Journal of Soil Research, 343-360.
- Perch, R., & Marshall, T. (1988). Ground water resources of the Tauranga Group Sediments in the Hamilton Basin, North Island, New Zealand. *Journal of Hydrology New Zealand*, 81 98.
- Schofield, J. C. (1972). Ground water of the Hamilton Lowland. New Zealand Geological Survey Bulletin No 89.
- Swarbrick, N. (2022, April 28). Waikato region Education and health. Retrieved from Te Ara the Encyclopedia of New Zealand: http://www.TeAra.govt.nz/en/photograph/27156/tokanui-hospital
- TAR Block Ltd. (2023). Tokanui cultural induction training program. TAR Block Ltd.
- Te Muraahi, K., & Maniapoto, M. (2021). Cultural Impact Assessment Pokuru 1B Former Tokanui Hospital. TAR Block Ltd.
- Te Uku Kahika. (2022, August 19). Wells Aoteatoa NZ. Retrieved from http://wellnz.teurukahika.nz
- Toitū Te Whenua Land Information New Zealand. (2021). *Project background document: Former Tokanui hospital demolition and remediation*. Toitū Te Whenua Land Information New Zealand: Wellington.
- Waikato Regional Council. (2012). Waikato Regional Plan. Hamilton: Waikato Regional Council.
- Waipā District Council. (2016). Waipā district plan. Te Awamutu: Waipa District Council.
- WSP. (2018). *Tokanui Closed Landfill: Wharekorino Stream and Bore Water sampling & Landfill Cap Assessment.* Hamilton: WSP.
- WSP. (2018b). Tokanui Village and Hospital Wastewater Upgrade. Hamilton: WSP.
- WSP. (2019a). Tokanui Closed Landfill: Wharekorino Stream and Bore Water sampling & Landfill Cap Assessment. Hamilton: WSP.
- WSP. (2020). Tokanui Closed Landfill: Wharekorino Stream and Bore Water sampling & Landfill Cap Assessment. Hamilton: WSP.
- WSP. (2021). Tokanui Closed Landfill: Wharekorino Stream and Bore Water Sampling & Landfill Cap Assessment. Hamilton: WSP.

Appendices Lealand Proactively ation Proactively ation And Information And Information

Appendix Aaland Site maps Proactively Releasion Proactive Releasion P

Appendix Baland Sampling and analysis plan Proactively attornation

Former Tokanui Hospital

Sampling and Analysis Plan

Toitū Te Whenua - Land Information New Zealand
07 October 2022

The Power of Commitment

				693	9/6	alan	>
Project na	ame	LINZ - Former Tokanui Hospital					
Documen	t title	Former Tokanui Hospital Sampling and Analysis Plan					
Project number		12559090					
File name		2023.08.23_FTPH	SAP_Rev0.doc	x			
Status	Revision	Author	Reviewer		Approved for	issue	
Code			Name	Signature	Name	Signature	Date
S4	Rev A	D Jackson	M Ballard		A Gray		07/10/22

Status	Revision	Author	Reviewer		Approved for issue		
Code			Name	Signature	Name	Signature	Date
S4	Rev A	D Jackson	M Ballard		A Gray		07/10/22
S4	Rev B	D Jackson	M Ballard		A Gray		26/05/23
S4	Rev C	D Jackson	M Ballard		A Gray		07/07/23
S4	Rev 0	D Jackson CEnvP #1711	M Ballard CEnvP – SC #41175		A Gray		23/08/23
S4	Rev 1	D Jackson CEnvP #1711	M Ballard CEnvP – SC #41175	her Blue	A Gray	Mu Blind p.p	06/10/23

GHD Limited

586 Victoria Street, Level 1

Hamilton, Waikato 3204, New Zealand

T +64 7 834 7900 | F +64 7 839 4278 | E hmnmail@ghd.com | ghd.com

© GHD 2023

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Contents

List	of abbi	reviations	s/glossary	1
1.	Introd	luction		3
	1.1	•	ound: Ngati Maniapoto Deed of Settlement and the Tokanui Deferred on Process	3
	1.2	Backgro	ound: Investigation Timeline to Date	3
	1.3	GHD a	nd HAIL Investigations	4
	1.4	Purpos	e	
	1.5	Objecti	ves	5 5
2.	Site D) escriptio		6
	2.1	Site Lo	cation Details	6
	2.2	Current	t Site Layout	6
	2.3		nding Land Uses	6
	2.4		nmental Setting	7
		2.4.1	Soils and Geology	7
		2.4.2	Hydrogeology	7
		2.4.3	Hydrology	7
3.	Previ	ous Inves	tigations	9
	3.1	Previou	us Environmental Investigations	9
		3.1.1	Tokanui Psychiatric Hospital: Site Scoping, Contamination Preliminary Site Inspection Report (Opus, 2015)	9
		3.1.2	Underground Petroleum Storage System Decommissioning at Tokanui Hospital (AECOM, 2018a)	9
		3.1.3	PSI Gap Assessment: Tokanui Hospital (AECOM, 2018b)	10
		3.1.4	Underground Petroleum Storage System Removal at the former Tokanui Hospital (AECOM, 2018c)	10
		3.1.5	Former Tokanui Psychiatric Hospital – AST Removal and Mechanical Pit Dewatering (AECOM, 2018d)	10
		3.1.6	Tokanui Hospital: Detailed Site Investigation (draft, AECOM 2019)	11
	•	3.1.7	Tokanui Village and Hospital Waste-Water Upgrade, Detailed Site Investigation, (WSP 2019)	12
	3.2	Other F	Relevant Investigations	13
4.	Conc	eptual Sit	e Model	15
	4.1	What is	a Conceptual Site Model?	15
	4.2	The To	kanui Hospital CSM	15
		0	Future Site Users	16
		4.2.1	Potentially complete pathways	27
	4.3	Identifie	ed data gap resolution	28
5.	Samp	ling and A	Analysis Plan	30
	5.1	Contarr	ninants of Concern	30
	5.2	Environ	nmental Media to be Sampled	30
		5.2.1	Soil	30
		5.2.2	Sediment	30
		5.2.3	Groundwater	31
	5.3	Remed	ial Standards & Soil Disposal Criteria	31

		5.3.1 Process for Deriving Remedial Standards	31
		5.3.2 Derivation of Site Specific Criteria	32
		5.3.3 Other Relevant Criteria	32
		Natural Background Waste Acceptance Criteria	32 32
	5.4	Sampling Design	33
	5.4	5.4.1 Approach to Sampling Strategy	33
		5.4.2 Judgemental Sampling	33
		5.4.3 Systematic Sampling	37
		Grazing Areas	37
		Horticulture Area	37
		5.4.4 Leachability Testing	39
		5.4.5 Statistical Robustness of the Data Collection	39
6.	-	ling Schedule	41
	6.1	Soil Sampling	41
	6.2	Sediment Sampling Locations	41
7 .	Field s	sampling methodology	50
	7.1	HSE	50
	7.2	Fieldwork documentation	50
	7.3	Soil Sampling & Monitoring Methodology	50
		7.3.1 General Soil Sampling	50
		7.3.2 XRF Methodology	51
		7.3.3 Composite sampling – Grazing Areas	51
		7.3.4 Composite Sampling – Horticulture Areas	51
	7.4	Sediment Sampling	51
	7.5	Sample Labelling & Handling	51
	7.6	Equipment Required	51
	7.7	Unanticipated contamination	52
	7.8	Quality Assurance and Quality Control	52
		7.8.1 Quality assurance procedures	52
		7.8.2 Laboratory Quality Assurance 7.8.3 Reporting Quality Assurance	52
		Updates to the SAP	53 53
		The DSI and Site Specific Risk Assessment Reports	53
		7.8.4 Quality Control	53
		Duplicates Triplicates (inter laboratory duplicates)	53 53
		Triplicates (inter-laboratory duplicates) Relative percentage difference	54
		Rinsate Blanks	54
		XRF	54
8.	Suitab	oly Qualified and Experienced Practitioner (SQEP) Statement	55
	8.1	GHD SQEP	55
		8.1.1 Mark Ballard – CEnvP-Site Contamination (CEnvP-SC)	55
	8.2	HAIL Environmental Review	55
9.	Limita	ations	56
10.	Refere	ences	57

Table index

Table 1	Site Details	6
Table 2	HAIL activities associated contaminants of concern	12
Table 3	Conceptual Site Model Linkages & Discussion	17
Table 4	Cultural Impacts from Contaminated Soil	25
Table 5	Identified data gaps	28
Table 6	Soil & sediment sampling suites	30
Table 7	Logic for determining areas for consideration of soil sampling works	34
Table 8	Proposed extent of asbestos sampling works to evaluate soils impacted by asbestos from demolished and existing buildings	36
Table 9	Sediment sampling locations	41
Table 10	Sampling Schedule for Soil and Sediment	42

Figure index

Figure 1	Tokanui Site Investigation Process	4
Figure 2	Historical Wetland Locations	8
Figure 3	Example of a Complete Source-Pathway-Receptor Linkage	15
Figure 4	Conceptual site model	26
Figure 5	Proposed Asbestos Sampling - Substation 8	35
Figure 6	Proposed asbestos sampling – former sports pavilion	35
Figure 7	Location of grazing composite areas	37
Figure 8	Location of horticulture areas	38
Figure 9	Horticulture area showing composite sampling locations COMPA-COMPH	39

Appendices

Appendix A Site location maps
Appendix B Sampling locations
Appendix C Sampling schedule

List of abbreviations/glossary

Acronym/term	Description
*Denotes definitions re Definitions	elevant to this report copied from the Tokanui Hospital Deferred Selection Process, Subpart A:
ACM	Asbestos containing material, used to refer to material containing asbestos. These are usually building materials such as fibre cement, cladding material or insulation.
BTEX	Benzene, toluene, ethylbenzene and xylenes, a group of contaminants associated with petrol.
CEnvP SC	Certified Environmental Practitioner (Site Contamination), a professional accreditation for environmental practitioners. This accreditation is also a requirement for LINZ suppliers conducting contaminated land investigations.
CLMG	Contaminated Land Management Guidelines, a series of guidelines produced by the Ministry for Environment used for consistency of reporting and investigation of contaminated sites. The NES CS (see below) incorporates six documents by reference which include the CLMG. For example, interpretation of the NES CS requires preliminary site investigations and detailed site investigations to be prepared in accordance with CLMG 1.
CLMG 1*	means the Contaminated land management guidelines No. 1, reporting on contaminated sites in New Zealand, Ministry for the Environment, revised edition 2011.
CLMG 2*	means the Contaminated land management guidelines No. 2: hierarchy and application in New Zealand of environmental guideline values, Ministry for the Environment, revised edition 2011.
CLMG 5	means Contaminated land management guidelines No. 5 – Site Investigation and Analysis of Soils, Ministry for the Environment, revised edition 2011.
CSM	Conceptual site model, a system of identifying contaminant sources, routes of potential exposure, and receptors who may be impacted by contamination. This model is used as the basis of investigation and is an iterative process that is updated as new information is gathered.
Deed of Settlement (the Deed)	The Ngāti Maniapoto Deed of Settlement signed by Maniapoto and the Crown, which was signed on 11 November 2021 and given effect by the Maniapoto Settlement Claims Act 2022, which came into force on 28 September 2022.
Demolition and remediation works*	means the physical works required to carry out the demolition and remediation of each Tokanui Hospital deferred selection property (excluding any new disposal site or existing disposal site on that property) as described in paragraph 9.16.
DSI	Detailed site investigation, as defined in the NES CS; "a detailed site investigation involves intrusive techniques to collect field data and soil samples for analytical testing to determine concentrations of contaminants of concern." The investigation must be done in accordance with CLMG 5 and reported in accordance with CLMG 1 (the DSI report is specifically defined in the Deed, see below).
Detailed Site Investigation report*	means a detailed site investigation report as described in the CLMG 1.
Existing Disposal Consents*	Means the land use resource consents numbered 102269.01.01, 102270.01.01 and 102271.01.01.
Existing Disposal Sites*	The two existing sites (as described in the existing disposal consents) located on one of the Tokanui Hospital deferred selection properties that the Crown historically used to dispose of waste; indicated as 'Existing disposal sites' on the plan (subject to survey) 'Tokanui Hospital deferred selection properties' in part 7 of the attachments.
HAIL	Hazardous activities and industries list, as defined in Regulation 3 of the NES CS as, "The current edition of the Hazardous Activities and Industries List, Wellington, Ministry for Environment." The HAIL is a list of 53 activities and industries that are considered likely to cause land
	contamination through the use, storage or disposal of hazardous substances.
Managed Remediation Standard*	Means an applicable standard or standards for recreational use chosen in accordance with CLMG 2, or derived through a site-specific risk assessment, but where use may be subject to controls (for example, in relation to excavating, erecting buildings or domestic gardening).
NES CS	Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011, a set of nationally consistent regulations for the resource consenting of contaminated sites.

Acronym/term	Description
ОСР	Organochlorine pesticides, a group of pesticides.
PAH	Polycyclic aromatic hydrocarbons, a group of contaminants associated with diesel fuel and burnt material
PCB	Polychlorinated biphenyls, a group of contaminants associated with electrical transformers.
PID	Photo-ionisation detector, a measurement tool for field screening soil for volatile vapours such as those associated with petrol or solvents.
PSI	Preliminary site investigation, as defined in Regulation 3 of the NES CS as an investigation done by a SQEP, is reported on in accordance with CLMG 1 and results in a report that is certified by the practitioner.
	The NES CS also states, "the main objectives of the PSI are to gather information about a piece of land to assess the suitability of the land for its current or intended use, and to design a detailed site investigation (if required)."
Rural residential remediation standard*	Means an applicable standard or standards for rural residential use chosen in accordance with CLMG 2, or derived through a site-specific risk assessment.
SAP	Sampling and analysis plan, a plan setting out the proposed sampling programme for an environmental investigation and completed in accordance with CLMG 1 and CLMG 5.
Settlement Date	Is defined as Section 12 of the Maniapoto Settlement Claims Act 2022, being 24 November 2022.
Site-specific risk assessment*	Means the derivation of remedial criteria based on a conceptual site model in a manner generally consistent with CLMG 1.
SPLP	Synthetic Precipitation Leaching Procedure, a testing method to assess the leaching of contaminants from soils.
SQEP	Suitably Qualified and Experienced Practitioner. This is not defined within the NES CS regulations, but in the Users Guide, National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health (April 2012) which provides guidance on determining who is a SQEP. This is detailed in Section 2.1.1 of the NES CS Users Guide.
Substations vs Transformers	The following has been used to avoid confusion as the LINZ Building Registry refers to substations and the HAIL categories mention transformers. Transformers step up or down voltage and this occurs at a substation. At Tokanui there are 8 separate substations with transformers within them. All associated locations in the SAP are therefore called Substations and have been numbered SB1-SB8.
SVOC	Semi-volatile organic compounds, a sub group of volatile organic compounds (VOCs) which are commonly associated with industrial processes.
TCLP	Toxicity Characteristic Leaching Procedure, a testing method to assess the leaching contaminants in soil from a landfill.
THDSP	Tokanui Hospital Deferred Selection Process, a standalone process for the demolition and remediation of the Tokanui Hospital set out in Part 9 of the Deed of Settlement: Property Redress Schedule.
TPH	Total petroleum hydrocarbons, a screening analysis used to assess the presence of hydrocarbons in soil.
USEPA	United States Environmental Protection Agency, the United States environmental protection regulator which is referenced in some New Zealand contaminated land guidance documents.
VOC	Volatile organic compounds, a group of volatile contaminants that have high vapour pressure and low water solubility. They are typically associated with fuels, solvents and cleaning products.
WDC	Waipa District Council, the district council the Site is located in.
WRC	Waikato Regional Council, the regional council the Site is located in.
WWTP	Waste water treatment plant

1. Introduction

1.1 Background: Ngati Maniapoto Deed of Settlement and the Tokanui Deferred Selection Process

The former Tokanui Hospital (the Site) is managed by Toitū Te Whenua/Land Information New Zealand (LINZ) on behalf of the Crown in the Treaty Settlements Landbank. Land held in the Landbank is Crown land which has been declared surplus and can be used as cultural or commercial redress in Tiriti o Waitangi Settlement claims. The Tokanui Hospital is a deferred selection property in the Ngāti Maniapoto Deed of Settlement (the Deed) and forms part of the Maniapoto Settlement Claims Act 2022, which gives effect to the Deed. The Tokanui situation is unique as no other property included in a Treaty settlement has required demolition and remediation on this scale or required a commitment to undertake remediation in a deed of settlement. Under the Deed, Maniapoto and the Crown have agreed to a standalone process within the Property Redress Schedule, Part 9: Tokanui Hospital Deferred Selection Process (THDSP), for the transfer of the Site which details specific requirements for the demolition and remediation of the Site before it is available for transfer to Maniapoto. LINZ is the Government agency responsible for delivering this project. For detailed project background and context, please refer to the Project Background Document (Toitū Te Whenua Land Information New Zealand, 2021)

Subpart B of the THDSP out sets out agreed standards for the demolition and remediation of the Site. While Opus Limited (Opus) and AECOM Limited (AECOM) have undertaken several previous investigations at the Site, which are further detailed in Section 3 of this report, the Crown and Maniapoto have acknowledged at the date of Deed signing, there was not enough information available for the Crown to commit to a particular remediation standard (paragraph 9.2 of the Deed). LINZ have therefore engaged GHD Limited (GHD) and HAIL Environmental Limited (HAIL Environmental) to undertake contaminated land investigations in accordance with the Ministry for the Environment's (MfE) Contaminated Land Management Guidelines (CLMG) to enable LINZ to meet the Crown's obligations in regard to the remediation of the Site as set out in the Remediation Standards, described in detail in Section 5. The GHD and HAIL Environmental works will support the demolition and remediation of the Site as part of the Former Tokanui Psychiatric Hospital Demolition and Remediation Project (the Project). The Site layout and key features are shown in Figure A1 in Appendix A.

In accordance with the Deed requirements, demolition and removal of the Site buildings and some of the Site infrastructure will take place, leaving the Site in a grassed state, remediated to a rural residential or managed land use standard. A future change in land use from commercial/industrial (former hospital use) to rural residential may occur. LINZ will obtain the necessary resource consents under the Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011 (NES CS) for the demolition and remediation activities and potentially for the land use change to a grassed site. Changes in land use as part of future redevelopment will require separate consenting and are not part of the Crown responsibility, that will be the responsibility of the future land owners.

1.2 Background: Investigation Timeline to Date

A number of previous investigations dating back to 2015 have been completed to gain an understanding of the Site to inform detailed demolition and remediation options and associated costings. The investigations from 2015 are summarised below, with further detail on reports relevant to the design of this Sampling and Analysis Plan provided in Section 3.

In 2015, the Ministry of Justice (MoJ) commissioned Opus to prepare a Demolition Plan for the safe and efficient removal of all subterranean infrastructure and services, roadways and terrestrial infrastructure, buildings and hardstandings from the Site, so that it can be returned to pasture. Opus' brief was to provide MoJ a comprehensive Demolition Plan. The Opus Preliminary Site Inspection (the Opus PSI) report comprised an initial contamination assessment of the Site and potential effects on the proposed Site use and was intended to be included as part of the Demolition Plan. The Opus PSI report highlighted areas for which further work was required, in addition to identifying parts of the Site that required a Detailed Site Investigation (DSI).

After the Opus PSI was completed, LINZ took over the responsibility of the Site from MoJ, and therefore the management of any demolition and remedial works. Over the course of 2018 – 2019, LINZ commissioned several reports from AECOM.

In 2018, AECOM completed a gap assessment of the Opus PSI which included review of the Opus PSI and identification of any gaps in the process that was completed which may have led to potentially contaminating historical activities and/or features, not being identified. In 2018 AECOM also completed an onsite disposal feasibility study. The options report identified two key variables affecting the final level of demolition:

- whether demolition waste from the site will be transported offsite or contained in a purpose-built landfill onsite;
 or.
- whether horizontal infrastructure, such as roading and below ground services, are removed or partially retained on site.

In 2019, AECOM completed a DSI of the Site (the AECOM DSI). The purpose of the AECOM DSI was to assess the soil contaminant conditions at the Site and the associated risk to human health and the environment, for a proposed future agricultural land use. AECOM stated that given its size, it was not practical to investigate all areas of the Site, therefore the approach taken was to investigate soils associated with selected areas / features, which collectively are representative of the wider Site.

The AECOM DSI included a conceptual site model (CSM) which considered source, pathway and receptor linkages, allowing an assessment of risk to human health and the environment. AECOM concluded that the CSM showed some complete and potentially complete source, pathway, receptor linkages, and that the soil contaminant conditions at the Site may pose some risk to human health and the environment if no soil remediation is completed.

1.3 GHD and HAIL Investigations

GHD and HAIL Environmental Limited have been engaged to undertake contaminated land investigations in accordance with the CLMG to enable LINZ to meet the Crown's obligations regarding the remediation of the Site.

The investigations comprise iterative steps as per MfE's CLMG. These steps are summarised in Figure 1 with more detailed descriptions in the remainder of this section.

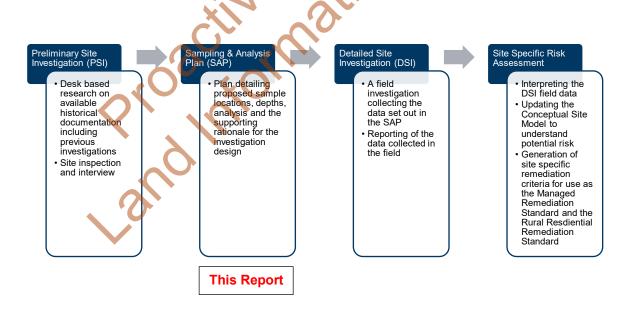


Figure 1 Tokanui Site Investigation Process

The first step was the completion of a PSI encompassing the entire Site. The PSI (GHD, 2022) comprised:

- A thorough site walk over
- An interview with a former hospital staff member
- Research of council and other publicly available records
- Review of existing reports to identify and close data gaps
- Identification of historical activities that have the potential to have caused contamination that are listed on the MfE HAIL.
- The refinement of the conceptual site model developed by AECOM (2019) to reflect findings from the PSI and inform this Sampling and Analysis Plan (SAP).

In order to understand the degree and extent of contamination that may have occurred an intrusive investigation including field screening and laboratory analysis is required across the Site as part of a DSI. Such investigations typically involve sampling different environmental media (e.g. soil and sediment) via a number of sampling techniques and the use of a variety of laboratory chemical analysis. CLMG No.5: Site Investigation and Analysis of Soils (Ministry for the Environment, 2021) recommends that a SAP be prepared as part of the investigation to provide the methodology for addressing the investigation objectives and data gaps identified during the PSI. This document forms the SAP for the upcoming DSI.

The DSI data will be used to undertake a site-specific risk assessment in order to generate site specific remediation criteria for use as the Managed Remediation Standard and/or Rural Residential Remediation Standard referred to in the Deed.

It should be noted that the GHD / HAIL Environmental Detailed Site Investigation will not include an intrusive investigation into the existing disposal sites to the east of the Wharekōrino Stream, which has been investigated separately by Fraser Thomas Ltd (FTL).

1.4 Purpose

The purpose of this document is to provide an SAP with an investigation methodology for the DSI by addressing the data gaps identified during the PSI. The SAP has been produced in accordance with the CLMG as per the requirements of the Deed.

A DSI is not only required prior to commencing any demolition and remediation work (as per paragraph 9.4 of the THDSP), it may also required under the NES CS to support the application(s) for resource consent for ground disturbance activities associated with the demolition and remediation works as set out in the Subpart B of the THDSP. Due to the scale of the Site and the number of potential contaminant source(s), LINZ has engaged GHD to produce this SAP to describe and plan how the sampling objectives will be achieved.

1.5 Objectives

The main objective of this SAP is to ensure LINZ are able to meet the Crown's obligations with regard to the remediation standards, by ensuring the data collected as part of the DSI is undertaken to provide statistically reliable data about the nature, distribution and concentration of contaminants, sufficient to complete a robust risk assessment.

The objectives of this SAP are therefore to:

- Ensure the DSI has been adequately scoped to address the remaining uncertainties or data gaps identified in the PSI.
- Detail the analytes to be investigated, field techniques, analytical techniques and methods, statistical methods to enable the development of site-specific remedial standards.
- Ensure the DSI will be fit for purpose to support resource consent application(s) associated with the demolition and remediation works, and for land use change to a grassed site with no buildings.
- Ensure the DSI will provide the statistical level of confidence required to inform the remedial strategy and Assessment of Remedial Options for future decision making regarding remedial and/or management approaches for soils that are compliant with paragraph 9.3 of the THDSP.

2. Site Description

2.1 Site Location Details

The Site is located at 149 Te Mawhai Road, Tokanui, Waikato, approximately 6.2 kilometres south of Te Awamutu. A map of the Site is included as Figure A1, in Appendix A, with information about the Site shown in Table 1, below. A map of Site buildings and list of building names is included as Figure A2, in Appendix A.

The information in the remainder of Section 2 is summarised from the GHD PSI undertaken in 2022 (GHD, 2022).

Table 1 Site Details

Attribute	Details
Address	149 Te Mawhai Road, Tokanui. Waikato
Legal description	Section 1, SO 44852
Area	79.0175 Hectares
Current property owner	LINZ, on behalf of the New Zealand Government.
Regional council	Waikato Regional Council
District council	Waipā District Council
Zoning	Rural, under the Waipā District Council Plan
Current site use	Vacant buildings and other structures associated with the former hospital; grassed areas of the Site are leased for stock grazing.
Proposed future site use	 This is beyond the scope of the Crown. As per the THDSP, the Crown will, in carrying out the demolition and remediation works (all section numbers below relate to sections of the Deed): comply with all necessary consents and approvals for the demolition and remediation works (9.16.1); Remediate the land in accordance with the applicable remediation standard as referred to in paragraphs 9.3 and 9.7 (9.16.2); remove all vertical building structures from the property (9.16.3.); determine the extent of horizontal infrastructure to be removed, subject to Ministerial decisions described in 9.9 (9.16.4); and, ensure that, where the land has been damaged by the impact of the demolition and remediation works, it is left free of building debris, and is stabilised by grassing (9.16.5.)
	Future land use beyond the demolition and remediation of the Site is unknown but likely to be a rural residential use (e.g. agricultural land with farm houses).

2.2 Current Site Layout

The site is predominantly grassed, with structures, and asphalted roads central areas. There are small groups of trees along the roadways and amongst the structures. The area is gently undulating, with elevations ranging between 22 and 45 metres above sea level. Access to the Site is via the main access gate on Te Mawhai Road.

2.3 Surrounding Land Uses

The surrounding land uses comprise rural residential properties to the north and east. Pastoral farmland is present to the south, east and west. The land to the east also contains the AgResearch Tokanui Dairy Research and the Tokanui Hospital cemetery.

2.4 Environmental Setting

2.4.1 Soils and Geology

The two main soil types underlying the Site are Orthic Gley soils (reduced light grey subsoils with mottles, strongly affected by waterlogging, underlying most of the area) and Orthic Allophanic (low density, stiff jelly-like minerals which are dominated by allophane with imogolite and ferrihydrite, mostly the south-western portion) (Manaaki Whenua Landcare Research, 2022).

The GNS Science 1:250,000 map (Edbrooke, 2005) shows two main geological units underlying the Site. The area sits within the Hamilton Basin, a thick alluvial deposit comprised of typically unconsolidated alluvial sediments and distal ignimbrite deposits of the Tauranga group. Basement rock consists of faulted greywacke (indurated sandstone, siltstone, and mudstone).

Observed geology during intrusive investigations by AECOM broadly confirm the published geology underlying the Site is predominantly silts and clays (AECOM, 2019).

2.4.2 Hydrogeology

The Site is located in the southern end of the Hamilton Basin above the Waipā Aquifer. The Waipā Aquifer is considered to be a regional aquifer, comprising multiple units of undifferentiated unconfined and leaky aquifers. This makes it difficult to reliably place high yielding water bores in the aquifer (Schofield, 1972).

A borehole search was undertaken by consulting the Wells Aotearoa New Zealand website, which identified a total of six bores within 500 metres of the Site. Water level in these boreholes ranged between 7.5 and 33.2 metres below ground level (m bgl). The Wells Aotearoa New Zealand website states that none of these wells are used to supply drinking water (Te Uru Kahika, 2022).

Groundwater observations made during the AECOM DSI investigation ranged between 1.3 and 2.4 m bgl. These measurements were from test pits within the commercial area of the Site and were collected between late May and September, implying that these are likely to be high winter groundwater levels (AECOM, 2019).

Annual monitoring of bores is undertaken as part of a resource consent associated with the former disposal sites on the east side of the Wharekōrino Stream and reported on by WSP. Two bores known as P2 and P7 are sampled with groundwater levels measured. The WSP annual reports from 2020 and 2021 (WSP, 2020) (WSP, 2021) both indicate that the P2 and P7 bores were dry. Groundwater samples were collected from P2 and sent for laboratory analysis in both 2018 and 2019 (WSP, 2018) (WSP, 2019a), but no groundwater level was recorded in either of the reports. The AECOM 2019 data is therefore the only groundwater level data within the Site.

No assessment or investigation to confirm groundwater flow direction has been undertaken to date; however, the regional groundwater is inferred to flow in a general northerly direction, towards the Pūniu River. Localised groundwater is inferred to flow to the east towards the Wharekōrino Stream, which transects the Site.

2.4.3 Hydrology

The nearest body of surface water is the Wharekorino Stream, which runs south to north in the eastern portion of the Site, ultimately discharging into the Pūniu River, 600 metres to the north.

Drainage ditches across the Site run into a main west to east gully which leads to the Wharekōrino Stream. Piped stormwater at the Hospital is discharged to a series of catch pits and soakaways located around the Site. Historically drainage was a frequent issue at the Hospital, and wetlands were formally present before the development of the site (GHD, 2022). The *Tokanui Psychiatric Hospital*, *site investigation: archaeological assessment* (CFG Heritage, 2023) stated the following regarding wetlands and swamps around the Site.

"According to historical accounts, the vegetation of the flat land immediately surrounding the Pūniu River in the vicinity of the project area appears to have consisted of native shrubs, flax and pockets of swampland in the 19th century, which was drained after the land confiscations of the New Zealand Wars (Waikato Times, 15 January 1878: 3). The hospital site is at the junction of three waterways, noted in ML 6748 drawn in 1889 as Makaroa, Tarutahi Swamp, and Wharekorino Swamp."

The Manaaki Whenua/Landcare Research website (https://ourenvironment.scinfo.org.nz/maps-andtools/app/Wetlands/wetlands historic) contains a map of the historical wetlands at the Site. As shown in Figure 2 these areas (shaded green) cover the majority of the present-day Site¹.

Figure 2

Proactively Released Dy Lealan Proactively Released Lealan Pendination Remarks and Information Remarks

¹ credit to Landcare Research New Zealand Limited for use of the map under Creative Commons Attribution 3.0 New Zealand License

3. Previous Investigations

Several previous investigations and reports have been undertaken to support the project and inform this investigation. These include:

- Environmental investigations at the Site
- Assessments of the building structures and material
- Stream and groundwater monitoring
- Cultural and archaeological assessments

These are discussed in Sections 3.1 (Previous Environmental Investigations) and 3.2 (Other Relevant Reports) below.

3.1 Previous Environmental Investigations

The Crown has engaged various environmental consultants as part of previous project feasibility work and scoping dating back to 2015. GHD has assessed the following reports (listed from oldest to most recent) as part of the development of the PSI and this SAP document.

- Tokanui Psychiatric Hospital: Site Scoping, Contamination Preliminary Site Inspection Report (Opus, 2015).
- Underground Petroleum Storage System Decommissioning at Tokanui Hospital (AECOM, 2018a).
- PSI Gap Assessment: Tokanui Hospital (AECOM, 2018b).
- Underground Petroleum Storage System Removal at The Former Tokanui Hospital (AECOM, 2018c).
- Former Tokanui Psychiatric Hospital AST Removal and Mechanical Pit Dewatering (AECOM, 2018d).
- Tokanui Hospital: Detailed Site Investigation (draft) (AECOM, 2019).
- Tokanui Village And Hospital Waste-Water Upgrade Detailed Site Investigation (WSP, 2019b).

The following sections summarise the main findings of each investigation and how this information has been used in designing the SAP. Data gaps that have been identified are collated in Section 4.3.

3.1.1 Tokanui Psychiatric Hospital: Site Scoping, Contamination Preliminary Site Inspection Report (Opus, 2015)

A PSI report was undertaken by Opus for the MoJ as part of preparing a Demolition Plan for the Site. The Opus PSI described an initial contamination assessment of the Site and potential effects on the proposed land use, which at that point in time was agricultural. The PSI included a review of the Site's history to understand likely HAIL activities at the Site, to identify key 'Areas of Concern' and likely 'Contaminants of Potential Concern' arising from the identified HAIL activities. The investigation also included the development of a CSM.

The Opus PSI presented a list of HAIL activities. These HAIL activities were used as a starting point in planning the proposed DSI sampling locations within this SAP. The identified HAIL locations from the Opus PSI were compared with the later AECOM investigations where samples were collected. This enabled an understanding of which HAIL activities had been investigated by AECOM and what gaps remained that required further investigation.

3.1.2 Underground Petroleum Storage System Decommissioning at Tokanui Hospital (AECOM, 2018a)

Two 10,000 litre steel underground storage tanks (UST) (one petrol and one diesel) and associated infrastructure (e.g. fuel lines) were removed from the former petrol station (Building B16) between 26th and 30th July 2018. The work was commissioned by Z Energy Ltd as owner of the tanks.

Soil samples were collected during the removal and were analysed for Total Petroleum Hydrocarbons (TPH) and benzene, toluene, ethyl benzene and xylene (BTEX). None of the soil samples exceeded soil acceptance criteria for commercial/industrial and agricultural land use when compared to the relevant guideline values. Due to the distance of surface water bodies from the UST removal area, hydrocarbon soil impacts were not assessed against soil acceptance criteria for protection of groundwater quality.

The sampling undertaken around the area of the former fuel tanks and the associated underground petroleum storage system (UPSS) is considered sufficient to have characterised this location. The former petrol station also had an associated vehicle workshop. The vehicle workshop has not been previously investigated and this SAP proposes to collect samples from both around workshop building and beneath the floor of the former workshop.

3.1.3 PSI Gap Assessment: Tokanui Hospital (AECOM, 2018b)

The purpose of this AECOM report was to review the Opus PSI (2015) and identify any gaps in the process in which the investigation was undertaken that may have led to potentially contaminating activities or other relevant Site features not being identified, and, to make recommendations on how these gaps could be filled. The report was not intended to fill the identified data gaps.

The report recommended a review of historical aerial photography, a more thorough review of WDC and WRC property files, and that interviews with former 3.2site workers be undertaken. AECOM additionally recommended that a full site inventory, including a building-by-building assessment of potentially contaminating hazardous features or activities should also be compiled.

AECOM suggested that the findings of these additional tasks could be compiled as an addendum to the Opus PSI and should include an updated CSM as well as recommendations for further investigation to assess the Site against the rural land use scenario under the NES CS.

A site walkover was undertaken by AECOM which identified updates to the previous Opus PSI in relation to chemical storage at the Site. GHD has used this additional information to add proposed sampling locations to this SAP (these are the presence of previously unrecorded chemical storage in the swimming pool area, water treatment plant and at Substation No.7).

3.1.4 Underground Petroleum Storage System Removal at the former Tokanui Hospital (AECOM, 2018c)

A 5,000 litre steel UST and associated fuel lines were removed from the southern side of the Stores (Building B65). Some infrastructure, including part of a vent line were left in situ. Hydrocarbon odours were noted during the removal of the tank. The removal was undertaken on behalf of the UPSS owners, Z Energy. Sampling occurred after the removal of a 5,000 litre steel UST on 30th and 31st July 2018.

Soil samples were collected during the removal and analysed for metals, TPH and, BTEX. Results of the analysis were below acceptance criteria for a residential/agricultural land use and for the protection of maintenance / excavation workers.

AECOM did not consider that the underlying groundwater was sensitive and therefore hydrocarbon results were not assessed against soil acceptance criteria for protection of groundwater quality. Residual hydrocarbon impacts comprising visual staining and volatile vapours were observed in the soil which remains on site.

Although the soil results complied with the acceptance criteria for residential/agricultural land use, not all parts of the UPSS were able to be tested. Part of the vent system against the side of the building was not removed, nor was a fuel bowser that was located under a canopy area. This SAP proposes sampling of the previously uninvestigated areas of the UPSS and those areas of vapours noted at the time of the former tank removal.

3.1.5 Former Tokanui Psychiatric Hospital – AST Removal and Mechanical Pit Dewatering (AECOM, 2018d)

This report documented:

- the emptying and removal of two above ground storage tanks of unknown volume adjacent to the former Boiler House (building B68).
- emptying and removing four waste oil drums and containers outside the former Assistant Engineer's Office (building B66) and within the former petrol station (building B16).
- Dewatering the vehicle inspection pit in the former petrol station.

A total of 16,000 litres of waste oil and water was removed from the ASTs, waste oil drums and vehicle inspection pit. This volume also includes the dewatering of the UST, which was subsequently removed from Site. These activities were undertaken on 30th and 31st July 2018.

No sampling or other analysis of soil or water were undertaken as part of the 2018 investigation.

These areas were identified as data gaps and the area of the former ASTs and the vehicle inspection pit were added to the soil sampling schedule in this SAP. The area of the drum removal outside B66 was also inspected during the PSI walkover. It was found to contain some oil filters and evidence of localised oil-stained ground. This area was also added to proposed soil sampling schedule in this SAP.

3.1.6 Tokanui Hospital: Detailed Site Investigation (draft, AECOM 2019)

AECOM undertook an investigation of the soils associated with selected features of the Site and used the results as being representative sample of the whole area. These areas comprised four categories:

- Sampling around the commercial area, where most of the HAIL activities identified by AECOM occurred. This sampling was not targeted to assess the HAIL activities but to assess the general conditions of the area.
- The halos of selected buildings, which was used to represent the potential impact from groups of buildings.
- The green spaces around the site currently used for grazing. Several of the locations targeted coincided with the locations which were then being assessed for a potential onsite waste disposal facility.
- A low-lying stormwater collection area.

Building halos showed exceedances of background concentrations of lead, and almost all building types showed exceedances of adopted human health guidelines for lead or asbestos, with painted cladding, painted iron roofs and absent or damaged guttering showing the highest impacts in the building halos.

Test pitting in the green space of the Site showed exceedances of background concentrations for several metals, and an exceedance of the adopted human health guidelines for copper, and asbestos.

Test pitting in the commercial area of the Site showed exceedances of background concentrations for several metals, and an exceedance of the adopted human health guidelines for arsenic, chromium, copper, and nickel.

Test pitting in the stormwater collection area of the Site showed exceedances of background concentrations for several metals, and an exceedance of the adopted human health guidelines for lead and copper.

The report provided a broad indication of the levels of contaminants of concern in a number of HAIL activity areas within the Site. The AECOM DSI comprises the largest previous investigation undertaken at the Site. GHD has used this information to understand the data gaps in two main categories and add sufficient sampling in this SAP to close these gaps. The two categories are:

- 1. Areas of the Site with HAIL activities that have been sampled, but not all contaminants of concern had been analysed in the samples collected for example, soil samples around the gardeners shed had metals and asbestos testing completed as part of previous building halo testing, however the building was known to store pesticides and these had not been analysed in previous testing.
- 2. Areas of the Site with newly identified HAIL activities that have not been tested for example, an area of historical horticultural use in the north of the site, a former bowling green, two former morgues and a former dentist surgery.

3.1.7 Tokanui Village and Hospital Waste-Water Upgrade, Detailed Site Investigation, (WSP 2019)

WSP undertook an investigation of the Hospital WWTP ahead of decommissioning of the WWTP. The WWTP is geographically separate from the main hospital site, with the two areas being separated by the Wharekōrino Stream. The former hospital area lies to the west of the stream and the WWTP on the east of the stream.

A total of 12 samples were collected from six locations in the northern half of the WWTP facility where the filter beds were formerly located. Samples were analysed for metals, volatile organic compounds (VOCs), and asbestos. Metal results were above background concentrations, but below applicable human health guideline values. VOCs and asbestos were not detected in any of the samples.

The southern portion of the WWTP was not part of the scope of the WSP investigation but has been identified as a data gap. Sampling of this southern area is included in this SAP.

GHD Preliminary Site Investigation (2022)

GHD reviewed the findings of the investigations outlined in Section 3.1, to confirm whether an activity or industry on the HAIL has been, is, or is more likely than not to have been undertaken withing the Site boundary. In addition to the HAIL activities identified by the previous investigations, we identified additional areas which are suspected to have been subject to HAIL activities, including a former horticulture area, a potential historical livestock dip, a former bowling green, former morgues and a former dentist surgery. In total, 42 HAIL sites were identified across the Site.

Table 2, below, outlines the HAIL activities presumed and confirmed to have occurred at the Site and the contaminants of concern (CoC) associated with these activities (Ministry for the Environment, 2023). These have been grouped by HAIL category.

The data gathered from the PSI has been added to that from previous reports to identify unresolved or new data gaps for resolution within the DSI. These gaps are listed in Section 4.3 with the proposed sampling rationale and detailed in Sections 5 and 6.

Table 2 HAIL activities associated contaminants of concern

HAIL activity (Source)	HAIL category	Contaminants of Concern
A – Chemical manu	facture, application and bulk storage	
Water treatment plant	A2 – Chemical formulation or bulk storage	Asbestos and metals.
Laundry	A5 – Dry cleaning plants including dry-cleaning premises or the bulk storage of dry-cleaning solvents	Volatile hydrocarbons including chlorinated solvents
Livestock Dip	A8 - Livestock dip	Metals and pesticides/insecticides
Market Gardens / Horticulture	A10 – Persistent pesticide bulk storage or use including sport turfs, market gardens, orchards, glass houses or	Metals, a wide range of organic compounds, organochlorines, organonitrogens, organophosphates
Sports turfs	spray sheds	organominogens, organophosphates
Swimming pool – chemical store	A17 – Storage tanks or drums for chemicals or liquid waste	Metals, semi-volatile compounds
Water treatment plant		Metals, asbestos
Morgues		Formaldehyde (likely to have degraded given the time elapsed), mercury, lead
Fuel storage tanks		Metals, hydrocarbons, PAH, BTEX

HAIL activity (Source)	HAIL category	Contaminants of Concern				
B – Electrical and electronic works, power generation and transmission						
Substations (with transformers)	B4 – Substations	Polychlorinated biphenyls (PCBs), hydrocarbons, asbestos, metals especially copper, tin, lead, and mercury				
E – Mineral extraction	on, refining and reprocessing, storage and use.					
Hazardous materials in existing building fabric Inappropriate	E1 – Asbestos products disposal including sites with buildings containing asbestos products known to be in a deteriorated condition	Asbestos and metals				
historical demolition						
F – Vehicle refuellin	g, service and repair	7 20				
Vehicle workshops	F4 – Motor vehicle workshop	Metals, hydrocarbons, PAH, BTEX, solvents				
Service station	F7 – Service stations including retail or commercial refuelling facilities	Metals, hydrocarbons, PAH, BTEX				
G – Cemeteries and	d waste recycling, treatment and disposal	10				
Existing Disposal Sites*	G3 – Landfill Sites	Hydrocarbons, (including PAH), SVOCs metals				
Incinerator	G6 – Waste or wastewater treatment	Metals, hydrocarbons (including PAH), dioxins				
Hospital WWTP	8- 40	Metals, PAH, semi-volatile organic compounds, solvents				
I –intentional or acc	idental release of a hazardous substance					
Boiler	I – Any other land what has been subject to the intentional or accidental release of a hazardous substance in sufficient quantity that it could be a risk to human health	Metals, Hydrocarbons, PAH				
Dentist	or the environment	Mercury, present in amalgam in dental fillings, is a hazardous substance.				
Demolished buildings	S. S	Metals (asbestos associated with inappropriate demolition is covered under Category E1)				
Fly tipping		Asbestos, hydrocarbons, metals (from waste)				
Soil Disturbance**		Metals, asbestos, semi-volatiles				
Workshop sawdust piles		Metals and semi-volatiles				

^{*}The disposal sites are not part of the scope of the GHD/HAIL Environmental investigations, and are covered in a separate investigation by Fraser Thomas Ltd. As they are a HAIL activity present within the Site they are listed for completeness.

3.2 Other Relevant Investigations

In addition to these reports, other investigations have been undertaken as part of the demolition and remediation project relevant to this SAP and subsequent DSI, including:

Annual Stream and Bore Monitoring Reports (WSP, 2019-2022). These reports showed that surface water
and bore water samples are collected from the area of the former disposal sites as part of an existing
resource consent. No sediment sampling has been undertaken from the Wharekorino Stream or from

^{**}Soil disturbance was observed in aerial photos but this is not currently categorised as landfill G3, but is proposed for the DSI investigation to rule out landfilling.

stormwater runoff channels that come from the Site. Sediment sampling has been added to the SAP and is discussed in further detail in the Sampling Schedule in Section 6.

- Cultural impact assessment: Pokuru 1B Former Tokanui Hospital Campus (Te Muraahi & Maniapoto, 2021) This report was undertaken to gain an understanding of the cultural significance of the Site to mana whenua. The report helped identify a number of wāhi tapu areas, or areas of cultural significance / sensitivity, at the Site (e.g. the former morgues). In these areas, less intrusive field sampling techniques are proposed in this SAP, i.e. the use of hand dug samples as opposed to a machine dug test pit with the works being under the supervision of a local cultural monitor.
- Asbestos and Lead Paint Demolition Survey Report, Areas 1-4 (4Sight, 2022). These reports were undertaken by 4Sight Consulting Ltd (4Sight) to inform the demolition scope for the buildings at the site. The survey found lead based paint on the majority of the buildings across the Site however sampling of the surrounding soil was not part of the survey scope. In terms of this SAP, the design of building halo sampling for lead based paint was based on alignment with the AECOM 2019 DSI where previous soil sampling transects had occurred. In terms of asbestos sampling design for the SAP, where a building was not identified to contain asbestos and ACM, that building was excluded from consideration because they were not considered to have been a source of potential contamination. Buildings that were scheduled for further sampling were those where weathering of external features of existing buildings, containing asbestos was recorded (e.g. external cladding) or areas of historical demolition works. Further detail on the asbestos in soil sampling is provided in Section 5.4.
- Tokanui Psychiatric Hospital, Site Investigation: Archaeological Assessment (Draft, Underground Overground Archaeology, 2023). An archaeological assessment was undertaken by CFG Heritage in order to identify potential archaeological sites (sites associated with pre-1900 human activity) within the Site to support a future application for an archaeological authority to Heritage New Zealand as part of an archaeological assessment of effects (CFG Heritage, 2023) and in accordance with the Heritage New Zealand Pouhere Taonga Act 2014.

These reports have been reviewed by GHD and have been used to inform the sampling design, in particular where soil disturbance is required in proximity to areas of cultural and archaeological significance including the application for archaeological authority where required. A cultural induction facilitated by mana whenua was held on 8 – 9 February and attended by field staff. A Cultural Monitoring Protocol and Accidental Discovery Protocol have also been adopted and will be adhered to by personnel during the investigation in case of the discovery of artifacts on Site.

4. Conceptual Site Model

4.1 What is a Conceptual Site Model?

A CSM identifies the potential contaminant sources (e.g. fuels, pesticides), sensitive receptors that may be affected (e.g. people, soil) and the contaminant transport pathways that may link them together (e.g. accidental ingestion of soil, leakage to ground). A risk is present if there is a complete source-pathway-receptor (SPR) linkage. An example of a complete linkage is shown below in Figure 3:

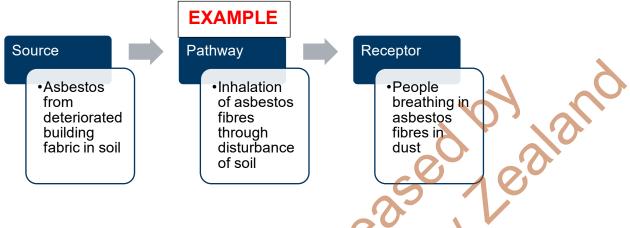


Figure 3 Example of a Complete Source-Pathway-Receptor Linkage

4.2 The Tokanui Hospital CSM

As part of the PSI (GHD, 2022), an initial CSM was developed to communicate the potential risks to human health and the environment from the HAIL sites.

The CSM is designed to be refined and updated as more data is gathered through the investigation process. For example, the current CSM as presented in the PSI report will be reassessed once sampling data is collected during the DSI and presented as an updated version in the DSI report.

Sources, pathways and receptors and a discussion of whether a complete SPR linkage is considered likely, is provided in Table 3. Due to the large number of potential contaminant sources on the Site it is not plausible to show them all, therefore for ease of use, the sources have been amalgamated into similar groupings. A visual representation of the CSM is also provided below in Figure 4.

The final column of Table 3 shows whether the SPR linkage is considered *Potentially Complete* or *Incomplete*. These terms are defined as follows:

- Potentially Complete means that the three elements of the SPR linkage are potentially present however testing is required to confirm whether contaminants of concern are present and whether they are at concentrations that may pose a risk to human health or the environment.
- Incomplete means that the existing evidence indicates that the SPR linkage is incomplete or unlikely to occur
 for example the linkage to offsite residents from hydrocarbons present in the soil within the Site is considered incomplete as there is not the opportunity for offsite residents to be in contact with such soil.

SPR linkages that have been assessed as *Incomplete* have been shaded grey in Table 3.

The purpose of the CSM is to highlight those areas of potential risk based on what is known at this point. For example, "Potentially Contaminated" just means that the three elements of the linkage are present - the land is not necessarily contaminated. To resolve this, the exposure pathways identified in the CSM will be assessed via sample collection in the DSI and subsequent risk assessment, with soil concentrations to be compared against remedial criteria as per the requirements of the THDSP.

Shallow groundwater is not abstracted for potable water supply purposes within the area, with potable reticulated (piped) supply in place. Water supply comes from the Mangaukia Stream near Pirongia, approximately 14 km

north-west of the Site. Groundwater is not considered as a receptor in the CSM but rather as a potential contaminant transport pathway to nearby surface water - the Wharekōrino Stream and Pūniu River. The results of the DSI soil sampling and site data collection (such as volatile vapour monitoring and field observations) will be used as a screening tool to understand whether further investigation of the underlying groundwater is warranted.

Future Site Users

The Site will be left in a remediated state as per the requirements of the Deed and the THDSP. This will include the removal of all buildings and leaving the Site in a grassed state. LINZ will obtain all necessary consents for the demolition and remediation as per the Deed requirements. The former disposal sites will remain on the east side of the Wharekōrino Stream and will be managed under their current resource consents.

Once remediation is complete and the land passes from the Crown to new owners, those future owners will need to evaluate contamination issues in relation to any planned future development. Development will need to be Proactively ation actively and into active and into the active ac considered in the context of where the remediated areas are, where residual concentrations remain and the layout of the future development design.. Future owners will need to apply for any resource consents in respect to their future development plans.

Table 3 Conceptual Site Model Linkages & Discussion

Source	Contaminants of Concern	Pathway	Receptor	Discussion	SPR Linkage Complete?
Hospital Operations & Building Materials	Asbestos and heavy metals in soil		On-site human health (maintenance /excavation workers)	As part of the future remedial work at the Site, soil disturbance will occur. If not working under an appropriate management plan including appropriate personal protective equipment, workers may be exposed to contaminants in the soil via the inhalation of contaminated dust. Future site users may also be exposed to contaminants via	Complete – previous investigations have already established concentrations around site buildings above human health thresholds
			On-site human health (future site users)	the inhalation of dust during future on Site activities.	Potentially Complete
			Off Site Residents (via windborne dust)	There is the potential for windblown dust to affect both these receptors. However these can be managed with appropriate controls.	Potentially Complete
			Ecological Receptors (flora and fauna)	Building demolition phase will be subject to HSE requirements, so risks can be managed and controlled (e.g. dust, erosion and sediment control plans, boundary asbestos monitoring).	
	Inorganic contaminants from on-Site industrial activity such as fuel storage and handling (metals)	Contact with skin or accidental ingestion	On-site human health (maintenance /excavation workers)	Excavation workers may have direct contact with contaminated soil on skin or the accidental ingestion of contaminants (e.g. from poor hand-washing hygiene practices).	Potentially Complete
	(Hetais)	SC,	On-site human health (future site users)	Future users may have direct contact with contaminated soil or ingest contaminants through contaminated future produce grown on Site.	Potentially Complete
		0, 40,	Off Site Residents	Offsite residents will not have direct contact with contaminated soil on the Site.	Incomplete
		9/1/1	Ecological Receptors (flora and fauna)	Plants may be affected by uptake of residual contaminants from soil, with potential for plant die-back in highly contaminated areas. Animals may have direct contact with contaminated soil or ingest contaminants through contaminated plants on Site.	Potentially Complete
	3	Stormwater run-off or from contaminated groundwater migration	Human health & Ecological Receptors (surface water – Wharekōrino Stream and Puniu River)	Ecological receptors in the river may be impacted via contaminated discharges. Surface water quality may also deteriorate as a result.	Potentially Complete

	Contaminants of Concern	Pathway	Receptor	Discussion	SPR Linkage Complete?
	Organic contaminants from on-Site industrial activity such as fuel storage and handling (hydrocarbons and	ite industrial accidental ingestion ich as fuel ad handling	On-site human health (maintenance /excavation workers)	Excavation workers may have direct contact with contaminated soil on skin or the accidental ingestion of contaminants (e.g. from poor hand-washing hygiene practices).	Potentially Complete
	GIIOIIIated Solvents)		On-site human health (future site users)	Future users may have direct contact with contaminated soil or ingest contaminants through contaminated future produce grown on Site.	Potentially Complete
			Off Site Residents	Offsite residents will not have direct contact with contaminated soil on the Site.	Incomplete
			Ecological Receptors (flora and fauna)	Plants may be affected by uptake of residual contaminants from soil, with potential for plant die-back in highly contaminated areas. Animals may have direct contact with contaminated soil or ingest contaminants through contaminated plants on Site.	Potentially Complete
			On-site human health (maintenance /excavation workers)	Excavation workers may be exposed to pockets of vapours in the subsurface.	Potentially Complete
			On-site human health and structures (future site users)	Vapours may be present in the subsurface from historical leaks or spills. These may migrate into future buildings and structures and there is potential for human exposure.	Potentially Complete
	Q [*]		Off Site Residents	Vapours, if present, are likely to be associated with specific former structures on the Site (e.g. former fuel tanks). These are likely to be localised around the sources and migration beyond the Site boundary is unlikely.	Unlikely to be Complete
			Ecological Receptors (flora and fauna)	Plants and animals may be exposed to pockets of vapours in the subsurface. As these are likely to be localised areas, animals - being more mobile, are unlikely to have long exposure periods. Potential impacts may be reduced plant growth or plant die-back.	Potentially Complete
		Stormwater run-off or from contaminated groundwater migration	Human Health & Ecological Receptors (Surface Water - Wharekōrino Stream and Puniu River)	Ecological receptors in the river may be impacted via contaminated discharges. Surface water quality may also deteriorate as a result.	Potentially Complete

Source	Contaminants of Concern	Pathway	Receptor	Discussion	SPR Linkage Complete?
Waste Water Treatment Plant	Asbestos in soil from former buildings	Inhalation of asbestos fibres	On-site human health (maintenance /excavation workers)	Previous investigation in the northern portion of the WWTP site did not find asbestos in soil. However, the southern portion of the WWTP site was not tested. Only one structure remains in the southern portion. Building demolition phase will be subject to HSE requirements, so airborne risk can be managed and controlled.	Potentially Complete
			On-site human health (future site users)		Potentially Complete
			Off Site Residents (via windborne dust)		Potentially complete
	Organic and inorganic contaminants from WWTP activities (metals, hydrocarbons)	Piped discharges from the WWTP (noting that there is an existing resource consent in place for the WWTP effluent)	On-site human health (maintenance /excavation workers)	Excavation workers may have direct contact with contaminated soil on skin or the accidental ingestion of contaminants (e.g. from poor hand-washing hygiene practices)	Potentially Complete
			On-site human health (future site users)	Future users may have direct contact with contaminated soil or ingest contaminants through contaminated future produce grown on Site	Potentially Complete
			Off Site Residents	Offsite residents will not have direct contact with contaminated soil on the Site	Incomplete
			Ecological Receptors (flora and fauna)	Plants may be affected by uptake of residual contaminants from soil, with potential for plant die-back. Animals may have direct contact with contaminated soil or ingest contaminants through contaminated plants on Site.	Potentially Complete
			Human Health & Ecological Receptors (Surface Water - Wharekōrino Stream and Puniu River)	The WWTP has a resource consent to discharge hospital effluent into the stream. Ecological receptors in the river may be impacted via contaminated stream sediment.	Potentially Complete
Historical Horticultural Activity	Organic and inorganic contaminants from fertilisers and crop spraying (pesticides, herbicides, metals)	Contact with skin or accidental ingestion	On-site human health (maintenance /excavation workers)	Excavation workers may have direct contact with contaminated soil on skin or the accidental ingestion of contaminants (e.g. from poor hand-washing hygiene practices)	Potentially Complete
			On-site human health (future site users)	Future users may have direct contact with contaminated soil or ingest contaminants through contaminated produce grown on Site	Potentially Complete
			Off Site Residents	Offsite residents will not have direct contact with contaminated soil on the Site	Incomplete

Source	Contaminants of Concern	Pathway	Receptor	Discussion	SPR Linkage Complete?
			Ecological Receptors (flora and fauna)	Plants may be affected by uptake of residual contaminants from soil, with potential for plant die-back. Animals may have direct contact with contaminated soil or ingest contaminants through contaminated plants on Site.	Potentially Complete
		Leaching of contaminants from soil then migration in groundwater	Human Health & Ecological Receptors (Surface Water - Wharekōrino Stream and Puniu River)	There is no evidence of direct stormwater discharge pipework from the former horticultural area. However important transport mechanisms are via overland flow and leaching from soil to groundwater and then migration via groundwater flow towards the Wharekōrino Stream.	Potentially Complete
Fly Tipping (B60)	Organic and inorganic contaminants from refuse	Contact with skin or accidental ingestion	On-site human health (maintenance /excavation workers)	Excavation workers may have direct contact with contaminated soil on skin or the accidental ingestion of contaminants (e.g. from poor hand-washing hygiene practices)	Potentially Complete
			On-site human health (future site users)	Future site users may have direct contact with contaminated soil on skin or the accidental ingestion of contaminants (e.g. from poor hand-washing hygiene practices)	Potentially Complete
			Off Site Residents	Offsite residents will not have direct contact with fly tipped material on the Site.	Incomplete
		41Ve	Ecological Receptors (flora and fauna)	Plants may be affected by uptake of residual contaminants from soil, with potential for plant die-back. Animals may have direct contact with contaminated soil or ingest contaminants through contaminated plants on Site.	Potentially Complete
		Stormwater run-off or from contaminated groundwater migration	Ruman Health & Ecological Receptors (Surface Water - Wharekōrino Stream and Puniu River)	Although some localised contaminants may have leached from stockpiles to soil, given the distance to the Wharekōrino Stream, it is considered unlikely to be at risk.	Incomplete
Animal Grazing	Heavy metals (e.g. cadmium) associated with superphosphate fertiliser application and pesticides (e.g. DDT)	Contact with skin or accidental ingestion	On-site human health (maintenance /excavation workers)	Excavation workers may have direct contact with contaminated soil on skin or the accidental ingestion of contaminants (e.g. from poor hand-washing hygiene practices)	Potentially Complete
			On-site human health (future site users)	Future site users may have direct contact with contaminated soil on skin or the accidental ingestion of contaminants (e.g. from poor hand-washing hygiene practices)	Potentially Complete

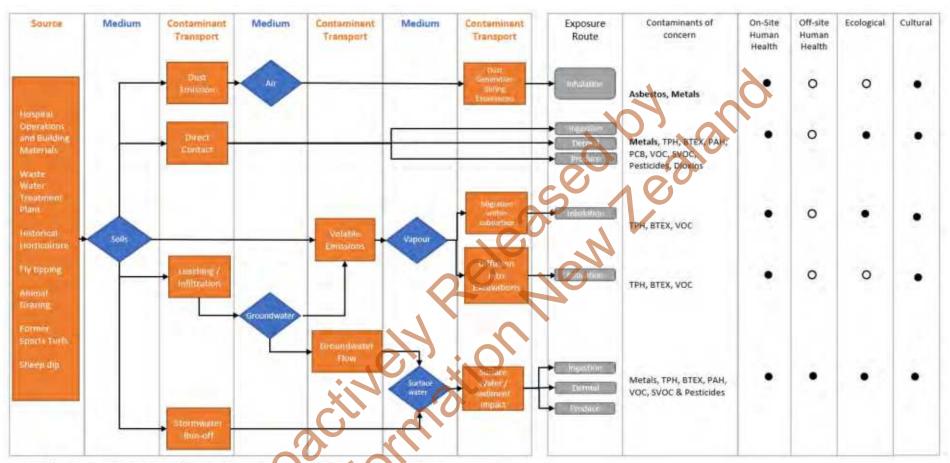
Source	Contaminants of Concern	Pathway	Receptor	Discussion	SPR Linkage Complete?
			Off Site Residents	Offsite residents will not have direct contact with contaminated soil on the Site	Incomplete
			Ecological Receptors (flora and fauna)	Plants may be affected by uptake of residual contaminants from soil, with potential for plant die back. Animals may have direct contact with contaminated soil or ingest contaminants through contaminated plants on Site.	Potentially Complete
	Leaching of contaminants from soil then migration in groundwater	Human Health & Ecological Receptors (Surface Water - Wharekōrino Stream and Puniu River)	Leaching from soil to groundwater and then migration via groundwater flow towards the Wharekorino Stream is a potential migration pathway. Some of the grazing areas immediately border the Wharekorino Stream. The testing of the soils (via leaching tests) is proposed as a means of confirming if the exposure pathway is complete.	Potentially Complete	
Sports Turfs (Former Bowling Green/Tennis Courts)	Bowling Green/Tennis contaminants from	Contact with skin or accidental ingestion	On-site human health (maintenance /excavation workers)	Excavation workers may have direct contact with contaminated soil on skin or the accidental ingestion of contaminants (e.g. from poor hand-washing hygiene practices)	Potentially Complete
			On-site human health (future site users)	Future users may have direct contact with contaminated soil or ingest contaminants through contaminated future produce grown on Site	Potentially Complete
		100	Off Site Residents	Offsite residents will not have direct contact with contaminated soil on the Site	Incomplete
	Oscilla.	Ecological Receptors (flora and fauna)	Plants may be affected by uptake of residual contaminants from soil, with potential for plant die-back. Animals may have direct contact with contaminated soil or ingest contaminants through contaminated plants on Site.	Potentially Complete	
		contaminants from soil then migration in	Human Health & Ecological Receptors (Surface Water - Wharekōrino Stream and Puniu River)	Leaching from soil to groundwater and then migration via groundwater flow towards the Wharekōrino Stream is a potential migration pathway. Given the distance of these locations to the Wharekōrino Stream, it considered unlikely to be at risk.	Incomplete

Source	Contaminants of Concern	Pathway	Receptor	Discussion	SPR Linkage Complete?
Sheep dip	metalloids, organo- chlorines, -nitrogens and -phosphates used	Contact with skin or accidental ingestion	On-site human health (maintenance /excavation workers)	Excavation workers may have direct contact with contaminated soil on skin or the accidental ingestion of contaminants (e.g. from poor hand-washing hygiene practices)	Potentially Complete
	in the drenching of livestock.		On-site human health (future site users)	Future site users may have direct contact with contaminated soil on skin or the accidental ingestion of contaminants (e.g. from poor hand-washing hygiene practices)	Potentially Complete
			Off Site Residents	Offsite residents will not have direct contact with contaminated soil on the Site	Incomplete
			Ecological Receptors (flora and fauna)	Plants may be affected by uptake of residual contaminants from soil. Animals may have direct contact with contaminated soil or ingest contaminants through contaminated plants on Site.	Potentially Complete
	Q ⁴	Leaching of contaminants from soil then migration in groundwater	Human Health & Ecological Receptors (Surface Water - Wharekōrino Stream and Puniu River)	Leaching from soil to groundwater and then migration via groundwater flow towards the Wharekōrino Stream is a potential migration pathway. Some of the grazing areas immediately border the Wharekōrino Stream. The testing of the soils (via leaching tests) is proposed as a means of confirming if the exposure pathway is complete.	Potentially Complete

Source	Contaminants of Concern	Pathway	Receptor	Discussion	SPR Linkage Complete?
Note this part of the	Metals, hydrocarbons, asbestos, medical waste	Ingestion and dermal contact of contaminated materials	Site users	Current use of the area is pastoral farming and animal food crops. Topsoil contains some minor elevated contaminant levels, including some asbestos contamination. The landfill area is subject to intermittent access by site users and more frequent but still intermittent animal grazing. It is considered unlikely there would be an unacceptable risk of contaminant exposure to humans associated with ongoing direct soil contact, except in the portions of the area with asbestos contamination. This risk can be further mitigated through providing relevant H&S advice to site users and through appropriate management controls.	Complete
			Maintenance and excavation workers	Topsoil contains some asbestos contamination, while the fill material also contains asbestos above commercial/industrial levels. Medical waste is also present in the fill. If soil disturbance activities are to be undertaken then specific contaminated land management controls would need to be implemented to manage potential risks.	Complete
	Asbestos, metals, hydrocarbons Inhalation of contaminated so (dust)f.	contaminated soils	Site Users Neighbouring site users	Inhalation of contaminated dusts and asbestos fibres generated during any disturbance of soils within the site presents a risk to site users, maintenance/ excavation workers, and neighbouring site users. [GHD notes this risk	Potentially complete
		OSCO	Maintenance and excavation workers	is higher for maintenance and excavation workers due to the more direct contact with the soil, including the more heavily impacted soils in the disposal locations] The risk is considered low for existing site users and neighbours and can be mitigated through specific land management controls during such soil disturbance works.	Complete
	Metals, hydrocarbons	Overland transport of contaminants within surface water and sediments	Downgradient receiving environments	The landfill area generally has good grass cover. There are some areas of exposed soils and some ponding areas around the landfill areas, and therefore potential for surficial silt/sediment from topsoil across the fill area to be transported in surface runoff to the Wharekorino Stream.	Potentially complete
				Six monthly monitoring of Wharekorino Stream water has found heavy metal concentrations to be lower than the adopted ANZECC guidelines, but iron concentrations often exceed ANZECC long term irrigation and aesthetics drinking water standards. The Wharekorino Stream in the vicinity of the site is typically subject to low flows and is	

Source	Contaminants of Concern	Pathway	Receptor	Discussion	SPR Linkage Complete?
		Leaching of contaminants to groundwater	Downgradient groundwater users Downgradient receiving environments	considered unlikely to be used for water consumption or long term irrigation. The Wharekorino Stream merges with the much larger Pūniu River approximately 670m below the landfill site, where it is considered unlikely, that after attenuation and mixing, contaminants would be recorded in concentrations that would pose an unacceptable risk to ecological receptors. If uncontrolled soil disturbance (e.g. ploughing of landfill area) is undertaken, then potential exists for contaminant release to the downgradient receiving environment via soil erosion and stormwater runoff. This is considered unlikely based on existing use of the landfill paddocks. A complete pathway exists for contaminants to leach from fill materials to shallow groundwater beneath the site and discharge to the Wharekorino Stream. Long term groundwater and stream water quality monitoring has shown elevated boron levels within the groundwater and corresponding elevated groundwater levels midstream and downstream of the site in excess of upstream boron levels, but with all results complying with ANZECC 95% freshwater protection level standards. As there is only one groundwater abstraction bore within 1km downstream of the site where water is used for nursery irrigation, it is considered unlikely that any potential contaminant migration via groundwater would pose an unacceptable risk to human health. Furthermore, it has been confirmed that there is a direct pathway for shallow groundwater under the landfill to flow in to the Wharekorino Stream and hence be subject to attenuation and mixing, so that any contaminants present would not pose an unacceptable risk to ecological receptors.	Complete
	Landfill gas	Innalation of landfill	Site users Maintenance and excavation workers Neighbouring site users	The potential for landfill gases to be generated within the fill profile due to disposal of putrescible materials, including green waste, is considered low. Any landfill gas that was generated would likely be vented through the surface of the fill material to atmosphere. Main possible risk relates to the accumulation of landfill gas within confined spaces.	Incomplete

A cultural impact assessment has been undertaken for the Site (Te Muraahi & Maniapoto, 2021) to capture and understand the cultural significance of the Site. This will be used to inform LINZ of the demolition and remediation project scope. Further context as to the significance of these sites is included in the Cultural Impact Analysis (Te Muraahi & Maniapoto, 2021).


This assessment has identified several cultural receptors, such as culturally significant sites, waterways, flora and fauna.

The identification of culturally significant areas is important for the management of earthworks associated with the remedial work, including minimising earthworks in these areas to minimise potential damage to these sites, sediment, and erosion controls to prevent runoff, and to avoid soil disturbance in these areas. Each of these sites will need to be assessed to measure the level of potential risk of damage from earthworks and other remediation activities.

Cultural receptors do not easily align with the typical conceptual site model, however these have been included in the separate table below as a way to identify and acknowledge potential cultural risks.

Table 4 Cultural Impacts from Contaminated Soil

Source	Contaminants of concern	Pathway	Receptor	Discussion	SPR Linkage complete?
metals, hydrocarbons, pesticides Metals, hydrocarbons, pesticides Groundwater interactions with surface water I land are Waterway Waterway Flora are Soil or sediments Flora are Soil or sediments Flora are Soil or sediments Waterway Flora are Soil or sediments			Culturally significant land areas Waterways Flora and fauna	Contamination may be mobilised during earthworks, or from exposed soil, and carried overland into significant areas of the site or into waterways, and subsequently into plants and animals in or near the waterways. These impacts may impact the cultural significance of the soils and waterways, and may impact the ability to collect kai from waterways. This can be managed via appropriate management plans during earthworks (sediment and erosion control plans).	Potentially complete
	Underlying soil and groundwater	Contamination may leach from contaminated shallow soil in culturally significant areas, leading to further degradation of the soil or underlying groundwater.	Potentially complete		
	interactions with	Flora and fauna	Impacted groundwater may flow into surface water, and subsequently impact the health of plants and animals who live in and near the surface water.	Potentially complete	
	Hydrocarbons	Soil vapour	Culturally significant areas	Soil vapour may be carried through preferential pathways (e.g. permeable soil) to areas underlying culturally significant areas.	Potentially complete

Contaminant – Identified contaminant of concern, historically reported above previously adopted criteria.

Contaminant – Identified contaminant of potential concern, below adopted criteria or not currently assessed.

- · Pathway potentially complete
- o Pathway unlikely to be complete

Refer Section 5 for the definitions of the contaminants of concern

Figure 4 Conceptual site model

4.2.1 Potentially complete pathways

Potentially complete pathways identified in the CSM included several potential exposure risks to human health and environmental receptors from contaminants in the soil profile via ingestion, inhalation, dermal and produce pathways.

The potentially exposure pathways fall within broadly typical scenarios as follows:

- Excavation Workers workers who come into contact with contaminated material as part of earthworks or soil disturbance within the Site
 - Soil disturbance may result in the accidental inhalation of asbestos or metal-contaminated dust generated during excavation works
 - Soil disturbance may result in the accidental inhalation of volatile vapours generated during excavation works from hydrocarbon or solvent sources
 - Excavation workers having direct contact with contaminated soil on skin or the accidental ingestion of contaminants (e.g. from poor hand-washing hygiene practices)
- Future Site users the Site will be left in a remediated state as per the requirements of the Deed and the THDSP. This will include the removal of all buildings and leaving the Site in a grassed state. Once remediation is complete and the land passes from the Crown to new owners, those future owners will need to evaluate contamination issues in relation to any planned future development. Development will need to be considered in the context of where the remediated areas are, where residual concentrations remain and the layout of the future development design.
- Surface water and ecology

 the Wharekorino Stream has the potential to receive impacted stormwater and sediment from the site
 - Overland flows and the stormwater network transporting impacted sediment into surface water bodies
 near the site, may be impacting the ecology of the waterways and impacting potential food sources in the
 stream.
- While the CSM is based on the protection of human and environmental health, cultural health also needs to be protected. These concepts are often interwoven with each other, and often share several of the same exposure pathways. As a result there is the potential for risk to a number of cultural receptors from the historical Site activities.

4.3 Identified data gap resolution

The GHD PSI identified data gaps for further assessment in the DSI. These data gaps and their proposed resolution are outlined below in Table 5. Further detail on the sampling schedule and analysis is also provided in Sections 5 and 6.

Table 5 Identified data gaps

Data gap	Description	Proposed resolution
Understanding soil contamination from HAIL activities	Assessment of the impacts of HAIL activities identified in PSI, that have not been previously investigated.	The principal focus of this SAP, using a combination of judgemental and composite sampling approaches to collect a robust data set. Detailed in Sections 6 and 7.
Impacts on the Wharekōrino Stream	While the biannual landfill discharge monitoring required under consent 102269 (undertaken by FTL) has been monitoring potential impacts on the Wharekōrino Stream, the potential for the Hospital site impacts via stormwater discharge and overland flow is not understood at this time. The stormwater discharge and overland flow may have contributed to impacts in the stream and its sediments.	To address this sediment sampling will be undertaken along points of overland flow and in the stream and discharge points from the Hospital WWTP. SPLP analysis will assess if there is evidence of soil leaching contaminants to groundwater, with potential migration to the Wharekorino Stream.
Two unknown building uses: Building 61 The former building west of Building 35	Building 61 (also known as Shed 11) is a small square building in the commercial area of the Site. It has no windows and has vents on the outside and currently contains a small above ground tank (potentially an air compressor) and associated pipework. Its exact use is unknown. The current utility service plans for the area do not show a piped connection to this building. Some minor oil staining on the internal floor was evident.	Sampling is proposed through the floor of B61 to assess whether any underlying impacts have occurred. A single location is proposed, comprising metals, hydrocarbons, semi-volatile and volatile organic compounds.
	The former building west of B35 was a rectangular shaped building north of the former glasshouses and in the area used historically for horticulture. The building was demolished but some of the foundations and the building outline remains. As it has been demolished the building does not appear on the LINZ Building ID list.	The former building use was likely tied to the area's historical horticultural use. Sampling is proposed both around the building footprint and within it. Samples will be analysed for metals and asbestos, plus a range of pesticide and herbicides.
Dry Cleaning	The AECOM gap assessment (AECOM, 2018b) listed dry cleaning as a data gap, but no research of records or hospital laundry practices has been undertaken until the GHD PSI.	To confirm there is no risk from chlorinated solvents within the Site, soil sampling will be collected and analysed for these chemicals in targeted locations.
Silv	Research undertaken by LINZ found that dry cleaning is typically not used for standard hospital laundry practices as it is unlikely to meet health specifications for sterilisation.	
	No records were found by GHD during the PSI to demonstrate that chemical storage of chlorinated solvents occurred on the site.	
Impacts under the building slabs	As many of the impacts of the HAIL activities are likely to be within the footprint of the buildings associated with the activity, sampling of these locations is required prior to demolition of the structure.	LINZ will excavate suitable holes in building floors to enable GHD to collect samples from specific buildings of interest.

Description	Proposed resolution
There is anecdotal evidence of waste material being buried at the Site, but specific locations have not been able to be identified. While one interview with a former employee was undertaken, it indicated that this practice had ceased by the 1970s, historical disposal cannot be ruled out.	Key areas have been identified in the PSI from aerial photography assessment. Other known areas of fly tipping were removed by LINZ. GHD will undertake sampling in areas of suspected fly tipping. These will cover metals, asbestos, hydrocarbons and volatile organic compounds.
Areas of potential soil disturbance were identified in the PSI. These were in the area immediately north of the former Wards F, G and H, in the area of the stream gully and to the south of the hospital in the paddocks beyond Building 30.	The area to the north of the former Wards F, G and H will be sampled via test pitting. Samples will be tested for metals, asbestos and SVOCs. The remaining areas identified south of Building 30 and in the stream gully area have been expanded into the scope of Fraser Thomas' separate investigation.
AECOM undertook an asbestos survey and developed an Asbestos Management Plan for the Site in 2018. Impacts were then partially assessed during the AECOM DSI however these were not fully delineated and the full extent of the impacts from building fabric across the Site are unknown. In 2022, 4Sight undertook more thorough surveying of asbestos and lead based paint as part of the demolition surveys which confirmed the buildings where lead and asbestos have been identified in the building fabric.	To address this, HAIL Environmental are undertaking investigations of the building halo with an XRF. This, alongside with the GHD sampling of the demolished buildings and substations and the existing data set from the AECOM DSI (AECOM 2019) will allow a better understanding of the extent of impacts from the building fabric on surrounding soil.
	There is anecdotal evidence of waste material being buried at the Site, but specific locations have not been able to be identified. While one interview with a former employee was undertaken, it indicated that this practice had ceased by the 1970s, historical disposal cannot be ruled out. Areas of potential soil disturbance were identified in the PSI. These were in the area immediately north of the former Wards F, G and H, in the area of the stream gully and to the south of the hospital in the paddocks beyond Building 30. AECOM undertook an asbestos survey and developed an Asbestos Management Plan for the Site in 2018. Impacts were then partially assessed during the AECOM DSI however these were not fully delineated and the full extent of the impacts from building fabric across the Site are unknown. In 2022, 4Sight undertook more thorough surveying of asbestos and lead based paint as part of the demolition surveys which confirmed the buildings where lead and asbestos have been identified in the building fabric.

5. Sampling and Analysis Plan

5.1 Contaminants of Concern

Soil and sediment samples will be tested at a laboratory, from a selection of analytes in Table 6. The analytes chosen for each sample will be specific to the contaminants of concern associated with the historical activity identified in the PSI. Full detail on the sampling at each location is provided in Appendix C and is discussed in Section 6.

Table 6 Soil & sediment sampling suites

Suite name	Description
Metals	Arsenic, beryllium, boron, cadmium, chromium, copper, lead, mercury, nickel, zinc (this is a standard 10 metals laboratory suite)
TPH	An assessment of the C ₇ - C ₃₆ hydrocarbons in a sample.
BTEX	An analytical suite targeting benzene, toluene, ethylbenzene and <i>ortho-, meta-</i> and <i>para-</i> xylenes (also part of the VOC suite)
PAH	A suite targeting polycyclic aromatic hydrocarbons (also part of the SVOC suite)
PCB	A suite analysing the PCB congeners underlying the Site, including the 12 dioxin-like PCBs.
VOC	A broad suite containing volatile organic compounds including chlorinated hydrocarbons
SVOC	A broad suite containing semi-volatile organic compounds
Pesticides	Organo-chlorine, -nitrogen and -phosphorous pesticides and acid herbicides
Dioxins	Dioxins PCDD and PCDF (for one location only, site incinerator)
Asbestos (presence/absence)	Screening analysis for asbestos, or an assessment if building fabric contains asbestos.
Asbestos (semiquantitative)	Quantifying the percentage of asbestos fines/free asbestos and asbestos containing material in a sample.
Miscellaneous	soil pH and total organic carbon

5.2 Environmental Media to be Sampled

5.2.1 Soil

Soil samples will be collected in order to understand the nature and extent of contamination in soil associated with the identified HAIL activities from the PSI. The focus of sampling is on the top 1 m of soil where the majority of contamination is likely to be found (fuel/oil spills, pesticide residues, metal and asbestos from building fabric deterioration). However, in order to understand the potential risks to the groundwater pathway from soil, some deeper sampling will be undertaken in areas of suspected historical fuel and solvent use. Sampling depths are discussed further in Section 5.4 and Section 6.

5.2.2 Sediment

Sediment will be sampled from the following areas:

- Wharekōrino Stream
- The area downstream of a drainage basin that flows into the Wharekorino Stream
- An area of discharges from the WWTP into the Wharekorino Stream

This will provide a snapshot of contamination in sediments along drainage pathways and watercourses. Samples are to be collected along the length of watercourses, including upstream and downstream of the Site and are discussed in further detail in Section 6.

5.2.3 Groundwater

The PSI found six groundwater bores within 500 m of the Site, but none of these were used for drinking water purposes. Well screens are typically set at 60-70 metres below ground level (m bgl), with one at 33.5 m bgl. This pattern of abstraction suggests that the shallow groundwater is not used in the area. The silts and clays that comprise the dominant shallow geology are unlikely to support groundwater abstraction.

Soil sampling and field measurement results collected in the DSI will be used as a screening tool in the Site Specific Risk Assessment in order to understand whether groundwater investigation is needed. The screening process for this is as follows:

- Data from previous investigations has been used to highlight areas which may pose a potential risk to groundwater (e.g former underground fuel tanks and areas which may have used larger volumes of chemicals such as the former laundry). Soils will be collected from those locations for laboratory analysis. If initial laboratory soil results are elevated, then additional leachability testing will be undertaken on soil samples (see Sections 5.3.3 and 5.4.4).
- For fuel specifically, soil results can be compared against Ministry for Environment protection of groundwater quality criteria to assess the potential for groundwater risk.
- If initial laboratory soil results are elevated, then additional leachability testing will be undertaken on soil samples
- Volatile organic compounds will be measured in the field using a Photo Ionisation Detector (PID) in areas of higher risk (e.g. areas of known fuel or chemical storage).
- If the concentrations found in the soil are not considered to pose a risk to groundwater, then no further groundwater investigation is proposed.
- Should an issue be found in soil that indicates a potential groundwater issue, this will be investigated separately as it falls outside of the scope of this Project.

5.3 Remedial Standards & Soil Disposal Criteria

5.3.1 Process for Deriving Remedial Standards

The THDSP sets out the process for establishing remediation standards for the Site. However, at the date of signing of the Deed, there was not enough information available for the Crown to be able to commit to a particular remediation standard to be achieved for all the Tokanui Deferred Selection Properties.

The THDSP Subpart B, Section 9.3 states, ... the Crown will use best endeavours to remediate:

9.3.1: 85% of the total land area of the Tokanui Hospital deferred selection properties to the rural residential remediation standard; and

9.3.2: a contiguous area not exceeding 15% of the total land area of the Tokanui Hospital deferred selection properties, to the managed remediation standard."

The THDSP defines the two remedial standards in clauses 9.3.1 (rural residential) and 9.3.2 (managed) are to be chosen in accordance with CLMG2 (Ministry for the Environment, 2011) or derived through a Site Specific Risk Assessment. Guidance on this decision is provided within CLMG5 (Ministry for the Environment, 2021) and the NES CS Users Guide (Ministry for the Environment, 2012) which states a Site Specific Risk Assessment can be carried out when soil concentrations exceed Soil Contaminant Standards or does not fit the generic land use scenario used in the guidance documents.

The Site does not fit the generic land use scenarios for a rural residential site and therefore a Site Specific Risk Assessment is being undertaken. The Site Specific Risk Assessment will define the remedial standards using the site specific soil information gathered during the DSI. These remedial standards will include:

- Protection of human health criteria
- Environmental protection criteria

The THDSP specifies that the land will be remediated in accordance with the applicable remedial standards (as per those which will be developed in the Site Specific Risk Assessment), remove all vertical building structures,

determine the extent of horizontal infrastructure to be removed and ensure that the site is free of building debris and is stabilised by grassing.

5.3.2 Derivation of Site Specific Criteria

The process for deriving criteria using site specific information is set out in the NES CS Methodology document (Ministry for Environment, 2011a). In summary, it allows the risk assessor to modify the generic assumptions that underly the existing NES CS criteria in order to give a more accurate estimate of exposure.

This may involve modification of:

- Toxicity
- Default receptor assumptions on physical characteristics (weight) and behaviour (e.g. the frequency and/or duration of exposure)
- Exposure estimates whether all exposure pathways assumed actually exist and whether genefic exposure rates are realistic for the specific situation.

The derived criteria and the supporting rationale will be provided in the Site Specific Risk Assessment report which will be prepared HAIL Environmental (see Section 7.8.3 for further detail on the DSI and Site Specific Risk Assessment report contents).

5.3.3 Other Relevant Criteria

In addition to the generation of human health and environmental criteria, the Site Specific Risk Assessment report will also contain comparison with natural background concentrations and relevant soil disposal (landfill) criteria, in the event that soil needs to be removed from Site.

Natural Background

Despite being labelled as contaminants, the metals analysed in DSI soil samples also occur naturally. In addition, some man-made contaminants such as DDT were subject to such widespread use that they are commonly found in soil and the Ministry for Environment developed 'background' levels for soils that DDT was not directly applied to. For risk assessment comparison it is important to understand the concentrations on Site compared to typical background concentrations. The Site Specific Risk Assessment report will also set out the natural background criteria and how they have been chosen.

Waste Acceptance Criteria

If soil is removed from the Site, it will need to be disposed of to a suitably licenced waste disposal facility. Fundamentally, the degree of contamination in the soil determines the type of landfill where it can be accepted. Soils with concentrations less than background concentrations can go to a cleanfill site. Slightly contaminated material can go to a managed fill site. Higher concentrations need to go to an engineered municipal landfill.

The Site Specific Risk Assessment report will set out the applicable waste acceptance criteria and how they have been chosen.

Landfill acceptance criteria are based on the leachability of contaminants. A specific laboratory analytical test, the toxicity characteristic leaching protocol (TCLP), is used as it replicates the chemical environment within an engineered landfill cell. TCLP testing of soil from the Site is included within this SAP and is discussed further in Section 5.4. The TCLP results will be compared with the relevant landfill acceptance criteria in the Site Specific Risk Assessment report in order to understand appropriate soil disposal options.

5.4 Sampling Design

5.4.1 Approach to Sampling Strategy

A mix of sampling strategies will be applied as follows:

- Judgemental (also known as targeted) sampling around or within areas of specific point sources. This
 includes:
 - Identified Point Sources e.g., fuel tanks, pesticide storage sheds, transformers.
 - Building Halos the area surrounding the immediate building exterior or 'halo' is proposed to be sampled
 using a combination of X-ray fluorescence (XRF) and laboratory analysis to assess the extent of metal
 contamination around site buildings.
- Systematic (or grid-based) sampling in areas of horticulture or grazing which are likely to have widescale pesticide/herbicide spraying in a consistent and unform manner. Composite sampling techniques are proposed in order to collect data from these areas.

Details on all location-based sampling is provided in Section 6, with a summary of the sampling strategy described below.

5.4.2 Judgemental Sampling

Point Sources

Sample locations have been selected around specific HAIL sources using judgemental sampling to target near, or within, a potential contaminant source area. For example, sampling locations have been selected around the four sides of a former fuel tank, and at the Gardeners Shed samples are proposed both within the building (to assess seepage to ground) and in external areas of concrete where pesticide drums may have been stored. Judgemental sampling is proposed in all areas with the exception of the grazing areas and horticultural area. The samples will be submitted to Hill Laboratories in Hamilton under standard chain of custody documentation.

Building Halo Sampling: Metals & Previous Sampling Gaps

The previous 4Sight asbestos and lead paint survey found lead based paint on the majority of the buildings across the Site – however sampling of the surrounding soil was not part of the survey scope. In terms of this SAP, the design of building halo sampling for lead based paint was based on alignment with the AECOM 2019 DSI where previous soil sampling transects had occurred.

In 2019 AECOM completed soil sampling in transects around building halos and X-ray fluorescence (XRF) testing for lead in soil. In addition, the AECOM DSI included some limited test pitting around buildings. This comprised 12 test pits in the commercial area of the Site.

The GHD and HAIL Environmental field sampling in the DSI will include a combination of XRF sampling and test pitting around buildings.

Field screening will be completed using XRF in situ: a non-destructive technique used to estimate the content of heavy elements in a sample by measuring the fluorescent (or secondary) X-rays emitted from a sample when it is excited by a primary X-ray source.

As XRF measurements vary to a certain extent depending on the soil matrix and water content, replicate measurements will be collected at a minimum rate of 1 in every 10 measurements. As XRF is a semi-quantitative technique, matched soil samples will be collected at a rate of 1 in every 10 measurements. Soil samples will be collected to represent the lower, middle and upper range of lead concentrations identified by the XRF.

Buildings previously assessed during the AECOM DSI are excluded from the XRF assessment. Buildings which are surrounded by impermeable surfacing or constructed from materials highly unlikely to include lead-paint such as galvanised steel sheds and units with uPVC cladding are also excluded from the XRF assessment.

As a result of the exclusions above, targets for halo sampling include buildings B1, B5-8, B15, B17, B19-23, B27, B30, B34-39, B42, B44-48, B51-54, B57, B59-62, B66, B67, B71, B75 and substations Sub1 - Sub8, in all some 47 potentially lead-painted structures. The locations of halo sampling transects are shown on Figure B3, Appendix

B and are detailed in the Sampling Schedule in Table 10 of Section 6. Given the large amount of data – two transects for each building would generate around 1000 data points.

Attempts will be made to locate lead halo around / within demolished buildings: Wards F, H, the former Nurses' Home, buildings B4, B32, B52, and B64, using XRF. If successful, the apparent locations will be marked with paint, and transects will be set out as for remaining buildings.

The AECOM DSI sampling has provided an extensive data set of metals and asbestos sampling. AECOM collected transect data from around 13 buildings, plus test pits from around another 12 buildings. This, coupled with the proposed DSI testing around 47 other structures will provide a comprehensive data set.

There are a handful of locations where proposed DSI sampling overlaps previous AECOM sampling. The rationale for this is as follows:

- Buildings 73 and 74 (Laundry Buildings) Sampling is proposed to include chlorinated solvents as a contaminant of concern. The previous sampling was focused on the building halo only and not for this family of contaminants. As a result, test pits are proposed around the exterior of both buildings and inside B74 itself.
- Building 16 (Former fuel station and garage/workshop) the previous halo sampling included only the southern wall. Additional sampling is proposed around the south, east and west of the building and also inside the building in the area of former vehicle inspection pits. The north side of the building was tested during previous investigations around fuel system removal and further sampling is not considered necessary. The previous sampling of the southern wall included a surface sample for hydrocarbons, however better depth profiling is required and the DSI proposes deeper sampling below the surface.
- Substation 1 the previously collected samples were from external areas. The DSI proposes a sample inside
 the substation itself, through the substation floor into the underlying soil.
- Former Ward G the previous sampling was focused on the southern side of the footprint of this demolished building. Further sampling is proposed to cover the northern part of the footprint and provide more complete coverage.

Building Halo Sampling: Asbestos in Soil

The lead based paint and asbestos survey undertaken recently by 4Sight (4Sight, 2022) identified that a number of buildings contain asbestos and Asbestos Containing Materials (ACM).

Based on the identified presence of asbestos and ACM in buildings present on the Site and MfE HAIL Guidance, we have applied the logic described in Table 7, to identify the need to consider assessment of soils for asbestos where a building was identified in the 4Sight 2022 survey was found to contain asbestos and ACM. Where a building was not identified to contain asbestos and ACM in the 4Sight 2022 survey, that building was excluded from consideration.

Table 7 Logic for determining areas for consideration of soil sampling works

Q^{*}		consideration of soil g works	
Mechanism for soil contamination to occur	Within building envelope	Outside building envelope	Rational
Historical Demolition works	Yes, unless soil sampling historically undertaken		Asbestos may have been accidentally released into the soils within the vicinity of historic buildings. Therefore, these areas have been given further consideration for potential soil sampling.
Weathering of external features of existing buildings (e.g. external cladding), containing asbestos	No, considered under proposed demolition works (refer below) Yes, where damage was identified to be medium or high in the 4Sight 2022 survey and historic soil sampling not previously undertaken		The soils in the immediate vicinity of these buildings may have been affected by weathering. Therefore, these areas have been given further consideration for potential soil sampling.

	Areas identified for o	consideration of soil g works	
Mechanism for soil contamination to occur	Within building envelope	Outside building envelope	Rational
Weathering of internal features of existing buildings (e.g. internal pipework), containing asbestos	No, considered under proposed demolition works (refer below)		Internal fixtures containing asbestos and ACM were considered to present a risk to soils during demolition works only.

Using the logic described in Table 7, the proposed extent of asbestos sampling works to evaluate soils impacted by asbestos from demolished and existing buildings is described in Table 8. The proposed soil sampling locations are depicted on Figure 5 and Figure 6.

Figure 5

Figure 6 Proposed asbestos sampling – former sports pavilion

Table 8 Proposed extent of asbestos sampling works to evaluate soils impacted by asbestos from demolished and existing buildings

Building ID	Building name	Level	Primary location	Extent of Damage	Historical soil sampling undertaken	Soil sampling proposed
Building 01 - Admin	Admin	External	Roof	Low	No.	No, extent of damage identified to external ACM was low or none.
Building 58 – Rec Hall	Rec Hall	External	Roof	High	Yes	No, The presence of asbestos has been identified sufficiently to inform remedial options.
Building 29	Ward 7	External	External	Low	Yes	No. The presence of asbestos has been identified sufficiently to inform remedial options.
Substation 8 (S8)	Substation 8 by Ward K	External	Roof	Medium	No.	Yes, asbestos has been identified in a deteriorated condition in this location. Soil sampling proposed around all external sides of the substation.
Building 33	Ward 9	Roof	Roof Water Tank Sheds	Low	Yes	No, the presence of asbestos has been identified sufficiently to inform remedial options.
Building 48	Ward 16	Roof	Exterior Skylights	Low	No.	No, extent of damage identified to external ACM was low or none.
Building 53	Ward 19	External	Walls	Low	No	No, extent of damage identified to
		External	Walls	None		external ACM was low or none.
		External	Walls	None		
		External	Walls	Low		
Building 32	Shed 4	Not assessed during the 4Sight 2022 building survey . Observed during the GHD 2022 walkover.			No.	No, external ACM was not identified during the site walkover. Surface surrounding the building is concrete.
Building 34	Shed 2, Toilet Block (Demolished)	Not assessed during the 4Sight 2022 building survey. Observed during the GHD 2022 walkover.			No.	No, external ACM was not identified during the site walkover.
Building 64	Sport pavilion and shed (Demolished)	Not assessed during	ng the 4Sight 2022 building s	survey.	No.	Yes, proposed collection of samples from two locations within the former footprint of the building.

5.4.3 Systematic Sampling

Grazing Areas

Areas currently used for grazing have been divided into ten contiguous blocks (COMP01-COMP10) for sampling purposes (see Figure 7 for an illustrative extract, and also included in Figure B4, Appendix B). Each block will be sampled using the Fonterra DDT soil sampling protocol, which involves a composite formed in the field from at least 30 soil plugs collected in a Z-pattern across the full extent of the block using a 37.5 mm push sampler.

The composite samples will be submitted to Hill Laboratories in Hamilton under standard chain of custody documentation for metals, OCP and pH analysis and, for COMP10 only, mercury (due to the proximity to the former dental surgery, Building B8).

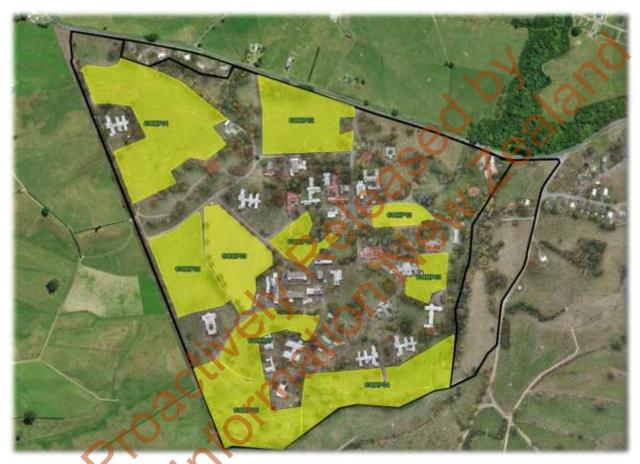


Figure 7 Location of grazing composite areas

Horticulture Area

Composite sampling is proposed for the area of historical horticulture located in the northeast of the Site (see Figure 8, outlined in red). This comprises the collection of a series of individual samples from different locations followed by mixing an equal mass of each sample together to form a single composite sample. The composite sample is then analysed with the results representing the average of the individual sub-samples.

The horticulture area has been split into smaller areas for composite sampling, named Areas A-H. In each area individual sub-samples will be collected which will be sent to the laboratory for analysis. For example, in Area A, there will be four subsamples named A1-A4, used to generate the sample COMP_A (see Figure 9 for an illustrative extract, also included in Figure B1, Appendix B).

Sampling will be undertaken in accordance with CLMG 5 as follows:

- The CSM indicates that this an area likely to contain low-level, homogenous contamination.
- A maximum of four sub-samples will be composited together.

- A minimum of four composite samples is recommended from within the exposure area to be analysed we
 are proposing nine composite samples across the area.
- Sub-samples will be from the same soil types and depths.
- Compositing will be limited to metals and pesticides analysis.
- The composite will be assembled in the laboratory, not in the field.

Figure 8 Location of horticulture areas

- The northern part of area contains a rectangular field, which will be sampled on a 20m grid basis and will result in six composite samples, labelled COMPA-COMPF (see Figure 9). The southern part of the area contains thick trees and some buildings, meaning the same sample distribution can't be applied. In these areas, two groups of compositing will be undertaken (COMPG and COMPH) but with three sub-samples rather than four (see Figure 9).
- Samples will be collected from similar depth and composited together, e.g. in Area A, the four sub-samples collected from 0.1m will be composited as COMPA_0.1, the sub-samples from 0.5m will be composited as COMPA_0.5 and so on.

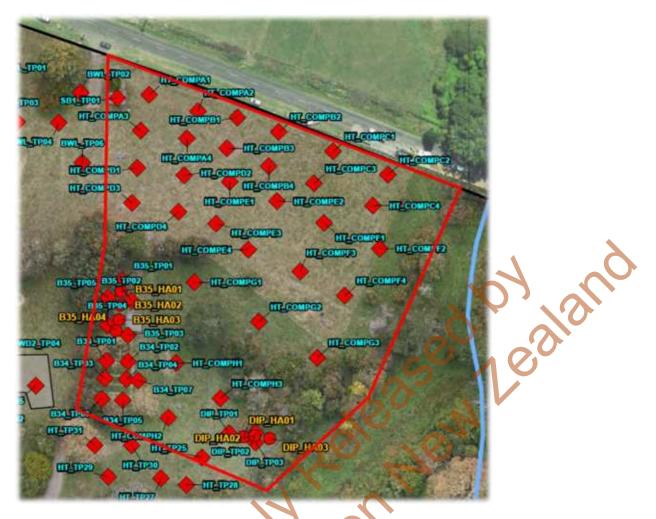


Figure 9 Horticulture area showing composite sampling locations COMPA-COMPH

5.4.4 Leachability Testing

Following the completion of the DSI, the Site Specific Risk Assessment Report will include the consideration of potential excavation of soil and removal to landfill. This will be supported by TCLP analysis as outlined in Section 5.3.3.

Similarly, a separate test will be used to assess the exposure pathway from soil leaching to groundwater. This is done through a similar test to the TCLP called, Synthetic Precipitation Leaching Procedure (SPLP). The SPLP is designed to replicate conditions of rainfall on a surface (such as soil), as opposed to TCLP which replicates landfill cell conditions. Soil samples from key areas identified in the CSM such as grazing areas or horticultural area will be chosen for TCLP and/or SPLP analysis.

An allowance has been made for 30 samples from the DSI to undergo TCLP and SPLP analysis. Samples will be selected for TCLP and SPLP analysis on the basis of the following:

- analysing samples which have elevated concentrations of contaminants of concern, coupled with;
- analysing sufficient sample numbers from different depths and areas of the Site to provide leachability data representative of the Site conditions.

5.4.5 Statistical Robustness of the Data Collection

Statistical analysis can be used to help summarise the complex information in a DSI.

As per CLMG5, only systematic or unbiased sampling should be subject to statistical analysis – in relation to Tokanui this relates to the proposed composite sampling areas. A sufficient number of data points is required for the statistical analysis to be performed with accuracy. CLMG5 states that the number of samples depends on the

statistical test to be performed, e.g the USEPA recommends a minimum of 8 to 10 discrete observations from a sample population before using certain methods.

CLMG5 provides a method for calculating the number of sample points for contaminant hotspot detection. This is based on detecting circular hotspots with 95% confidence using a square grid sampling pattern. This method is only a guide as there are a number of potential drawbacks to relying on this method alone (for example hotspots are very rarely circular) and professional judgment is required based on the nature of the site and contaminants of concern.

The area of systematic sampling using composite samples in the northern part of the former horticultural area is based on a square grid sampling pattern with samples at 15m intervals. For comparative purposes, based on the CLMG 5 equations, such a grid would detect an 9m radius hot spot with 95% confidence. The number of sampling points needed using the CLMG 5 equations and given the size of the paddock of interest is calculated at 28. The number of sampling points chosen by GHD is 24 which is based on a grid and also the shape of the field. This is considered sufficient coverage of the area concerned. In addition, the DSI is collecting samples from 3 depth intervals, so at least 72 samples are proposed to be collected from the area concerned.

Overall, a total of 320 samples collected from judgemental and systematic sampling at the Site will be sent for laboratory analysis, 30 of which will be sediment samples. These, added to the approximately 1,000 data points being collected during the XRF assessment will provide a robust data set for the Site Specific Risk Assessment.

6. Sampling Schedule

6.1 Soil Sampling

This section contains detail on each sampling location, the contaminant source being investigated, the number and type of samples, depths of sampling and analytical testing suite.

In most locations, more samples are collected than are analysed. It is typical practice to send all samples to the laboratory but have the unanalysed samples kept in cold storage. If for example, shallow samples contain evidence of contamination, the deeper samples held in storage may then be analysed to understand if the contamination is also present in the deeper samples. These stored samples are referred to in the tables in the rest of this section as 'HOLD COLD'. Due to the varying nature of the potential contaminants, some of them (such as solvents) tend to volatilise in a short time period and need to be analysed within a certain window of time, other such as metals can be held for a much longer period. The windows are known as laboratory holding times and are discussed further in the Quality Assurance and Quality Control section (see Section 7.8).

- Soil sampling locations are shown in Figure B1, Appendix B
- Sediment sampling locations are shown in Figure B2, Appendix B
- Sampling locations for XRF analysis are shown in Figure B3, Appendix B
- A summary of the sediment sampling locations is provided in Table 9 with the soil, sediment and XRF sampling schedule grouped by HAIL activity provided in Table 10
- A full sample-by-sample analysis schedule for the whole Site is provided in Appendix C

6.2 Sediment Sampling Locations

Sediment sampling is important to enable an understanding of whether the sediment is contaminated and what impacts that may have on flora, fauna. It is also important to understand distribution of contaminants in the sediment along the length of watercourses – for example, upstream samples will provide an indication of whether the contamination, if present, may be a result of upstream influences.

Sediment samples will be collected from two watercourse areas. First, the Wharekōrino Stream running north-south along the eastern edge of the Hospital and second, an area of overland flow/discharge that appears to be routed from a drainage basin in the hospital ground locations to the east of Building 8. The discharge then meets with the Wharekōrino Stream close to the Te Mawhai Road to the northeast. Two samples are also proposed in the WWTP area where discharges were observed during the PSI site walkover.

Table 9 Sediment sampling locations

Sample	Location	Detail
STR_SED01	Wharekōrino Stream	Located at further accessible downstream point of Wharekōrino Stream before it crosses under Te Mawhia Road
STR_SED02	Wharekōrino Stream	Located just downstream of Hospital drainage into Wharekōrino Stream
STR_SED03	Wharekōrino Stream	Located at pipe bridge that connects WWTP with Hospital. Upstream of the confluence with Hospital drainage
STR_SED04	Wharekōrino Stream	Approximately mid-way along Hospital area, east of Building 24
STR_SED05	Wharekōrino Stream	Upstream location to east of Building 31
HSP_SED01	Hospital Drainage	Located in drainage basin, at upstream side of culvert opening
HSP_SED02	Hospital Drainage	On downslope area, downstream of culvert exit
HSP_SED03	Hospital Drainage	On downslope area, downstream of culvert exit
HSP_SED04	Hospital Drainage	Just upstream of confluence with Wharekōrino Stream
WWTP_Seepage-SED	WWTP at Wharekōrino Stream	Area of seepage, possible overflow, close to Te Mawhia Road
WWTP_DIS-SED	WWTP at Wharekorino Stream	At discharge pipe into Wharekōrino Stream

Note - all references to asbestos analysis in the detailed sampling tables relate to semi-quantitative analysis, unless stated otherwise.

Table 10 Sampling Schedule for Soil and Sediment

Location	HAIL Category	Number of Locations	Method	Max. depth of excavation (m bgl)	Proposed sampling depths (m bgl)	Total samples collected	No. Samples Analysed	Proposed sampling analytical schedule
Soil	'					<u>'</u>	1	<u>'</u>
Former potable water treatment plant (B7)	A2 – chemical bulk storage	2 Locations Two test pits in area of disused structures	Test Pits	1.0 m bgl	0.0 – 0.1 m bgl 0.5 - 1.0 m bgl	6	4	Metals, asbestos on shallow (0.1m) samples Deeper samples on HOLD COLD
Laundry Building (B74)	A5 – dry cleaning plants including dry-cleaning premises or the bulk storage of dry-cleaning solvents	8 Locations Six test pits are proposed around the periphery of the building In addition, two hand augers are targeted at downpipes or apparent discharges to ground.	Test Pits & Hand Augers	2.0 m bgl	Test Pit samples are to be collected from: 0.0 – 0.1 m bgl 0.5 m bgl 1.0 m bgl Hand Auger samples are to be collected from: 0.0 – 0.1 m bgl 0.5 m bgl 1.0m	24	17	Test pits TPH and VOC on 0.1m and 0.5m samples. 1.0m HOLD COLD. Hand Augers Metals and VOCs on 0.1m and 0.5m samples. 1.0m – HOLD COLD
Shed 7 (B73)		2 Locations One test pit proposed through the floor of the building. One test pit on the outside of the building.	Test Pits	1.0 m bgl	0.0 – 0.1 m bgl 0.5 m bgl 1.0 m bgl	6	4	Internal TP Metals, TPH, PAH, PCB, VOC at 0.1m and 0.5m. 1.0m HOLD COLD External TP As per internal TP, except 0.1m to be analysed for asbestos
Potential Old Sheep Dip	A8 – Livestock dip E1 – asbestos products disposal including sites with buildings containing asbestos products known to be in a deteriorated condition.	6 Locations Three test pits are proposed around the outside of the structure and three hand augers within the structure itself, a narrow, concrete paver edged feature.	Test Pits & Hand Augers	1.0 m bgl	Test Pit samples are to be collected from: 0.0 – 0.1 m bgl 0.5 m bgl 1.0 m bgl Hand Auger samples are to be collected from: 0.0 – 0.1 m bgl 0.5 m bgl	15	6	Metals, pesticides on all shallow 0.1m samples. Asbestos on three shallow 0.1m samples only. All 0.5m and 1.0m samples HOLD COLD.
Former bowling green	A10 – persistent pesticide bulk storage or use including sport turfs, market gardens, orchards, or spray sheds	6 Locations Six test pits in the area of the former bowling green	Test Pits	0.5 m bgl	0.0 – 0.1 m bgl 0.5 m bgl	12	9	Three locations for metals/pesticides at 0.1 and 0.5m. Three locations for metals/pesticides at 0.1m only, 0.5m samples on HOLD COLD.
Former gardeners building (B59)		10 Locations Five test pits - two inside the building and three outside.	Test Pits	1.0 m bgl	0.0 – 0.1 m bgl 0.5 m bgl 1.0 m bgl	15	10	Metals, Pesticides on all 0.1m and 0.5m samples. Asbestos on two external samples at 0.1m, one samples from 0.5m. 1.0m HOLD COLD
		Five locations from 0.5m to 6.5m distance from building	XRF	0.4 m bgl	0.1m intervals	XRF measurement of meta readings	als with matched soil sample	s for lead at a rate of 1 in 10

Location	HAIL Category	Number of Locations	Method	Max. depth of excavation (m bgl)	Proposed sampling depths (m bgl)	Total samples collected	No. Samples Analysed	Proposed sampling analytical schedule
Old tennis court		3 Locations Three test pits are proposed in the footprint of the old tennis court (TRF_TP01 to TP03).	Test Pits	0.5 m bgl	0.0 – 0.1 m bgl 0.5 m bgl	6	5	Metals, pesticides, asbestos on all 0.1m samples Metals and pesticides on two 0.5m samples.
Building 35		14 Locations Five test pits are proposed around the building footprint B35_TP01 to TP05 Four hand augers within the building footprint (B35_HA01 to HA04).	Test Pits & Hand Auger	1.0 m bgl	Test Pit samples are to be collected from: 0.0 – 0.1 m bgl 0.5 m bgl 1.0 m bgl Hand Auger samples are to be collected from: 0.0 – 0.1 m bgl 0.5 m bgl	23	18	Test pits 0.1 and 0.5m – metals and pesticides Asbestos on 0.1m samples at TP01-TP04 and on 0.5m samples on TP02 and TP04. 1.0m HOLD COLD Hand Augers Metals and pesticides on all 0.1m samples, and on HA01 and HA03 at 0.5m. Asbestos on 0.1m samples at HA02 and HA04.
		Five locations from 0.5m to 6.5m distance from building	XRF	0.4 m bgl	0.1m intervals	XRF measurement of meta readings	als with matched soil sample	s for lead at a rate of 1 in 10
Former Horticultural Growing Area (north of Building 34 and 35)		30 Sample Locations Six composite areas A-F, each with four subsamples (24 subsamples at three depths = 72 sub-samples) Two composite areas G &H each with three subsamples (6 sub-samples at three depths = 18 subsamples Each area's sampling will result in a composite sample representing shallow 0.1m, intermediate 0.5m and deeper 1.0m soils (e.g. Area A will have three composite samples)	Test Pits	1.0 m bgl	Sub-samples are to be collected from: 0.0 – 0.1 m bgl 0.5 m bgl 1.0 m bgl	90 sub-samples	24 composite samples	Metals and pesticides on all 0.1m and 0.5m composite samples. 1.0m HOLD COLD
Area south of glasshouses and horticulture area	A10 – persistent pesticide use including glass houses. E1 – asbestos products disposal including sites with buildings containing asbestos products known to be in a deteriorated condition.	6 Locations Six test pits are proposed in the southern area	Test Pits	1.0 m bgl	0.0 – 0.1 m bgl 0.5 m bgl 1.0 m bgl	18	13	Metals and asbestos – 0.1m and 0.5m samples at all locations 1.0m HOLD COLD SVOC – three locations in 0.1m and 0.5m samples. 1.0m HOLD COLD TPH and Pesticides – three locations, shallow 0.1m samples only.
Former Glasshouses – Building 34 Area		7 Locations Seven test pits are proposed within the former building footprint	Test Pits	1.0 m bgl	0.0 – 0.1 m bgl 0.5 m bgl 1.0 m bgl	21	14	Metals, pesticides on all 0.1m and 0.5m samples. Asbestos on 0.1m samples from TP03 and TP04.

Location	HAIL Category	Number of Locations	Method	Max. depth of excavation (m bgl)	Proposed sampling depths (m bgl)	Total samples collected	No. Samples Analysed	Proposed sampling analytical schedule
Old Morgue (B19)	A17 – storage tanks or drums for chemicals or liquid waste	7 Locations Two test pits around building perimeter	Test Pits	1.0 m bgl	0.0 – 0.1 m bgl 0.5 m bgl 1.0 m bgl	6	4	Metals on 0.1m and 0.5m samples. 1.0m sample on HOLD COLD.
		Five locations from 0.5m to 6.5m distance from building	XRF	0.4 m bgl	0.1m intervals	XRF measurement of meta readings	als with matched soil sample	s for lead at a rate of 1 in 10
New Morgue (B25)		3 Locations Three locations around the edge of the building	Test Pits	1.0 m bgl	0.0 – 0.1 m bgl 0.5 m bgl 1.0 m bgl	9	6	Metals on 0.1m and 0.5m. 1.0m HOLD COLD
Swimming pool (B57)		6 Locations A single test pit is proposed in the floor of the drum storage area.	Test Pit	1.0 m bgl	0.0 – 0.1 m bgl 0.5 m bgl 1.0 m bgl	3	2	Metals, SVOC, VOC in 0.1m and 0.5m samples. 1.0m HOLD COLD
		Five locations from 0.5m to 6.5m distance from building	XRF	0.4 m bgl	0.1m intervals	XRF measurement of meta readings	als with matched soil sample	s for lead at a rate of 1 in 10
Concrete pad to the south of Building 3 (B3)		2 Locations Two test pits in the pad area	Test Pits	0.5 m bgl	0.0 - 0.1 m bgl 0.5 m bgl	4	2	Metals, TPH on shallow 0.1m samples. 0.5m HOLD COLD
Unknown Shed Building (B61)		6 Locations One test pit is proposed within the building.	Test Pit	1.0 m bgl.	0.0 – 0.1 m bgl 0.5 m bgl 1.0 m bgl	3	1	Metals, TPH, SVOC, VOC on 0.1m sample. 0.5m and 1.0m samples HOLD COLD
		Five locations from 0.5m to 6.5m distance from building	XRF	0,4 m bgl	0.1m intervals	XRF measurement of meta readings	als with matched soil sample	s for lead at a rate of 1 in 10
Assistant Engineers Office (B66)		6 Locations One test pit in area of former storage and two hand augers around inspection bays	Test Pit and Hand Augers	1,0 m bgl	0.0 – 0.1 m bgl 0.5 m bgl 1.0 m bgl	7	6	Test Pit Metals, asbestos, TPH, PAH, BTEX on 0.1m samples. Metals and PAH on 0.5m samples. 1.0m sample HOLD COLD Hand Augers Metals, asbestos, TPH, VOC, SVOC on shallow 0.1m and 0.5m samples.
		Five locations from 0.5m to 6.5m distance from building	XRF	0.4 m bgl	0.1m intervals	XRF measurement of meta readings	als with matched soil sample	s for lead at a rate of 1 in 10
Substation 1	B4 – Substations	6 Locations One test pit in the floor of this building (SB1_TP1).	Test Pit	1.0 m bgl	0.0 – 0.1 m bgl 0.5 m bgl 1.0 m bgl	3	2	Metals, TPH, PCB on 0.1m sample Metals, PCB on 0.5m sample (asbestos tested previously by AECOM)
		Five locations from 0.5m to 6.5m distance from building	XRF	0.4m	0.1m intervals	XRF measurement of meta readings	als with matched soil sample	s for lead at a rate of 1 in 10

Location	HAIL Category	Number of Locations	Method	Max. depth of excavation (m bgl)	Proposed sampling depths (m bgl)	Total samples collected	No. Samples Analysed	Proposed sampling analytical schedule
Substation 2		8 Locations Three test pits are proposed, two outside the building and one inside	Test Pits	1.0 m bgl	0.0 – 0.1 m bgl 0.5 m bgl 1.0 m bgl	9	6	Inside Building metals, TPH, PCB on 0.1m and 0.5m 1.0m HOLD COLD. Outside Building Metals, asbestos, TPH/PAH/PCB on 0.1m and 0.5m 1.0m HOLD COLD.
		Five locations from 0.5m to 6.5m distance from building	XRF	0.4 m bgl	0.1m intervals	XRF measurement of met readings	als with matched soil sample	es for lead at a rate of 1 in 10
Substation 3		6 Locations One test pit is proposed through the floor of the substation	Test Pit	1.0 m bgl	0.0 – 0.1 m bgl 0.5 m bgl 1.0 m bgl	3	2	Metals, TPH and PCB on 0.1m and 0.5m samples. 1.0 m HOLD COLD
		Five locations from 0.5m to 6.5m distance from building	XRF	0.4 m bgl	0.1m intervals	XRF measurement of met readings	tals with matched soil sample	es for lead at a rate of 1 in 10
Substation 4		8 Locations Three test pits proposed around the building	Test Pits	1.0 m bgl in all test pits	0.0 – 0.1 m bgl 0.5 m bgl	6	6	Metals, asbestos, TPH, PAH, PCB on all 0.1m samples. TPH PAH on 0.5m samples. 1.0m HOLD COLD
		Five locations from 0.5m to 6.5m distance from building	XRF	0.4 m bgl	0.1m intervals	XRF measurement of met readings	tals with matched soil sample	es for lead at a rate of 1 in 10
Substation 5		6 Locations One test pit is proposed through the floor of the substation	Test Pit	1.0 m bgl	0.0 – 0.1 m bgl 0.5 m bgl 1.0 m bgl	3	2	Metals, TPH and PCB on 0.1m and 0.5m samples. 1.0 m HOLD COLD
		Five locations from 0.5m to 6.5m distance from building	XRF	0.4 m bgl	0.1m intervals	XRF measurement of met readings	tals with matched soil sample	es for lead at a rate of 1 in 10
Substation 6		6 Locations One test pit is proposed through the floor of the substation.	Test Pit	1.0 m bgl	0.0 – 0.1 m bgl 0.5 m bgl 1.0 m bgl	3	2	Metals, TPH and PCB on 0.1m and 0.5m samples. 1.0 m HOLD COLD
		Five locations from 0.5m to 6.5m distance from building	XRF	0.4 m bgl	0.1m intervals	XRF measurement of met readings	tals with matched soil sample	es for lead at a rate of 1 in 10
Substation 7		6 Locations One test pit is proposed through the floor of the substation	Test Pits	1.0 m bgl	0.0 – 0.1 m bgl 0.5 m bgl 1.0 m bgl	3	2	Metals, TPH and PCB on 0.1m and 0.5m samples. 1.0 m HOLD COLD
		Five locations from 0.5m to 6.5m distance from building	XRF	0.4 m bgl	0.1m intervals	XRF measurement of met readings	tals with matched soil sample	es for lead at a rate of 1 in 10

Location	HAIL Category	Number of Locations	Method	Max. depth of excavation (m bgl)	Proposed sampling depths (m bgl)	Total samples collected	No. Samples Analysed	Proposed sampling analytical schedule
Substation 8		10 Locations One test pit is proposed through the floor. Four hand augers are proposed around the substation, one on each side of the building	Test Pit and Hand Augers	1.0 m bgl	0.0 – 0.1 m bgl 0.5 m bgl 1.0 m bgl	11	10	Metals, TPH, PCB on test pit for 0.1m and 0.5m samples. 1.0m HOLD COLD Asbestos only on all 4 hand augers for both 0.1m and 0.5m samples.
		Five locations from 0.5m to 6.5m distance from building	XRF	0.4 m bgl	0.1m intervals	XRF measurement of meta readings	als with matched soil sample	s for lead at a rate of 1 in 10
Former petrol station and workshops (B16)	F4 – Motor Vehicle Workshops (B16 only) F7 – Service Station (B16 and B65)	8 locations Two test pits through the workshop floor. Two test pits in a small fly tipping area. Two test pits along the southern workshop boundary. One test pit to the east of the former forecourt. One test pit to the west of the workshop	Test Pits	1.0 m bgl	0.0 – 0.1 m bgl 0.5 m bgl 1.0 m bgl	18	14	B16 Workshop 0.1m and 0.5m: TPH, PAH, VOC 1.0m HOLD COLD B16 Fly Tipping Area 0.1m and 0.5m: Metals, Asbestos, TPH, PAH, VOC B16 General Perimeter TP04 0.1m Metals, Asbestos, TPH, PAH, VOC TP07 0.1m Metals, Asbestos, TPH, PAH, VOC. 0.5m asbestos only. TP08/09 0.1m and 0.5m TPH/PAH/VOC only (asbestos and metals analysed by AECOM)
tore and Former Fuel Area (B65)		3 Locations Three test pits are proposed around the forecourt and former tank pit. Deeper sampling required compared to B16, as the B16 fuel area is already well characterised from previous investigations. Not all elements of the fuel system were previous tested and B65 showed evidence of staining and vapours during the historical tank removal.	Test Pits	2.0 m bgl	Small Forecourt Area 0.0 – 0.1 m bgl 0.5 m bgl 1.5 m bgl Former Tank Pit 0.0 – 0.1 m bgl 1.0 m bgl 2.0 m bgl	9	9	All samples for, TPH, BTEX, PAH TP02 at 0.1m to be analysed for asbestos.
Small Incinerator (B67)	G6 – Waste or wastewater treatment	7 Locations Two hand augers to north and south of building	Hand Auger	0.5 m bgl	0.0 – 0.1 m bgl 0.5 m bgl	4	4	Metals, Asbestos, SVOCs on all samples. Dioxins on x2 shallow 0.1m samples only.
		Five locations from 0.5m to 6.5m distance from building	XRF	0.4 m bgl	0.1m intervals	XRF measurement of meta readings	als with matched soil sample	s for lead at a rate of 1 in 10

Location	HAIL Category	Number of Locations	Method	Max. depth of excavation (m bgl)	Proposed sampling depths (m bgl)	Total samples collected	No. Samples Analysed	Proposed sampling analytical schedule				
Former Hospital WWTP		4 Locations Four test pits are proposed in this area in the southern half of the former WWTP	Test Pits	1.0 m bgl	0.0 – 0.1 m bgl 0.5 m bgl 1.0 m bgl	12	8	Metals, SVOC, asbestos on all 0.1m and 0.5m samples. VOC on 0.1m samples only. Remaining 0.5m and all 1.0m samples – HOLD COLD.				
Former Ward 2	I – any other land that has been subject to the intentional or accidental release of a hazardous substance in sufficient	9 Locations Nine test pits across this large former building footprint.	Test Pits	1.0 m bgl	0.0 – 0.1 m bgl 0.5 m bgl 1.0 m bgl (4 locations only)	22	14	Metals and asbestos on all 0.1m samples Asbestos on five of the deeper 0.5m samples.				
Former Sports Pavilion	quantity that it could be a risk to human health or the environment. E1 – asbestos products disposal including sites with buildings containing asbestos products known	2 Locations Two test pits in the former footprint.	Test Pits	1.0 m bgl	0.0 – 0.1 m bgl 0.5 m bgl 1.0 m bgl		3	Metals, asbestos on both shallow 0.1m samples. Metals on one of the 0.5m samples. Remainder – HOLD COLD				
Former school	aspestos products known to be in a deteriorated condition.	4 Locations Four test pits in the former school footprint	Test Pits	0.5 m bgl	0.0 – 0.1 m bgl 0.5 m bgl	8	6	Metals, asbestos on all shallow 0.1m samples and on two of the 0.5m Remainder – HOLD COLD				
Former chapel			4 Locations Four test pits across the footprint of the former chapel	Test Pits	0.5 m bgl	0.0 – 0.1 m bgl 0.5 m bgl	8	4	Metals, asbestos on all shallow 0.1m samples and on two of the 0.5m Remainder – HOLD COLD			
Demolished Wards F				3 Locations Three locations within the footprints of the former building.	Test Pits	1.0 m bgl	0.0 – 0.1 m bgl 0.5 m bgl 1.0 m bgl	9	4	All 0.1m samples for metals, asbestos One 0.5m sample for metals and asbestos. 1.0 m HOLD COLD		
Demolished Wards G			3 Locations Three locations within the footprints of the former building.	Test Pits	1.0 m bgl	0.0 – 0.1 m bgl 0.5 m bgl 1.0 m bgl	9	4	All 0.1m samples for metals, asbestos One 0.5m sample for metals and asbestos. 1.0 m HOLD COLD			
Demolished Wards H						3 Locations Three locations within the footprints of the former building.	Test Pits	1.0 m bgl	0.0 – 0.1 m bgl 0.5 m bgl 1.0 m bgl	9	4	All 0.1m samples for metals, asbestos One 0.5m sample for metals and asbestos. 1.0 m HOLD COLD
Former Nurses Home				4 Locations Four test pits are proposed across the former building footprint	Test Pits	1.0 m bgl	0.0 – 0.1 m bgl 0.5 m bgl 1.0 m bgl	12	6	All 0.1m samples for metals, asbestos Two 0.5m samples for metals and asbestos. 1.0 m HOLD COLD		
Demolished Structure 1 (located north of substation 5)		5 Locations Five locations within the footprint of the former building	Test Pits	1.0 m bgl	0.0 – 0.1 m bgl 0.5 m bgl 1.0 m bgl	15	8	Metals, asbestos on all 0.1m samples. Metals, asbestos on three 0.5m samples. 1.0m HOLD COLD				

HAIL Category	Number of Locations	Method	Max. depth of excavation (m bgl)	Proposed sampling depths (m bgl)	Total samples collected	No. Samples Analysed	Proposed sampling analytical schedule
	5 Locations Five locations within the footprint of the former building.	Test Pits	1.0 m bgl	0.0 – 0.1 m bgl 0.5 m bgl 1.0 m bgl	15	8	Metals, asbestos on all 0.1m samples. Metals, asbestos on three 0.5m samples. 1.0m HOLD COLD
	4 Locations Four locations within the footprint of the former building.	Test Pits	1.0 m bgl	0.0 – 0.1 m bgl 0.5 m bgl 1.0 m bgl	12	8	Metals, asbestos on all 0.1m and 0.5m samples. 1.0m HOLD COLD
These are not currently HAIL areas but may be reclassified depending on the results of the building halo assessment	Five locations from 0.5m to 6.5m distance from building	XRF	0.4 m bgl	0.1m intervals	XRF measurement of meta- readings	ils with matched soil sample	s for lead at a rate of 1 in 10
I – any other land that has been subject to the intentional or accidental release of a hazardous	7 Locations Two locations in area of former infrastructure	Hand Auger	0.5m	0.1m and 0.5m	4	2	Metals and asbestos on both 0.1m samples. 0.5m HOLD COLD
substance in sufficient quantity that it could be a risk to human health or the environment	Five locations from 0.5m to 6.5m distance from building	XRF	0.4 m bgl	0.1m intervals	XRF measurement of meta readings	ls with matched soil sample	s for lead at a rate of 1 in 10
	These are not currently HAIL areas but may be reclassified depending on the results of the building halo assessment I – any other land that has been subject to the intentional or accidental release of a hazardous substance in sufficient quantity that it could be a risk to human health or	These are not currently HAIL areas but may be reclassified depending on the results of the building halo assessment To Locations Five locations within the footprint of the former building. Five locations within the footprint of the former building. Five locations from 0.5m to 6.5m distance from building halo assessment To Locations To Locations To Locations To Locations To Locations To Communication To Communication To Locations To Communication To Locations To Communication To Communica	S Locations Five locations within the footprint of the former building. Test Pits	S Locations Five locations within the footprint of the former building. 4 Locations Four locations within the Four footprint of the former building. These are not currently HAIL areas but may be reclassified depending on the results of the building halo assessment Five locations within the footprint of the former building. XRF O.4 m bgl O.4 m bgl T-any other land that has been subject to the intentional or accidental release of a hazardous substance in sufficient quantity that it could be a fix to Luman health or six to human health or si	Stocations Test Pits 1.0 m bgl 0.5 m bgl	Secretarian Secretarian	Succitions Test Pils 1.0 m bgl 0.0 - 0.1 m bgl 1.5 m bgl 1.0 m bgl 0.0 - m bgl 1.0 m bgl 1.0 m bgl 0.5 m bgl 0.5 m bgl 1.0 m bgl 0.5 m b

Location	HAIL Category	Number of Locations	Method	Max. depth of excavation (m bgl)	Proposed sampling depths (m bgl)	Total samples collected	No. Samples Analysed	Proposed sampling analytical schedule
Dentist (B8)		6 Locations One location at suspected discharge outlet pipe from building	Hand Auger	0.4 m bgl	0.1m and 0.4m	2	2	Metals and asbestos on 0.1m sample. Metals on 0.4m sample
		Five locations from 0.5m to 6.5m distance from building	XRF	0.4 m bgl	0.1m intervals	XRF measurement of meta readings	als with matched soil sample	s for lead at a rate of 1 in 10
Discharge Outlet Near Building 71		2 Locations Two test pits are planned in the drainage area	Test Pits	1.0 m bgl	0.0 – 0.1 m bgl 0.5 m bgl 1.0 m bgl	6	4	Metals, TPH, SVOC, VOC on 0.1m and 0.5m samples. 1.0m HOLD COLD
North West Soil Disturbance Area (located immediately north of former Ward F and Ward G)		4 Locations Four test pits across the area.	Test Pits	1.0 m bgl	0.0 – 0.1 m bgl 0.5 m bgl 1.0 m bgl	12	6	Metals, asbestos and SVOC on all 0.1m samples. Metals, asbestos and SVOC on two of the 0.5m samples. 1.0m HOLD COLD
Workshops Building (B63)		3 Locations One test pit in the area of sawdust on the west side of the Building 63 Two test pits in the former area of long term fly tipping which was recently cleared	Test Pits	1.0 m bgl.	0.0 – 0.1 m bgl 0.5 m bgl 1.0 m bgl (Workshop only)	7	3	B63 Workshop/ Sawdust Area Metals and SVOC on 0.1m sample 0.5m and 1.0m sample HOLD COLD B63 Fly tipping area Metals, asbestos, TPH, PAH, VOC on 0.1m sample. 0.5m sample HOLD COLD.
Sediment				0	'			<u> </u>
WWTP discharge pipes	G6 –wastewater treatment	2 Locations Two sediment samples have been proposed in this area	Sediment core multisampler	0.5 m bgl	0.0 – 0.1 m bgl 0.5 m bgl	4	4	All samples tested for metals, SVOC, VOC, TOC and pH
Wharekōrino Stream	H – Any land that has been subject to the migration of hazardous substances from adjacent land in sufficient quantity that it could be a	5 Locations Five sediment sampling locations along the Wharekorino stream have been selected		0,3 m bgl	0.0 – 0.1 m bgl 0.3 m bgl	10	10	All samples tested for metals, TPH, SVOC, VOC, Pesticides, TOC and pH
Hospital Stormwater discharge	risk to human health or the environment	4 Locations Four sediment sampling locations along the stormwater discharge streambed have been selected	9//	0.3 m bgl	0.0 – 0.1 m bgl 0.3 m bgl	8	8	All samples tested for metals, TPH, pesticides, SVOC, VOC, TOC and pH

7. Field sampling methodology

7.1 HSE

Health and safety during field works on the Site will be managed in accordance with the Job Safety Environmental Analysis (JSEA) prepared for the work and LINZ requirements – it is therefore not discussed further in this document.

7.2 Fieldwork documentation

Field activities will be recorded to maintain a record of all field activities including any observations made at each sample location. These will be captured within a test pit log for each location. Specifically, the logs will include:

- Date.
- Personnel undertaking the work.
- Sample method.
- Description of the lithology of the excavation.
- Description of any indicators of contamination encountered (or lack thereof).
- Unique sample identification.
- Headspace reading taken by a Photo-ionisation detector (PID), where volatile analysis is proposed or volatile contamination potentially present (using appropriate lamps to align with the contaminants of concern as discussed in Section 5).
- Any QA/QC sampling undertaken.

7.3 Soil Sampling & Monitoring Methodology

7.3.1 General Soil Sampling

Soil sampling is to be undertaken under the following procedures:

- All field work must be completed in compliance with the project specific Job Safety and Environmental Analysis plan.
- Underground services in the vicinity of the sampling locations are to be initially assessed by consulting Site supplied service plans. All sampling locations are subsequently to be scanned using a Subsurface Service Locator and all locations are to be approved by a GHD Technical Director who will issue a GHD ground penetration permit prior to excavation.
- A PID will be used to field screen samples for volatile contaminants at all locations where volatile analysis is proposed or volatile contamination potentially present, using a headspace test method. PIDs can be fitted with lamp/bulbs that vary in ionisation energy, normally measured in 'eV'. These are typically 10.6eV, however 11.7eV lamps are also available. The correct bulb needs to be used to detect the contaminant of interest. PIDs typically measure at parts per million level, however as some of the contaminants of concern are solvents, a more sensitive parts per billion PID will be required.

Soil samples will be collected either by test pit with a mechanical excavator (in accessible areas) or by hand auger (in areas too difficult to access with an excavator). Test Pit samples will be collected by hand from the bucket of the excavator ensuring soil sampled has not been in contact with the bucket itself. A fresh pair of nitrile gloves will be used for each separate sample collection.

- Hand dug samples will be collected by either shovel or hand auger direct into sample jars. Between each location, the shovel or hand auger will be washed with a decontamination solution.
- Samples will be typically collected near surface (0.1m), at 0.5m and at 1.0m. The exact depth may vary and will depend on observations and ground conditions, so sample depths may be slightly shallower or deeper. In

areas with known deeper sources, such as underground fuel tanks or areas of suspected historical solvent use, samples will be collected at 1.5m-2.0m and potentially deeper, depending on field observations.

 Samples will be placed into laboratory supplied containers and then placed in an iced chilly bin and couriered to Hills Laboratories in Hamilton with a chain of custody document.

7.3.2 XRF Methodology

Measurements will be made using field portable XRF, in situ, at scan energies of 15 and 40 keV.

For consistency with the previous AECOM DSI investigation (AECOM, 2019), field screening will be completed at 0.5, 1.5, 2.5, 3.5 and 6.5 m distances along transects set out perpendicular to each building. Field screening will also be completed at 100 mm depth increments at the 0.5 m distance.

XRF results will be corrected based on the matched laboratory results using a best fit regression method. XRF Quality Assurance/Quality Control is detailed in Section 7.8.

7.3.3 Composite sampling – Grazing Areas

Each grazing area block will be sampled by HAIL Environmental Ltd using the Fonterra DDT soil sampling protocol (Fonterra, 2010), which calls for a composite formed in the field from at least 30 soil plugs collected in a Z-pattern using a 37.5 mm push sampler. These composite samples will be analysed for standard metals and OCP suites plus pH and, for the COMP10 area, mercury. Quality control will be lab-based only – this sampling protocol obviates the need for field replicates.

7.3.4 Composite Sampling – Horticulture Areas

Composite areas A-H will be sampled by GHD using an excavator and with soil samples collected from each test pit at 0.1m, 0.5m and 1.0m (these are indicative and will be adjusted in the field to make sure they of the same soil type and similar depth). Sub-samples will be sent to laboratory for compositing as required under CLMG No.5 (as per Section 5.4.3.

7.4 Sediment Sampling

Sediment samples are to be collected using a sediment multisampler between 0 and 0.3 m below sediment surface. This enables the collection of an undisturbed sediment core sample in a transparent tube. The sampling tube is to be decontaminated between samples to prevent cross contamination. Decontamination will be as per the equipment sampling manual. This involves an initial rinse with large quantities of clean water, followed by cleaning with isopropyl alcohol. A fresh pair of nitrile gloves will be used for each separate sample collection.

7.5 Sample Labelling & Handling

- All samples will be given a unique identification code during field works, based on the building numbering system used by LINZ.
- Discreet soil samples will be labelled using the following methodology:
 - Building ID Location ID_ Sample depth
 - For example, a sample collected from Building 19 from test pit TP01 at a depth of 0.1 m bgl will be labelled "B19 TP01 0.1m".
- Field composite soil samples will be labelled as detailed in Section 5.4.3.
- All samples will be dispatched to the laboratory under chain of custody procedures using laboratory supplied courier stickers.

7.6 Equipment Required

The following field equipment is required in aid of sample collection:

- Hand Trowel, Hand Auger and Shovel in select locations, samples are to be collected by the utilisation of hand tools. All tools to be decontaminated with decontamination solution between sample locations.
- Sediment multisampler to obtain sediment samples from multiple depths within the sediment profile.
- Photo Ionisation Detector to record volatile organic compounds headspace readings in parts per million (ppm) or parts per billion (ppb, for certain solvents).
- XRF instrument for measuring metal concentrations in soil.

All field equipment used for data collection shall be calibrated prior to the commencement of field works by the supplier. Providers of rental equipment will be requested to supply calibration certificates with rental equipment.

7.7 Unanticipated contamination

The following unexpected contamination indicators may be observed in soil, including but not limited to:

- Visual (buried refuse, metal objects, fibrous cement board, building material, soil or water staining/bleaching or discolouration).
- Olfactory (hydrocarbons, sulphurous, rotting vegetation or sewage).
- Auditory (gas leaks, flowing or dripping liquid).'
- Results of field screening (PID levels, XRF results).

If any of these indicators are observed, field staff should cease work and make the area safe. Field staff should call the GHD SQEP/Project Manager and LINZ to discuss the situation and will not recommence works until approval is provided by LINZ. Staff may be required to implement additional HSE controls, which may include additional PPE.

7.8 Quality Assurance and Quality Control

7.8.1 Quality assurance procedures

The quality assurance and quality control (QA/QC) programme undertaken as part of the assessment by GHD included the following:

- Use of appropriately qualified and trained staff
- Preservation of samples with ice during transport from the field to the laboratory
- Transportation of samples to the laboratory with accompanying chain-of-custody documentation
- Compliance with sample holding times these are:
 - Metals 6 months
 - VOCs (includes BTEX/TPH) 14 days
 - SVOCs (includes PAHs) 14 days until sample extraction, 40 days after sample extraction
- Review of results of field duplicate samples
- All laboratory analysis will be undertaken by IANZ accredited laboratories

7.8.2 Laboratory Quality Assurance

Hill Laboratories Limited (Hills) have been selected to perform all primary and duplicate analysis for the DSI. Hills is IANZ accredited for all the analytical methods required during this DSI and can provide all data in a suitable format. An alternate IANZ accredited laboratory will be utilised for triplicate (inter-laboratory duplicate) samples.

Following collection, all samples will be placed directly into iced storage and transported under standard chain of custody procedures to the laboratory for analysis so that samples are analysed within the appropriate holding times for each analyte.

The laboratory testing schedule has been prepared based on typical contaminants of concern associated with the identified HAIL activity. This schedule will be reviewed as field work progresses and as analysis is being scheduled

(also considering field observations). Any proposed changes will be discussed and agreed with LINZ prior to proceeding.

The laboratory reports will be issued in accordance with IANZ requirements and include:

- The Chain of Custody forms including arrival temperature and sample condition
- Analytical results of the samples
- Results of any laboratory undertaken quality control analysis (in-house duplicates)
- Extraction method (where undertaken) and dates in accordance with holding times.

7.8.3 Reporting Quality Assurance

Updates to the SAP

The SAP is intended to be a live document. As changes are made a new version is issued. Version numbers and dates of issue are listed on the signature page of this report. Once the DSI field work is complete, any departures from the SAP should be discussed in the DSI report. Typical departures to be highlighted in the DSI report may be areas where the target depth could not be reached or where additional chemical analytes were added to the laboratory testing due to an unexpected area of contamination during field work.

The DSI and Site Specific Risk Assessment Reports

The data obtained in this investigation will be compiled into a Detailed Site Investigation in accordance with CLMG 1 and CLMG 5 as required in the THDSP Subpart B, Section 9.4. This SAP will be included within the DSI report as an appendix.

The DSI report will be completed by GHD and will include the first parts of the recommended table of contents in Appendix A5 of CLMG1, these being:

- Introduction
- Site Description
- Historical Site Use
- Sampling & Analysis Methodology
- Field Results summary of field works, field observations, tabulated laboratory results and laboratory QC

The Site Specific Risk Assessment report will be completed by HAIL Environmental and will include interpretation of the DSI data including statistical analysis, derivation of remedial standards in accordance with the THDSP, an updated conceptual site model and risk assessment. This will follow the process discussed in Section 5.3 and as set out in the NES CS Methodology document (Ministry for Environment, 2011a).

7.8.4 Quality Control

Duplicates

Field duplicates will be collected to evaluate the precision of reported results. The collection of primary and duplicate samples will be completed at a ratio of one duplicate per twenty primary samples (1:20). The duplicate samples will be stored in separate containers and submitted for analysis to the laboratory as separate samples for QC purposes. The duplicate samples will be selectively analysed for metals and TPH/PAH only.

Triplicates (inter-laboratory duplicates)

A triplicate sample to be sent to an alternate IANZ accredited laboratory to evaluate accuracy of reported results from Hills. One triplicate per batch of samples will be sent for analysist to the alternate IANZ accredited laboratory. The triplicate samples will be selectively analysed for metals and TPH/PAH only.

Relative percentage difference

A quantitative measure of the precision and accuracy of the analyses will be made using calculated relative percentage difference (RPD) values between primary samples and duplicate samples (precision) and primary samples and triplicate samples (accuracy). The RPD values will be calculated using the following equation.

$$\frac{\langle Co - Cs \rangle}{\langle \frac{Co + Cs}{2} \rangle} \times 100$$

Where Co = concentration obtained from the original sample

Cs = concentration obtained from the duplicate sample

The usual acceptance criteria within the CLMG (No.5) for RPDs is between 0 and 30% in soils (rising to 50% for trace SVOCs). However, a large percentage differential can occur particularly in soils due to the following:

- A small analytical differential between two samples based on the low levels of detection from the primary and duplicate soil sample; and
- Samples analysed in soil collected from non-homogenous (heterogeneous) soil profile.

The relative percentage difference (RPD) values for the duplicate samples collected will be analysed during this investigation.

Rinsate Blanks

Rinsate blanks will be collected daily on any sampling equipment utilised at multiple locations to provide an indication of the potential for cross-contamination between samples due to poor decontamination procedures.

XRF

Extensive quality assurance and quality control (QAQC) will be implemented, including:

- The user will be under the supervision of a Suitably Qualified and Experienced Practitioner (SQEP) with particular expertise in field XRF.
- A soil foot will be used to reduce handling effects. Grass cover will be removed and the surface to be scanned will be smoothed using a non-metallic tool.
- Soils will be logged to New Zealand Geotechnical Society standard. Soils that are predominantly gravel, or with visible paint chips or other obvious contaminant particles, will not be scanned. Scans of soils differing significantly from the site norm will be flagged and may be rejected in processing.
- The user will aim for a consistent moisture content. Wet soils will not be scanned and XRF measurements will
 not be made in rain. However, it is not envisaged that soils will be dried for analysis.
- A modern instrument with low detection limit will be used (boilerplate rated to 2 mg/kg lead by the manufacturer).
- A consistent scan duration of 20 seconds per beam will be used.
- A blanks and two standard reference materials will be scanned at the beginning and end of the field session and at each change of battery.
- If arsenic (a potential interferent) is measured at a concentration significantly greater than lead, that measurement will be flagged and may be rejected in processing.
- Replicate measurements will be made at a minimum of 1 in every 10 measurements.
- If replicate performance is poor, scanning will be undertaken ex situ in plastic bags with mixing.
- As XRF is a semiquantitative technique, matching soil samples will be collected for laboratory analysis for lead (and other heavy metals if they are observed to be significantly elevated) at a rate of 1 in every 10 measurements, selecting from the lower, middle and upper range of concentrations encountered.
- The user will hold a current radiation user license and the instrument will hold a current source license. Safety
 controls will be implemented and the user will wear an electronic badge dosimeter that is checked daily.

8. Suitably Qualified and Experienced **Practitioner (SQEP) Statement**

8.1 **GHD SQEP**

8.1.1 Mark Ballard – CEnvP-Site Contamination (CEnvP-SC)

Mark Ballard is the GHD Technical Director for the project. Mark is a CEnvP-SC (#41175) under the Environment Institute of Australia and New Zealand (EIANZ) Certified Environmental Practitioner programme. He has 21 years' experience working on contaminated land and hydrogeological investigations and acts as the SQEP of this report.

8.2 HAIL Environmental Review

. this rep. ..ntal Science ..w Zealand and I Dr. Dave Bull of HAIL Environmental has acted as a third-party reviewer of this report. Dave is a CEnvP-SC (#40026), as well as a Chartered Chemist. He has a Ph.D in Environmental Science and 25 years of professional experience including 17 years in contaminated land consulting in New Zealand and England

Limitations 9.

This report: has been prepared by GHD for Toitū Te Whenua - Land Information New Zealand and may only be used and relied on by Toitū Te Whenua - Land Information New Zealand for the purpose agreed between GHD and Toitū Te Whenua - Land Information New Zealand as set out in section 1.4 of this report.

GHD otherwise disclaims responsibility to any person other than Toitū Te Whenua - Land Information New Zealand arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the Statement of Work (N00457) and are subject to the scope limitations set out in the underlying agreement with LINZ.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

an, which

am, which

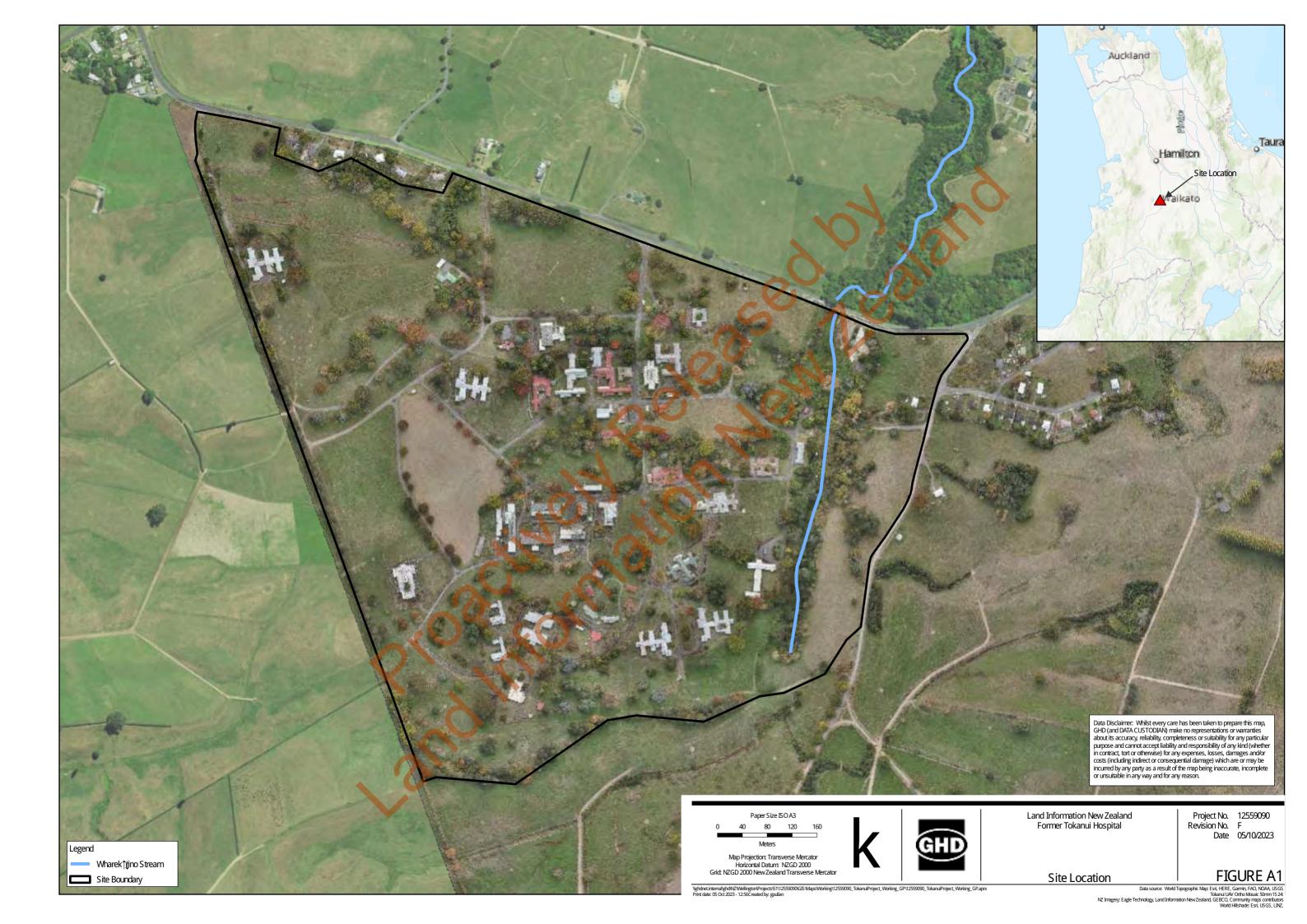
am, which

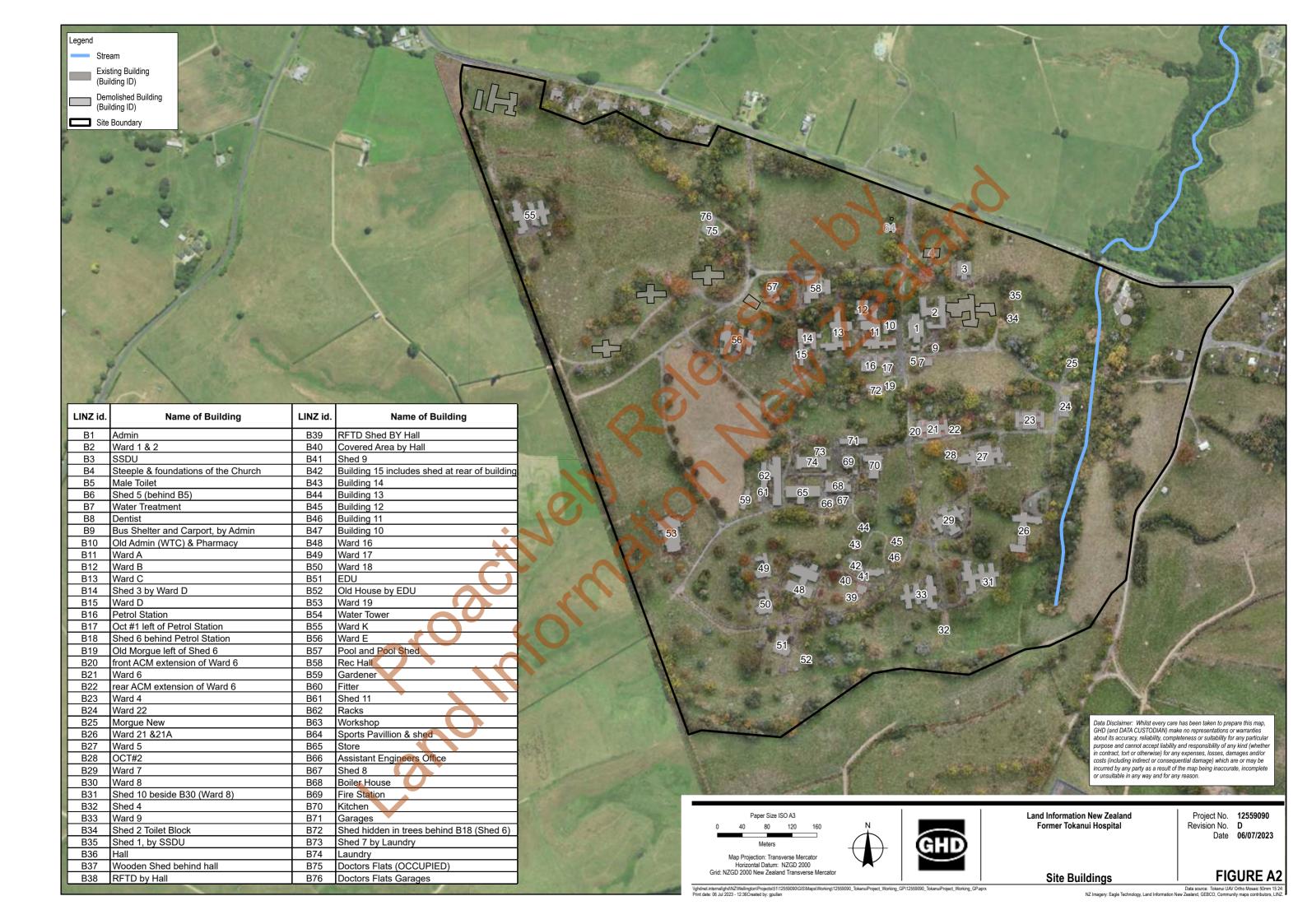
are all a seed lead

are all a seed lea The SAP does not include the Existing Disposal Sites to the east of the Wharekorino Stream, which are being investigated by Fraser Thomas Ltd as part of a separate report (Fraser Thomas, 2022).

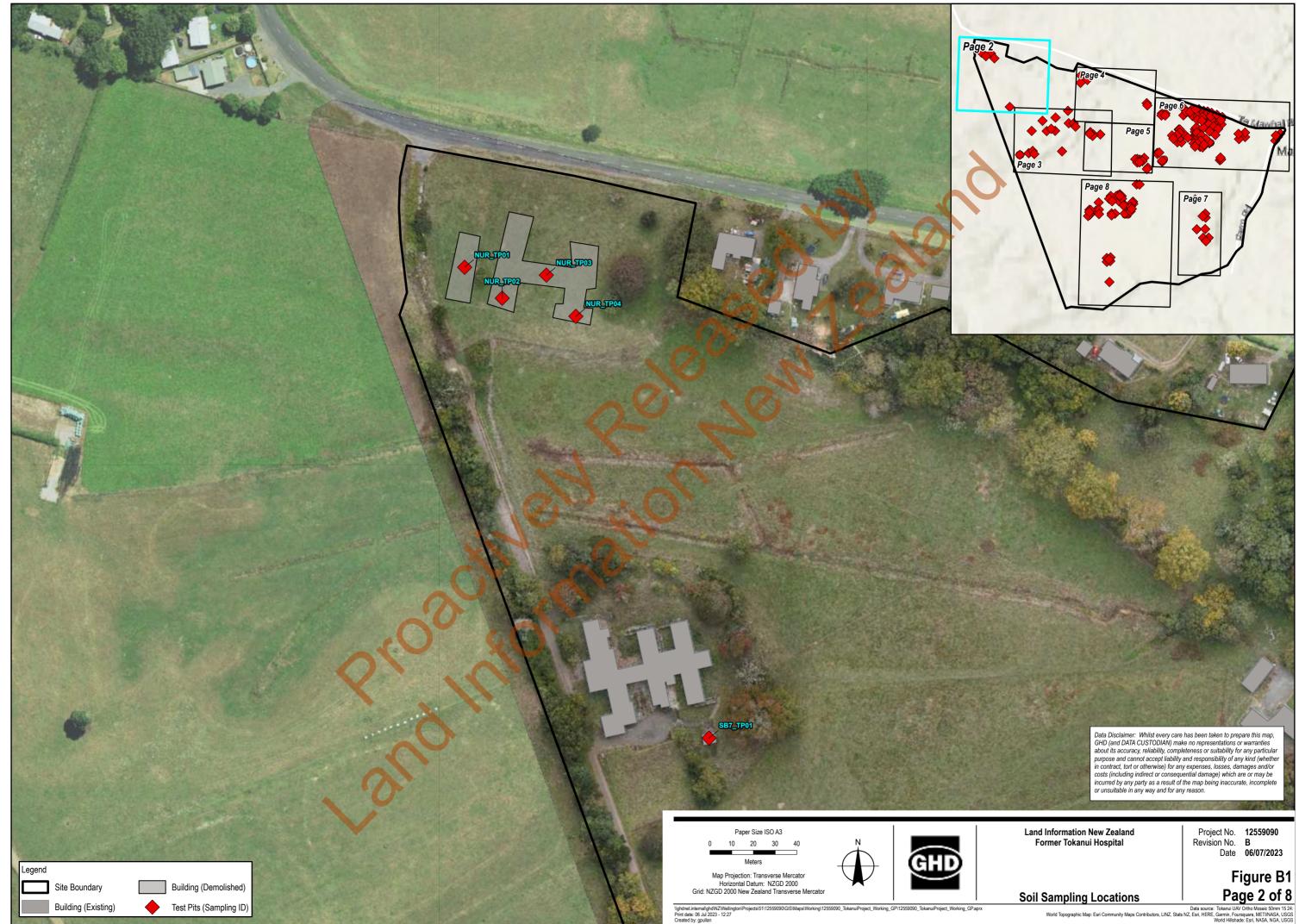
10. References

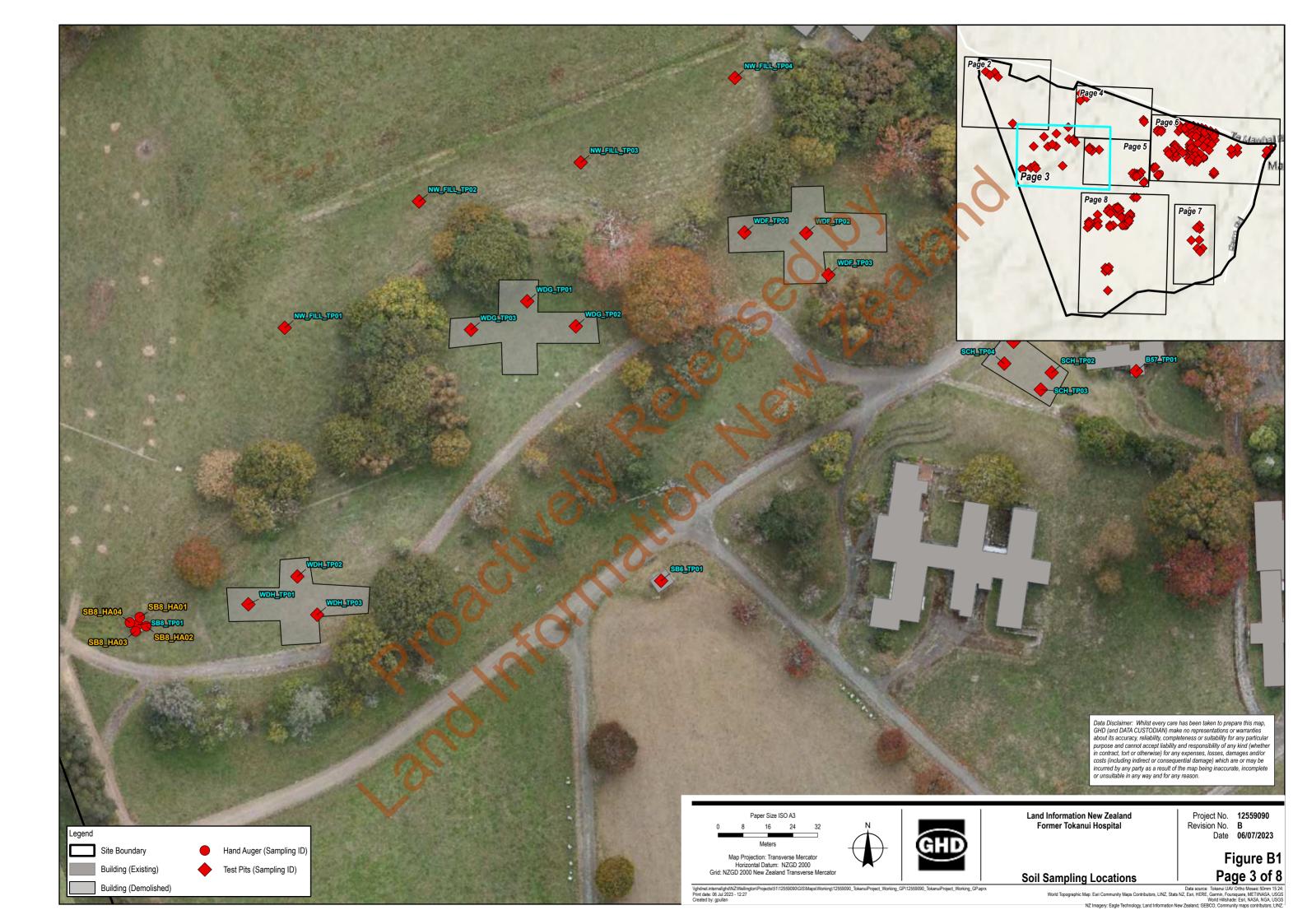
- 4Sight. (2022). Asbestos and Lead Paint Demolition Survey Report: Former Tokanui Hospital (Areas 1 4).

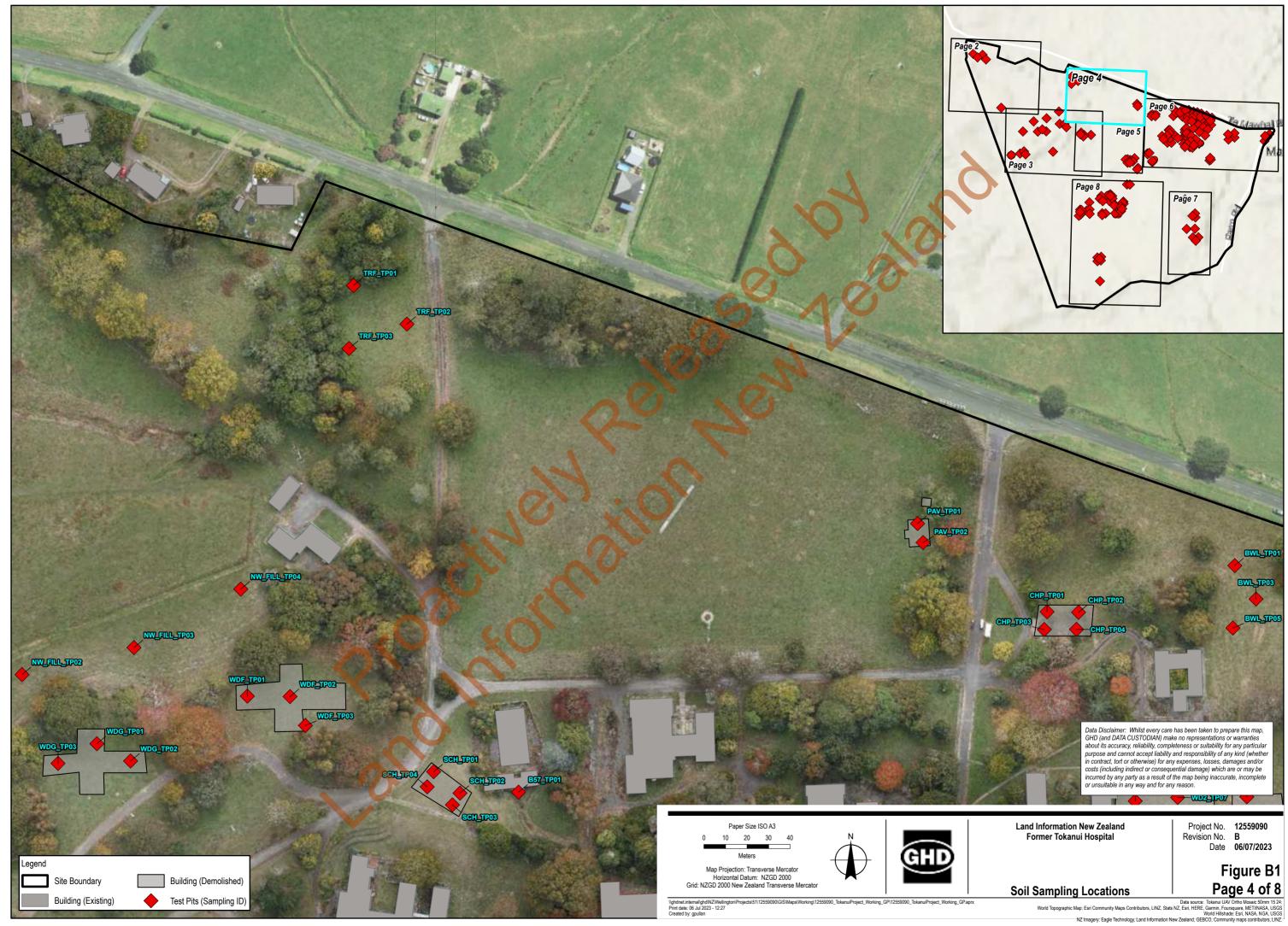

 Auckland: 4Sight.
- AECOM. (2018a). Underground petroleum storage system (UPSS) decomissioning at Tokanui Hospital. Tauranga: AECOM.
- AECOM. (2018b). PSI gap assessment: Tokanui hospital. Hamilton: AECOM.
- AECOM. (2018c). Underground petroleum storage system (UPSS) removal at the former Tokanui hospital, 149 Te Mawhai Road, Tokanui, Waikato. Tauranga: AECOM.
- AECOM. (2018d). Former Tokanui psychiatric hospital AST removal and mechanical pit dewatering. Tauranga: AECOM.
- AECOM. (2019). Tokanui hospital: Detailed site investigation (draft). Hamilton: AECOM.
- Australian and New Zealand Environment and Conservation Council. (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Environment and Conservation Council.
- BRANZ. (2017). New Zealand guidelines for assessing and managing asbestos in soil. Porirua: BRANZ.
- CFG Heritage. (2023). Tokanui Psychatric Hospital, site investigation: Archeological assessment. Auckland: CFG Heritage.
- Edbrooke, S. (2005). Geology of the Waikato Area Institute of Geological and Nuclear Sciences 1:250 000 geological map 4. Lower Hutt: Institute of Geological and Nuclear Sciences.
- Fonterra. (2010). Fonterra Milk Supply: Protocol for taking DDT soil samples to meet requirements for new conversions V4. Fonterra.
- Fraser Thomas. (2022). Former Tokanui Psychiatric Hospital demolition and remediation existing disposal sites intrusive investigation report (draft). Auckland: Fraser Thomas.
- GHD. (2022). Former Tokanui Hospital Preliminary Site Investigation. Hamilton: GHD.
- Manaaki Whenua Landcare Research. (2022, June 15). New Zealand Soil Classification. Retrieved from SoilMapsViewer: https://soils-maps.landcareresearch.co.nz/
- Ministry for Environment . (2011a). *Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health*. Wellington: Ministry for Environment.
- Ministry for the Environment. (2011). Contaminated Land Management Guidelines No. 2: Hierachy and application in New Zealand of environmental guideline values (Revised 2011). Wellington: Ministry for the Environment.
- Ministry for the Environment. (2012). Users' Guide National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health. Wellington: Ministry for the Environment.
- Ministry for the Environment. (2021). Contaminated Land Management Guidelines No. 1: Reporting on contaminated sites in New Zealand (Revised 2021). Wellington: Ministry for the Environment.
- Ministry for the Environment. (2021). Contaminated Land Management Guidelines No. 5: Site investigation and analysis of soils (Revised 2021). Wellington: Ministry for the Environment.
- Ministry for the Environment. (2023). Hazardous activities and industries list guidance: Identifying HAIL land. Wellington: Ministry for the Environment.
- Opus. (2015). Tokanui psychaitric hospital; Site scoping, contamination Preliminaty site inspection report. Hamilton: Opus.
- Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations. (2011).
- Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations. (2011).
- Resource Management Act. (1991). Retrieved from https://www.legislation.govt.nz.
- Schofield, J. C. (1972). Ground water of the Hamilton Lowland. New Zealand Geological Survey Bulletin No. 89. Te Muraahi, K., & Maniapoto, M. (2021). Cultural Impact Assessment Pokuru 1B Former Tokanui Hospital Campus. TAR Block Ltd.
- Te Uru Kahika. (2022, August 19). Wells Aotearoa NZ. Retrieved from https://wellsnz.teurukahika.nz/
- Toitū Te Whenua/Land Information New Zealand. (2021). *Project Background Document, Project Name: Former Tokanui Hospital Demolition and Remediation.* Wellington: LINZ.
- US EPA. (2006). Guidance on systemic planning using the data quality objectives process EPA QA/G-4. Washington, DC: US EPA.
- Waikato Regional Council. (2012). Waikato Regional Plan. Hamilton: Waikato Regional Council.
- Waipā District Council. (2016). Waipā district plan. Te Awamutu: Waipa District Council.
- WSP. (2018). Tokanui Closed Landfill: Wharekorino Stream and Bore Water sampling & Landfill Cap Assessment. Hamilton: WSP.

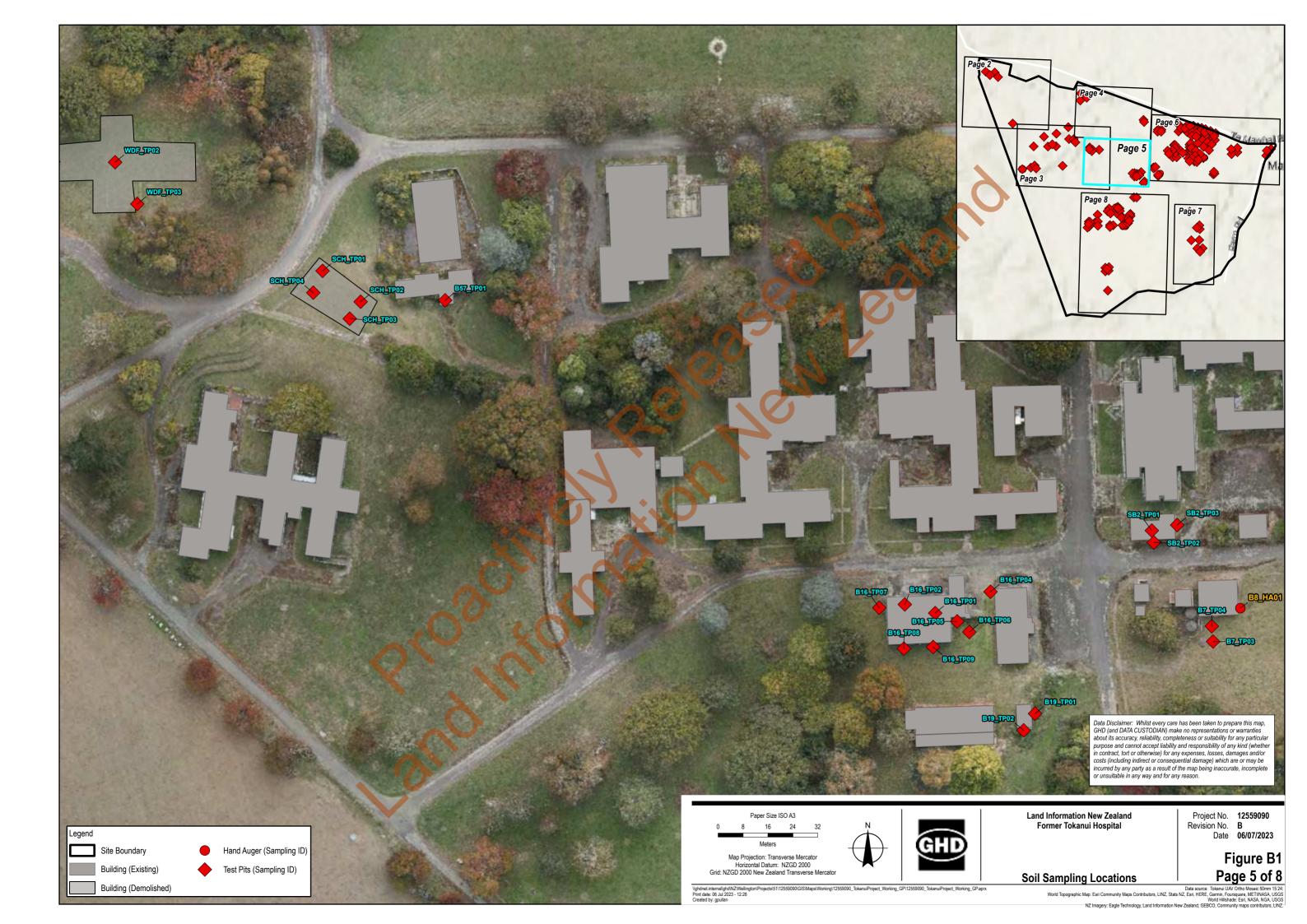

- WSP. (2019a). Tokanui Closed Landfill: Wharekorino Stream and Bore Water sampling & Landfill Cap Assessment. Hamilton: WSP.
- WSP. (2019b). Tokanui Vilalge and Hospital Wastewater Upgrade. Hamilton: WSP.
- WSP. (2020). Tokanui Closed Landfill: Wharekorino Stream and Bore Water sampling & Landfill Cap Assessment. Hamilton: WSP.
- WSP. (2021). Tokanui Closed Landfill: Wharekorino Stream and Bore Water Sampling & Landfill Cap Assessment. Hamilton: WSP.

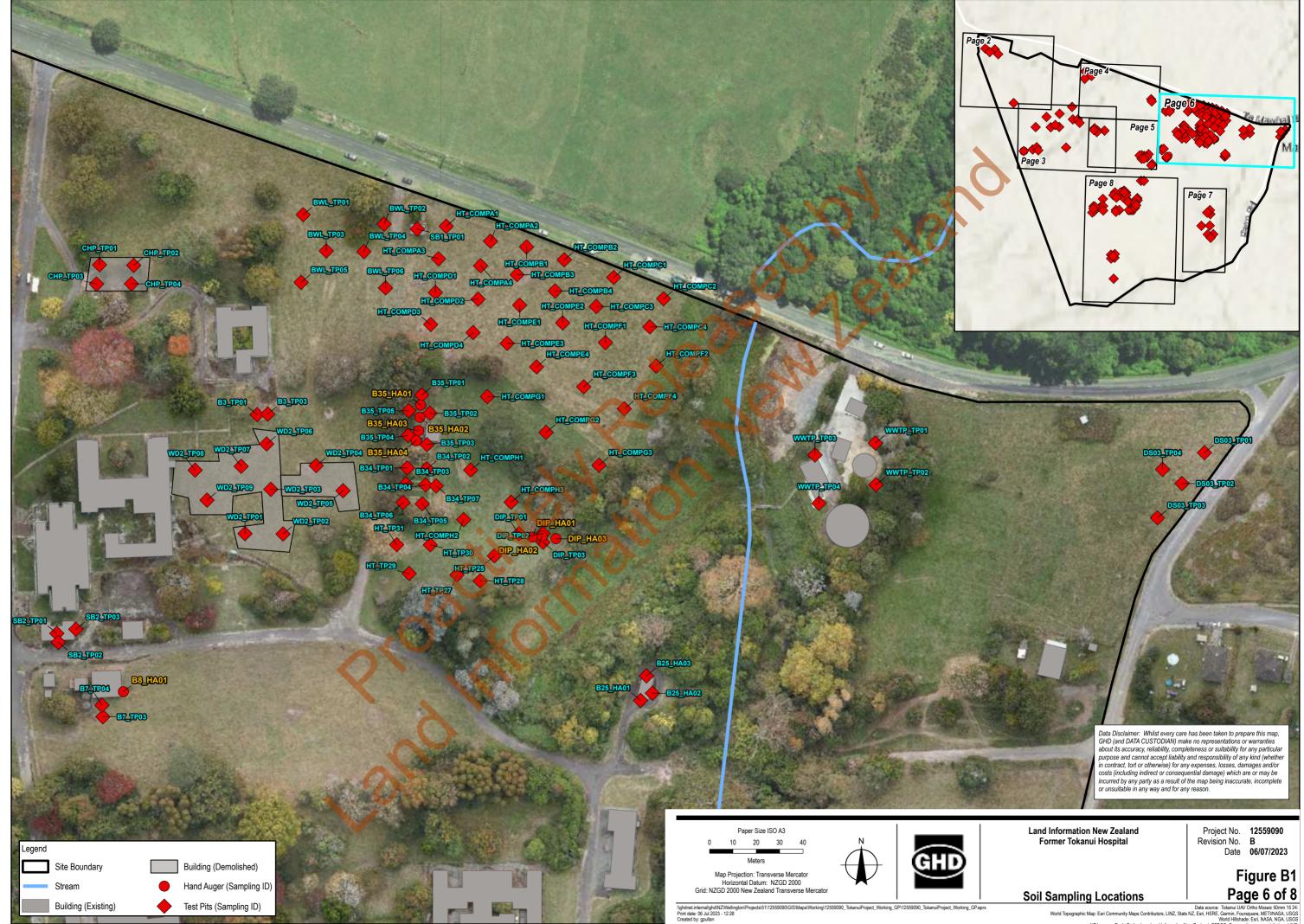

Appendices Lealand Proactively ation Proactively ation Proactively and Information And Information

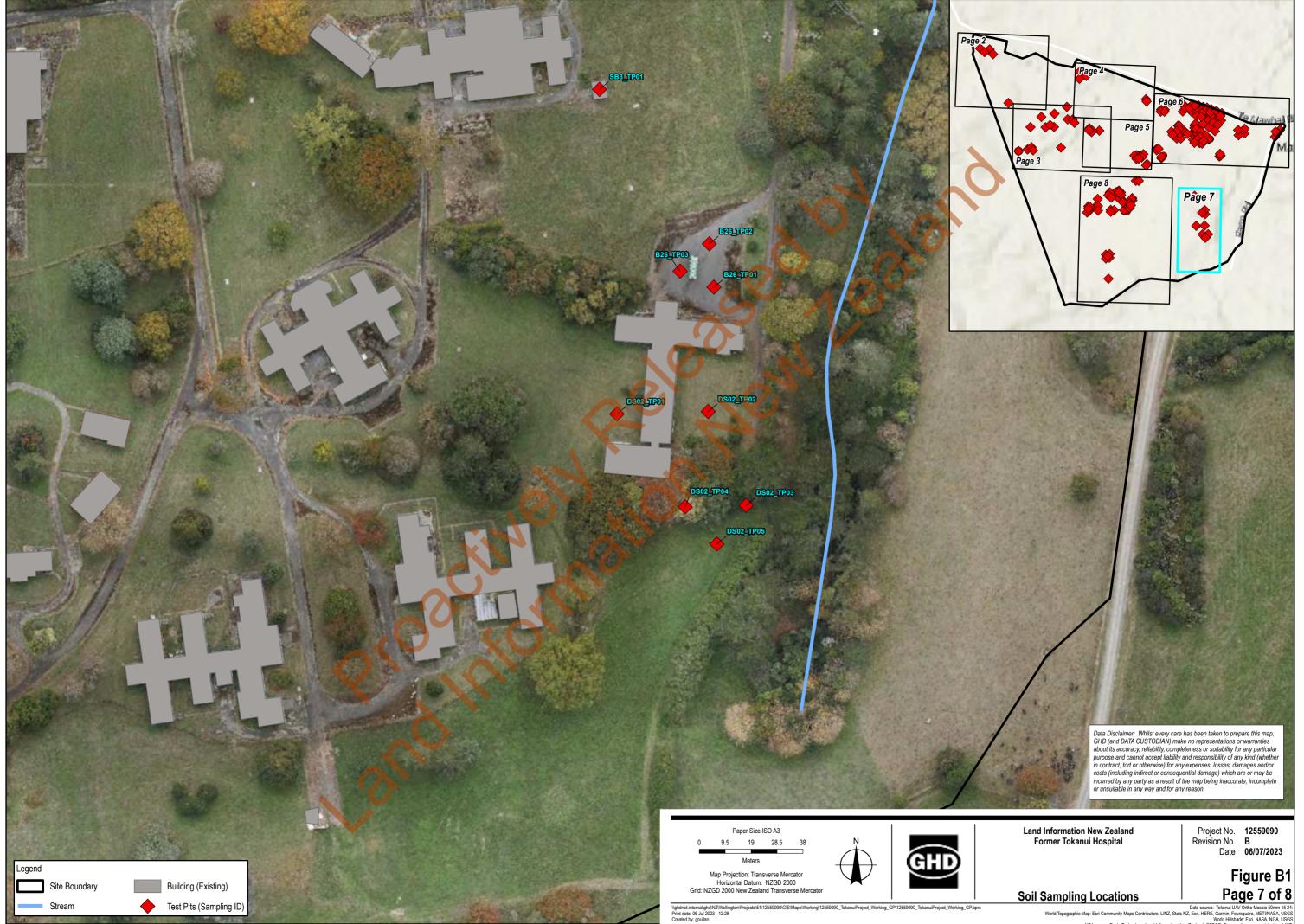

Appendix A aland Site location maps Proactively attornation Proactively attornation

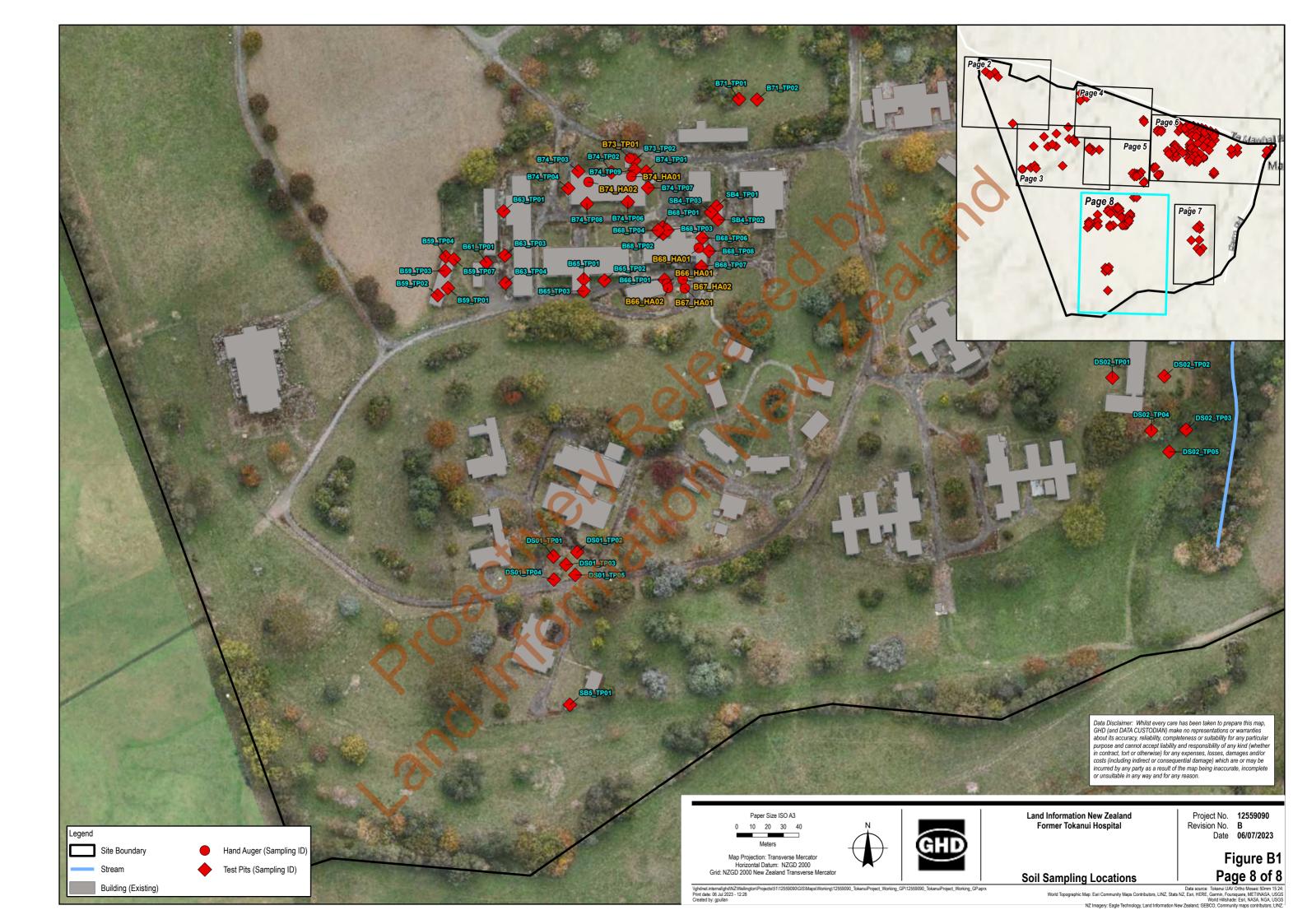


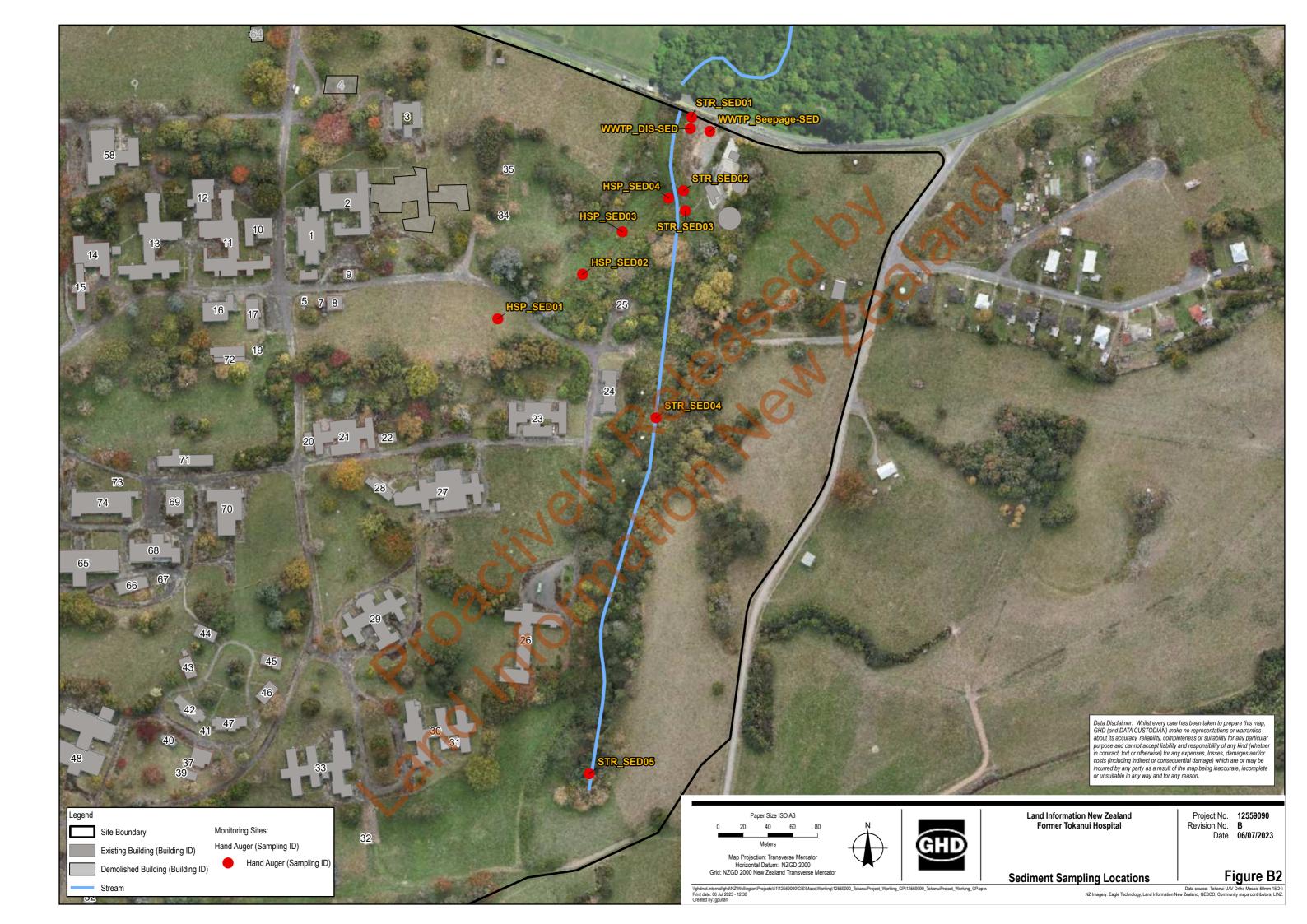


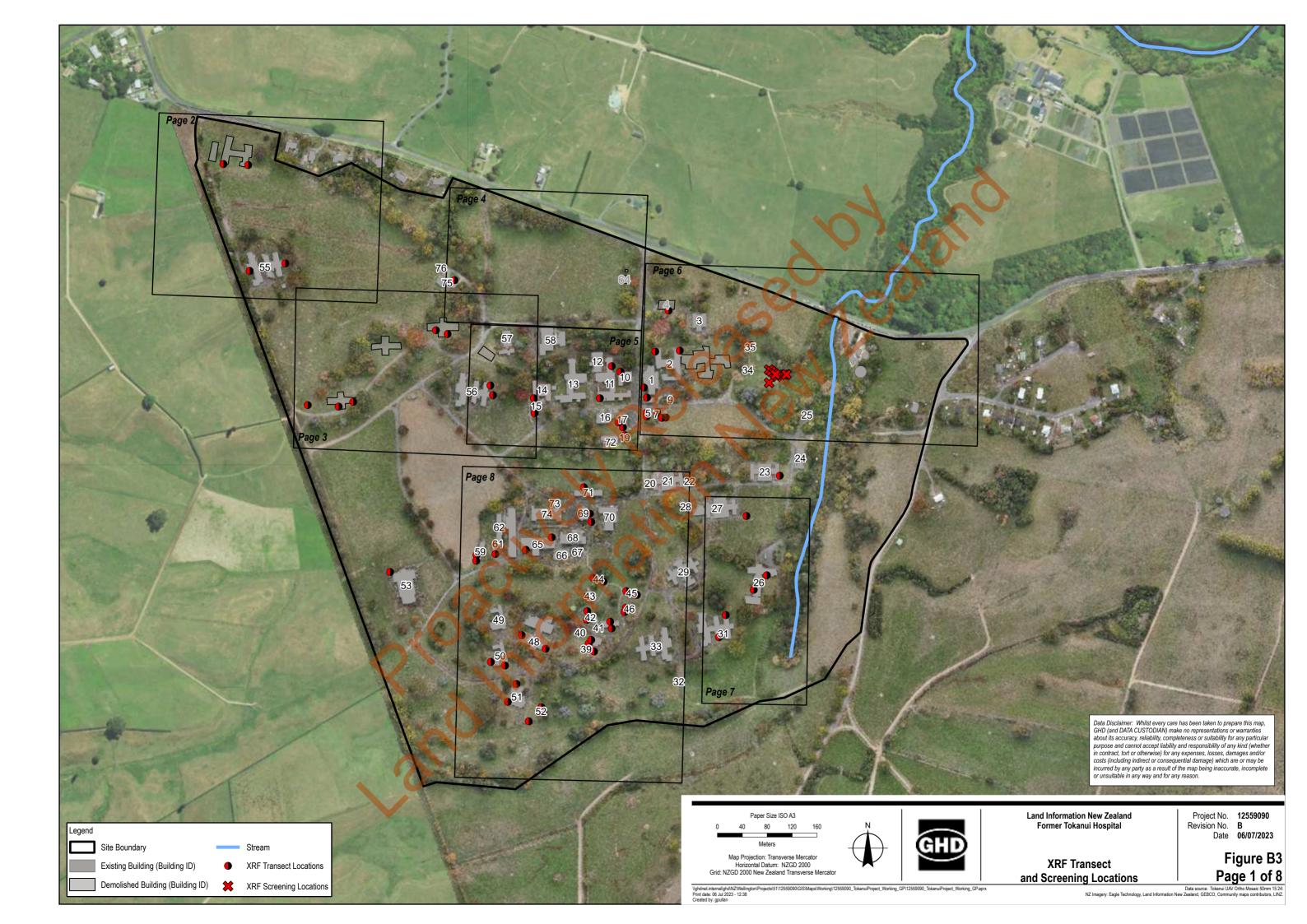

Appendix Baland Sampling locations Proactively attornation Proactively attornation

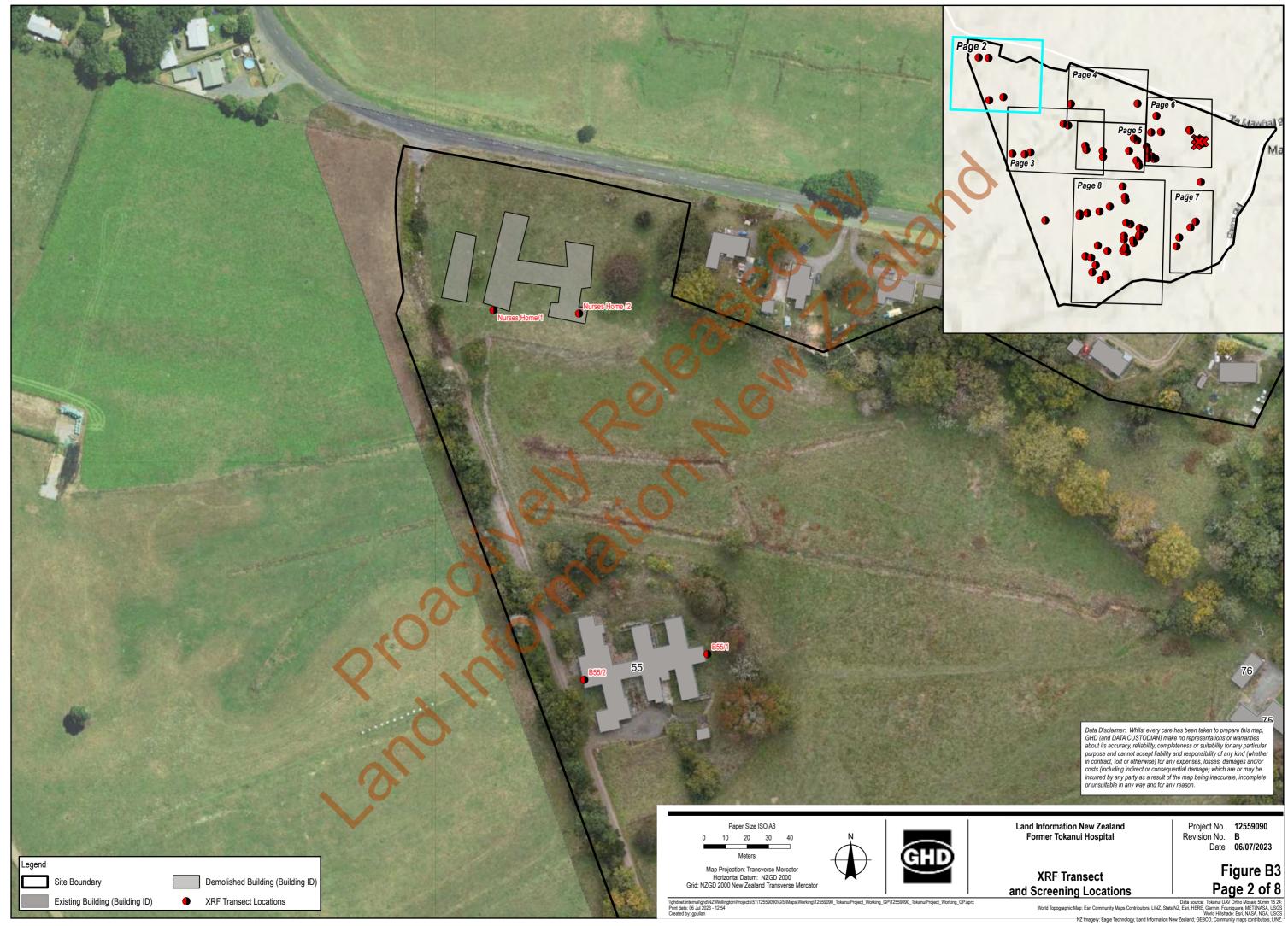


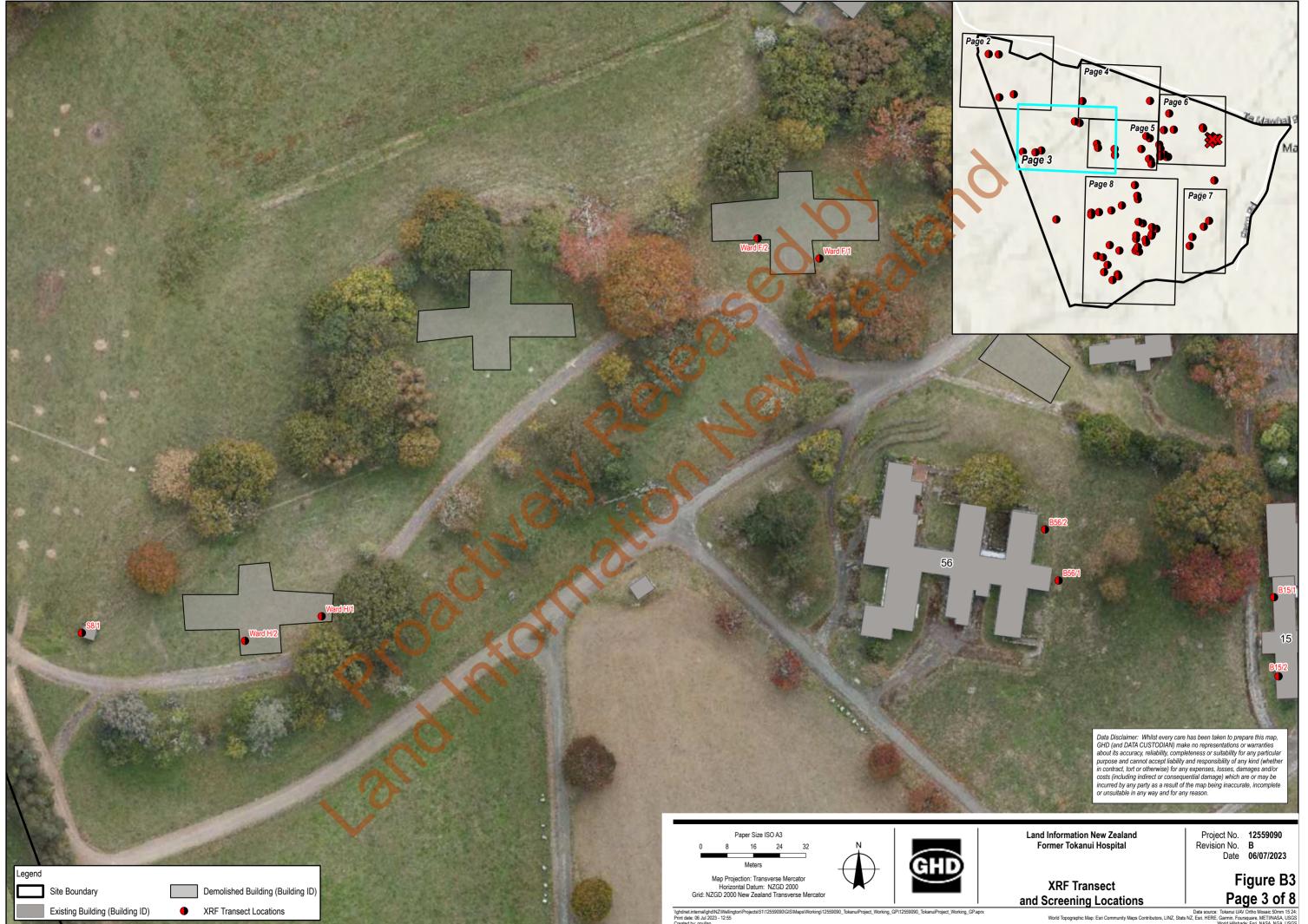


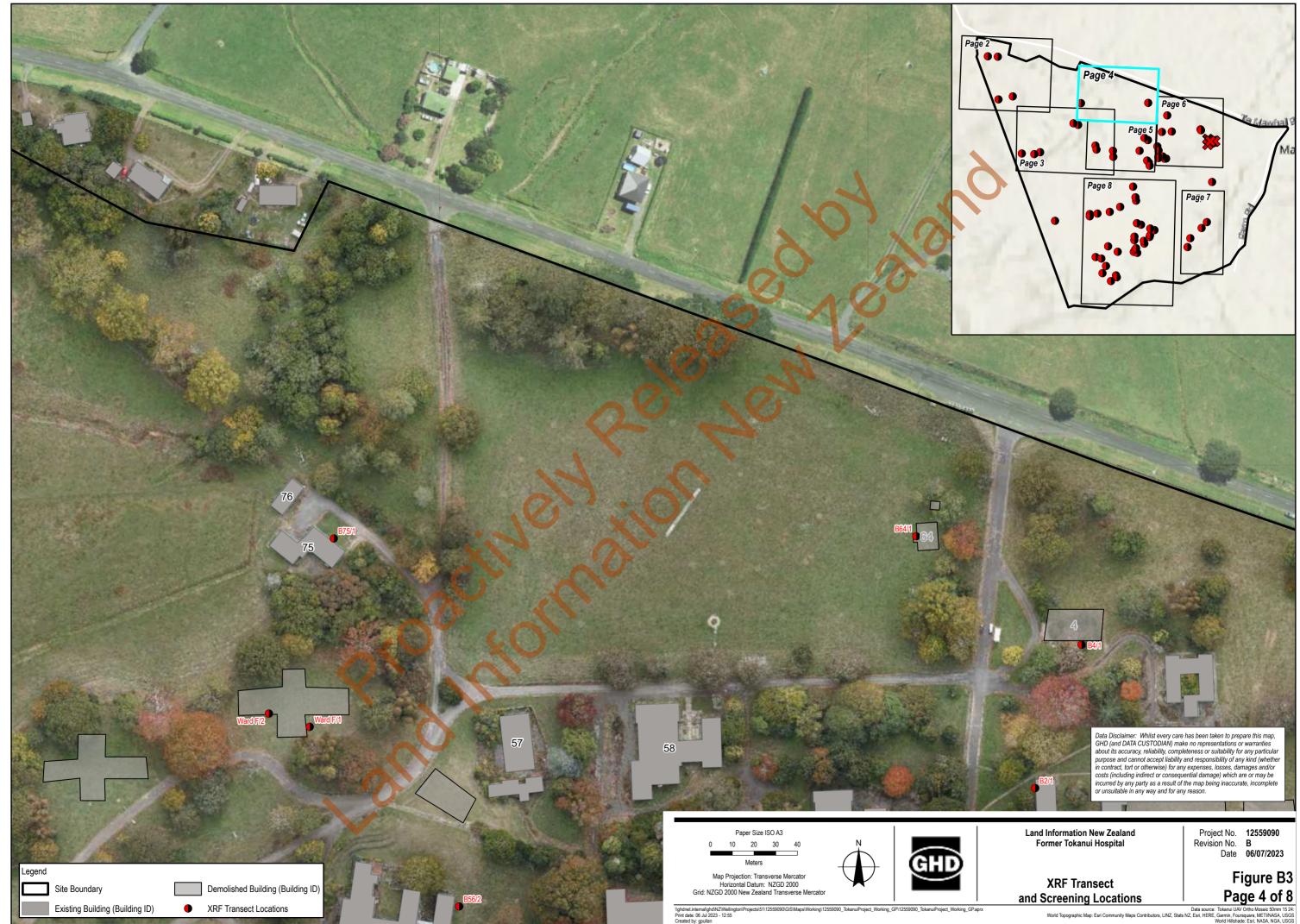


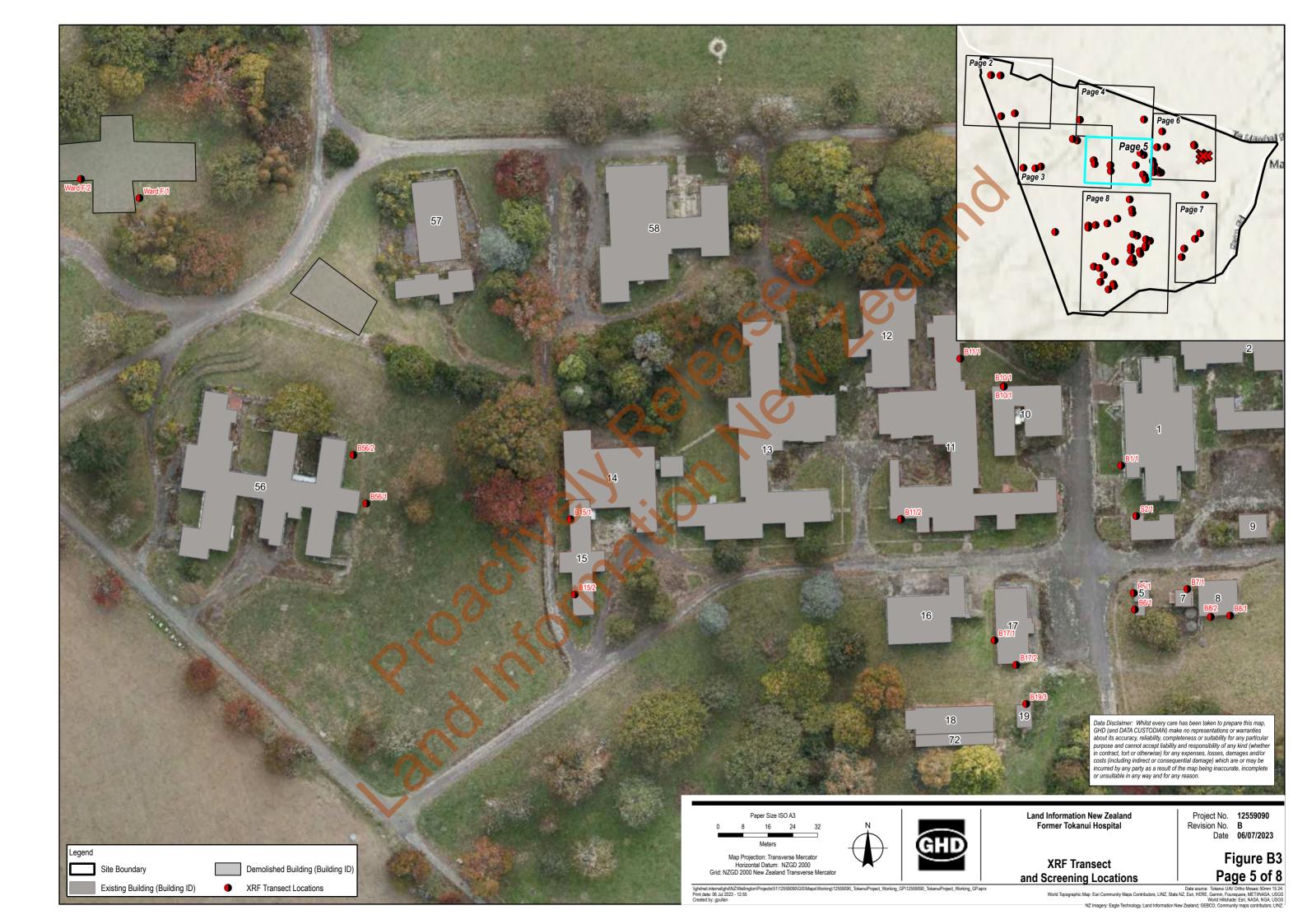


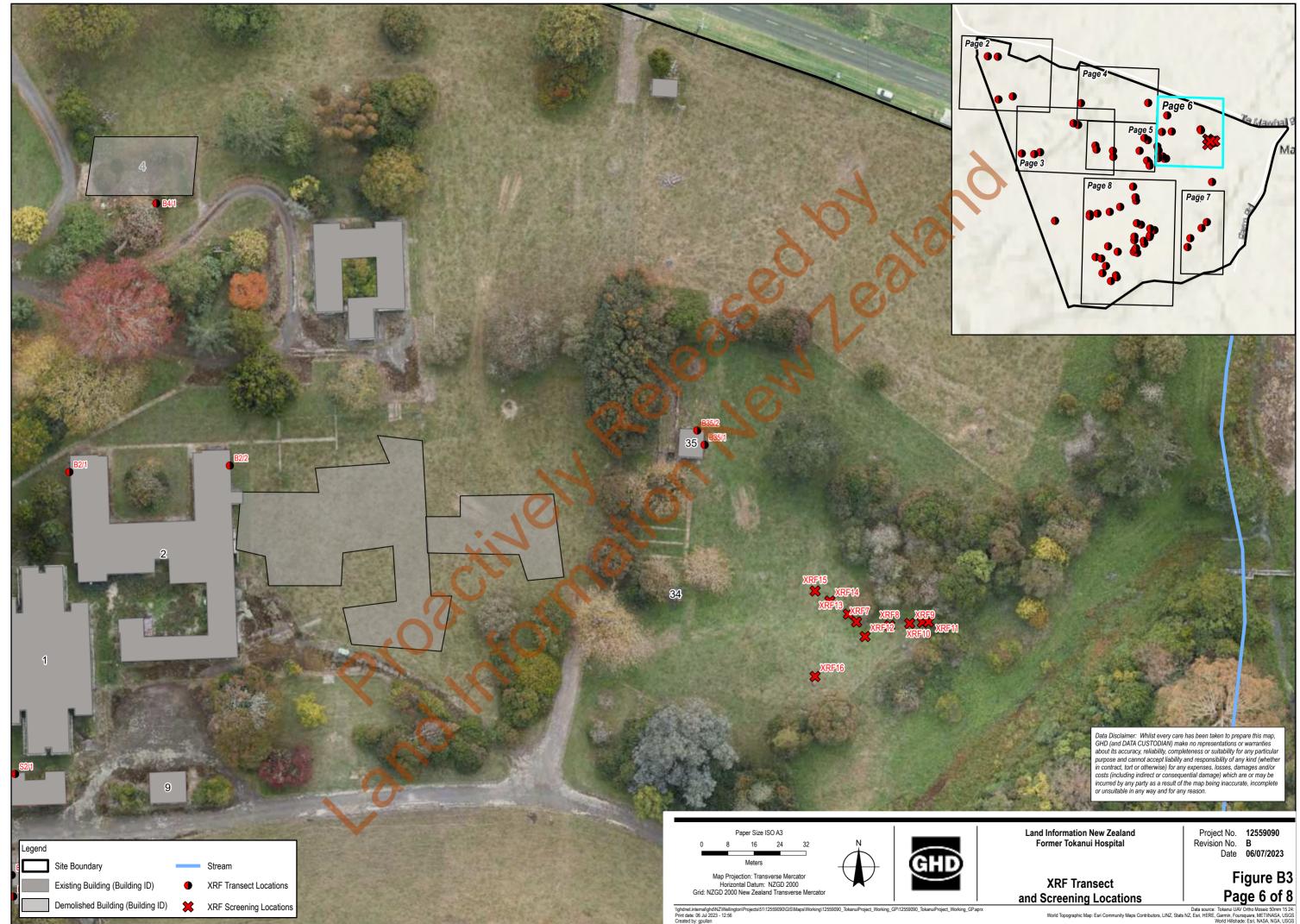


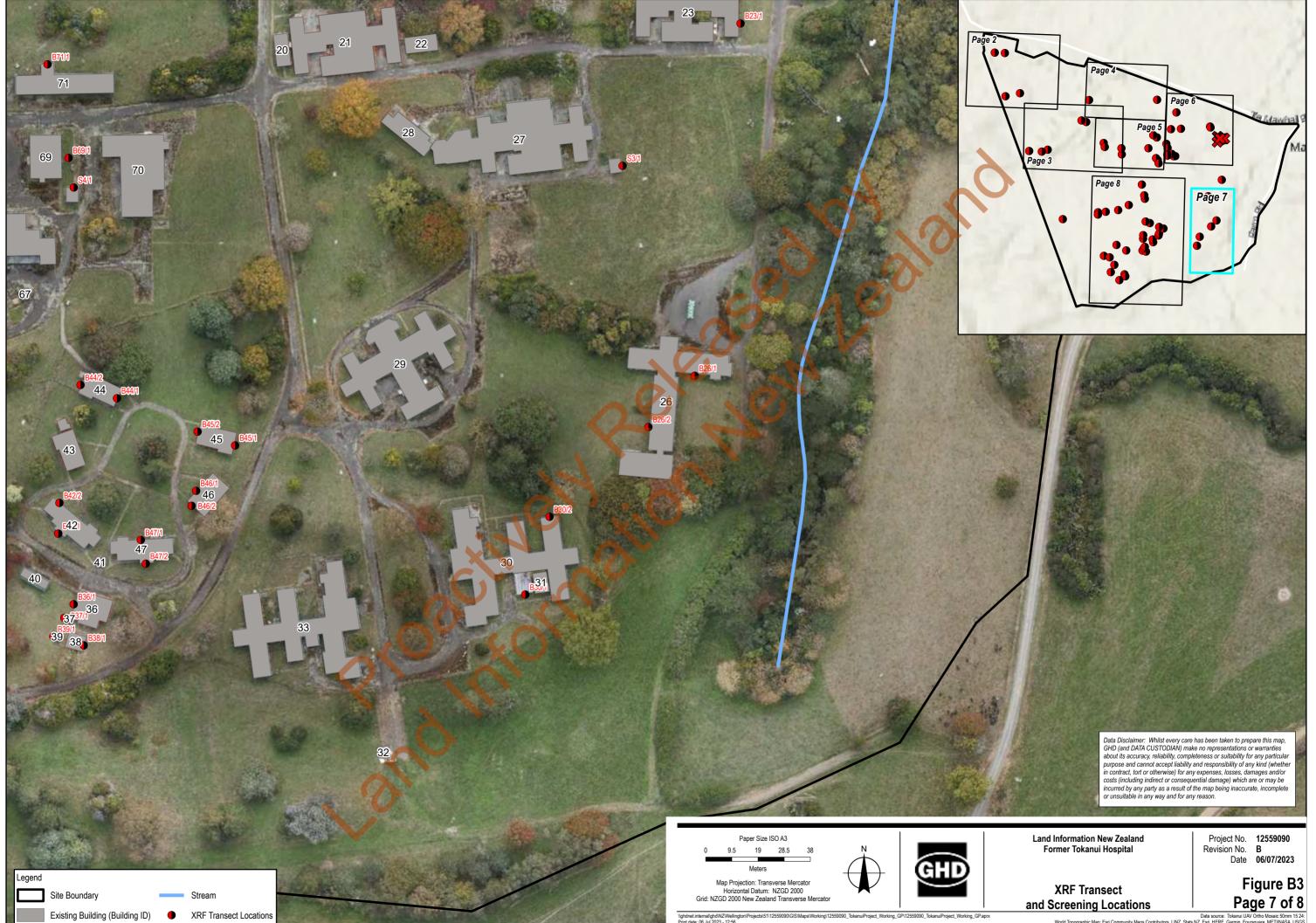


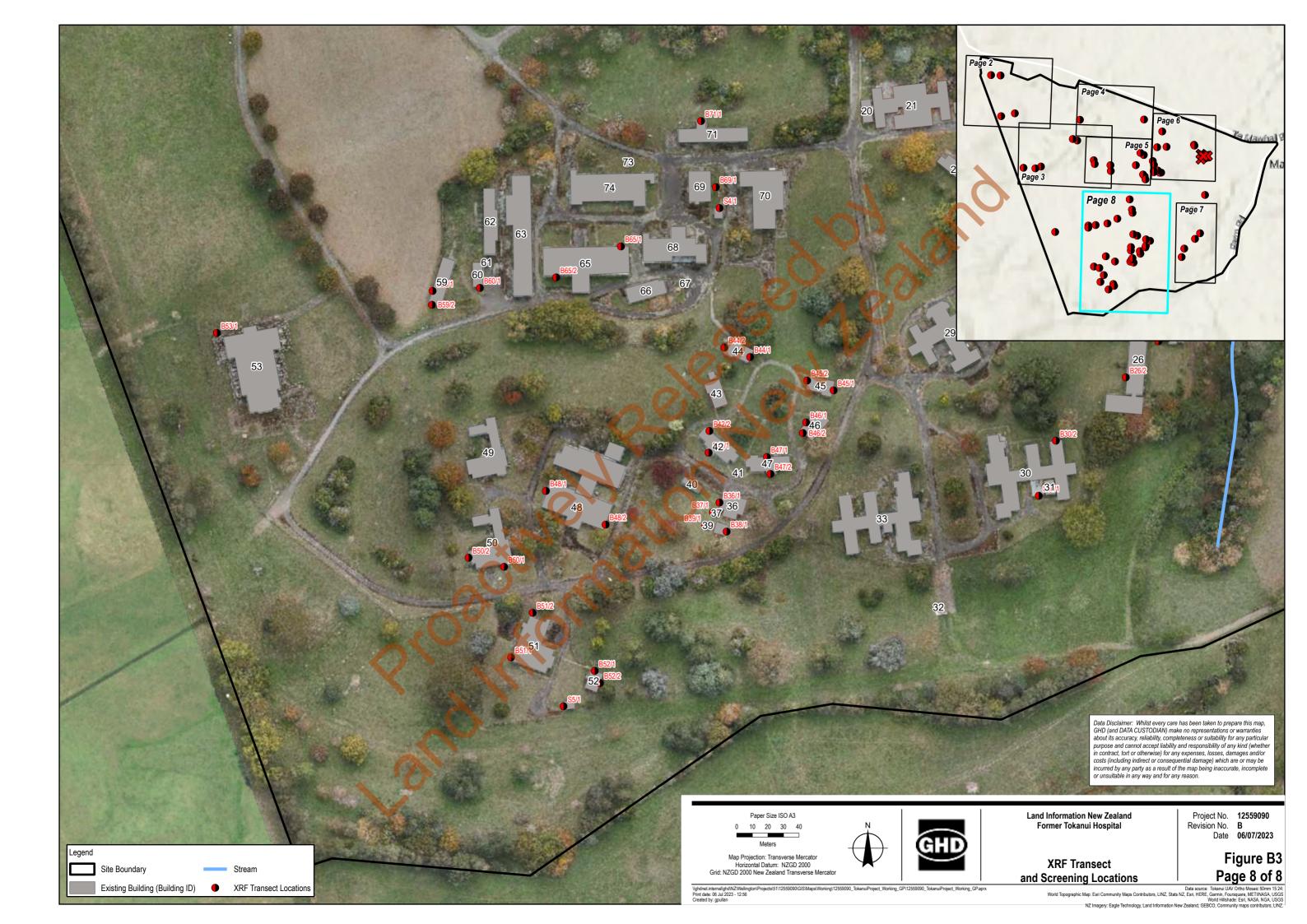


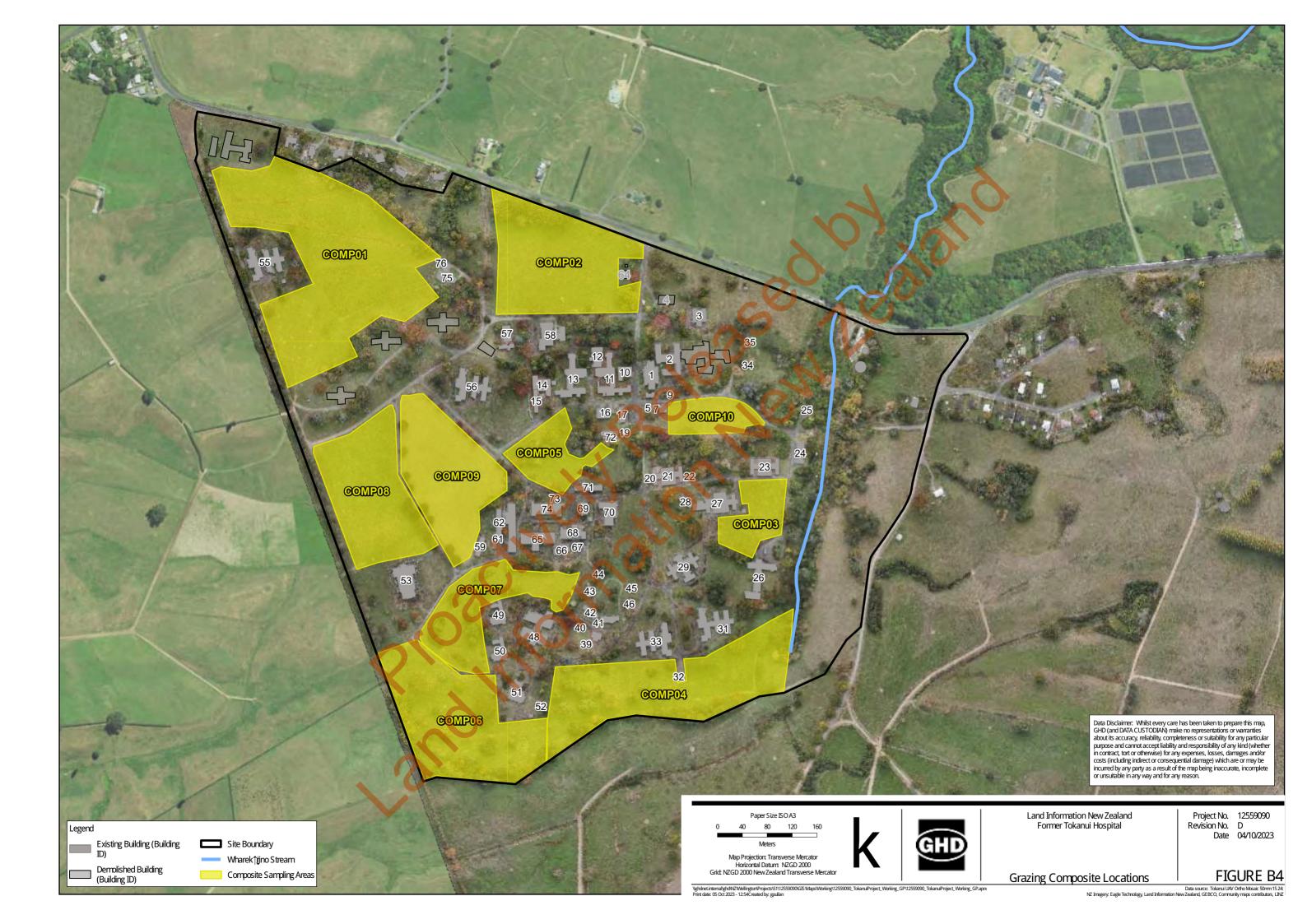












,																			
						Asbestos						Organo-nitrogen and							ı
					Building Floor Punch	(presence or	Asbestos (Semi-				Organochlorine	organo-phosphate	Acid			Composite	Dioxin (PCDD/		
Building	Test Pit	Depth (m)	Locality	Archaeology or Cultural Area	Required? 10 metals	absence)	quantitative)	TPH	PAH	PCB	Pesticides	Pesticides	Herbicides	VOC BT	ex svoc	Subsamples	PCDF)	тос	рН
B16	TP 01		Petrol Station Workshop	No	Floor Punch			1	1					1					
B16	TP 01		Petrol Station Workshop	No				1	1					1					
B16	TP 01		Petrol Station Workshop	No				0	0					0					
B16	TP 02		Petrol Station Workshop	No	Floor Punch			1	1		_			1					
B16	TP 02	0.50	Petrol Station Workshop	No				1	1				\	1					
B16	TP 02		Petrol Station Workshop	No				0	0					0					.
B16	TP 04		Petrol Station	No	1		1	1	1					1	>				
B16	TP 04		Petrol Station	No															
B16	TP 05		Petrol Station	No	1		1	1	1					1					
B16	TP 06		Petrol Station	No	1		1	1	1					1					
B16	TP 06	0.50	Petrol Station	No	1		1												
B16	TP 07		Petrol Station	No	1		1	1	1					1					
B16	TP 07		Petrol Station	No			1												
B16	TP 07	0.90	Petrol Station	No															
B16	TP 08	0.10	Petrol Station	No				1	1					1					
B16	TP 08	0.50	Petrol Station	No				1	1										
B16	TP 09	0.10	Petrol Station	No				1	1					1					
B16	TP 09		Petrol Station	No				1	1	N e									
B19	TP 01		Old Morgue	No	1					/ Th	İ								1
B19	TP 01		Old Morgue	No	1						A								
B19	TP 01	1.00	Old Morgue	No	0														
B19	TP 02	0.10	Old Morgue	No	1				1		-			1					
B19	TP 02	0.10	Old Morgue	No	1	1	1										1		
B19	TP 02	1 00	Old Morgue	No	0	1	1				-	_		—			1		
B25	TP 01	0.10	Morgue	Culturally Significant Area	1	1					7			-	_		 		1
B25	TP 01	0.10	Morgue	Culturally Significant Area	1	+			~					1	-	1	1		
B25	TP 01		Morgue	Culturally Significant Area	0	+			+					1	-	1	1		
B25 B25	TP 02		Morgue	Culturally Significant Area	1	+			+					1	-	1	1		
	TP 02					1			-										
B25	TP 02	0.50	Morgue	Culturally Significant Area	1 0														
B25		1.00	Morgue	Culturally Significant Area															
B25	TP 03	0.10	Morgue	Culturally Significant Area	1	4													
B25	TP 03	0.50	Morgue Morgue	Culturally Significant Area	1														
B25				Culturally Significant Area	0										_				
B26	TP 01		Ward 21	Culturally Significant Area	1		1	1							1				1
B26	TP 01		Ward 21	Culturally Significant Area	1		0	1_							0				
B26	TP 01		Ward 21	Culturally Significant Area	0		0	0							0				
B26	TP 02		Ward 21	Culturally Significant Area	1		1	1							1				
B26	TP 02		Ward 21	Culturally Significant Area	_1		1	1							1				
B26	TP 02		Ward 21	Culturally Significant Area	0		0	0							0				
B26	TP 03	0.10	Ward 21	Culturally Significant Area	1		1	1							1				
B26	TP 03	0.50	Ward 21	Culturally Significant Area	0		0	<u> </u>							0				
B26	TP 03		Ward 21	Culturally Significant Area	0		0	0							0				
B3	TP 01	0.10	Concrete base structure	No	1			1											
B3	TP 01	0.50	Concrete base structure	No															
B3	TP 03	0.10	Concrete base structure	No	1			1											
B3	TP 03	0.40	Concrete base structure	No															
B34	TP 01	0.10	Former Glasshouses	No	1						1	1	1						1
B34	TP 01	0.50	Former Glasshouses	No	1						1	1	1						
B34	TP 01		Former Glasshouses	No	0						0	0	0						
B34	TP 02		Former Glasshouses	No							1	1	1						
B34	TP 02		Former Glasshouses	No	1						1	1	1						
B34	TP 02		Former Glasshouses	No		17					0	0	0						
B34	TP 03		Former Glasshouses	No	1		1				1	1	1						
B34	TP 03		Former Glasshouses	No	1		1				1	1	1						
B34	TP 03		Former Glasshouses	No							0	0	0						
B34	TP 04		Former Glasshouses	No	1		1				1	1	1	1					
B34	TP 04		Former Glasshouses	No	1		1				1	1	1	1					
B34	TP 04	1 00	Former Glasshouses	No	0	1	1		-		0	0	0	—			1		
B34	TP 05		Former Glasshouses	No	1	1	1		-		1	1	1	—			1		1
B34	TP 05		Former Glasshouses	No	1	+	 				1	1	1		_		+		
B34	TP 05		Former Glasshouses	No	0	+	 				0	0	0		_		+		
B34	TP 06		Former Glasshouses	No	1	+	 				1	1	1	+	_		+		
B34	TP 06		Former Glasshouses	No	1	+	 				1	1	1	+	_		+		
B34	TP 06		Former Glasshouses	No	1	+			+		0	0	0	1			1		
B34 B34	TP 06	1.00	Former Glasshouses	No No	1	+	1		-		1	1	1			+	+		
B34 B34	TP 07		Former Glasshouses			+	-				1	1	1			1	1		
				No	1	1	 	-	+			_			_		_		
B34	TP 07		Former Glasshouses	No	0	1	-				0	0	0		_				
B35	HA 01	0.10	B35 Area - north of glasshouses	No	1						1	1	1						
B35	HA 01	0.50	B35 Area - north of glasshouses	No	1						1	1	1						
B35	HA 02	0.10	B35 Area - north of glasshouses	No	1		1				1	1	1						
D2E	HA 02		B35 Area - north of glasshouses	No	1						0	0	0						
B35			B35 Area - north of glasshouses	No	1						1	1	1			1			. —
B35	HA 03	0.10	DJJ Alea - Hortil Ol Blassilouses																
	HA 03 HA 03 HA 04	0.50	B35 Area - north of glasshouses B35 Area - north of glasshouses	No No	1 1						1	1	1						

ned text = ii	ieans sample to c	oe put on HOLD COL	J.																		
Building					Building Floor Punch Required?		Asbestos (presence or absence)	Asbestos (Semi-	ТРН	PAH	PCB	Organochlorine Pesticides	Organo-nitrogen organo-phospho Pesticides		es VO	с втех		Composite Subsamples	Dioxin (PCDD/ PCDF)	тос	рН
B35	Test Pit HA 04	Depth (m)	Locality B35 Area - north of glasshouses	Archaeology or Cultural Area No	Requireur	10 metals	ubsencej	quantitutive)	IPH	PAH	PCB	restitues	restitiues	nerbiciu	es VO	C BIEX	svoc	Subsumples	PCDF)	100	рн
B35	TP 01		B35 Area - north of glasshouses	No		1						1	1	1							1
B35	TP 01	0.50	B35 Area - north of glasshouses	No		1						1	1	1							
B35	TP 01	1.00	B35 Area - north of glasshouses	No		0						0	. 0	0							
B35	TP 02	0.10	B35 Area - north of glasshouses	No		1		1				1	1	1							
B35	TP 02	0.50	B35 Area - north of glasshouses	No		1		1				1	1	1							
B35	TP 02		B35 Area - north of glasshouses	No		0		0				0	0	0							
B35	TP 03		B35 Area - north of glasshouses	No		1		1				1	1	1							
B35 B35	TP 03		B35 Area - north of glasshouses B35 Area - north of glasshouses	No No		0		0				1	0	1							
B35	TP 04		B35 Area - north of glasshouses B35 Area - north of glasshouses	No No		1		1		-		1	1	1							
B35	TP 04		B35 Area - north of glasshouses	No		1		1		-		i	1	1		_					
B35	TP 04	1.00	B35 Area - north of glasshouses	No		0		0				0	0 4	0							
B35	TP 05	0.10	B35 Area - north of glasshouses	No		1		1					1	1							
B35	TP 05	0.50	B35 Area - north of glasshouses	No		1		0				1	1	1							
B35	TP 05		B35 Area - north of glasshouses	No		0		0				0	0	0							
B57	TP 01		Swimming Pool	No	Floor Punch	1									1		1				
B57	TP 01		Swimming Pool	No		1									1		1				
B57	TP 01		Swimming Pool	No		0				_					0		0		1		
B59	TP 01		Gardeners Shed Gardeners Shed	No No	-	1		1	<u> </u>			1	1	1						$\vdash \vdash \vdash$	
B59 B59	TP 01 TP 02		Gardeners Shed Gardeners Shed	No No	+	1						1	1	1					1		1
B59	TP 02		Gardeners Shed	No	+	1						1	1	1	_				1		
B59	TP 02		Gardeners Shed	No		0						0	0	0							
B59	TP 03		Gardeners Shed	No		1						1	1	1							
B59	TP 03	0.50	Gardeners Shed	No		1						1	1	1							
B59	TP 03	1.00	Gardeners Shed	No		0						0	0	0							
B59	TP 04		Gardeners Shed	No		1	-	1				1	1	1							
B59	TP 04		Gardeners Shed	No		1		1				1	1	1							
B59	TP 04		Gardeners Shed	No		0		0				0	0	0							
B59	TP 07	0.10	Gardeners Shed Gardeners Shed	No No		1	4	1		-		1	1	1		_					
B61	TP 01		Shed 11	No	Floor Punch	1			1						1		1				
B61	TP 01		Shed 11	No	FIOOI PUIICII	0	1		0						0		0				
B61	TP 01		Shed 11	No		0			0		-				0		0				
B63	TP 01		Workshop	No		1											1				
B63	TP 01		Workshop	No		0		•									0				
B63	TP 01		Workshop	No		40											0				
B63	TP 03	0.10	Workshop (former fly tipping)	No		1		1	1	1					1						
B63	TP 03	0.70	Workshop (former fly tipping)	No	•																
B63	TP 04 TP 04		Workshop (former fly tipping)	No		1			1	1					1						
B63 B65	TP 04		Workshop (former fly tipping) Store (Fuel)	No No					1	1				_	_	1	_				
B65	TP 01	0.10	Store (Fuel)	No					1	1						1					
B65	TP 01		Store (Fuel)	No					1	1						1					
B65	TP 02		Store (Fuel)	No					1	1						1					
B65	TP 02	1.00	Store (Fuel)	No					1	1						1					
B65	TP 02	2.00	Store (Fuel)	No					1	1						1					
B65	TP 03		Store (Fuel)	No					1	1						1					
B65	TP 03		Store (Fuel)	No					1	1						1					
B65	TP 03		Store (Fuel)	No	1		•		1	1				_		1			1		
B66	HA 01 HA 01	0.10	Engineers Office Engineers Office	No No		1	/	1	1					_	1		1		+		
B66	HA 01		Engineers Office	No No		1		1	1						1		1		1		
B66	TP 01	0.10	Engineers Office	No		1		1	1	1				_		1	-		1		
B66	TP 01	0.90	Engineers Office	No	4	1			 	1											
B66	TP 01	1.10	Engineers Office	No																	
B66	HA 02	0.10	Engineers Office	No		1		1	1						1		1				
B67	HA 01	0.10	Shed 8 (Incinerator)	No		1		1									1		1		
B67	HA 01		Shed 8 (Incinerator)	No		1		1									1		0		
B67	HA 02		Shed 8 (Incinerator)	No		1		1									1		1		
B67	HA 02	0.50	Shed 8 (Incinerator)	No		1		1	. .							_	1		0	\vdash	
B68 B68	HA 01 TP 01	0.09	Boiler (Sump) Boiler House	No No		1		1	1	1				-	1	-	1		1	-	
B68	TP 01		Boiler House	No No		1			1	1					-	_	+				
B68	TP 02		Boiler House	No No	Ť	+		1	1	1				_	_				1		
B68	TP 03		Boiler House	No	•	1			1	1					_	_	1				
B68	TP 03		Boiler House	No					1	1											
B68	TP 04	0.10	Boiler House	No					1	1											
B68	TP 04	0.50	Boiler House	No					1	1											
B68	TP 06	0.10	Boiler House	No		1			1	1											
B68	TP 06		Boiler House	No					1	1											
B68	TP 06		Boiler House	No		1											-				
B68	TP 07	0.10	Boiler House	No	1	1	1	1	1	1		1				- 1	- 1	1	1		

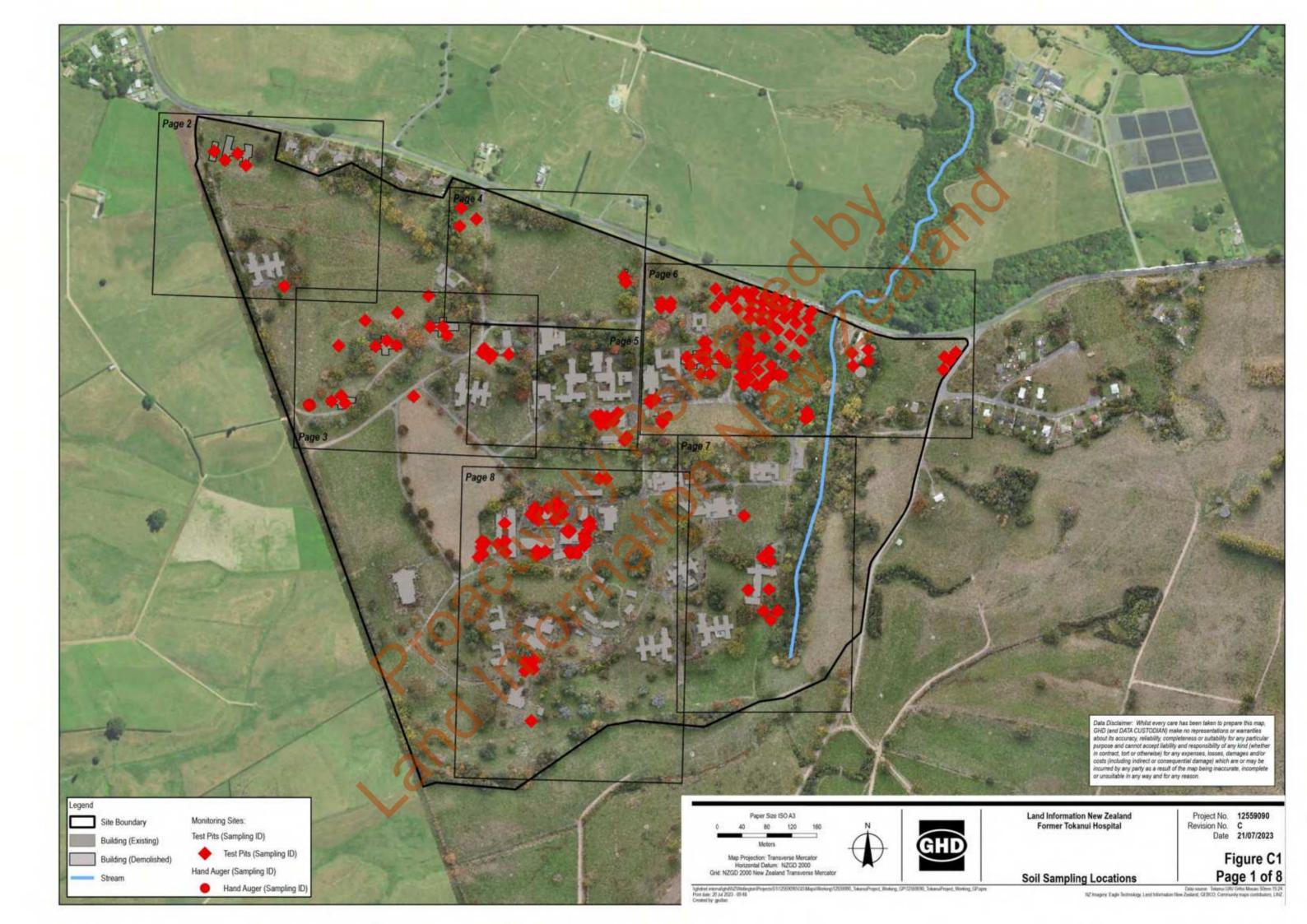
ned text = III	cuits sumple to b	e put on HOLD COL	,																		
Building	Test Pit	Depth (m)	Locality	Archaeology or Cultural Area	Building Floor Punch Required? 10	Asbesti (presence metals absence	or Asbestos (Semi		PAH	PCB	Organochlorine Pesticides	Organo-niti organo-ph Pestic	hosphate	Acid Herbicides	voc	ВТЕХ	svoc	Composite Subsamples	Dioxin (PCDD/ PCDF)	тос	рH
B68	TP 07		Boiler House	No									•					•			-
B68	TP 07		Boiler House	No			1														
B68	TP 08	0.20	Boiler House	No		1		1	1			4									
B68	TP 08		Boiler House	No)				
B68	TP 08		Boiler House	No							4										
B7	TP 03	0.10	Water Treatment	No		1	1							,							
B7	TP 03		Water Treatment	No							_			_		_					
B7	TP 04 TP 04		Water Treatment Water Treatment	No No		1	1					_									
B71	TP 01		Drainage area north of garages	No		1		-	-						1		1		+		1
B71	TP 01	0.10	Drainage area north of garages	No		1						-			1		1				
B71	TP 01	1.00	Drainage area north of garages	No		0									0		0				
B71	TP 02	0.10	Drainage area north of garages	No		1					1				0		1				
B71	TP 02		Drainage area north of garages	No		1									0		1				
B71	TP 02	1.00	Drainage area north of garages	No		0									0		0				
B73	TP 01		Laundry Shed 11	No	Floor Punch	1		1	1	1					1						1
B73	TP 01		Laundry Shed 11	No		1		1	1	1		Y			1						
B73	TP 01		Laundry Shed 11	No		0		0	0	0				ļ	0						
B73	TP 02		Laundry Shed 11	No		1	1	1	1	1	_				1				1		
B73	TP 02		Laundry Shed 11	No		1				0	1	_	7		1				+		1
B73	TP 02		Laundry Shed 11	No.		0		U	0	U		—			0				+	-	
B74 B74	HA 03 TP 01	1.00	Laundry Laundry	No No		0									0		-		+		
B74	TP 01	0.10	Laundry	No No				1			- 31	_		1	1				+		
B74	TP 02		Laundry	No				1			3	 			1				+		
B74	TP 02	0.50	Laundry	No				1							-						
B74	TP 02	1.10	Laundry	No																	
B74	TP 02		Laundry	No			4 4	1							1						
B74	TP 02		Laundry	No				1							1						
B74	TP 03	0.10	Laundry	No				1							1						
B74	TP 03		Laundry	No																	
B74	TP 03	2.20	Laundry	No				1							1						
B74	TP 03	TILE	Laundry	No		_															
B74	TP 04		Laundry	No				1							1						
B74 B74	TP 04	0.70	Laundry Laundry	No No				1													
B74	TP 06	0.10	Laundry	No No	+		-	1	_						1						
B74	TP 06		Laundry	No		. W. 1		1							1						
B74	TP 06		Laundry	No				1							1						
B74	TP 07	0.10	Laundry	No	•			1							1						
B74	TP 07	0.70	Laundry	No																	
B74	TP 07	1.50	Laundry	No																	
B74	HA 01	0.10	Laundry	No		1									1						
B74	HA 01		Laundry	No		1									1						
B74	HA 01		Laundry	No		0									0						
B74 B74	HA 03	0.10	Laundry	No		1	<u> </u>								1						
B/4	HA 03	0.50	Laundry Dentist	No		1	1								1						
88	HA 01 HA 01		Dentist Dentist	No No		1 1	1														
BWL	TP 01		Former Bowling Green	No		1					1	1		-							1
BWL	TP 01		Former Bowling Green	No No		1		++			1	1		1					+		1
BWL	TP 02	0.10	Former Bowling Green	No							1	1		1	+				1		-
BWL	TP 02		Former Bowling Green	No		1					0	0		0							
BWL	TP 03	0.10	Former Bowling Green	No		1					1	1		1							
BWL	TP 03	0.50	Former Bowling Green	No		1					1	1		1							
BWL	TP 04	0.10	Former Bowling Green	No		1					1	1		1							
BWL	TP 04		Former Bowling Green	No		1					0	0		0		_					
BWL	TP 05	0.10	Former Bowling Green	No		1					1	1		1							
BWL	TP 05	0.50	Former Bowling Green	No		1					1	1		1					+		
BWL	TP 06		Former Bowling Green	No		1		+			0	1		0	-				1		
BWL	TP 06		Former Bowling Green Former Chapel	No No		1 1		+			U	1 0	,	U	+				+	-	
CHP	TP 01	0.20	Former Chapel	No No		1 1		+ +				 			 				+		
CHP	TP 02	0.30	Former Chapel	No		. 1		+ +				 			 				+		
CHP	TP 02		Former Chapel	No				+ +											+		
CHP	TP 03		Former Chapel	No	<u> </u>			1 -				l			+ +				1		
CHP	TP 04		Former Chapel	No		1 1						t			 				1		
CHP	TP 04		Former Chapel	No		1 1					İ	1									
DIP	HA 01	0.10	Potential Sheep Dip	No		1	1				1	1		1					1		
DIP	HA 01	0.50	Potential Sheep Dip	No		0					0	0		0							
DIP	HA 02	0.10	Potential Sheep Dip	No		1	1				1	1		1							
DIP	HA 02		Potential Sheep Dip	No		0					0	0		0							
DIP	HA 03		Potential Sheep Dip	No		1	1				1	1		1		_					
DIP	HA 03	0.50	Potential Sheep Dip	No	1	0		1 1			0	0)	0	1		1		1	1	

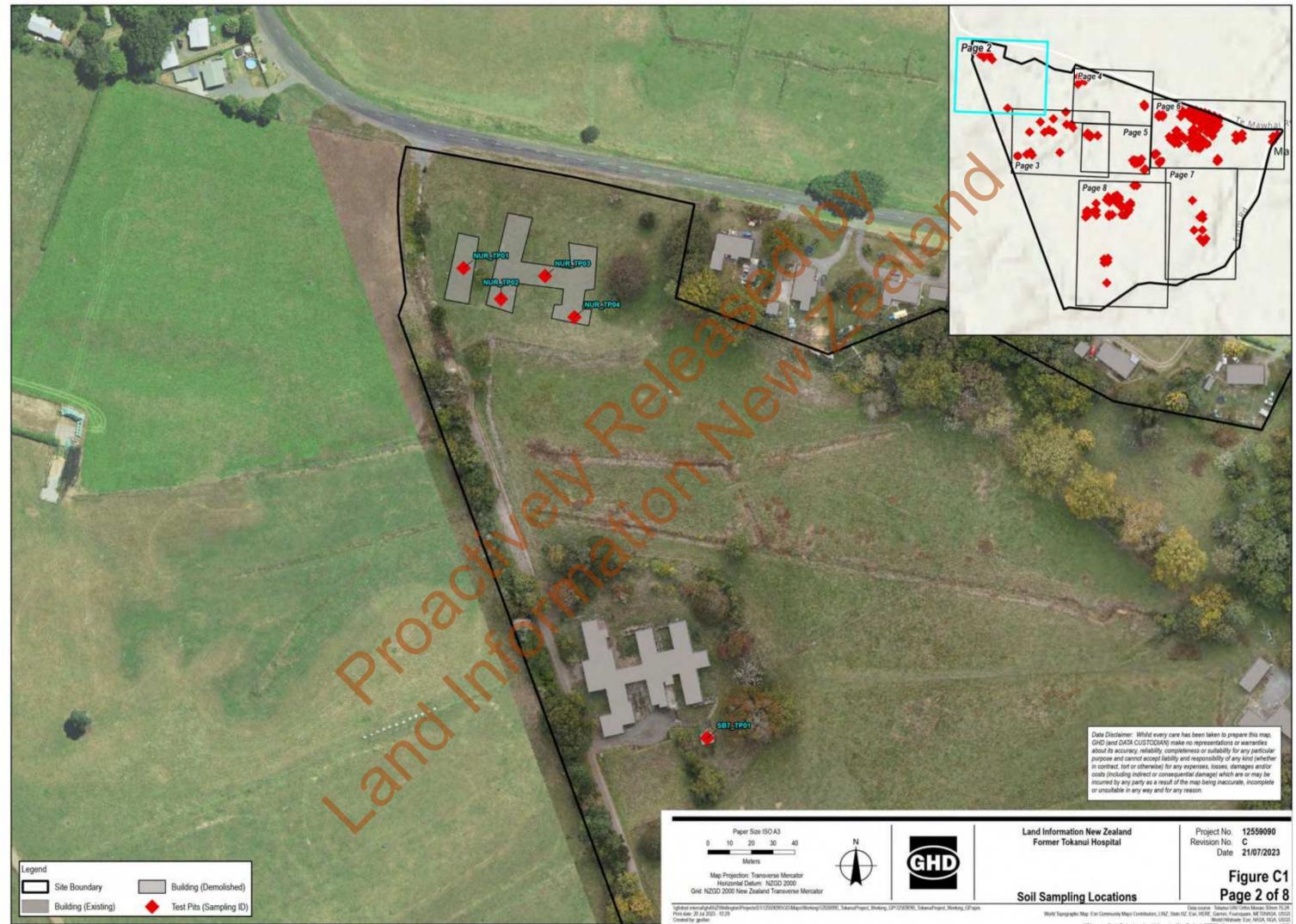
neu text = III	leans sample to b	e put on HOLD COLI																
					Detteller Stern Develo	Asbestos	4-h			Organochlorine	Organo-nitrogen and	Acid			Composite	pit- (ncop (
Building	Test Pit	Depth (m)	Locality	Archaeology or Cultural Area	Building Floor Punch Required? 10 metals	(presence or absence)	Asbestos (Semi- auantitative)	TPH P	ан РСВ	Pesticides Pesticides	organo-phosphate Pesticides	Acia Herbicides	VOC BTE	svoc	Subsamples	Dioxin (PCDD/ PCDF)	тос	рΗ
DIP	TP 01		Potential Sheep Dip	No	10 metas	absence	quantitutive	1111 17	All PED	1	1	1	voc bii	A SVOC	Sabsampies	7 05.7	700	Pii
DIP	TP 01		Potential Sheep Dip	No	-						-	-						
DIP	TP 01		Potential Sheep Dip	No														
DIP	TP 02		Potential Sheep Dip	No	1					1	1	1						
DIP	TP 02	1.20	Potential Sheep Dip	No														
DIP	TP 03	0.20	Potential Sheep Dip Potential Sheep Dip	No No	1					1	1	1		•				
DIP	TP 03		Potential Sheep Dip	No														
DIP	TP 02	0.50	Potential Sheep Dip	No														
DS01	TP 01	0.10	Demolished Structure 1	No	1		1											1
DS01	TP 01		Demolished Structure 1	No	1		1						•					
DS01	TP 01 TP 02		Demolished Structure 1	No	0		1					7/ /						
DS01 DS01	TP 02	0.10	Demolished Structure 1 Demolished Structure 1	No No	0		0			$\overline{}$								
DS01	TP 02	1.00	Demolished Structure 1	No	0		0					1						
DS01	TP 03	0.10	Demolished Structure 1	No	1		1											
DS01	TP 03	0.50	Demolished Structure 1	No	1		1											
DS01	TP 03		Demolished Structure 1	No	0		0											
DS01	TP 04		Demolished Structure 1	No	1		1			_							1	
DS01 DS01	TP 04		Demolished Structure 1 Demolished Structure 1	No No	0	+	0		$\rightarrow \bigvee$	 				_		+	\longmapsto	
DS01 DS01	TP 05		Demolished Structure 1 Demolished Structure 1	No No	1	1	1							_		1	\longrightarrow	
DS01	TP 05		Demolished Structure 1	No	1		1	1										
DS01	TP 05	1.00	Demolished Structure 1	No	0		0											
DS02	TP 01		Demolished Structure 2	Culturally Significant Area	1		1											
DS02	TP 01		Demolished Structure 2	Culturally Significant Area	1		1											
DS02	TP 01		Demolished Structure 2	Culturally Significant Area	0		0										1	
DS02 DS02	TP 02		Demolished Structure 2 Demolished Structure 2	Culturally Significant Area	1 0	4	0										-	
DS02	TP 02		Demolished Structure 2	Culturally Significant Area Culturally Significant Area	0		0										\vdash	
DS02	TP 03		Demolished Structure 2	Culturally Significant Area	1		1											
DS02	TP 03	0.50	Demolished Structure 2	Culturally Significant Area	1		1											
DS02	TP 03		Demolished Structure 2	Culturally Significant Area	0		0											
DS02	TP 04		Demolished Structure 2	Culturally Significant Area	1		1	1										
DS02 DS02	TP 04		Demolished Structure 2 Demolished Structure 2	Culturally Significant Area	0		0											
DS02	TP 05		Demolished Structure 2	Culturally Significant Area Culturally Significant Area	1		1		•									
DS02	TP 05		Demolished Structure 2	Culturally Significant Area	1		1											
DS02	TP 05		Demolished Structure 2	Culturally Significant Area	0		0											
DS03	TP01		Demolished Structure 3	No	1		1											
DS03	TP01		Demolished Structure 3	No	1		1	·										
DS03	TP01 TP02		Demolished Structure 3	No No	0		0											
DS03	TP02		Demolished Structure 3 Demolished Structure 3	No No	1		1											
DS03	TP02		Demolished Structure 3	No	1 0		0											
DS03	TP03		Demolished Structure 3	No	1		1											
DS03	TP03	0.50	Demolished Structure 3	No	1		1											
DS03	TP03		Demolished Structure 3	No	0		0											
DS03	TP04	0.10	Demolished Structure 3	No	1		1											
DS03	TP04 TP04	0.50	Demolished Structure 3 Demolished Structure 3	No No	1		1							_				
HSP	SED 01		Hospital overland flow sediment	No No	1 4 6	1	U	1		1	1	1	1	1		+	1	1
HSP	SED 01		Hospital overland flow sediment	No	1			1		1	1	1	1	1		1	1	1
HSP	SED 02	0.09	Hospital overland flow sediment	Archaeological Area	1		<u> </u>	1		1	1	1	1	1			1	1
HSP	SED 02	0.30	Hospital overland flow sediment	Archaeological Area	1			1		1	1	1	1	1			1	1
HSP	SED 03		Hospital overland flow sediment	Archaeological Area	1			1		1	1	1	1	1		1	1	1
HSP	SED 03 SED 04	0.30	Hospital overland flow sediment Hospital overland flow sediment	Archaeological Area	1			1		1	1	1	1	1		1	1 1	1
HSP	SED 04 SED 04		Hospital overland flow sediment Hospital overland flow sediment	Archaeological Area Archaeological Area	1 1	1	1	1		1	1	1	1	1		1	1	
HT	COMP_A		Horticultural Area	No No	1	+		-		1	1	1	1	-		+	+-+	
HT	COMP_A	0.50	Horticultural Area	No	1	1	1			1	1	1		_		1		
HT	COMP_A	1.00	Horticultural Area	No	0					0	0	0						
HT	COMP_B		Horticultural Area	No	1		1			1	1	1						
HT	COMP_B		Horticultural Area	No	1					1	1	1					\vdash	
HT	COMP_B COMP_C		Horticultural Area Horticultural Area	No No	0	-				0	0	0				-	\longrightarrow	
HT.	COMP_C COMP_C		Horticultural Area Horticultural Area	No No	1 1	1	1			1	1	1		_		1	+	
HT	COMP_C	1.00	Horticultural Area	No	0	1	1			0	0	0				1	+	
HT	COMP_D	0.10	Horticultural Area	No A	1					1	1	1						
HT	COMP_D	0.50	Horticultural Area	No	1		<u> </u>			1	1	1						
HT	COMP_D		Horticultural Area	No	0					0	0	0						
HT	COMP_E		Horticultural Area	No	1					1	1	1						
HT	COMP_E	0.50	Horticultural Area	No V	1		1			1	1	1						
н	COMP_E	1.00	Horticultural Area	No	0	1	1			0	U	U			l	1		

ned text = me	ans sumple to be	put on HOLD COLL	,														
					Building Floor Punch	Asbestos (presence or	Asbestos (Semi-			Organochlorine	Organo-nitrogen and organo-phosphate	Acid			Composite	Dioxin (PCDD/	
Building	Test Pit	Depth (m)	Locality	Archaeology or Cultural Area	Required? 10 metal		quantitative)	ТРН РАН	PCB	Pesticides	Pesticides		VOC BTEX	svoc	Subsamples	PCDF) TOC	Срн
HT	COMP F		Horticultural Area	No	1		4		7.00	1	1	1	TOC DIEK	5,00		1000	
HT	COMP_F		Horticultural Area	No	1					1	1	1					
нт	COMP_F		Horticultural Area	No	0					0	0	0					
HT	COMP_G		Horticultural Area	No	1					1	1	1					
HT	COMP_G	0.50	Horticultural Area Horticultural Area	No No	1					1 0	0	1		•			
HT	COMP_G	0.10	Horticultural Area	No	1					1	1	1					+
HT	COMP_H		Horticultural Area	No	1					1	1	1					
HT	COMP_H	1.00	Horticultural Area	No	0					0	0	0					
HT	COMPA		Horticultural Area	No											1		
HT	COMPA		Horticultural Area	No									>		1		
HT	COMPA		Horticultural Area Horticultural Area	No No											1		_
HT	COMPA		Horticultural Area	No						$\overline{}$					1		
HT	COMPA		Horticultural Area	No							AV	1			0		
HT	COMPA	3 0.10	Horticultural Area	No						1					1		
HT	COMPA		Horticultural Area	No)						1		
HT	COMPA		Horticultural Area	No						1					0		
HT	COMPA		Horticultural Area Horticultural Area	No No	+	+	-			_		 		+ +	1	 	-
HT	COMPA		Horticultural Area Horticultural Area	No No	+	+	1			1		 		+ +	0	 	-
HT	COMPA		Horticultural Area	No	1	+	1							+ +	1	 	-
HT	COMPB	1 0.50	Horticultural Area	No					7	- 17					1		
HT	COMPB	1 1.00	Horticultural Area	No							*				0		
HT	COMPB		Horticultural Area	No											1		
HT	COMPB		Horticultural Area	No											1		
HI	COMPB		Horticultural Area Horticultural Area	No No		+				ullet				+	1	 	
HT	COMPB		Horticultural Area	No		-						-			1		-
HT	COMPB		Horticultural Area	No											0		
HT	COMPB	4 0.10	Horticultural Area	No											1		
HT	СОМРВ		Horticultural Area	No			_								1		
HT	COMPB	4 1.00	Horticultural Area	No											0		
HT	COMPC		Horticultural Area	No											1 1		
HI UT	COMPC		Horticultural Area Horticultural Area	No No	+										0		
HT	COMPC		Horticultural Area	No			-								1		_
HT	COMPC		Horticultural Area	No											1		
HT	COMPO		Horticultural Area	No											0		
HT	COMPC		Horticultural Area	No											1		
HT	COMPC		Horticultural Area Horticultural Area	No No		-									0		_
HT	COMPC		Horticultural Area	No.	X										1		-
HT	COMPC		Horticultural Area	No											1		-
HT	COMPO	4 1.00	Horticultural Area	No											0		
HT	COMPD	1 0.10	Horticultural Area	No											1		
HT	COMPD		Horticultural Area	No											1		_
HI	COMPD		Horticultural Area Horticultural Area	No No											1		_
HT	COMPD		Horticultural Area	No		*									1		
HT	COMPD	2 1.00	Horticultural Area	No											0		
нт	COMPD		Horticultural Area	No							<u> </u>				1		
HT	COMPD		Horticultural Area	No											1		
HT	COMPD		Horticultural Area	No No		+	-					 		+	1		_
HT	COMPD		Horticultural Area Horticultural Area	No No		+	1					 		+ +	1		
HT	COMPD		Horticultural Area	No		+									0		_
HT	COMPE	1 0.10	Horticultural Area	No											1		
HT	COMPE	1 0.50	Horticultural Area	No											1		
HT	COMPE		Horticultural Area	No	Ť										0		
HT	COMPE		Horticultural Area	No No	+	+	-					 		+ +	1 1	 	-
HT	COMPE		Horticultural Area Horticultural Area	No No		+	1			1		 		+ +	0	 	
HT	COMPE		Horticultural Area	No		1	1								1		_
HT	COMPE	3 0.50	Horticultural Area	No											1		
HT	COMPE	3 1.00	Horticultural Area	No											0		
HT	COMPE		Horticultural Area	No										\perp	1		
HT	COMPE		Horticultural Area	No No		+	-					 		+ +	1	 	-
HT.	COMPE		Horticultural Area Horticultural Area	No No	1	+	+							+ +	1		-
HT	COMPF	1 0.50	Horticultural Area	No		+									1		
HT	COMPF	1 1.00	Horticultural Area	No											0		_
HT	COMPE	2 0.10	Horticultural Area	No											1		
нт	COMPF		Horticultural Area	No											1		
HT	COMPF	2 1.00	Horticultural Area	No			1			1					0		- 1

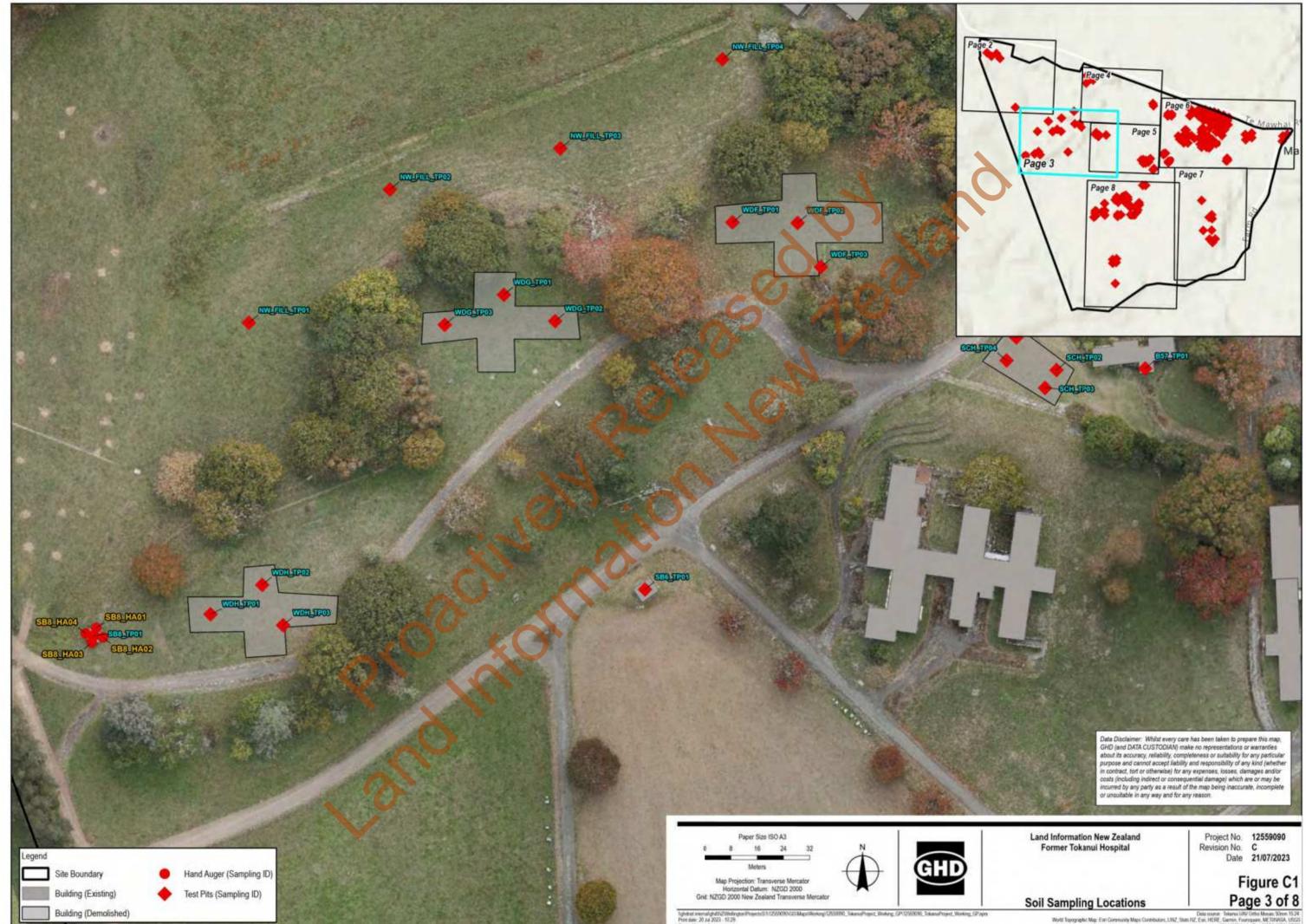
																i			
						Asbestos						Organo-nitrogen and				İ			
					Building Floor Punch	(presence or	Asbestos (Semi-				Organochlorine	organo-phosphate	Acid			Composite	Dioxin (PCDD/		
Building	Test Pit	Depth (m)	Locality	Archaeology or Cultural Area	Required? 10 meta	ls absence)	quantitative)	TPH	PAH	PCB	Pesticides	Pesticides	Herbicides	VOC BTEX	svoc	Subsamples	PCDF)	TOC	рН
HT	COMPF	3 0.1	0 Horticultural Area	No												1			
HT	COMPF	3 0.5	0 Horticultural Area	No										1		1			
HT	COMPF		0 Horticultural Area	No												0			
HT	COMPF	4 0.1	0 Horticultural Area	No												1			
HT	COMPF4		0 Horticultural Area	No												1			
HT	COMPF		0 Horticultural Area	No												0			
HT	COMPG:	1 0.1	0 Horticultural Area	No												1			
HT	COMPG:	1 0.5	0 Horticultural Area	No												1			
HT	COMPG		O Horticultural Area	No								· ·				0		1 1	
HT	COMPG		0 Horticultural Area	No												1		1 1	
HT	COMPG		0 Horticultural Area	No								•				1		1 1	
HT	COMPG	2 1.0	0 Horticultural Area	No										,		0		1 1	
HT	COMPG		0 Horticultural Area	No												1		1 1	
HT	COMPG		0 Horticultural Area	No						_						1		1 1	
HT	COMPG		0 Horticultural Area	No									1			0		1 1	
HT	COMPH		0 Horticultural Area	No												1			
HT	COMPH		0 Horticultural Area	No							_					1		1	
нт	COMPH		Horticultural Area	No						N &						0		+	
нт	COMPH		0 Horticultural Area	No						/ To						1		+	
HT	COMPHI		0 Horticultural Area	No	<u> </u>	1		f - t.			A					1	1	+	
нт	COMPH		0 Horticultural Area	No	 	1		I				*	1			0	1	+	
нт	COMPH		0 Horticultural Area	No	 	1	1						 			1		+	
нт	COMPH		0 Horticultural Area	No	 	1	1				_ T		 			1		+	
нт	COMPH		0 Horticultural Area	No	 	1	1				- 31	-	 			0		+	
нт	TP 25		0 Horticultural Area	No	1	1	1	1			1	1	1					+	
нт	TP 25		0 Horticultural Area	No	1	1	1		*			-						+	
HT	TP 27		0 Horticultural Area	No	1		1	1			1	1	1					+	
HT	TP 27		0 Horticultural Area	No	1		1					-	-					++	
uT	TP 27		0 Horticultural Area	No	1													++	
uT	TP 28		0 Horticultural Area	No	1		1	1			1	1	1					++	
шт	TP 28		0 Horticultural Area	No	1		1	1	1		1	1	1					++	
HT.	TP 29	0.4	0 Horticultural Area	No	1	4	1			_					1			+	1
nı ur	TP 29	0.1	0 Horticultural Area	No	1		1	_							1			+	1
HI	TP 29	0.5	0 Horticultural Area	No No	0	-	0	_							0			+	
HI					1		1	_										+	
HI	TP 30		0 Horticultural Area	No			1								1			+	
HI	TP 30	0.5	0 Horticultural Area 0 Horticultural Area	No No	1										0			+	
HI	TP 30		0 Horticultural Area 0 Horticultural Area	No No	0		0	_							1			++	
HI	TP 31				1	4 / 	1		,						1			+	
HI	TP 31	0.5	0 Horticultural Area 0 Horticultural Area	No No	0		0								0			++	
HI															U			+	
NUR	TP 01		0 Former Nurses Home	No	1		1											++	1
NUR	TP 01		0 Former Nurses Home	No	1		1											++	
NUR	TP 01		Former Nurses Home	No	0		0											++	
NUR	TP 02		0 Former Nurses Home	No	1		1									h			
NUR	TP 02	0.5	O Former Nurses Home	No	0		-0									h			
NUR	TP 02		O Former Nurses Home	No	0		0									h			
NUR	TP 03	0.1	0 Former Nurses Home	No	1		1									h			
NUR	TP 03	0.5	0 Former Nurses Home	No	1		1	\vdash			1						1	+	
NUR	TP 03		O Former Nurses Home	No	0		0									h			
NUR	TP 04		0 Former Nurses Home	No			1	-			1		1				1	+	
NUR	TP 04		O Former Nurses Home	No			0	 									1	++	
NUR	TP 04		O Former Nurses Home	No	0		0										1	+	
NW_FILL	TP 01		0 North west area of suspe		1		1								1			4	
NW_FILL	TP 01		0 North west area of suspe		1	+	1	\vdash			1				1		1	+	
NW_FILL	TP 01		North west area of suspe			+	0	-			1		1		0		1	+	
NW_FILL	TP 02	0.1	0 North west area of suspe		1	+	1	\vdash			1				1		1	+	
NW_FILL	TP 02		North west area of suspe		0		0								0			4	
NW_FILL	TP 02		North west area of suspe		0		0								0			4	
NW_FILL	TP 03	0.1	0 North west area of suspe	ected fill Archaeological Area	1		1								1			4	
NW_FILL	TP 03	0.5	0 North west area of suspe	ected fill Archaeological Area	1		1								1			4	
NW_FILL	TP 03		O North west area of suspe		0		0								0				
NW_FILL	TP 04		0 North west area of suspe		1		1								1				
NW_FILL	TP 04		North west area of suspe		0		0								0			4	
NW_FILL	TP 04		O North west area of suspe		0		0	\vdash							0		1	4	
PAV	TP 01		0 Former Sports Pavilion	No	1		1											1	
PAV	TP 01		0 Former Sports Pavilion	No	1		0											4	
PAV	TP 01	1.0	O Former Sports Pavilion	No	0		0												
PAV	TP 02	0.1	0 Former Sports Pavilion	No	1		1												
PAV	TP 02	0.5	O Former Sports Pavilion	No	0		0												
PAV	TP 02	1.0	O Former Sports Pavilion	No	0		0												
SB1	TP 01	0.1	0 Substation 1	No	1			1		1									
SB1	TP 01	0.5	0 Substation 1	No	1			0		1						1			
SB1	TP 01		0 Substation 1	No	0			0		0									
SB2	TP 01	0.1	0 Substation 2	No	Floor Punch 1			1		1						i		1 1	
						•	•					•							

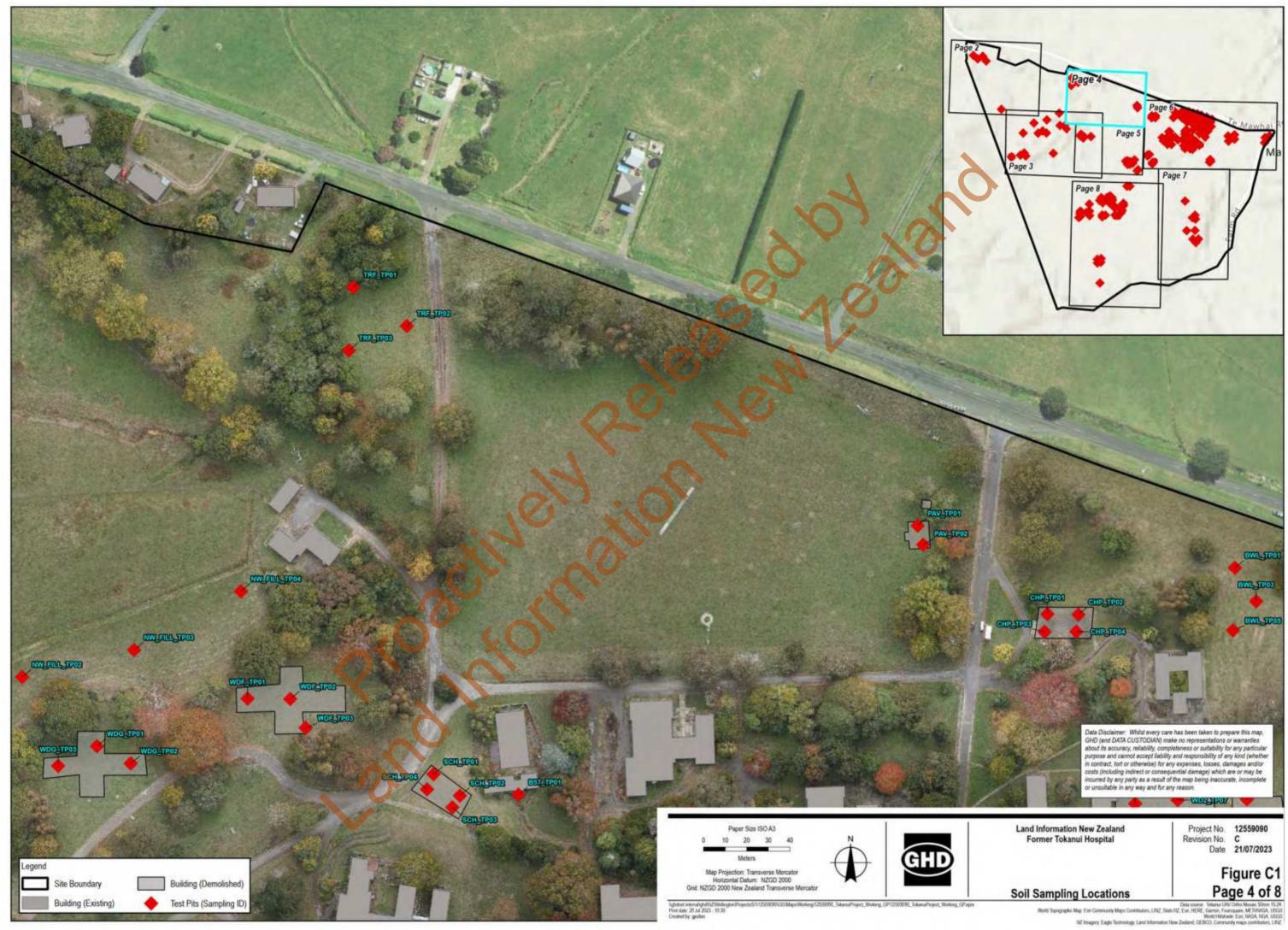
Section Sect																				
March Marc										T										
1429 143 143 143 143 143 143 143 143 143 143							Asbestos						Organo-nitrogen and							l.
1429 143 143 143 143 143 143 143 143 143 143						Building Floor Punch	(presence or	Asbestos (Semi-				Organochlorine	organo-phosphate	Acid			Composite	Dioxin (PCDD/		
1	Building	Test Pit	Depth (m)	Locality	Archaeology or Cultural Area				ТРН	PAH	PCB			Herbicides	VOC BTE	svo		PCDF)	тос	pН
10									- 1	+										
10	CD2									++						\rightarrow				
10 10 10 10 10 10 10 10	SDZ CD2									+					_		P		+	
19						1		1									7		+	
1981																				
March Schedule March M			0.20	Substation 2		1		1		1	1	`								
10									1	\bot										
10						Floor Punch 1					1									
March Marc	SB3	TP 01	0.50	Substation 3	No	1			1		1									
10	SB3	TP 01	1.00	Substation 3	No	0			0		0									
10	SB4	TP 01	0.10	Substation 4	No	1		1	1	1	1									
1			0.50	Substation 4					1	1			-							
1	SR4		0.20	Substation 4		1		1	1		1									
1						-		-											+	
19						1		1			1					_				
The content of the			0.10			1		1					A (/	4		_			+	
10 10 10 10 10 10 10 10								-		1			\mathcal{A}	_			_		\longrightarrow	
19																				
Second S											1		· _							
1						•					0									
Second Column	SB6	TP 01	0.10	Substation 6				1		V /	7 17								T	
1							1		1		1									
10	SB6						1	1	_ 0		0		L							
10	SB7	TP 01	0.10	Substation 7	No	Floor Punch 1			1		1									
192			0.50	Substation 7								- 1								_
March Marc			1.00	Substation 7				_	0											
March Marc							1	1 1	7							+			-+	
March Marc					Archaeological Area		1			 						-			-	
March Marc						 				+									+	
Mail Mail								1		+									+	
Mode Mode							1			+									+	
March					Archaeological Area				T											
19. 19.																				
98	SB8						4													
1								1			_									
Total 1.00 Substantian																				
Fig.		TP 01			Archaeological Area	1			1 1	4 1	. 1									
Fig. Fig.	SB8	TP 01			Archaeological Area	0			0		0									
Fig. Fig.	SCH	TP 01	0.10	Former School	No	1		1												
Fig.	SCH	TP 01	0.30	Former School	No	1		1												
Fig.	SCH	TP 02	0.10	Former School	No	41		1												
Fig. Fig.										-										
Total Care Food			0.10	Former School				1		1 -										
Total Color Total Color Total Color Total Color Total Color Total Color Total Color Total Color Total Color Total Color Total Color Total Color Total Color Color Total Color Colo			0.70	Former School					_	+									+	
Fig. Fig.										+									+	
SECOND Color Marketonic Stream Sediment No						1				++						_			+	
STR STO 2										++										
STR SD													_	•						
STR STO 2 0.30 Marskorino Stream Sediment Archaeological Area 1 1 1 1 1 1 1 1 1																				
STR STO 30 0.05 Marketorino Stream Sediment Archaeological Area 1 1 1 1 1 1 1 1 1								*					_	_					1	1
STR SED 03 0.30 Myhrackorino Stream Sediment An Archaeological Area 1			0.30	Wharekorino Stream Sediment									_	•						
STR SEO 04 0.05 Whare-form Sedement No 1 <			0.0	Wharekorino Stream Sediment	Archaeological Area	1			1			1	1	1	1	1			1	1
SECONDATE SECO	STR	SED 03	0.30	Wharekorino Stream Sediment	Archaeological Area	1			1			1	1	1	1	1				
STR SED 05 0.05 Wharekorino Stream Sediment No 1	STR	SED 04			No	4 4			1			1	1	1	1	1			1	1
STR SED 05 0.05 Wharekorino Stream Sediment No 1	STR	SED 04	0.30	Wharekorino Stream Sediment	No	1			1			1	1	1	1	1			1	1
SR SD 05 0.30 Whatekorins Stream Sediment No 1 1 1 1 1 1 1 1 1		SED 05		Wharekorino Stream Sediment	No							1		1	1				1	1
FF FP FP FP FP FP FP FP		SED 05		Wharekorino Stream Sediment	No								1							_
TRF TP 1						1		1		1 -									\rightarrow	_
TRF TP TP TP TP TP TP TP T							1	1 -	†	+ +										
TRF TP 02 0.50 Former Tennis Court Area No							+	1	!	++									-+	
IFF TPG3 0.10 former Tennis Court Area No 1			0.10	Former Tennis Court Area		1 7 1	+	1	1	++		-	1	-		+	_			
TFF TPG3 0.30 former Tennis Court Area No 1 Image: Control of the court Area No 1 Image: Control of the court Area No Image: Control of the court Area No Image: Control of the court Area Image: Control of the control of the court Area Image: Control of the control of the control of the control of the control of the control of the con							1	-	-	++		-	1	1		-				
W02 TP 01							+	1	!	++						-				
MOZ TP 01							1	1		+		1	1	1						
MOZ TP 02 0.10 Ward 2 No 1 1 1 1	WD2				No	1	1	1		+										
WD2 F0.2 0.40 Ward 2 No 1										+										
W02 F9.3 0.10 Ward 2 No 1						1				\bot										
MOZ TP 03 0.40 Ward 2 No	WD2		0.40	Ward 2			1													
MOZ TP 03 0.40 Ward 2 No			0.10	Ward 2		1			1											
W02 TP03 1.20 Ward 2 No 1		TP 03	0.40	Ward 2		-		1		1 1										
\(\text{WD2}\) \(\text{TPO4}\) \(\text{0.10}\) \(\text{Ward2}\) \(\text{No}\) \(\text{1}\) \(\text{V}\) \(\text{2}\) \(\text{No}\) \(\text{1}\) \(\text{1}\) \(\text{1}\) \(\text{1}\) \(\text{1}\) \(\text{2}\) \(\text{No}\) \(\text{2}\) \(\text{No}\) \(\text{1}\) \(\text{1}\) \(\text{1}\) \(\text{1}\) \(\text{2}\) \(\text{1}\) \(\text{2}\) \(\text{1}\) \(\text{2}\) \(\text{1}\) \(\text{2}\) \(\text{2}\) \(\text{1}\) \(\text{2}\) \(\text{2}\) \(\text{1}\) \(\text{2}\) \(TP 03			No					1 -										
WD2 TP 04 0.50 Ward 2 No Image: No control of the						1		1	1	1					1				-+	
WD2 TP 04 1.10 Ward 2 No I 1 I						 	1	 	t	+-+		1				-				
WD2						 	+	+	!	++									-+	
WD2 TP 05 0.50 Ward 2 No 1 1					140	l .	1	-	 	++		1	 			-			+	
WD2 TP 05 1.10 Ward 2 No						1	+		-	++		1	1			-	+			
WD2 TP 06 0.10 Ward 2 No 1 1 1 1						+	+	1	!	++		1	-			-				
			1.10	Ward 2			1	1		+										
WD2 TP 06 0.30 Ward 2 No 1						1	1		<u> </u>	+		ļ	-				_			
	WD2	TP 06	0.30	Ward 2	No		1	1												

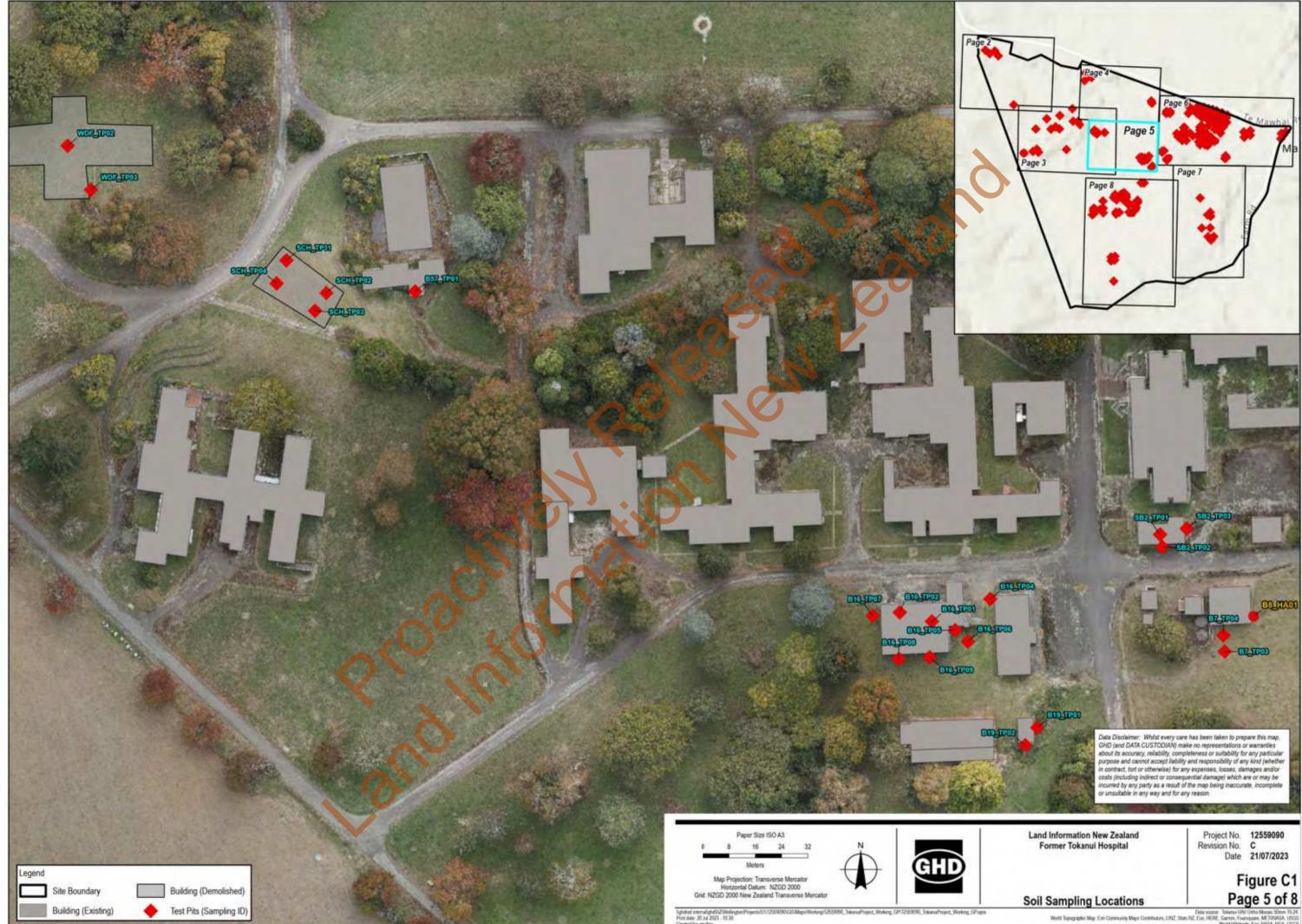

Tokanui Hospital - Sampling & Analysis Plan

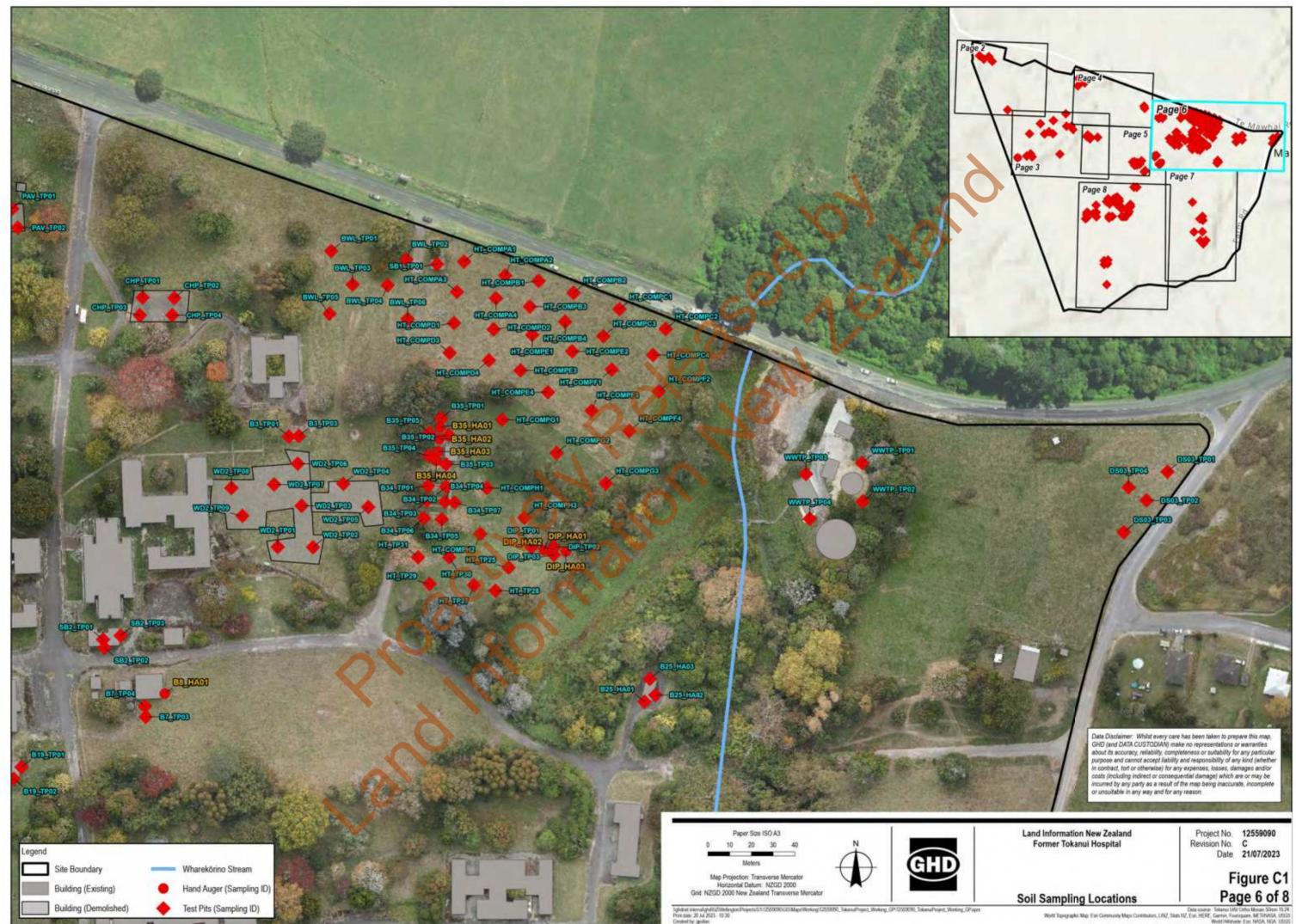

Appendix C: Sample Analytical Schedule

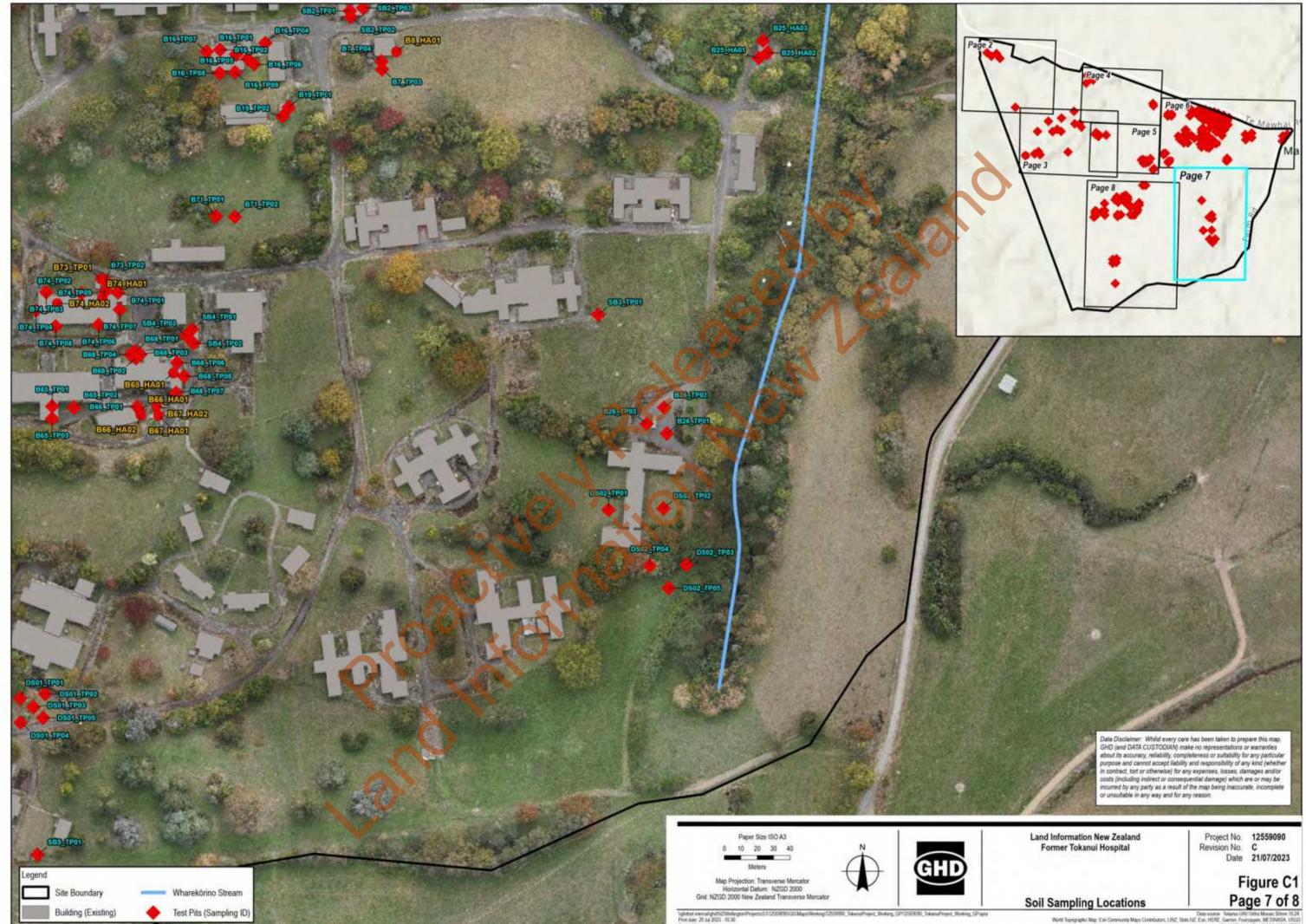
							Asbestos						Organo-nitrogen an	1						
Building	Test Pit	Depth (m)	Locality	Archaeology or Cultural Area	Building Floor Punch Required?	10 metals	(presence or absence)	Asbestos (Semi- quantitative)	ТРН	PAH	РСВ	Organochlorine Pesticides	organo-phosphate Pesticides	Acid Herbicides	VOC BTE	svoi	Composite Subsamples	Dioxin (PCDD/ PCDF)	тос	рН
WD2	TP 07	0.10	Ward 2	No		1	,	1			7 00		•		700 211	<i>x</i> 300.		,	700	p
WD2	TP 07		Ward 2	No				1												
WD2 WD2	TP 08		Ward 2 Ward 2	No No		1		1									_			
WD2	TP 09	0.10	Ward 2	No		1		1				•								
WD2	TP 09		Ward 2	No				1												
WD2 WDF	TP 09		Ward 2 Former Ward F	No Archaeological Area		1		1												
WDF	TP 01		Former Ward F	Archaeological Area		0		0												
WDF	TP 01		Former Ward F	Archaeological Area		0		0												
WDF	TP 02 TP 02		Former Ward F Former Ward F	Archaeological Area Archaeological Area		1 0		1 0												
WDF	TP 02		Former Ward F	Archaeological Area		0		0												
WDF	TP 03		Former Ward F	Archaeological Area		1		1												
WDF	TP 03	0.50	Former Ward F Former Ward F	Archaeological Area Archaeological Area		0		0					AV							
WDG	TP 01		Former Ward G	Archaeological Area		1		1				-								
WDG	TP 01	0.50	Former Ward G	Archaeological Area		0		0			1									
WDG	TP 01		Former Ward G	Archaeological Area		0		0			P									
WDG WDG	TP 02		Former Ward G Former Ward G	Archaeological Area Archaeological Area		0		0	ļ. l										-	
WDG	TP 02	1.00	Former Ward G	Archaeological Area		0		0												
WDG	TP 03	0.10	Former Ward G	Archaeological Area		1		1												
WDG	TP 03 TP 03		Former Ward G Former Ward G	Archaeological Area		0		0												
WDG WDH	TP 01		Former Ward H	Archaeological Area Archaeological Area		1		0		•					l					
WDH	TP 01	0.50	Former Ward H	Archaeological Area		0		0			1									$\overline{}$
WDH	TP 01		Former Ward H	Archaeological Area		0	4	0												
WDH WDH	TP 02 TP 02		Former Ward H Former Ward H	Archaeological Area Archaeological Area		0		0												
WDH	TP 02		Former Ward H	Archaeological Area		0		0												+
WDH	TP 03	0.10	Former Ward H	Archaeological Area		1		1												
WDH	TP 03	0.50	Former Ward H	Archaeological Area		1		1												
WDH	TP 03		Former Ward H Wastewater Treatment Plant	Archaeological Area No		1		1							1	1				
WWTP	TP 01		Wastewater Treatment Plant	No		1		1							0	1				+
WWTP	TP 01		Wastewater Treatment Plant	No		0		0							0	0				
WWTP	TP 02 TP 02	0.10	Wastewater Treatment Plant Wastewater Treatment Plant	No No		1		1		_					1	1				
WWTP	TP 02	1.00	Wastewater Treatment Plant Wastewater Treatment Plant	No No	•	0		0							0	0				
WWTP	TP 03	0.10	Wastewater Treatment Plant	No		1		1							1	1				
WWTP	TP 03		Wastewater Treatment Plant	No	X	1		1							0	1				
WWTP	TP 03		Wastewater Treatment Plant Wastewater Treatment Plant	No No		0		0							1	0				
WWTP	TP 04		Wastewater Treatment Plant	No		1		1							0	1				
WWTP	TP 04		Wastewater Treatment Plant	No		0		0							0	0				
WWTP	DIS-SED		Wastewater Treatment Plant	No	A	1									1	1			1	1
WWTP WWTP	DIS-SED SEEPAGE-SED		Wastewater Treatment Plant Wastewater Treatment Plant	No No	 / 	1 1									1	1			1	1
WWTP	SEEPAGE-SED	0.50	Wastewater Treatment Plant	No		1									1	1			1	1
				Sign	1011		,													

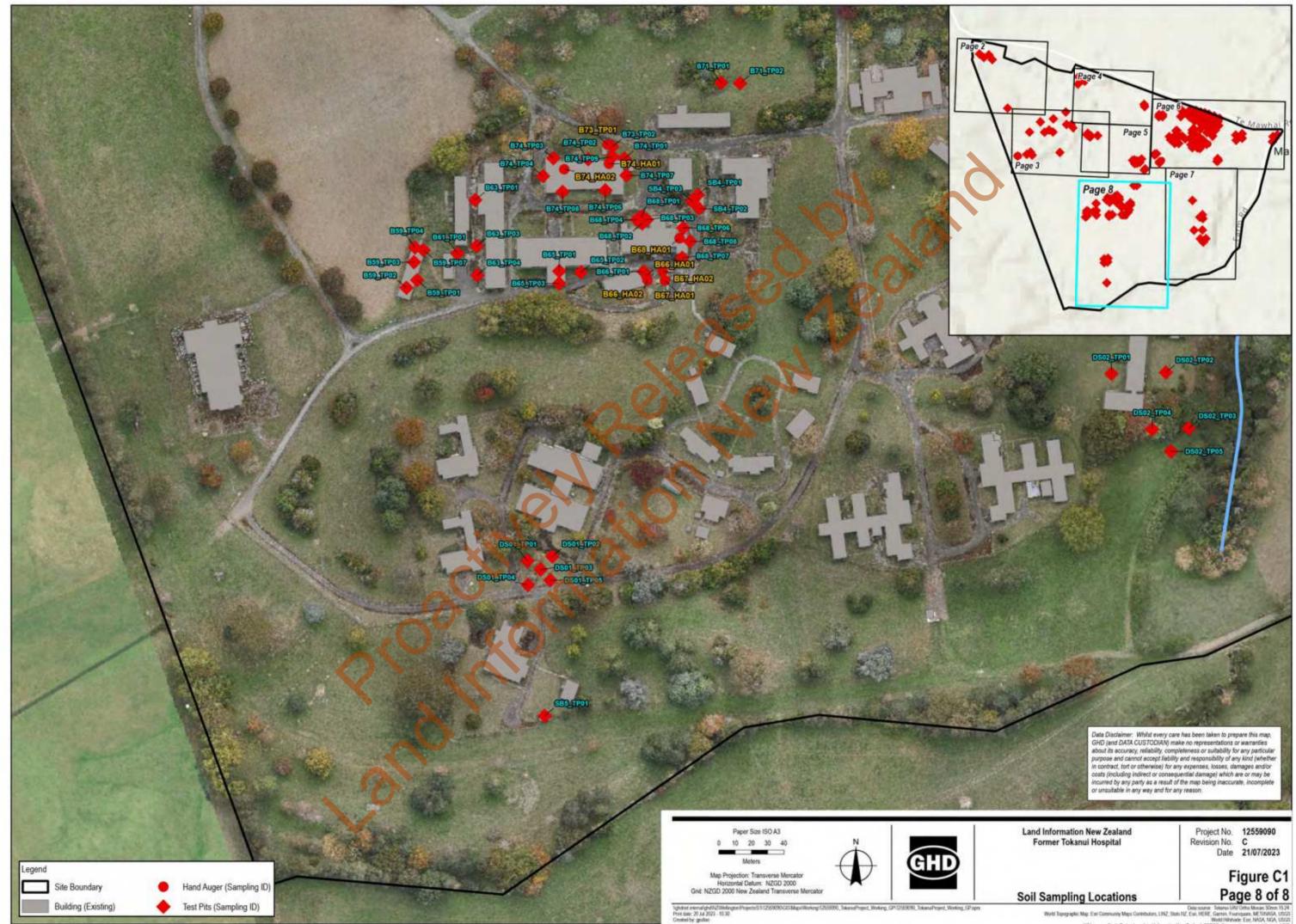


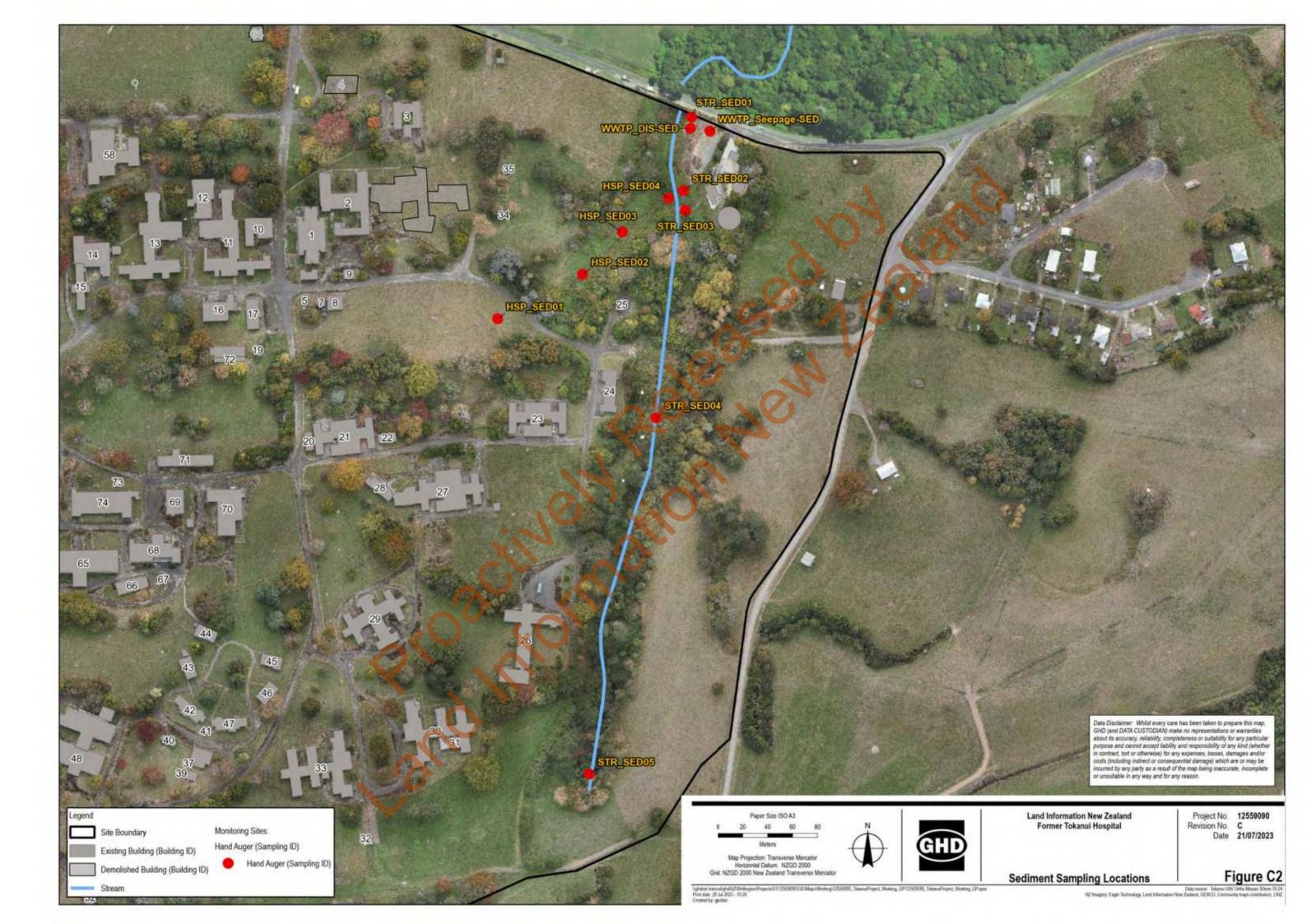

Appendix Caland Sampling location maps Proactively attornation Proactively attornation

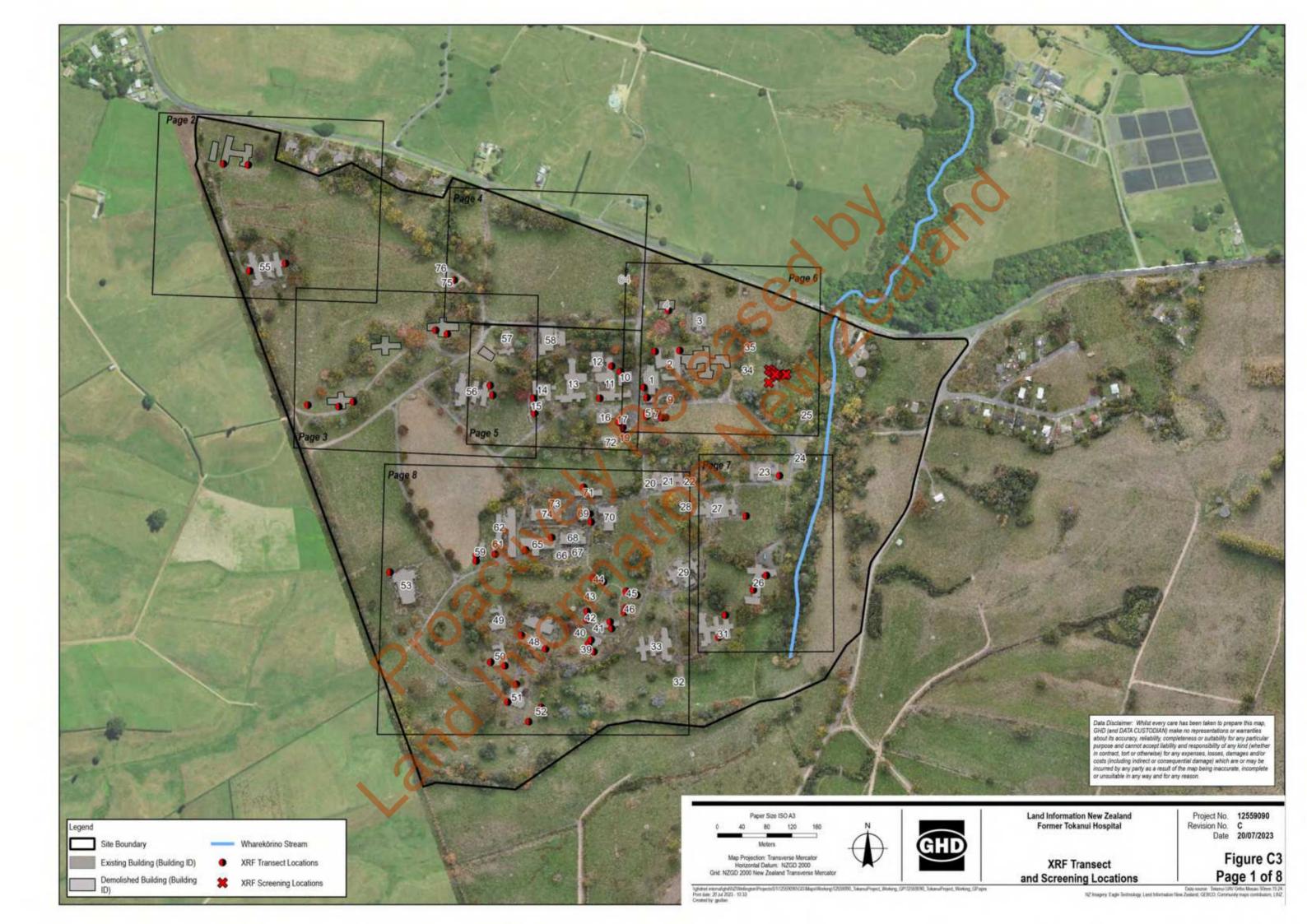


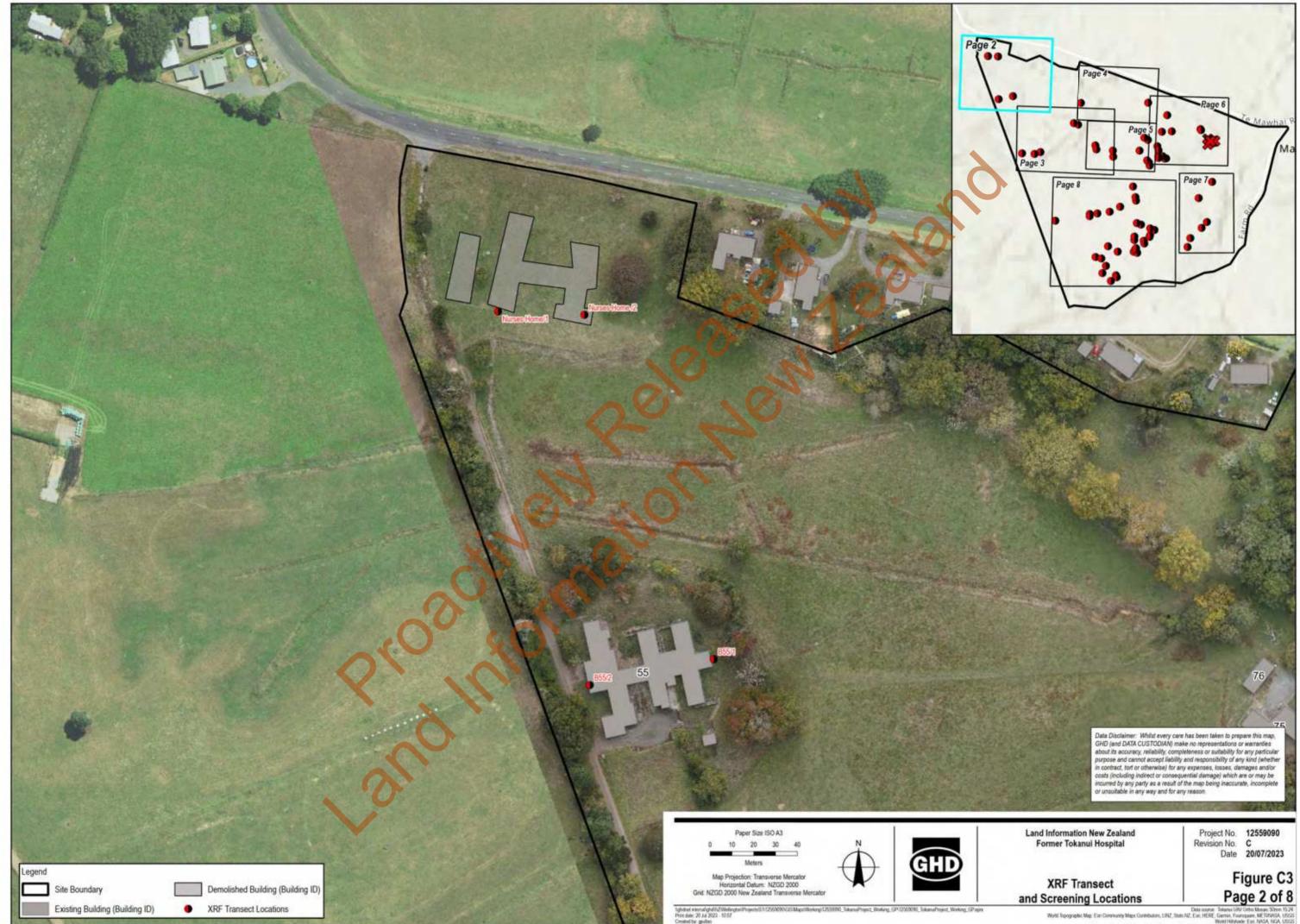

Data require: Solvano LIAV Orthe Manage Streen 15 24.
World Topographic Mag: East Community Mags: Connections, LIAV, Data 764, East Halffy, Gentus, Francespare, MCTM/GAS, LIEUS,
World Topographic Mag: East Englander, LIAV, Data 764, East Lieus, LIAV,
World Topographic Mag: Connection of the Zandard, OZBOCO, Community responses to LIAV.

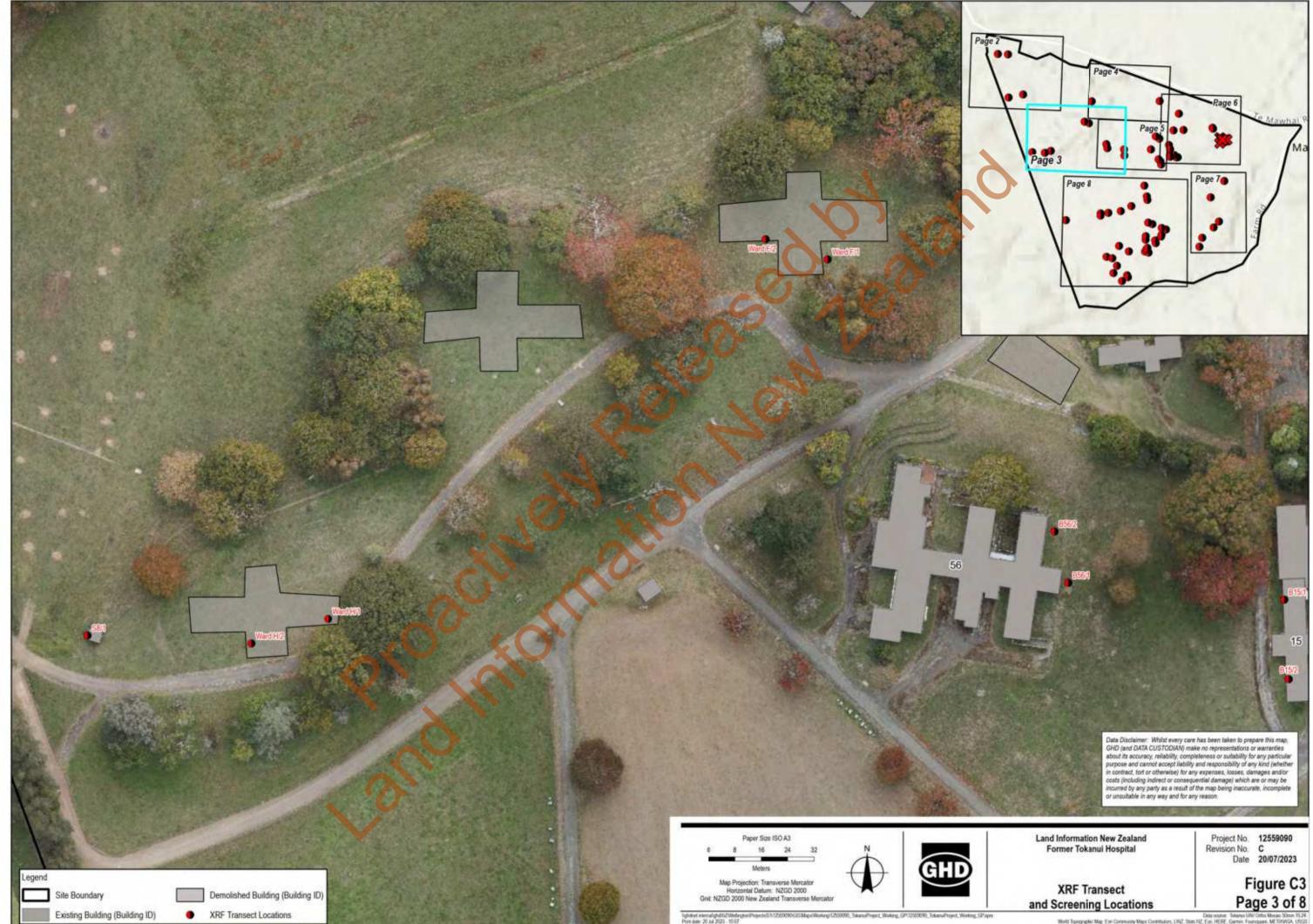

Data require: Solvano LIAV Other Sheare Streen 15-24.
World Tapographic Mag: East Community Mags: Connections, LIAV, Data 764, East Halffy, Garmin, Francespase, MCTMARIA, 1655, Mark Halfy, Garmin, Francespase, MCTMARIA, 1655, 1655, Mark Indiana, East, IAVA, IASA, 1655, 1655, Mark Indiana, East, IAVA, IASA, 1655, 1655, Mark Indiana, IAVA, IASA, 1655, 1655, Mark Indiana, IAVA, IASA, 1655, 1655, Mark Indiana, IAVA, IASA, 1655, 1655, Mark Indiana, IAVA, IASA, 1655, 1655, Mark Indiana, IAVA, IASA, 1655, MARIA, IASA, 1655, MARIA, IASA,

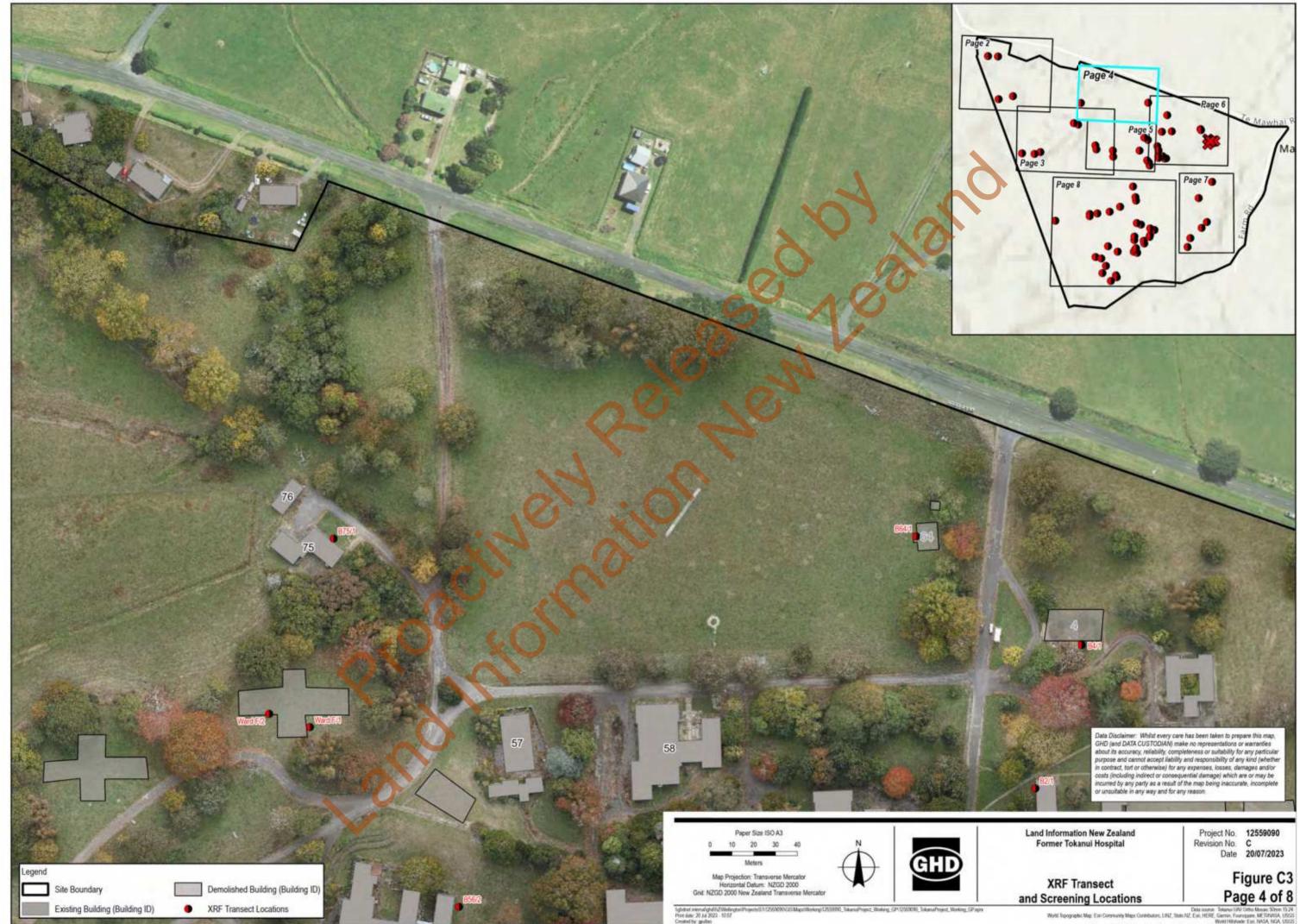

Data mapur: Telano IAW Oths Mesos Xiven 15 24.
World Tapographic May: Earl Constrainty Mays: Constitution, EMZ, Blass NZ, Earl Halff, Gertier, Francispans, MCTMVIGA, HEEG.
WEST Integery, Eagler Technology, Land Information New Zeeland, GEBCO, Constrainty maps contribution, EMZ.

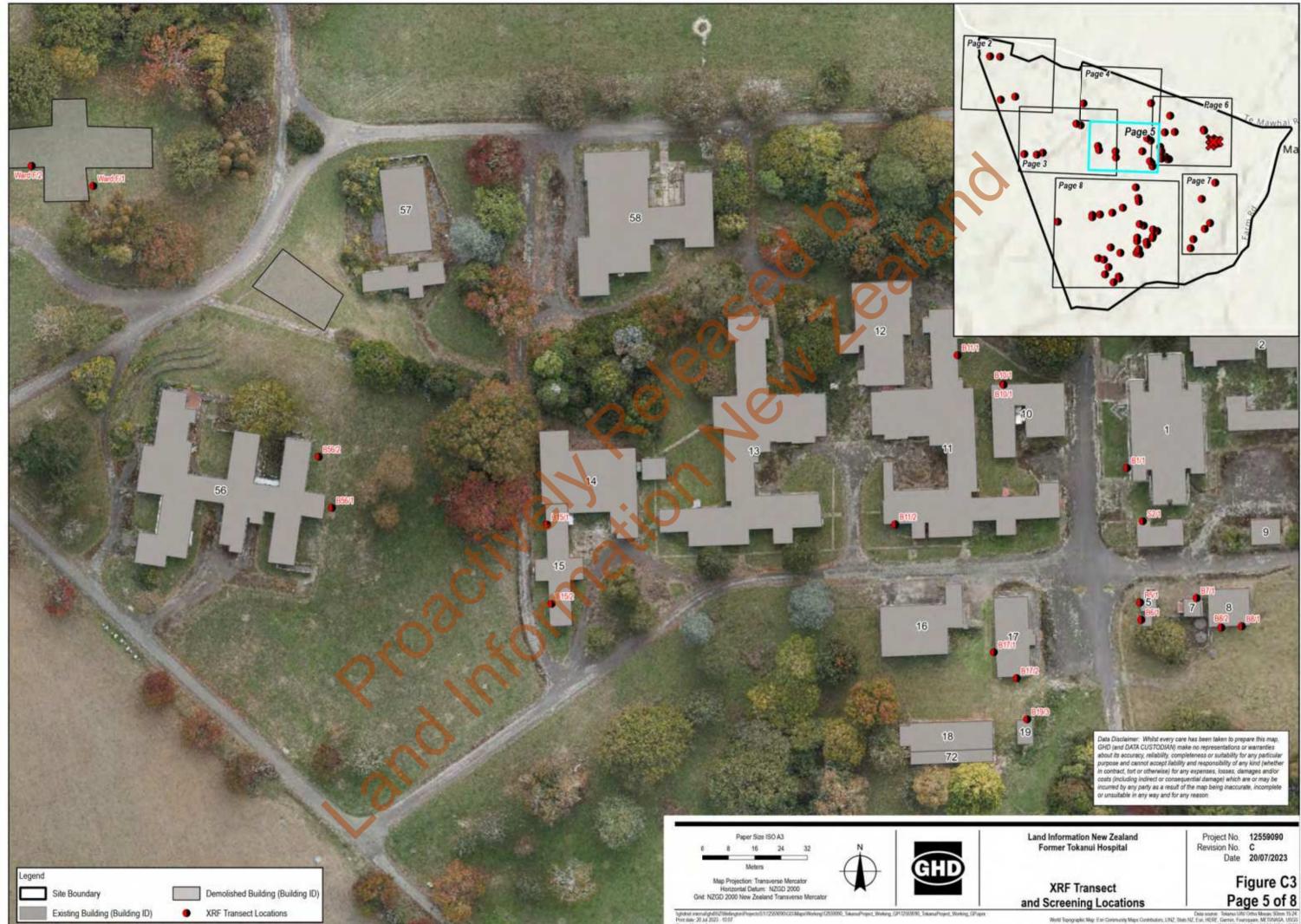

Data report: Solares IVW Other Mease: Solares IVW Other Mease: Solares IVW Other Mease: Solares IVW Other Mease: Solares IVW Other Mease: Solares IVW Other Mease: MITWARD . IEEE White Tapographic Mag: East Experimental .

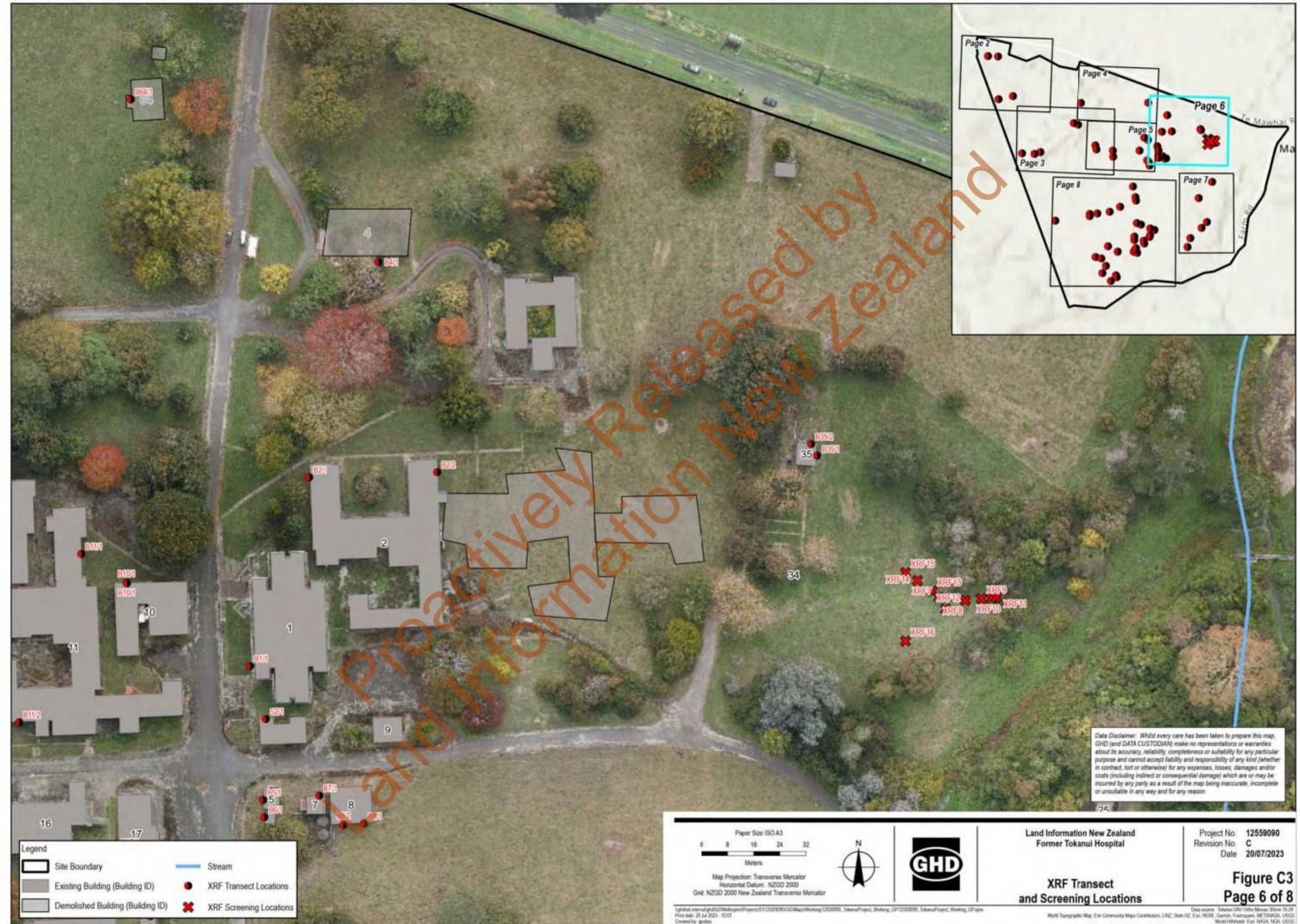



Date nature: Telepro INV Oths Minate Streen 15 24.
World Tapographic Mag: Ear-Community Mags: Connecticutors, LHZ, Stam NZ, Earl Halff, Germin Francepaire, MCTMARIA, 1955.
Wild Imagory Eagle Technology, Land Information New Zinderd, 023900, Community require contributors, LNZ.

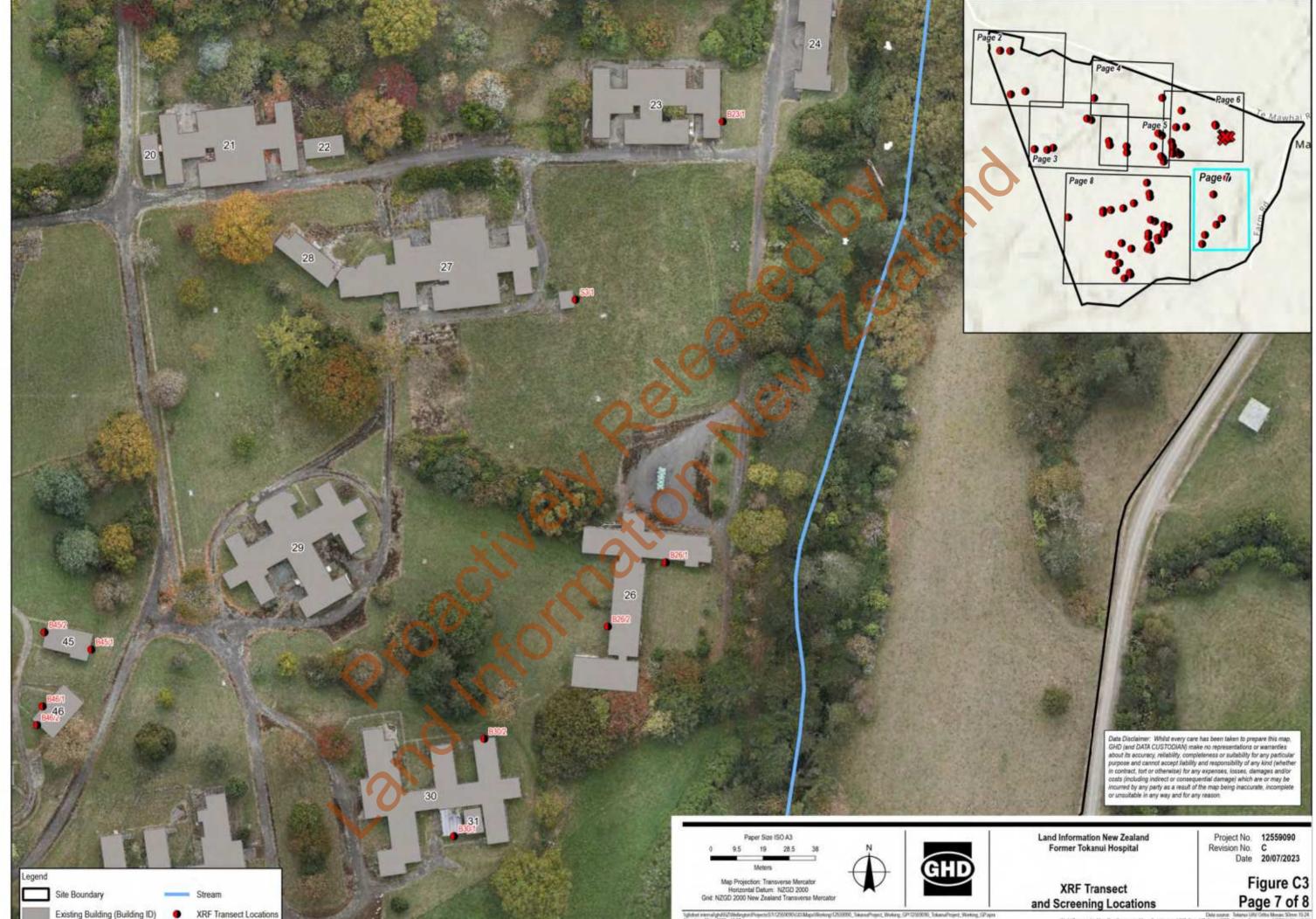

Disks notice: Tokans UM/ Disks filtings; Stress 15; 24
World Tapographic Map: Earl Community Maps: Continuous, LTNZ, Stats NZ, Earl 16EFE, Garten, Transpasse, MCTRATA, 16ESS
Will Imagery, Eagle Technology, Land Information New Zeeland, GEBOO, Community maps contributes, LTNZ,



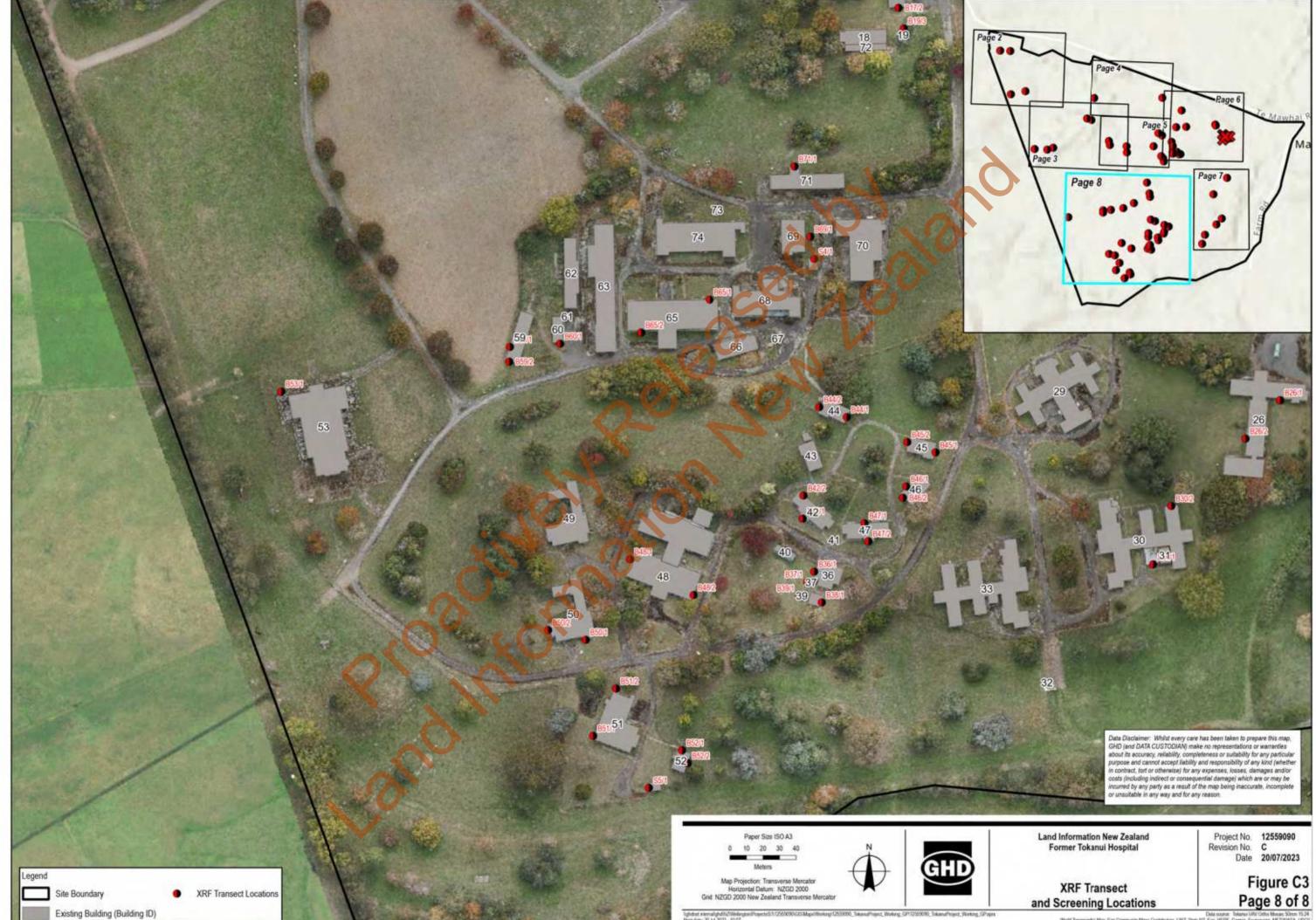

Date nature: Selana LIW Oths Shear Street 524.
World Spagnight May: Ear Community Mays: Contribution, LINZ, Blass NZ, Fox HERF, Germin Franzysser, MCTM/INA, IEEE
World Highland: Ear, IMASA, IEEE
Wall Integery, Eagler Technology, Land Information New Zealand, GZBOO, Community maga contribution, LINZ.

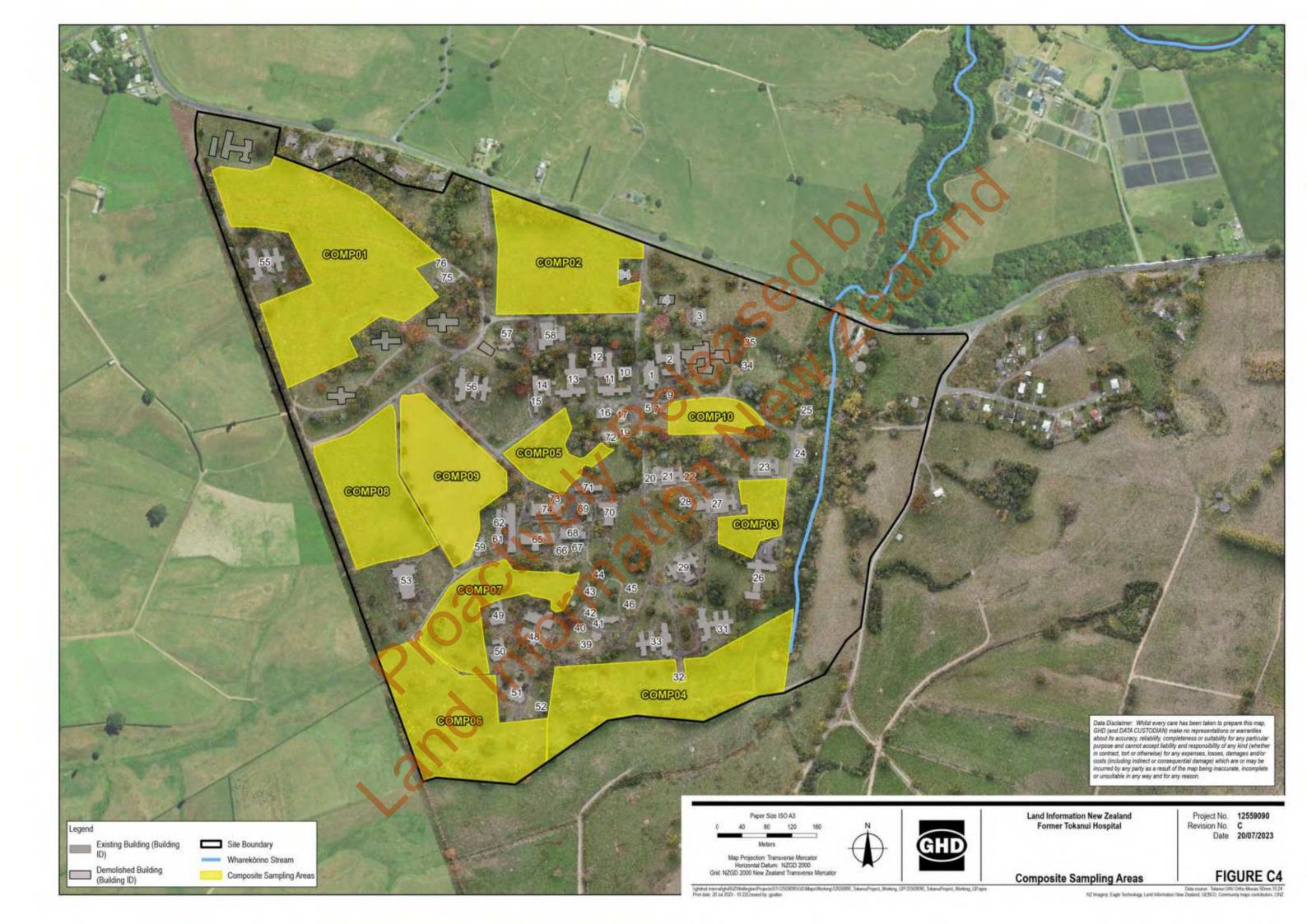


Data nazior: Selano ISW Oths Minar Khrish 1574.
World Topographic Mag: Ear-Community Mags: Contribution, LINZ, Blass NZ, East HERF, Germin Franzasse, MCTM/MAX, HEES
World Minardor Ear, HARA, HEES
WEST Integroy, Eagler Technologic, Land Indianation How Zeeland, GEBCO, Community mags contribution, LINZ.



Date notice: Totanes IIW Deho Manae Streen 15 24: World Topographic Map: Eur Community Maps: Curriettucors, LINZ, Stam NZ, Eur HERE, Garten, Franciscus, MCTRATA, 19555 World Harbank: Eart JANAA, NASA URS 1952 Imagory, Eagle Tochnology, Land Information New Zinderd, GEBOO, Community maps combiners, LINZ.




Deta nozina: Tekansi UMV Dithi Shimaci Xilvan 15 (M. Wiyiti Topographic Mag: Esir Communing Mago: Contributors, LINZ, Shim RZ, Swi, HERE, Gartin, Franciscae, METENTAN, USESS Ward Harbank: Esta NASA, NEW, USESS 1922 Imagory, Esigle Technologic, Land Information New Zeeland, GEBOO, Community mago contributors, LINZ.

Date scarce: Teleans UNV Date School: Searce UNV Date School: Searce UNV Date School: Searce UNV Date School: Searce UNV Date School: Searce

Data roupus: Totanus UMV Dehn Messac Schem 15 (M Mehn Messac Schem 15 (M Mehn Messac Schem 15 (M Mehn Messac Schem 15 (M M Mehn Messac M M Mehn Messac M M Mehn Messac M M Mehn Messac M M Mehn Messac M M Mehn Messac M M Mehn Messac M Mehn Mehn Messac M Mehn Messac M Mehn Messac M Me

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 19/06/2023 - 19/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		 	_				 	1
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B19 TP01 0.1		333	Sandy Clay TOPSOIL; brown to light brown; very soft; low plasticity; some roots	М	•	
0.05					plasticity, some roots			-0.05
0.1							7 ~	-0.1
0.15						1), (1)	-0.15
0.2				77777	Sandy CLAY; dark grey			-0.2
_ 0.25					Sandy CLAY; dark grey		00	- 0.25
0.3							V	-0.3
					~~			E
0.35					100	7		-0.35
0.4		B19 TP01 0.5	1		Clayey fine to medium SAND; light brown to brown; very soft; low plasticity; well graded			-0.4
0.45								-0.45
0.5								- 0.5
0.55				//	N 11			-0.55
0.6				//	(0)			-0.6
_ 0.65				//				-0.65
0.7				//				-0.7
0.75								-0.75
0.8			{(-0.8
_ _ _ 0.85					kO'			-0.85
 								-0.9
=		B19 TP01 1.0						E
0.95								-0.95
1				<i>Z::Z</i> :	Termination Depth at:1.00 m			-1
_ 1.05 		· 0						-1.05
1.1								-1.1
_ 1.15		•						-1.15
1.2								-1.2
_ 1.25								_ 1.25
Notes								

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Cc DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Ha (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drillin SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-WS-Window Sampler	and Excavation g, PT-Pushtube, M-Moist, VM-Very Moist, W-Wet, S-Saturated	t, Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 19/06/2023 - 19/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		Г				
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Elevation (m)
-		B19 TP02 0.1		333	Sandy Clay TOPSOIL; brown; soft; low plasticity M	
0.05				} }}		-0.05
0.1			-	} }		-0.1
0.15					Clayey fine SAND; light brown with some black mottling M	-0.15
0.2					higher up; soft; high plasticity; some silt at bottom	-0.2
- - 0.25						- 0.25
0.3						-0.3
E						E
0.35						-0.35
0.4		B19 TP02 0.5	1			- -0.4
0.45					20 70	-0.45
0.5						-0.5
0.55						-0.55
0.6						-0.6
0.65						- 0.65
0.7						-0.7
E						-0.75
0.75			7			
0.8						0.8
0.85						-0.85
0.9		B19 TP02 1.0				_ 0.9
0.95		· ·				-0.95
1					Termination Depth at:1.00 m	-1
1.05					Termination Depart at. 1.00 III	- 1.05
1.1		.0				-1.1
1.15						E
1.15						-1.15
1.2						-1.2
1.25						-1.25
<u> </u>						F

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Cc DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Ha (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drillin SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-WS-Window Sampler	and Excavation g, PT-Pushtube, M-Moist, VM-Very Moist, W-Wet, S-Saturated	t, Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 20/06/2023 - 20/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B25 HA01 0.1			CLAY; brown with some black mottling; firm; high plasitcity;	М		
0.05					minor sand		\ \ \\	_ 0.05
0.1			-				7 70	-0.1
0.15						X), (1)	_ 0.15
0.2								_ _ 0.2
0.25							~0.	_ _ 0.25
E					S		6	_
0.3					7			0.3
0.35								0.35
0.4		B25 HA01 0.5	1					- 0.4
0.45					Clayey medium to coarse SAND; redish brown to brown (predominantly brown from 0.1 - 1.0); very soft; low plasticity;	M	_	- - - - - - - - - - - - - -
0.5			┨		(predominantly brown from 0.1 - 1.0); very soft; low plasticity; well graded			-0.5
- - 0.55								-0.55
0.6								_ 0.6
0.65				//•/				- - 0.65
0.7								_ _ 0.7
E I								E
0.75			7					0.75
0.8		, C			¿O`			-0.8
0.85								-0.85
0.9		B25 HA01 1.0		//				-0.9
0.95								-0.95
1					Termination Depth at:1.00 m			= -1
1.05								_ 1.05
1.1		10						_ 1.1
1.15								- - 1.15
-								Ε
1.2								-1.2
1.25								1.25
Notes			1	L		1	<u> </u>	Ε

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 20/06/2023 - 20/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B25 HA02 0.1	İ		CLAY; dark brown with black mottling; soft; high plasticity;	М		Ē
0.05					minor sand		\ \ \ \ \ \	_ _ - 0.05
0.1							7 ~0	_ 0.1
0.15						X		-0.15
Εl					>		10	Ē
0.2								0.2
0.25							0,0	- - - - -
0.3					25			-0.3
0.35								-0.35
0.4					10 1	7		-
		B25 HA02 0.5						E
0.45					() - 10			0.45
0.5			1	(/////	Medium to coarse SAND; brown to reddish brown; very soft;	М	-	0.5 _
0.55					low plasticity; minor clay to 0.8m			-0.55
0.6								_ 0.6
0.65				•				_ _ 0.65
0.7				X				-0.7
Εl								E
0.75			7					-0.75
0.8			10					-0.8
0.85								-0.85
0.9								_ 0.9
0.95		B25 HA02 1.0						-0.95
0.95								-0.95
1					Termination Depth at:1.00 m			 -1
1.05								_ 1.05
1.1								_ 1.1
1.15								_ 1.15
1.2								-1.2
⊨ I								E
1.25								_ - - - - -
Notes		1	<u> </u>			1		<u> </u>

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 20/06/2023 - 20/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B25 HA03 0.1	İ		CLAY; brown with some black mottling; soft; high plasticity; minor sand	М		Ē
0.05					minor sand			-0.05
0.1							7 70	-0.1
0.15						X), (1)	-0.15
0.2								_ _ 0.2
0.25							~0.	_ _ 0.25
F					S		6	
0.3					7			-0.3
0.35								- -0.35
0.4		B25 HA03 0.5						- 0.4
0.45					Sandy coarse CLAY; brown transitioning to reddish brown; soft; low plasticity; well graded	M	_	-0.45
0.5			1		soft; low plasticity; well graded			-0.5
0.55								-0.55
0.6								-0.6
0.65								- - 0.65
0.7								_ _ 0.7
E I								
0.75			7					0.75
0.8		, C			·O'			-0.8
0.85								-0.85
0.9		B25 HA03 1.0						-0.9
0.95								-0.95
1					Termination Depth at:1.00 m			- -1
1.05								_ 1.05
1.1		10						_ 1.1
1.15								- -
⊨ I								Ε
1.2								-1.2
1.25								1.25
Notes					<u> </u>	1		_

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

GHD

ENVIRONMENTAL-TEST PIT

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 **Site** Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 19/06/2023 - 19/06/2023 Total Depth (m) 0.20 Logged By DJ Checked By CH

		<u> </u>				1	T	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B26 TP01 0.1			CONCRETE; some building wood and tile			=
0.02				: · · · · · ·				-0.02
0.04				1			7 .70	-0.04
0.06						X		- 0.06
0.08				7				- -
E							~°°	
- 0.1 -				· · · · ·			O	0.1 - -
0.12				· ^ · ·	-7-3	ľ		-0.12
0.14				7		7		-0.14
0.16				:>:				-0.16
0.18				7:	20 70			_ 0.18
0.2								- 0.2
0.22					Termination Depth at:0.20 m. Refusal at 0.2m; some building wood and tile.			_ _ 0.22
Εl					(0)			_
_ 0.24 _ _								0.24 - -
- 0.26 -				X				0.26
0.28				O				-0.28
0.3			{(-0.3
0.32					kO'			-0.32
0.34				(_ 0.34
- - 0.36								_ 0.36
0.38								_ 0.38
0.60								0.4
F								
0.42								0.42
0.44		•						-0.44
0.46								-0.46
0.48								-0.48
								Ė

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 19/06/2023 - 19/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
0.05		B26 TP02 0.1			Sandy CLAY; dark brown; soft; high plasticity; some fine gravels; some bricks, asphalt present	М	6. 1.	-0.05
0.1						Y		-0.1 -0.15
0.2								- 0.2
0.25							0	-0.25
- 0.3 - 0.35					Sandy CLAY; grey to dark brown; very soft, low plasticity	D		-0.3
0.4		B26 TP02 0.5				7		-0.4
0.45					20 70			-0.45
0.5								-0.5 -0.55
0.6					(0):			-0.6
0.65								-0.65
0.7					·······································			-0.75
0.8		,(50					-0.8
- 0.85 0.9								-0.85 - -
0.95		B26 TP02 1.0						-0.95
- 1 -					Termination Depth at:1.00 m			- -1
1.05		. 0						-1.05
1.1								-1.1 -1.15
1.2								-1.2
_ 1.25 _								_ 1.25

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Cc DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Ha (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drillin SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-WS-Window Sampler	and Excavation g, PT-Pushtube, M-Moist, VM-Very Moist, W-Wet, S-Saturated	t, Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 19/06/2023 - 19/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

<u> </u>		r				1	T	1
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B26 TP03 0.1			Sandy CLAY; brown to grey brown; soft; low plasticity; some asphalt	М		
0.05					aspnait			-0.05
0.1			-				7 ~~	-0.1
0.15						X		-0.15
0.2					>		7.0	-0.2
FI						7		=
0.25								-0.25
0.3					Sandy CLAY; brown with abundant blackish brown mottling;	М		-0.3
0.35					soft; low plasticity; minor silt near bottom			-0.35
0.4		B26 TP03 0.5	-					-0.4
0.45					70° (0°			-0.45
0.5					KH			-0.5
E I								
0.55								-0.55
0.6					10,110,			-0.6
0.65								-0.65
0.7								-0.7
0.75								-0.75
0.8			{(-0.8
0.85		~10			kO'			-0.85
F								=
0.9		B26 TP03 1.0						- 0.9
0.95								-0.95
1				(//////	Termination Depth at:1.00 m			-1
1.05			ĺ					-1.05
1.1								_ 1.1
1.15								-1.15
⊨ I								Ε
1.2								-1.2
1.25								-1.25
Notes						<u> </u>		F

Notes

Drilling A	Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
DC-Diam (shovel), SD-Sonio	Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, and Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, dow Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 07/06/2023 - 07/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		Г					1	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B34 TP 01 0.10		333	Sandy silt TOPSOIL; dark brown			
0.05							4 0	-0.05
0.15					Clayey SAND; brown to light-brown; very soft; medium to	M		-0.15
0.2					coarse grained; well graded			_ 0.2
0.25							0.0	- - 0.25
0.3				//			V	-0.3
El					-75			Ē
0.35					180	7		-0.35
0.4		B34 TP 01 0.50	1					0.4
0.45				7	Clayey SILT; off white with some brown mottling; soft; low	М	-	0.45
0.5				0.00	plasticity			-0.5
0.55				000	14 0			-0.55
0.6								_ 0.6
0.65								- - 0.65
0.7				000				_ 0.7
Εl								Ē
0.75			7					0.75
0.8				0.				0.8
0.85				000				0.85
0.9		B34 TP 01 1.00						-0.9
0.95		· ·		0000				-0.95
1			U	0.	Termination Don't at 1 00 m			<u>-1</u>
1.05					Termination Depth at:1.00 m			_ 1.05
1.1		'0'						-1.1
-								E
1.15								-1.15
1.2								1.2
1.25								-1.25
Notes								=

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Cc DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Ha (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drillin SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-WS-Window Sampler	and Excavation g, PT-Pushtube, M-Moist, VM-Very Moist, W-Wet, S-Saturated	t, Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 07/06/2023 - 07/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		<u> </u>					1	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B34 TP 02 0.10		333	Sandy Silt TOPSOIL; dark brown; soft; high plasticity; 40% coarse cobbles and boulders, some roots	D	•	-
0.05				$ \rangle\rangle\rangle$	coarse couples and bodiders, some roots		\	-0.05
0.1							7 70	-0.1
0.15						1), (1)	-0.15
0.2				[{ { {				-0.2
0.25							0.0	-0.25
0.3							O	-0.3
0.35								-0.35
0.60					CLAY; tanish brown; soft; high plasticity; minor fine sand	М		E
		B34 TP 02 0.50						0.4
0.45					20 20			-0.45
0.5								-0.5
0.55					12 N			-0.55
0.6				/////	Clayey SILT; brownish grey with red and brown mottling; firm	М	-	-0.6
0.65				0.00				-0.65
0.7				000				-0.7
0.75			0	2.00				-0.75
0.8				0.				-0.8
0.85				000	XO			-0.85
0.9								-0.9
0.95		B34 TP 02 1.00		000				-0.95
5.55								5.55
					Termination Depth at:1.00 m			- '
1.05		, '0						-1.05
1.1								-1.1
1.15								-1.15
1.2								-1.2
_ _ 1.25								-1.25
Notes						1		Ė.

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Cc DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Ha (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drillin SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-WS-Window Sampler	and Excavation g, PT-Pushtube, M-Moist, VM-Very Moist, W-Wet, S-Saturated	t, Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 07/06/2023 - 07/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

<u></u>		r				1		
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
0.05		B34 TP 03 0.10			COBBLES and BOULDERS; dark brown topsoil silt matrix with clay; uniformly graded	М	, >	- - - 0.05
0.1						V	d and	-0.1
0.15				V SS 24 - 14	SAND; reddish brown; very soft; coarse to medium grained; well graded	D		0.15 0.2
0.25							60	- 0.25
0.35					Sandy CLAY; blackish brown; soft; low plasticity	М		-0.3 - -0.35
0.4		B34 TP 03 0.50				7		
0.45					20 40			-0.45 - - 0.5
0.55					14 0			-0.55
0.65					18,,410,			0.6 - - - 0.65
0.7								-0.7
0.75			?					0.75 0.8
0.85		210						-0.85
0.9		B34 TP 03 1.00						-0.9
1			0		Termination Depth at:1.00 m			-1 -1
1.05								
1.15								1.1 1.15
1.2								-1.2
1.25								1.25 - - -

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	M-Moist, VM-Very Moist,	Loose, L-Loose, MD-Medium	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 07/06/2023 - 07/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		·					T	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B34 TP 04 0.10		333	Sandy silt TOPSOIL; dark brown; soft; low plasticity	М	•	
0.05							6, 1	
E						V		E
0.15					Clayey SAND; brown to off-white; sand is medium to coarse grained; very soft; well graded; trace cobbles	М		-0.15
0.2					Sandy CLAY; brown to dark brown; soft; high plasticiy;	М		-0.2
0.25							0,0	-0.25
0.3								-0.3
0.35								-0.35
0.4		B34 TP 04 0.50	$\frac{1}{1}$		Silty CLAY with some fine sand; light brown with some dark	M		-0.4
0.45					brown mottles; firm; high plasticity			_ 0.45
0.5					K 6			_ 0.5
0.55					W'A'			-0.55
0.6					(0):(0)			-0.6
0.65								-0.65
0.7								-0.7
0.75			0					-0.75
0.8		·C						-0.8
0.85								-0.85
0.9		B34 TP 04 1.00	}					-0.9
0.95								-0.95
1					Termination Depth at:1.00 m			-1
1.05					теннінацоп рерці ас. 1.00 пі			-1.05
1.1								- 1.1
1.15		•						-1.15
1.2								-1.2
1.25								_ 1.25
Ė.			<u> </u>			1		F

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Cc DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Ha (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drillin SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-WS-Window Sampler	and Excavation g, PT-Pushtube, M-Moist, VM-Very Moist, W-Wet, S-Saturated	t, Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 07/06/2023 - 07/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		1					1	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
0.05		B34 TP 05 0.10		}	Sandy silt TOPSOIL; dark brown; very soft; high plasticity; around 50% cobbles and boulders, some roots	М	. >	-0.05
0.1							4 20	_ 0.1
0.15								0.15
0.2 - - - 0.25							2010	0.2 0.25
0.3					Sandy CLAY; brown with some black mottles; soft; high plasticity	M	0	-0.3
0.35								-0.35
- 0.4 - 0.45		B34 TP 05 0.50						-0.4
0.43					A Ho			-0.43
0.55					14 0			-0.55
0.6					16,, 10,			-0.6
0.65					Clayey SILT; off white with some brown and black mottling; soft; high plasticity	М		-0.65 - -
0.75			0					-0.75
0.8		*C			·O'			-0.8
- 0.85 - - 0.9		0		000				0.85 0.9
0.95		B34 TP 05 1.00						-0.95
1				0 . 0	Termination Depth at:1.00 m			- -1
1.05 1.1								
1.15								-1.15
1.2								-1.2
1.25								_ 1.25
<u> </u>								-

Notes

Drilling Abbreviations	Moisture Abbreviations	s Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Cc DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Ha (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-WS-Window Sampler	nd Excavation g, PT-Pushtube, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

GHD

ENVIRONMENTAL-TEST PIT

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 **Site** Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui **Date Excavated** 07/06/2023 - 07/06/2023

Total Depth (m) 1.00 Logged By DJ Checked By CH

		<u> </u>					1	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B34 TP 06 0.10		333	Sandy silt TOPSOIL; dark brown; very soft; high plasticity; about 20% cobbles and boulders	М		=
0.05				$ \rangle\rangle\rangle$	about 2070 copples and boulders		\	-0.05
0.1				} }			7 20	-0.1
0.15				} }		1), (1)	-0.15
0.2				[{ { {				-0.2
_ _ 0.25				} }			0.0	-0.25
0.3				} }			O	-0.3
0.35				} }				-0.35
0.4				[{ { {	10 1	7		-0.4
0.4		B34 TP 06 0.50		} }				-0.45
F					Silty CLAY; greyish white with some black mottling, firm, high plasticity; moist; minor fine sand	М		E
0.5								0.5
0.55								0.55
0.6					10,, 10,			0.6
0.65								-0.65
0.7								-0.7
0.75			0					-0.75
0.8		4C	10					-0.8
0.85								-0.85
0.9		B34 TP 06 1.00	-					-0.9
0.95								-0.95
1					Termination Depth at:1.00 m			-1
1.05								-1.05
1.1								-1.1
1.15								_ 1.15
1.2								_ 1.2
1.25								-1.25
Notes								

Notes

Drilling Abbreviations	Moisture Abbreviations	s Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Cc DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Ha (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-WS-Window Sampler	nd Excavation g, PT-Pushtube, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

GHD

ENVIRONMENTAL-TEST PIT

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 **Site** Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui **Date Excavated** 07/06/2023 - 07/06/2023

Total Depth (m) 1.00 Logged By DJ Checked By CH

Sample ID Sample ID Sample ID Soil Type (Classification Group Specifier) Particles Size Comments (Contaminant Indicators.			<u></u>				1	T	
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 834 TP 07 0.50 CLAY; brown with gone black motiting; very soft high plasticity; minor fine and 0.5 0.6 0.65 0.65 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.8	Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant	Moisture	COMMENTS	Elevation (m)
0.1			B34 TP 07 0.10		333	Sandy silt TOPSOIL; dark brown; very soft; high plasticity;	М		
-0.15	0.05					about 50 % cobbles and boulders			_ 0.05
0.2	0.1								-0.1
0.25	0.15						1), (1)	_ 0.15
0.3	0.2				[{{{				-0.2
0.35 0.4 0.45 0.5 0.5 0.6 0.65 0.7 0.75 0.8 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	0.25							0.0	- -0.25
0.4 B34 TP 07 0.50 CLAY, brown with some black moltting; very soft; high plasticity; minor fine band CLAY, brown with some black moltting; very soft; high plasticity; minor fine band CLAY, brown with some black moltting; very soft; high plasticity; minor fine band CLAY, brown with some black moltling; very soft; high plasticity -0.55 -0.6 -0.65 -0.7 -0.75 -0.8 -0.85 -0.95	0.3								- -0.3
0.4 B34 TP 07 0.50 CLAY, brown with some black moltting; very soft; high plasticity; minor fine band CLAY, brown with some black moltting; very soft; high plasticity; minor fine band CLAY, brown with some black moltting; very soft; high plasticity; minor fine band CLAY, brown with some black moltling; very soft; high plasticity -0.55 -0.6 -0.65 -0.7 -0.75 -0.8 -0.85 -0.95	0.35				{				-0.35
0.45 -0.45 -0.5 -0.5 -0.55 -0.6 -0.65 -0.7 -0.75 -0.8 -0.85 -0.85 -0.9 -0.95 -	E I					10 1	7		
CLAY: brown with some black mottling; very soft; high plasticity; minor fine sand -0.5 -0.6 -0.6 -0.65 -0.7 -0.7 -0.7 -0.7 -0.8 -0.8 -0.85 -0.9 -0.9 -0.95 -0.95 -1.15 -1.15 -1.15 -1.15	F		B34 TP 07 0.50		} }}				
0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 B34 TP 07 1.00 Termination Depth at: 1.00 m Termination Depth at: 1.00 m -0.55 -0.65 -0.66 -0.65 -0.67 -0.75 -0.75 -0.8 -0.85 -0.99 -0.95 -1.15 -1.15 -1.15 -1.15 -1.15	F					CLAY; brown with some black mottling; very soft; high plasticity; minor fine sand	М		
-0.6 -0.65 -0.7 -0.7 -0.75 -0.8 -0.85 -0.9 -0.95 -0.95 -1.11 -1.15 -1.2	E								
0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1 1.05 1.1 1.15 1.2	E								
0.7	F					10,150			
Clayey SILT; off white to yellowish brown; some red and dark brown mottling, soft; high plasticity -0.75 -0.8 -0.85 -0.95 B34 TP 07 1.00 Termination Depth at:1.00 m -1.05 -1.1 -1.15 -1.2	0.65								— - 0.65 - ⊢
0.75 0.8 0.85 0.9 0.95 0.95 0.95 0.95 0.95 0.95 0.95	0.7				0.	Clayey SILT; off white to yellowish brown; some red and dark	М		0.7 _
0.85 0.9 B34 TP 07 1.06 -0.95 -0.95 -1.05 -1.11 -1.15 -1.2	0.75			0		brown morning, soit, right plasticity			-0.75
0.9 B34 TP 07 1.00 -0.95 -0.95 -1.05 -1.15 -1.15 -1.2	0.8		·C						0.8
-0.95 -0.95 -1.05 -1.15 -1.2	0.85								_ 0.85
1 Termination Depth at:1.00 m -1.05 -1.1 -1.15 -1.15 -1.2	0.9		B34 TP 07 1.00	•					 0.9
1.05 - 1.1 - 1.15 - 1.2	0.95		, in the second						-0.95
-1.05 -1.1 -1.15 -1.2	1				9.9	Termination Depth at:1.00 m			- 1
-1.15 -1.2 -1.2	1.05					,			_ 1.05
-1.2	1.1								- 1.1
<u> </u>	1.15								- -1.15
<u> </u>	F 1								-1.2
	F 1								=
									Ē

Notes

Drilling Abbreviations	Moisture Abbreviations	s Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Cc DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Ha (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-WS-Window Sampler	nd Excavation g, PT-Pushtube, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 12/06/2023 - 12/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		_						
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B35 HA01 0.10	İ		CLAY; brown; soft; high plasticity; minor roots			
0.05								_ 0.05
0.1			-		SAND; yellowish brown; fine to medium grained; not	M	7 70	-0.1
0.15					cohesive; well graded), \(\alpha\)	-0.15
0.2								- 0.2
0.25							~0.	_ _ 0.25
E							0	_
0.3					7			0.3
0.35								- -0.35
0.4		B35 HA01 0.50	1					- 0.4
0.45					Silty SAND; grey with some tan mottling; fine to medium grained sand; very soft; low plasticity	M		-0.45
0.5			-		grained sand; very soft; low plasticity			-0.5
0.55								-0.55
0.6								_ 0.6
0.65								- - 0.65
0.7								_ _ 0.7
F								
0.75			7					0.75
0.8		· C						-0.8
0.85								- 0.85
0.9		B35 HA01 1.00	}					-0.9
0.95								-0.95
1					Termination Depth at:1.00 m	-		-1
1.05					Tommadon Deput at. 1.00 m			_ 1.05
1.1		.0						_ 1.1
-								Ξ
1.15								-1.15
1.2								-1.2
1.25								1.25
Notes			1					F

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 12/06/2023 - 12/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		<u> </u>					1	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
0.05		B35 HA04 0.10			Sandy CLAY; brown; very soft; high plasticity; about 30% boulders	М	, >	- - - 0.05
0.1						S	3 00	-0.1
- 0.15 - 0.2					>			-0.15 - -
0.2					SAND; grey to light brown; fine to coarse grained; not cohesive; well graded	M	00,	-0.25
0.3								-0.3
0.35					6/6/0			-0.35
0.4 - - - 0.45		B35 HA04 0.50			00,0			0.4 0.45
0.5					'K B			_ 0.5
0.55 - - - 0.6					13.60			
0.65					SAND: grey to light brown; medium to coarse grained; very soft; low plasticity; well graded	M		-0.65
0.7								-0.7
0.75			?					-0.75 - - 0.8
0.85					KO.			0.85
0.9		B35 HA04 1.00						 0.9
0.95			Ó					-0.95
1.05					Termination Depth at:1.00 m			-1.05
1.1								-1.1
- 1.15 - 1.2								1.15 1.2
1.25								-1.25
								-

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations				
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	M-Moist, VM-Very Moist,	, ,	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard			

GHD)

ENVIRONMENTAL-TEST PIT

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 **Site** Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui **Date Excavated** 07/06/2023 - 07/06/2023

Total Depth (m) 1.00 Logged By DJ Checked By CH

		r				_		
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B35 TP 01 0.10		333	Sandy silt TOPSOIL; blackish brown; very soft; high plasticity	М		E
0.05								-0.05
0.1					Sandy SILT; off white to grey with some black mottling; soft;	M	7 ~	-0.1
0.15					high plasticity		1 '	-0.15
0.2						•		-0.2
0.25							0,0	-0.25
0.3				[]]]] []]]]]	Sandy CLAY; reddish brown to brown with some black	M		-0.3
0.35					mottling; firm; low plasticity			-0.35
0.4		B35 TP 01 0.50	-					-0.4
0.45					76, (6)			-0.45
0.5					K 17			-0.5
0.55					· / · / ·			- -0.55
0.6								-0.6
0.65								-0.65
0.7								-0.7
0.75								-0.75
0.73			9		Sandy SILT; off white with some light brown mottles; soft; high plasticity	М		-0.73
E		_4C			kO'			E
0.85								0.85
0.9		B35 TP 01 1.00						-0.9
0.95								0.95
1					Termination Depth at:1.00 m			1 -
1.05		. 0						-1.05
1.1								-1.1
1.15		•						-1.15
1.2								-1.2
1.25								-1.25
Ē								Ė

Notes

Drilling A	Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
DC-Diam (shovel), SD-Sonio	Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, and Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, dow Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

GHD

ENVIRONMENTAL-TEST PIT

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 **Site** Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui **Date Excavated** 07/06/2023 - 07/06/2023

Total Depth (m) 1.00 Logged By DJ Checked By CH

<u> </u>		Г					T	1
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B35 TP 02 0.10			CLAY; blackish brown; very soft; high plasticity; 40% fine gravels	М	•	-
0.05					giaveis		4 20	-0.05
0.15						X		-0.15
0.2								-0.2
0.25							0.0	-0.25
0.3								-0.3
0.35					00/00/00/00/00/00/00/00/00/00/00/00/00/			-0.35
0.4		B35 TP 02 0.50						-0.4
0.45					20 70			_ 0.45 _
0.5								- 0.5
0.55					Sandy CLAY; reddish brown with some brown to dark brown staining; firm; high plasticity	М		-0.55
0.6								-0.6
0.65								0.65 _ _
0.7								-0.7
0.75			?					0.75 0.8
0.85		~40			kOʻ			-0.85
0.9		() \			Sandy SILT; off white to light brown with some red and black mottling; soft; high plasticity	М	Clay pipe at 0.2m bgl	-0.9
0.95		B35 TP 02 1.00						-0.95
1			U					<u>-1</u>
1.05					Termination Depth at:1.00 m			-1.05
1.1								_ 1.1
1.15								_ 1.15
1.2								-1.2
1.25								-1.25
								Ė.

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 07/06/2023 - 07/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		1					1	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B35 TP 03 0.10			Sandy CLAY; brownish black; very soft; high plasticity; trace red mottles	М	•	=
0.05					Ted motiles			-0.05
0.1			-				7 70	-0.1
0.15						1), (1)	-0.15
0.2					Č			-0.2
0.25							00	_ 0.25
0.3							0	-0.3
F				//	Clayey SAND; brownish red; soft; low plasticity; medium grained, uniformly graded	М		
0.35				//				0.35
0.4		B35 TP 03 0.50		//				0.4
0.45				//	20 70			0.45
0.5				//				-0.5
0.55					14 0			-0.55
0.6								-0.6
0.65				11/				_ 0.65
0.7					Sandy CLAY; off white to light brown with some brown mottling, very soft; high plasticity	М		-0.7
E								
0.75			7					0.75
0.8		. C			, O'			0.8
0.85								-0.85
0.9		B35 TP 03 1.00			Clayey SAND; light brown to grey; very soft; well graded (fine	M	_	-0.9
0.95					to coarse)			-0.95
1					Termination Depth at:1.00 m			-1
1.05					- Samuel Sopul de 100 III			_ 1.05
E - 1.1		.0.						- 1.1
1.15								- - 1.15
F 1								E
1.2								1.2 _ _
1.25								-1.25
<u> </u>			<u> </u>					F

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 07/06/2023 - 07/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
0.05		B35 TP 04 0.10			Clayey sand TOPSOIL; brown to dark brown; medium grained sand; soft; high plasticity; uniformly graded; some roots		6, L	-0.05 0.1
0.15 - 0.2					CLAY; brown with black, grey and red mottles; firm; high plasticity	M		-0.15 0.2
0.25					CO.		60	-0.25
0.3								-0.3 -0.35
0.4 0.4 		B35 TP 04 0.50			06/6/	•		-0.4
0.5					'K' H			-0.5
0.55					10: 10			-0.55 0.6
0.65 - - - - 0.7					A Silve			-0.65
0.75			?					-0.75
0.8 - - - - 0.85		DYC			Sandy SILT; off white to grey with some tan mottling; soft; high plasticity	М		-0.8 -0.85
0.9		B35 TP 04 1.00						-0.9 -0.95
= - 1					Termination Depth at:1.00 m			<u>-</u> 1
- - - - - - - - - - 1.1		3						
1.15								-1.15
1.2 - - - 1.25								1.2 1.25

Notes

Drilling A	Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
DC-Diam (shovel), SD-Sonio	Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, and Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, dow Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 **Site** Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui **Date Excavated** 07/06/2023 - 07/06/2023

Total Depth (m) 1.00 Logged By DJ Checked By CH

ļ.,		1					1	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B35 TP 05 0.10		333	Clayey sand TOPSOIL; dark brown; soft; low plasticity; well graded (fine to coarse); some roots			
0.05				$ \rangle\rangle\rangle$	graded (line to coarse), some roots		\	-0.05
0.1							7 70	-0.1
0.15						1), (1)	-0.15
0.2								-
0.25				[{ { {			~°°	-0.25
El				[{ { {	5		0	E
0.3						ľ		-0.3
0.35								0.35
0.4		B35 TP 05 0.50						-0.4
0.45					20 10			-0.45
0.5					CLAY with minor sand; reddish brown with some black	-		-0.5
0.55					mottles; soft; high plasticity			-0.55
0.6								-
0.65					10 410			-0.65
0.7								-0.7
Εl								E
0.75			7					0.75
0.8		·C						-0.8
0.85								-0.85
0.9		B35 TP 05 1.00	•		SAND with minor silt; off white to tan; medium to coarse	-		-0.9
0.95					grained; very soft; low plasticity; gap graded; some roots			-0.95
1). 	Tomication Booth 44400 m			<u> </u>
1.05					Termination Depth at:1.00 m			- 1.05
1.1		'0'						-1.1
-								
1.15								1.15
1.2								1.2
1.25								-1.25
Notes								F

Notes

Drilling A	Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
DC-Diam (shovel), SD-Sonio	Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, and Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, dow Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 14/06/2023 - 14/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
0.05 - - - - - - -		B59 TP04 0.10			Sandy clay TOPSOIL; dark brown; very soft; high plasticity; some building material present - cinder blocks, wood	D	6. 1.	- - 0.05 - - 0.1
0.1					SAND with some cobbles and gravels; yellowish brown; medium to coarse grained sand; not cohesive; well graded	Y		-0.15
0.2 - 0.25							3	-0.2 0.25
0.3					250			-0.3
0.35		B59 TP04 0.50				7		-0.35
0.45 - - - - - 0.5					20 40			0.45 0.5
0.55					CLAY; dark brown to brown; soft; high plasticity	М		-0.55
0.65					18,,410,			-0.6 - -0.65
0.7								-0.7 0.75
0.73		.0	{?					-0.73
0.85 - - - - - 0.9		B59 TP04 1.00			Silty CLAY; yellow brown to grey with black and red mottling; soft; low plasticity	М		-0.85 - -
0.95		B39 1F04 1.00						-0.95
1 - - - - 1.05				/////	Termination Depth at:1.00 m			-1 - 1.05
1.15								-1.1 1.15
1.13								-1.2
1.25								-1.25

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 14/06/2023 - 14/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		r		ı			Г	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B63 TP01 0.10			ASPHALT			
0.05			-			V	y and	-0.05
0.13					SAND; light brown to grey; coarse grained; not cohesive; well graded; abundant asphalt, gravels and cobbles	D		-0.13
- - - - - - -							0,0	-0.25
0.3					Sandy CLAY; blue grey to brown; soft; high plasticity; about 30% sand - medium to coarse grained	M		-0.3
- 0.35 - - 0.4					1001	7		-0.35 - -
0.45		B63 TP01 0.50			00, 0			-0.45
0.5					'L' L			-0.5
0.55					CLAY with some sand; brown with some grey; firm; low plasticity	M		-0.55
- 0.6 - 0.65					10.410			-0.6 - -0.65
0.7					CLAY with some sand; dark grey; firm; high plasticity	M		-0.7
0.75			0					-0.75
0.8		- 4C			(O)			-0.8
- 0.85 - - - 0.9								-0.85 - - - 0.9
0.95		B63 TP01 1.00			CLAY: light brown with some grey mottling and trace red mottles; soft; high plasticity	М		-0.95
1			U					<u>-1</u>
1.05					Termination Depth at:1.00 m			-1.05
 1.1 								-1.1
1.15		*						-1.15
- 1.2 - - 1.25								1.2 1.25
Notes								

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 **Site** Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 16/06/2023 - 16/06/2023 Total Depth (m) 2.00 Logged By DJ Checked By CH

			_					
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B65 TP02 0.1		333	Sandy Clay TOPSOIL; brown; soft; low plasticity	М		_
0.1	/0 \						4 0	
0.2				[{{		V		0.2
0.3					CLAY; grey to brown with some red mottling; firm; high plasticity; man-made material present, brick, asphalt, metal bolt	М	200	- 0.3
0.4						1 .	0.0	-0.4
0.5	<u>/</u> 0 \							- - 0.5
0.6					0.0			_ _ - 0.6
0.7					00/00/01			- - 0.7
0.8								_ _ - 0.8
0.9		B65 TP02 1.0						-0.9
1	/0 \				CLAY; blue grey; some tan and brown mottling; firm; low plasticity; moistening down to wet 2m	М		- 1
1.1					1/2 Sign			1.1
- 1.2 - - - 1.3			0					1.2 1.3
1.4		- «C			(O)			-1.4
1.5	/0	81						- - 1.5
1.6								_ 1.6 _
1.7								_ 1.7
1.8		(0.						- 1.8
1.9		B65 TP02 2.0						1.9 2
- 2				<u> </u>	Termination Depth at:2.00 m			-2 -
2.1								- 2.1
_							1	

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 **Site** Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 16/06/2023 - 16/06/2023 Total Depth (m) 1.50 Logged By DJ Checked By CH

Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
	/ 0.1	B65 TP03 0.1			Coarse sand and coarse gravel COBBLES; brown to black (asphalt); not cohesive; gap graded; at 0.4m: rusty brown clay contact with clay and asphalt		, <u>\</u>	- - -
0.1	<i>J</i> 5 (V	7 00	0.1
0.2					5			0.2
0.3							60	0.3
0.4		B65 TP03 0.5			CLAY; blue grey to brown; very stiff; high plasticity; softening and wettening down	М		0.4
0.5	<u>/</u> 0 \					7		0.5 - - -
0.6					Po Ho			0.6
0.7					12 16			0.7
8.0					Johnson			0.8
0.9								0.9
1	28.2	40	~					1 - - -
1.1		010						1.1 -
1.2								- 1.2 - -
1.3								- 1.3 - - -
1.4		B65 TP03 1.5						- 1.4 - -
1.5	26.9	•		<i>\/////</i>	Termination Depth at:1.50 m			- 1.5 - - -
1.6								- 1.6

Notes at 0.4m: Rustly brown clay contact with clay and asphalt

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 14/06/2023 - 14/06/2023 Total Depth (m) 0.50 Logged By DJ Checked By CH

		<u> </u>				1	<u> </u>	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B67 HA01 0.10			SAND with gravel and cobbles; brown to yellow brown; not cohesive	М	•	
0.05					corresive			- 0.05
0.1					SAND with some cobbles and boulders; yellow brown to	M	7 .70.	-0.1
0.15					brown; medium to coarse sand; not cohesive	X), (0)	-0.15
0.2								- 0.2
0.25							~0.	- - 0.25
FI							0	E
0.3								-0.3
0.35								0.35
0.4		B67 HA01 0.50						- -0.4
0.45					20 10			-0.45
0.5					Termination Depth at:0.50 m			-0.5
0.55								-0.55
0.6								-0.6
_ 0.65				•	To XIO			- - 0.65
0.7				X				_ _ 0.7
F				G				E
0.75			7)				-0.75
0.8								-0.8
0.85								- - - - -
0.9								_ 0.9
0.95								-0.95
1.05								-1
1.05								_ 1.05
- - 1.1		.0						_ 1.1
⊢ I								
1.15								-1.15
1.2								_ - - - -
1.25								1.25
Notes						<u> </u>		F

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Cc DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Ha (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drillin SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-WS-Window Sampler	and Excavation g, PT-Pushtube, M-Moist, VM-Very Moist, W-Wet, S-Saturated	t, Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 14/06/2023 - 14/06/2023 Total Depth (m) 0.50 Logged By DJ Checked By CH

Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B67 HA02 0.10			ASPHALT sand with cobbles and boulders; blackish grey; fine to coarse grained; not cohesive; gap graded	D	•	_
0.05					to coarse grained, not conesive, gap graded			-0.05
0.1							7 70	-0.1
0.15						X), (0)	_ 0.15
0.2								- 0.2
0.25					Sandy COBBLES; yellowish brown; not cohesive; abundant asphalt material	М	~0.	_ _ 0.25
E				3000			0	
0.3				000				-0.3
0.35				0000				-0.35
0.4		B67 HA02 0.50		0000				-0.4
0.45				3000	20 10			-0.45
0.5				0,00	Termination Depth at:0.50 m			- 0.5
0.55					Islanda South and South			_ 0.55
0.6								-0.6
0.65					TO XIO			- - 0.65
F				X				_
0.7								-0.7
0.75			9					0.75 -
0.8								-0.8
0.85								-0.85
0.9				11				-0.9
0.95		*						-0.95
E 1			U					- 1
1 05								_ _ 1.05
[]		'0'						E
F 1.1								-1.1
1.05 - 1.1 - 1.15								-1.15
1.2								-1.2
1.25								-1.25
								_

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Cc DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Ha (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drillin SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-WS-Window Sampler	and Excavation g, PT-Pushtube, M-Moist, VM-Very Moist, W-Wet, S-Saturated	t, Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 14/06/2023 - 14/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
0.05 - 0.1		B71 TP01 0.10			Sandy clay TOPSOIL; brown; soft; low plasticity	М	6. 1	-0.05
0.15					\	X	3/1	-0.15
0.2					CLAY; mottled brown and grey with some black mottles; firm; high plasticity	M	00	-0.2 0.25
0.3								-0.3 0.35
0.4		B71 TP01 0.50				7		-0.4
0.45					Po Ho			-0.45
0.55					10. 110			-0.55 0.6
0.65								-0.65
0.75			7		Sandy CLAY with some fine gravel; mottled black and brown; soft; high plasticity;	W		-0.75
0.8		DYC						-0.8 -0.85
0.9		B71 TP01 1.00						-0.9 0.95
1			\bigcup		Termination Depth at:1.00 m			<u>-1</u>
1.05		3						-1.05 1.1
1.15								-1.15
- 1.2 - - - 1.25								1.2 1.25

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Cc DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Ha (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drillin SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-WS-Window Sampler	and Excavation g, PT-Pushtube, M-Moist, VM-Very Moist, W-Wet, S-Saturated	t, Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 14/06/2023 - 14/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		·					· · · · · · · · · · · · · · · · · · ·	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B71 TP02 0.10		333	Sandy clay TOPSOIL; brown; soft; low plasticity	М		
0.05				$ \rangle\rangle\rangle$				-0.05
0.1			1	$ \rangle\rangle\rangle$			7 70	-0.1
0.15				} }		X		-0.15
0.2				}}}				_ 0.2
F							~ · ·	
- 0.25					CLAY; brown with some black mottling; very soft, high plasticity	М	0	0.25
0.3								-0.3
0.35								-0.35
0.4		B71 TP02 0.50	-					-0.4
0.45								_ 0.45
0.5					K 12			_ 0.5
0.55								-0.55
0.6								
F					10, 110			0.6
0.65								-0.65
0.7								-0.7
0.75			0		Sandy OLAY; mottled grey; brown and blue grey with some	М		-0.75
0.8					rust coloured mottles; soft; high plasticity; glass present			-0.8
0.85					KO			-0.85
0.9								_ 0.9
0.95		B71 TP02 1.00						-0.95
0.93								-0.95
1				<i>7.7.7.7.7.7.</i>	Termination Depth at:1.00 m			-1
1.05								-1.05
1.1								-1.1
1.15								-1.15
1.2								-1.2
_ _ 1.25								-1.25
F]								
Notes								

Drilling A	Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
DC-Diam (shovel), SD-Sonio	Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, and Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, dow Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

GHD

ENVIRONMENTAL-TEST PIT

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 **Site** Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 20/06/2023 - 20/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B73 TP01 0.1		333	Sandy Clay TOPSOIL; dark brown; soft; low plasticity	М		
0.05							4 6	
E				 {{{}}}}		V		
0.15				{	>		10	-0.15
0.2								-0.2
0.25							0	-0.25
0.3					CLAY; tan to light brown, black and reddish mottling; firm; high plasticity; asbestos at 0.1m; 3 depths for glass and	М		-0.3
0.35					metals, eg. glass and metals at 0.1m			-0.35
0.4		B73 TP01 0.5						-0.4
0.45					20 10			-0.45
0.5			-		KE			-0.5
0.55					14 0			-0.55
0.6					(0)			-0.6
0.65					70 4110			-0.65
0.7								-0.7
0.75								-0.75
0.8								-0.8
0.85								-0.85
0.9		DZ0 TD04 4 0				ļ		_ 0.9
0.95		B73 TP01 1.0			SILT; grey with black and tan mottling; soft; high plasticity	M		-0.95
1.05					Termination Depth at:1.00 m			-1.05
1.03		'0'						-1.03
F								
1.15								-1.15
1.2								-1.2
1.25								1.25
\vdash		l	<u> </u>			1		

Notes Asbestos at 0.1m only; 3 depth for glass and metals EG glass and metals at 0.1m

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations			
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard		

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 16/06/2023 - 16/06/2023 Total Depth (m) 2.10 Logged By DJ Checked By CH

	I		_				Г	1
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B74 TP08 0.1		333	Sandy Clay TOPSOIL; brown; soft; low plasticity	М	Some clay pipe remains	E
0.1	<u>/</u> 0 \				>	X	Mario	-0.1
0.4		B74 TP08 0.5						-0.4
0.5	/ 0				Sandy CLAY; brown to dark brown; firm; low plasticity	M	0	-0.5
0.6								-0.6
0.7								-0.7
0.8					P 70			-0.8 - - 0.9
E 0.9		B74 TP08 1.0			CLAY; yellowish brown to brown; soft; low plasticity; black and tan mottling from 1.2m	М		0.9
1.1	<u>/</u> 0 \				16/3:10/			
1.2								
1.3			7					
1.4		B74 TP08 1.5	10					1.4 -
1.5	0.2							- 1.5
1.6					*			-1.6
1.7			D					1.7
- 1.8 - - - - 1.9								1.8 1.9
2	0.2	B74 TP08 2.0						-2
2.1	/0.4	B74 TP08 2.1			Grey and brown clay at bottom of hole; very light seepage		Looking for water table - not found	- 2.1
2.2					Termination Depth at:2.10 m			-2.2
								_

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Cc DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Ha (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drillin SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-WS-Window Sampler	and Excavation g, PT-Pushtube, M-Moist, VM-Very Moist, W-Wet, S-Saturated	t, Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 16/06/2023 - 16/06/2023 Total Depth (m) 2.00 Logged By DJ Checked By CH

Secondary Seco							_	1	
0.1	Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant	Moisture	COMMENTS	Elevation (m)
0.1	E		B74 TP09 0.1		333		М		-
0.3	0.1	0.3			} } }	10015			-0.1
0.3					 }			7 ~~	-
0.4	0.2				[{ { }		X), \(\alpha\),	0.2 -
0.5 0.4 0.5	0.3				[{ { {			10	_ 0.3
0.5 0.4 0.5	E				[{ { {				_
0.5	0.4		B74 TP09 0.5			CLAY; light grey to light brown; firm; high plasticity; with red	М	0.0	0.4
Display increasing clay content (some to minor) - 1.6 to	0.5	0.4				and rusty red mottles			_ 0.5
Display increasing clay content (some to minor) - 1.6 to	-					SILT; brownish grey with some rusty red mottles, firm; high	•		-
0.7	- 0.6 -					plasticity; wet: Increasing clay content (some to minor) - 1.6 to	$\boldsymbol{\gamma}$	Y	0.6 - -
-0.9	0.7								_ 0.7
-0.9	E								-
1	0.8								0.8
1	0.9		P74 TD00 1 0						_ 0.9
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 B74 TP09 2.0 Termination Depth at 2.00 m	<u> </u>	/0.3 \	574 11 03 1.0						- -
1.2 -1.3 -1.4 -1.5 -1.5 -1.6 -1.7 -1.8 -1.9 -7.7 -1.8 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9	F 1	1				(O) (A)			1
1.3 1.4 1.5 1.6 1.7 1.8 1.9 B74 TP09 2.0 Termination Depth at: 2.00 m	1.1								-1.1
1.3 1.4 1.5 1.6 1.7 1.8 1.9 B74 TP09 2.0 Termination Depth at: 2.00 m	E								_
1.4 B74 TP09 1.5 -1.5 -1.5 -1.5 -1.6 -1.7 -1.8 -1.9 B74 TP09 2.0 Termination Depth at:2.00 m	1.2								1.2
1.5	1.3			7					_ 1.3
1.5	Ē.,			10	'				E
-1.5 -1.6 -1.7 -1.8 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9	1.4		B74 TP09 1.5						1.4
1.7 -1.8 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9	1.5	0.4							_ 1.5
1.7 -1.8 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9	F .								-
- 1.9 B74 TP09 2.01.91.91.921.921.9 -	E								<u>-</u> -1.6
- 1.9 B74 TP09 2.01.91.91.921.921.9 -	1.7				1				-1.7
- 1.9 B74 TP09 2.01.91.91.921.921.9 -	F				$\ \ \ \ $				<u> </u>
2 /0 Termination Depth at:2.00 m	F 1.8		.0		$\ \ \ \ $				-1.8
Termination Depth at:2.00 m	1.9		B74 TP09 2.0		$\ \ \ \ $				-1.9
Termination Depth at:2.00 m	E ,	/o \							F ,
						Termination Depth at:2.00 m			
	2.1								-2.1

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Cc DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Ha (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drillin SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-WS-Window Sampler	and Excavation g, PT-Pushtube, M-Moist, VM-Very Moist, W-Wet, S-Saturated	t, Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 08/06/2023 - 08/06/2023 Total Depth (m) 0.50 Logged By DJ Checked By CH

		1	_				1	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
0.05		BWL TP 01 0.10			Sandy CLAY; brown; firm; high plasticity; dry but cool to touch	D	, >	- - 0.05
0.1						V	3 200	-0.1
0.15					SILT; off white with some reddish mottling; firm; high plasticity; moist- cool to touch	М		0.15 0.2
0.25							0,0	-0.25
0.3								-0.3
0.33		BWL TP 01 0.50						-0.33
0.45					00,70			-0.45
0.55					Termination Depth at:0.50 m			-0.5 - - - 0.55
0.6					(0)::0			-0.6
0.65				×	Jo Alli			-0.65
0.7				C)	·······································			-0.7 -
0.8		_c C)				-0.8
0.85 - - - - 0.9				(
0.95								-0.95
1								_ 1
1.05								
1.05 - 1.1 - 1.1 - 1.15 - 1.2								-1.15
1.2 - 1.25								1.2 1.25
1.25								-1.20

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	M-Moist, VM-Very Moist,	Loose, L-Loose, MD-Medium	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 08/06/2023 - 08/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

L		<u> </u>					· · · · · · · · · · · · · · · · · · ·	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
0.05		BWL TP 02 0.10			Sandy CLAY; brown to dark brown; very soft; high plasticity; some cobbles	М		-0.05
0.1							7 ~0	-0.1
0.15						X), (%),	-0.15
0.2					-0			-0.2
_ 0.25							0,0	-0.25
0.3					Clayey SAND; greyish brown, very soft, low plasticity,	M		-0.3
0.35					uniformly graded			-0.35
0.4		BWL TP 02 0.50	-					-0.4
- 0.45 - 0.5					120 Mo			-0.45 -
0.55								-0.55
0.6								-0.6
0.65								-0.65
0.7					SILT; off white with red mottling; firm; high plasticity	M		-0.7
0.75			9	M				-0.75
0.8		_ , C			kO'			-0.8
0.85 - - - 0.9			•					-0.85 - -
0.95		BWL TP 02 1.00						-0.95
1					Termination Depth at:1.00 m			<u>-1</u>
1.05			7					-1.05
1.1								_ 1.1
1.15		•						-1.15
1.2								-1.2
_ 1.25 _ _ _								-1.25
Notes								

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Cc DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Ha (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drillin SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-WS-Window Sampler	and Excavation g, PT-Pushtube, M-Moist, VM-Very Moist, W-Wet, S-Saturated	t, Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 08/06/2023 - 08/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

<u> </u>		,						
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		BWL TP 03 0.10			CLAY; dark brown; very soft; high plasticity; some roots	М	•	
0.05							4 20	-0.05 - - 0.1
0.15					_	1		-0.15
0.2								-0.2
0.25					SILT; light grey with some reddish brown mottling; firm; high plasticity;	M	6,0	-0.25
0.3								-0.3
0.35								- -0.35
0.4		BWL TP 03 0.50	1					- 0.4
0.45					20 10			-0.45
0.5			+					-0.5
0.55					14 0			-0.55
0.6					(0)			-0.6
0.65								_ 0.65
0.7					, , , ,			-0.7
0.75			0	W				-0.75
0.8		.0						-0.8
0.85					KO			-0.85
0.9		BWL TP 03 1.00	-					-0.9
0.95								-0.95
1					Sandy SILT with about 30% medium grained sand	W		-1
1.05					Termination Depth at:1.00 m			-1.05
1.1								-1.1
1.15								-1.15
1.2								-1.2
1.25								- 1.25
Notes								F

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Cc DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Ha (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drillin SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-WS-Window Sampler	and Excavation g, PT-Pushtube, M-Moist, VM-Very Moist, W-Wet, S-Saturated	t, Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

GHD

ENVIRONMENTAL-TEST PIT

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 **Site** Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 08/06/2023 - 08/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
- 0.05 - 0.15 - 0.25 - 0.35 - 0.45 - 0.45 - 0.45 - 0.55 - 0.65 - 0.7 - 0.65 - 0.75 - 0.75 - 0.85 - 0.85 - 0.9	PID (pp	BWL TP 04 0.50		Graphi		M Moistu		-0.05 -0.15 -0.25 -0.3 -0.35 -0.4 -0.45 -0.55 -0.66 -0.65 -0.7 -0.75 -0.85 -0.9 -0.95 -1.105
1.15 - 1.2 - 1.25								1.15 1.2 1.25

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	M-Moist, VM-Very Moist,	Loose, L-Loose, MD-Medium	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 08/06/2023 - 08/06/2023 Total Depth (m) 0.50 Logged By DJ Checked By CH

Sample ID Sample ID Soil Type (Classification Group Symbol); Particle Size Comments Sample ID Soil Type (Classification Group Symbol); Particle Size Comments Sample ID Soil Type (Classification Group Symbol); Particle Size Comments Sample ID Sample ID Soil Type (Classification Group Symbol); Particle Size Comments Sample ID Samp	<u></u>		<u> </u>	_			1	<u> </u>	
0.05 0.1 0.15 0.2 0.2 0.25 0.3 0.3 0.38 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.7 0.76 0.8 0.88 0.99 0.99 0.99 0.99 0.99 0.99	Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant	Moisture	COMMENTS	Elevation (m)
0.1	E		BWL TP 05 0.10			CLAY; brown; soft; high plasticity; some roots	М		
0.15	0.05								-0.05
0.2 SAID: reddish brown, medium to coarse grained, very soft -0.2	0.1								-0.1
0.2 SAID: reddish brown, medium to coarse grained, very soft -0.2	E 0 15						X)) \(\lambda \) \(\lambda \)	-0 15
0.25 0.3 0.35 0.4 0.4 0.45 0.6 0.65 0.6 0.85 0.7 0.7 0.7 0.75 0.8 0.85 0.9 0.95 1 1 1.15 1.15 1.15 1.15	Εl					SAND; reddish brown; medium to coarse grained; very soft; low plasticity; well graded		10	
0.3	0.2								0.2 -
0.35 0.4 0.4 0.5 0.6 0.6 0.6 0.6 0.7 0.75 0.8 0.9 0.95 1 1.1 1.15 1.15 1.15	0.25							0,0	-0.25
0.35	0.3					SILT: off white with rust-red and dark grey mottling firm: high	M		-0.3
0.45 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	0.35					plasticity;			-0.35
0.45 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	E 04					10 1	7		- - 0 4
0.5	FI		BWL TP 05 0.50						E
Termination Depth at 0.55 m -0.55 -0.6 -0.65 -0.65 -0.7 -0.75 -0.8 -0.85 -0.9 -0.95 -1 -1.05 -1.1 -1.15 -1.15 -1.2	F					\(\frac{1}{2} = \frac{1}{2} =			E
0.6 0.65 0.7 0.75 0.8 0.9 0.95 1 1 1.15 1.15 1.2	0.5					Termination Depth at:0.50 m			-0.5
0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.105 1.11 1.15 1.2	0.55					N 1			-0.55
0.7 0.75 0.8 0.85 0.9 0.95 1 1.105 1.11 1.15 1.2	0.6								-0.6
0.75 0.8 0.85 0.95 1 1.105 1.11 1.15 1.2	0.65				*				-0.65
0.75 0.8 0.85 0.95 1 1.105 1.11 1.15 1.2	E 0.7				X				-
0.85 0.95 0.95 1 1 1.15 1.15 1.15 1.2	F				G				
- 0.85 - 0.9 - 0.95 - 1 - 1.05 - 1.15 - 1.15 - 1.15 - 1.2	0.75			7					-0.75
-0.9 -0.95 -1 -1.05 -1.15 -1.15 -1.2	0.8								-0.8
-0.95 -1 -1.05 -1.1 -1.15 -1.15 -1.2	0.85								-0.85
- 1	0.9				///				-0.9
-1.2	0.95		*						-0.95
-1.2	E,			U					<u> </u>
-1.2									- 1
-1.2	F 1.03		'0'						E
-1.2	F 1.1								1.1
-1.2	1.15		•						-1.15
- -									-1.2
	⊢ I								_ 1.25

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	M-Moist, VM-Very Moist,	Loose, L-Loose, MD-Medium	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 08/06/2023 - 08/06/2023 Total Depth (m) 0.50 Logged By DJ Checked By CH

		I		1			ı	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		BWL TP 06 0.10			CLAY; brown to dark brown with tan mottling; very soft; low	М		
0.05					plasticity; about 20% roots			-0.05
0.1					Sandy CLAY; reddish brown with some grey mottling; firm;	M	7 ~~	-0.1
0.15					low plasticity	X), (0)	-0.15
0.2								-
0.25							~0.	_ _ 0.25
FI							0	E
0.3								0.3
0.35								0.35
0.4		BWL TP 06 0.50						-0.4
0.45					20 10			-0.45
0.5					Termination Depth at:0.50 m			-0.5
0.55								-0.55
0.6								_ 0.6
0.65				* .	10 410			- - 0.65
0.7				X				_ 0.7
0.75				C				
Εl			7	>				0.75
0.8		. C			(O)			-0.8
0.85								-0.85
0.9								_ 0.9
0.95								-0.95
1.05			P					_ 1
1.05								-1.05
1.1								_ 1.1
⊢ I								-1.15
1.15								_
1.2								-1.2
1.25								1.25
Notes		l	<u> </u>			<u> </u>		<u> </u>

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Cc DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Ha (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drillin SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-WS-Window Sampler	and Excavation g, PT-Pushtube, M-Moist, VM-Very Moist, W-Wet, S-Saturated	t, Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 12/06/2023 - 12/06/2023 Total Depth (m) 0.70 Logged By DJ Checked By CH

		<u> </u>	_			1	<u> </u>	1
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		DS01 TP01 0.10		333	Clay TOPSOIL; brown; soft; high plasticity	М		
0.05							\	-0.05
0.1							7 70	-0.1
0.15						1), (1)	-0.15
0.2				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Silty SAND; grey to light brown; very soft; high plasticity	М	Electric cable at 0.5m bgl. End of	-0.2
0.25					Sity SAND, grey to light brown, very soft, riight plasticity	IVI	hole at 0.7m due to cable risk.	-0.25
0.3								-0.3
_ 0.35								-0.35
_ _ _ 0.4					10 1	7		-0.4
 		DS01 TP01 0.50						-0.45
0.43					V 70			-0.5
=								
0.55								0.55
0.6					10,150			-0.6
0.65								-0.65
0.7					Termination Depth at 0.70 m			-0.7
0.75			7					-0.75
0.8		.0						-0.8
_ 0.85 								-0.85
0.9								-0.9
0.95								-0.95
1.05								-1
1.05								-1.05
1.1								-1.1
1.15								-1.15
1.2								-1.2
_ 1.25								-1.25
								<u> </u>
Notes								

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Cc DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Ha (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drillin SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-WS-Window Sampler	and Excavation g, PT-Pushtube, M-Moist, VM-Very Moist, W-Wet, S-Saturated	t, Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 12/06/2023 - 12/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		T	_				<u> </u>	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
0.05		DS01 TP02 0.10			Sandy CLAY; brown; very soft; low plasticity; about 20% angular boulders	М	, \	-0.05
0.1			-			S	4 00	-0.1
0.15					CLAY; reddish brown with black mottling; very stiff; high plasticity	D		-0.15 -
0.25						<i>"</i>		-0.25
0.3								-0.3
0.35					160			-0.35
0.4		DS01 TP02 0.50			000			-0.4 - - 0.45
0.5					SAND with minor red clay, brown to reddish brown, medium to coarse sand; not cohesive	М		-0.5
0.55					14 00			-0.55
0.65				•	10410.			-0.6 -
0.7								-0.7
0.75			9					-0.75
- 0.8 - - 0.85		A C			Sandy clayey SILT; grey to brown; stiff; low plasticity	D		-0.8 -
0.9		DS01 TP02 1.00	•					-0.9
0.95								-0.95
1					Termination Depth at:1.00 m			-1
1.05 - - - 1.1								1.05 1.1
1.15								-1.15
1.2								-1.2
1.25								- 1.25
Notes								

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Cc DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Ha (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drillin SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-WS-Window Sampler	and Excavation g, PT-Pushtube, M-Moist, VM-Very Moist, W-Wet, S-Saturated	t, Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 12/06/2023 - 12/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		DS01 TP03 0.10		333	Clay TOPSOIL; brown; very soft; high plasticity	М	•	
0.05								-0.05
0.1			-				7 70	-0.1
0.15						\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		-0.15
0.2					CLAY; reddish brown with black mottling; firm; high plasticity	М	7.0.	_ 0.2
F								-
- 0.25								-0.25
0.3								0.3 _
0.35					01			-0.35
0.4		DS01 TP03 0.50	$\frac{1}{1}$					-0.4
0.45					SILT; grey with black sticks- possible plant material, soft, high	M		_ 0.45
0.5					plasticity	IVI		_ 0.5
0.55								-0.55
0.6								-0.6
F					10, 110			
0.65					9			0.65 _ _
0.7								-0.7
0.75			0	M				-0.75
0.8			10					-0.8
0.85					XO .			_ 0.85
0.9		DS01 TP03 1.00	•		On the SUT			_ 0.9
0.95		D301 1F03 1.00			Sandy SILT; grey to yellow brown with black sticks; very soft; high plasticity	М		_ 0.95
								_
					Termination Depth at:1.00 m			
1.05		. 0						1.05 _
1.1								1.1 _
1.15		•						-1.15
1.2								-1.2
1.25								_ 1.25
Notes								

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	M-Moist, VM-Very Moist,	Loose, L-Loose, MD-Medium	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

Page 1 of 1

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 **Site** Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 12/06/2023 - 12/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

- 1		I					T	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		DS01 TP04 0.10		333	Clay with minor sand TOPSOIL; brown; soft; high plasticity	М		
0.05			-				4 2	-0.05 0.1
0.15					CLAY; reddish brown with black mottling; very stiff; high	M)'(0)	-0.15
0.2					plasticity			-0.2
_ 0.25							00	- 0.25
0.3							0	
						Ť		0.3
0.35					Sandy CLAY; grey; very stiff; high plasticity	М		0.35
0.4		DS01 TP04 0.50						- 0.4
0.45					20 10			-0.45
0.5			-		KK			-0.5
0.55								-0.55
0.6					Sandy SILT, grey to light grey; stiff; low plasticty	М		-0.6
0.65								-0.65
0.7								- 0.7
0.75			0		Silty SAND; greyish brown; medium to coarse grained sand;	М		-0.75
0.8					very soft; high plasticity; well graded			-0.8
0.85					KO .			-0.85
0.9								_ _ 0.9
0.95		DS01 TP04 1.00						-0.95
5.33								-0.93
1				 	Termination Depth at:1.00 m			 -1
1.05								- -1.05
1.1								-1.1
1.15								_ 1.15
1.2								_ 1.2
1.25								_ _ 1.25
1.23								-1.25
Notes		l		1		1	1	I -

Notes

Drilling A	Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
DC-Diam (shovel), SD-Sonio	Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, and Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, dow Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 12/06/2023 - 12/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		DS01 TP05 0.10		333	Clay with minor sand TOPSOIL; brown; very soft; high plasticity	М		
0.05					piasuoity		6, 1	0.05 0.1
E						V		
0.15					CLAY; reddish grey/brown with dark grey staining; firm; high plasticity	М		0.15
0.2					Places			-0.2
0.25							(Z)	- - - - -
0.3								-0.3
0.35								-0.35
0.4		DS01 TP05 0.50	1					-0.4
0.45					20 10			- 0.45
0.5			-		KKK			-0.5
0.55					14 0			-0.55
0.6					Silty SAND, reddish brown; fine to medium grained sand; very	М		-0.6
0.65					soft, low plasticity; gap graded			-0.65
0.7								-0.7
0.75								-0.75
0.8								-0.8
0.85					KO			_ 0.85
0.9		DS01 TP05 1.00	•					_ 0.9
0.95		2001 11 00 1.00						-0.95
1					Termination Depth at:1.00 m			<u>-1</u>
1.05					телпінацоп деригац 1.00 M			_ 1.05
1.1		.0.						-1.1
1.15								- 1.15
1.2								-1.2
1.25								_ 1.25
Notes		<u> </u>						

Notes

Drilling A	Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
DC-Diam (shovel), SD-Sonio	Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, and Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, dow Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 20/06/2023 - 20/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

<u> </u>		Г				1	T	1
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		DS02 TP01 0.1		///	Clayey fine to medium SAND; yellowish brown; very soft; low	D		_
0.05					plasticity			-0.05
0.1			-				7 ~~	-0.1
0.15				///		X		_ 0.15
0.2							7.0	- - 0.2
-						"		
0.25								-0.25
0.3								-0.3
0.35								-0.35
0.4		DS02 TP01 0.5	$\frac{1}{1}$	///				-0.4
0.45					70' (0'			-0.45
0.5					V P			_ 0.5
0.55					Sandy SILT; light brown; soft; high plasticity	М		-0.55
0.6								
					10, 310			-0.6
0.65								- -0.65
0.7								- 0.7
0.75			0					-0.75
0.8								-0.8
0.85					χ O			_ 0.85
0.9								_ 0.9
0.95		DS02 TP01 1.0						-0.95
0.53								-0.55
				1 1 1 1 1 1 1	Termination Depth at:1.00 m			-1
1.05		. 0						-1.05
1.1								_ 1.1
1.15		•						-1.15
1.2								-1.2
_ _ 1.25								_ 1.25
								Ė
Notes								

Notes

Drilling A	Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
DC-Diam (shovel), SD-Sonio	Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, and Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, dow Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 20/06/2023 - 20/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

ļ.,								
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		DS02 TP03 0.1		333	Sandy Clay TOPSOIL; dark brown to brown; stiff; low plasticity	D	•	
0.05				$ \rangle\rangle\rangle$	plasticity			-0.05
0.1							$\mathcal{A} \sim \mathcal{A}_{\mathcal{O}}$	-0.1
0.15						1), (1)	-0.15
0.2				[{ { {				-0.2
0.25							0.0	-0.25
0.3							O	-0.3
0.35								-0.35
0.4				[{ { {	10 1	7		<u> </u>
		DS02 TP03 0.5			CLAY; greyish brown with some black mottling; firm; high plasticity	М		0.4
0.45					20 20			-0.45
0.5								- -0.5
0.55					14 0			-0.55
0.6					(O) (A)			-0.6
0.65								-0.65
0.7								-0.7
0.75			0					-0.75
0.8								-0.8
0.85					KO			-0.85
0.9								-0.9
0.95		DS02 TP03 1.0						-0.95
5.55								5.55
					Termination Depth at:1.00 m			- 1
1.05		, '0.						-1.05
1.1								-1.1
1.15								-1.15
1.2								-1.2
1.25								-1.25
Notes								=

Notes

Drilling A	Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
DC-Diam (shovel), SD-Sonio	Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, and Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, dow Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 20/06/2023 - 20/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

-		T		ı			T	ı
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		DS02 TP04 0.1		333	Sandy Clay TOPSOIL; dark brown; soft; high plasticity	М		=
0.05								-0.05
0.1							$\mathcal{A} = \mathcal{N}_{\mathcal{O}}$	-0.1
0.15				{{{{		1		-0.15
0.2				 {				-0.2
_ 0.25							0.0	-0.25
0.3				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			O	-0.3
_ 0.35					Sandy SILT; greyish brown; soft; low plasticity	D		-0.35
0.4					10 1	7		-0.4
 		DS02 TP04 0.5						-0.45
0.43					V 70			-0.43
=								E
0.55								0.55
0.6					10,170			-0.6 -
0.65								-0.65
0.7								-0.7
0.75			7					-0.75
8.0								-0.8
_ _ 0.85 _								-0.85
0.9		DS02 TP04 1.0						-0.9
0.95					CLAY; brown with black mottles; firm; high plasticity	М		-0.95
<u> 1</u>					Termination Depth at:1.00 m			- 1
_ 1.05								-1.05
1.1								-1.1
_ 1.15								-1.15
1.2								-1.2
_ 1.25								-1.25
Notes								

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 20/06/2023 - 20/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

							1	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		DS02 TP05 0.1		0. [Clayey SILT; brownish grey; soft; high plasticity; trace to minor sand from 0.3 - 0.8m, becoming tan to brown from 0.9 - 1.0m	М		_
0.05					sand from 0.5 - 0.0m, becoming tan to brown from 0.9 - 1.0m			-0.05
0.1							7 .00	-0.1
0.15						X), (),	-0.15
0.2				9. (- 0.2
0.25							~°°°	_ _ 0.25
E				9.90			0	
0.3					- 0	Ť		0.3
0.35				0.00				-0.35
0.4		DS02 TP05 0.5	1					-0.4
0.45					20 10			_ 0.45
0.5			-	0.00				-0.5
0.55					17 0			_ 0.55
0.6					0, 0,			-0.6
0.65				0 00				_ 0.65
0.7				0.0				_ 0.7
0.75								-0.75
E			8					
0.8		- 4 C			kO'			0.8 - -
0.85			١.	0.0				0.85 _
0.9		DS02 TP05 1.0						-0.9
0.95								-0.95
1			1	0.00	Termination Depth at:1.00 m			-1
1.05								-1.05
1.1								-1.1
1.15								_ 1.15
1.2								-1.2
-								=
1.25								-1.25
		1					1	

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Cc DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Ha (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drillin SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-WS-Window Sampler	and Excavation g, PT-Pushtube, M-Moist, VM-Very Moist, W-Wet, S-Saturated	t, Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 21/06/2023 - 21/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

							1	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
_		DS03 TP01 0.1		333	Sandy Clay TOPSOIL; dark brown; firm; low plasticity	М		
0.05								-0.05
0.1				 {		V	7 0	-0.1
0.15							h. (W)	-0.15
0.2					Clayey SAND; medium to coarse; yellow brown to brown;	М		-0.2
0.25					very soft; low plasticity; well graded		0,0	-0.25
0.3								-0.3
0.35								-0.35
0.4		DS03 TP01 0.5	-					-0.4
0.45					00,10			-0.45
0.5					KR			-0.5
0.55					17 0			-0.55
0.6								-0.6
0.65					10 110			-0.65
0.7								-0.7
0.75								-0.75
0.8								-0.8
0.85			7					-0.85
0.9		DS03 TP01 1.0	•		Sandy SILT; grey with tan and black mottles; soft; low	M	-	-0.9
0.95		B003 11 01 1.00			plasticity	IVI		-0.95
1			U		Termination Depth at:1.00 m	_		-1
1.05					тенникают Беригаст.ов пг			_ 1.05
1.1								_ 1.1
1.15								-1.15
1.2								-1.2
1.25								-1.25
Notes								

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Cc DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Ha (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drillin SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-WS-Window Sampler	and Excavation g, PT-Pushtube, M-Moist, VM-Very Moist, W-Wet, S-Saturated	t, Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 21/06/2023 - 21/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		DS03 TP02 0.1		333	Clay TOPSOIL; dark brown; soft; low plasticity; trace sand; abundant roots		•	
0.05				} }	abulidant roots			-0.05
0.1			-	} }			7 70.	_ 0.1
0.15				\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		X		- 0.15
F					Sandy SILT; yellow brown with some black mottles; soft; high plasticity	М	1.0	
0.2						-		- - 0.2
0.25							0,0	0.25
0.3								-0.3
0.35					0/8/0			-0.35
0.4						7		_ 0.4
0.45		DS03 TP02 0.5						-0.45
F								
0.5								0.5
0.55					Medium to coarse SAND; brown to grey; very soft; low	М		-0.55
0.6					plasticity; well graded; trace silt			-0.6
0.65								-0.65
0.7								-0.7
0.75								_ 0.75
E			1					
0.8		· C			(O)			0.8
0.85								-0.85
0.9		DS03 TP02 1.0						_ 0.9
0.95		, and the second						-0.95
<u> </u>					Termination Double stud 00			-1
1.05					Termination Depth at:1.00 m			_ 1.05
 		'0'						
F 1.1								1.1 _ _
1.15								-1.15
1.2								1.2
1.25								-1.25
E I								=
Notes								

Drilling A	Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
DC-Diam (shovel), SD-Sonio	Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, and Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, dow Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

TEST PIT LOG

ENVIRONMENTAL-TEST PIT

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 **Site** Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 21/06/2023 - 21/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		<u></u>					T	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		DS03 TP03 0.1			CLAY; dark greyish brown; soft; low plasticity; minor sand	М		
0.05								-0.05
0.1			-				\mathcal{A}	-0.1
0.15						X		-0.15
0.2								_ 0.2
F					Sandy SILT; brown; some black mottling; soft; high plasticity some tile present	М	~ · ·	
- 0.25								0.25
0.3								-0.3
0.35								-0.35
0.4		DS03 TP03 0.5	-					-0.4
0.45					70' (0			_ 0.45
0.5					K 13			-0.5
0.55								-0.55
0.6								-0.6
E					10 ×10			
0.65								-0.65
0.7								-0.7
0.75			0					-0.75
0.8								-0.8
0.85					KO .			_ 0.85
0.9		DS03 TP03 1.0						_ 0.9
0.95		DS03 1P03 1.0			Sandy SILT; light brown; some black mottles; soft; high plasticity; some blue-grey clay at bottom	М		-0.95
								1
					Termination Depth at:1.00 m			
1.05		. 0						-1.05
1.1								-1.1
1.15		•						-1.15
1.2								-1.2
1.25								-1.25
								_
Notes								

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Cc DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Ha (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drillin SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-WS-Window Sampler	and Excavation g, PT-Pushtube, M-Moist, VM-Very Moist, W-Wet, S-Saturated	t, Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 21/06/2023 - 21/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		r		1		1	T	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
0.05		DS03 TP04 0.1		 	Sandy Clay TOPSOIL; brown; soft; low plasticity; fill present - glass, tile, metal wire	М	. \	-0.05
0.1							7 70	-0.1
0.15						X), (%)	-0.15
0.2					Sandy CLAY; yellowish brown with black and red mottling:	М		-0.2
0.25					stiff; low plasticity; glass bottle present (broken)		80	-0.25
0.3								-0.3 -
0.35					1001	7		0.35 0.4
0.45		DS03 TP04 0.5			00, 10,			-0.45
0.5					1 K			-0.5
0.55					10 11			-0.55
0.6					10, °10,			-0.6
- 0.65 - 0.7								-0.65 - -
0.75								-0.75
0.8					Medium to coarse SAND; grey to light brown; not cohesive;			-0.8
0.85					well graded; wet			-0.85
0.9		DS03 TP04 1.0						-0.9
0.95								-0.95
1.05					Termination Depth at:1.00 m			-1.05
1.1		.0						1.1
1.15								-1.15
1.2								-1.2
1.25								-1.25
Notes		<u> </u>		1				

Notes

Drilling A	Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
DC-Diam (shovel), SD-Sonio	Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, and Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, dow Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

Page 1 of 1

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 08/06/2023 - 08/06/2023 Total Depth (m) 0.90 Logged By DJ Checked By CH

		r					1	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
					CLAY; brown with tan mottling; soft; low plasticity	М		
0.05							1	
0.1						\	N N	-0.1
0.15) ' (V)	-0.15
0.2					SILT; off white with red mottling; firm; high plasticity	М		-0.2
0.25							0,0	-0.25
0.3								-0.3
0.35					. 0.0			-0.35
0.4						3		-0.4
0.45								-0.45
0.5					K 6			-0.5
0.55								-0.55
0.6								-0.6
0.65					Jo XII			_ 0.65
0.7					SILT; off white with reddish to tan and grey mottling; firm; high	M		-0.7
0.75					plasticity	IVI		-0.75
0.8			{(-0.8
- - 0.85			7		KO'			-0.85
0.9								_ _
0.95					Termination Depth at:0.90 m			-0.95
			U					=
1.05								1 1.05
1 1.05 1.1		'0'						1.03 1.1
E 1.1								_
1.15								-1.15
1.2								-1.2
1.25								-1.25
Notes		l		1			1	

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
, , , , , , , , , , , , , , , , , , , ,	M-Moist, VM-Very Moist,	Loose, L-Loose, MD-Medium	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

TEST PIT LOG

ENVIRONMENTAL-TEST PIT

Page 1 of 1

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 **Site** Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 08/06/2023 - 08/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

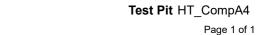
CLAY; dark brown; soft; low plasticity; about 10% sand M -0.10 -0.11 -0.12 -0.25 -0.3 -0.3 -0.4 -0.5 -0.6 -0.6 -0.6 -0.6 -0.6 -0.6 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.95 -0.	<u> </u>		Г					T	
0.0 S	Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant	Moisture	COMMENTS	Elevation (m)
0.15 0.25 0.35 0.4 1T COMPA2 0.50 1.05 0.6 0.6 0.7 0.75 0.8 0.9 1HT COMPA2 Tigu Termination Depth at:1.00 m Termination Depth at:1.00 m	0.05		HT COMPA2 0.10			CLAY; dark brown; soft; low plasticity; about 10% sand	М	. >	- - - 0.05
0.2 0.25 0.25 0.3 0.35 0.4 HT COMPA2 0.50 0.5 0.6 0.6 0.6 0.75 0.8 0.9 HT COMPA2 1100 0.95 0.95 0.9 HT COMPA2 1100 0.95 0.9	0.1			-				4 20	-0.1
0.25 0.3 0.35 0.4 0.45 0.5 0.6 0.6 0.7 0.7 0.79 0.9 11T COMPAZ TRO 105 0.9 11T COMPAZ TRO 11	E I					>			-0.15
0.3 0.4 0.4 11 COMPA2 0.50 10 0.5 0.5 0.6 0.7 0.75 0.8 0.85 0.9 11 T COMPA2 PM 11	Εl							0,	-0.2 - -
0.45 0.45 0.55 0.66 0.75 0.8 0.9 HT COMPA2 1:00 Termination Depth at: 1.00 m Termination Depth at: 1.00 m	0.3					plasticity	Б		-0.3
0.45 0.55 0.66 0.6 0.7 0.7 0.8 0.9 HT COMPA2 100 Termination Depth at:1.00 m 1.15 1.15 1.15 1.15	E					180			-0.35
0.55 0.6 0.6 0.7 0.7 0.75 0.8 0.9 0.9 1.05 1.1 1.15 1.15 1.12	Εl		HT COMPA2 0.50			06/16/			0.4
0.65 0.75 0.75 0.8 0.85 0.9 HT COMPA2 100 Termination Depth at:1.00 m 1.15 1.15 1.2	Εl					W. H.			-0.5
0.65 0.7 0.75 0.8 0.85 0.9 1.05 1.11 1.15 1.2	0.55					12 /1			-0.55
0.75 0.85 0.9 0.95 1.05 1.11 1.15 1.12						10, ×10,			-0.6
0.8	Εl								-0.7
0.9 HT COMPA2 1:00 Termination Depth at:1.00 m Termination Depth at:1.00 m 1.1 1.15 1.2	0.75			9					-0.75
-0.9 HT COMPA2 1.00 -1.05 -1.1 -1.15 -1.2	E		_ (C			kO'			-0.8
- 0.950.951.05 - 1.1 - 1.15 - 1.2	Εl		HT COMPA2 1 00						-0.83
- 1.05 1.1 1.1 1.2	0.95								-0.95
- 1.1 - 1.15 - 1.2	1 05				(/////	Termination Depth at:1.00 m			-1
E -1.2 E -1.2 E -1.3	⊨ I		(0.						-1.05 - - - - -1.1
	F								-1.15
- 1.25 1.:	ĖΙ								-1.2
	_ 1.25 _ _								

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Cc DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Ha (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drillin SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-WS-Window Sampler	and Excavation g, PT-Pushtube, M-Moist, VM-Very Moist, W-Wet, S-Saturated	t, Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

Page 1 of 1

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital


Project No. 12559090 **Site** Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 08/06/2023 - 08/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

<u> </u>			_	_	T	1	1	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		HT COMPA3 0.10			CLAY; dark brown with black mottling; soft; low plasticity	М		
0.05							1	- 0.05
0.1			1				7 70	-0.1
0.15						1		-0.15
0.2								_ 0.2
- - 0.25							0.0	_ _ 0.25
0.3					CLAY with trace sand; yellowish brown with dark grey mottling; soft; low plasticity	M	0	-0.3
0.35								-0.35
E					180	7		
0.4		HT COMPA3 0.50						0.4
0.45					20 70			0.45
0.5			1					-0.5
0.55					14 C			-0.55
0.6					(0)			-0.6
0.65								_ 0.65
0.7					20			-0.7
0.75								-0.75
0.8			{(-	_ 0.8
0.85					SILT with some fine sand; grey with tan and rust coloured mottling, firm; high plasticity	М		-0.85
0.9								- - 0.9
F		HT COMPA3 1.00			•			
0.95								-0.95
					Termination Depth at:1.00 m			 -1
1.05		. 0,						1.05
1.1								_ 1.1 _
1.15		_						- 1.15
1.2								-1.2
1.25								-1.25
								Ē
Notes								

Notes

Drilling A	Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
DC-Diam (shovel), SD-Sonio	Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, and Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, dow Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 08/06/2023 - 08/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
0.05		HT COMPA4 0.10			CLAY; dark brown; soft; high plasticity	М	. >	-0.05
0.1			-				$A \sim 0$	-0.1
0.15					>			-0.15
- 0.2 - - - 0.25							2010	0.2 0.25
0.20								-0.3
0.35					CLAY; light brown with blak mottling; firm; low plasticity	M	Clay drainage pipe at 0.6m bgl	-0.35
0.4		HT COMPA4 0.50						-0.4
0.45 0.5					P. 40			-0.45 - -
0.55					M' N'			-0.55
0.6					(0), (0)			-0.6
- 0.65 - - - - 0.7								
0.7 0.75								-0.75
0.8		40						-0.8
_ 0.85 								-0.85
- 0.9 - - - 0.95		HT COMPA4 1.00	,		SILT; light grey with black mottling; firm; high plasticity	М		-0.9
0.55					Termination Depth at:1.00 m			-0.55
_ 1.05 			Y					-1.05
1.1								-1.1
1.15 - 1.2								-1.15
1.25								-1.25
Notes								<u>F</u>

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	M-Moist, VM-Very Moist,	Loose, L-Loose, MD-Medium	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 09/06/2023 - 09/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		Ι	_	I			I	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		HT COMPB1 0.10			CLAY with trace sand; dark brown; soft; high plasticity; trace			
0.05					roots		7	-0.05
0.1							N No	-0.1
0.15								-0.15
0.2								-0.2
0.25							0,0	-0.25
0.3								-0.3
0.35					0.0			-0.35
0.4		HT COMPB1 0.50						-0.4
0.45					20 10			-0.45
0.5					CLAY; grey with some black mottling; firm; low plasticity	D		-0.5
0.55					14 n			-0.55
0.6					(0)			-0.6
0.65					7 611			-0.65
0.7								-0.7
0.75			0					-0.75
0.8		40						-0.8
0.85								-0.85
0.9		HT COMPB1 1.00	•		CLAY; grey with some black mottling; very stiff; low plasticity	M		-0.9
0.95								-0.95
1			\bigcup		Termination Depth at:1.00 m			- -1
1.05					·			-1.05
1.1								_ 1.1
1.15								-1.15
1.2								-1.2
1.25								1.25
Notes								_

Notes

Drilling A	Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
DC-Diam (shovel), SD-Sonio	Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, and Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, dow Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 09/06/2023 - 09/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		Г				ı	Γ	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		HT COMPB2 0.10			CLAY with minor sand; dark brown; soft; low plasticity	М		
0.05							1	-0.05
0.1						\	7 0	-0.1
0.15					FILL		7.	_ 0.15
0.2				\bowtie	FILL material - tile, asphalt, sand	•		-0.2
0.25				\bowtie			0,0	-0.25
0.3				\bowtie				-0.3
0.35				\bowtie				-0.35
0.4		HT COMPB2 0.50		\bowtie		7		-0.4
0.45		111 GOM B2 0.00		\bowtie	SAND; brown to grey brown; non-cohesive; well graded	1		_ 0.45
0.5					SAND; brown to grey brown; non-conesive; well graded	М		_ 0.5
0.55								-0.55
0.6								-0.6
0.65				•	TO XIO			- - 0.65
0.7								0.7
0.75								-0.75
			9					
8.0		c C			CLAY; grey with black and reddish brown mottling; firm; high plasticity	М		0.8
0.85								0.85 _
0.9		HT COMPB2 1.00						-0.9
0.95								-0.95
1				<i>//////</i>	Termination Depth at:1.00 m			- -1
1.05								-1.05
1.1								_ 1.1
1.15								-1.15
1.2								-1.2
1.25								-1.25
								_

Notes

Drilling A	Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
DC-Diam (shovel), SD-Sonio	Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, and Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, dow Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 09/06/2023 - 09/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		T					T	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		HT COMPB3 0.10			CLAY with trace sand; brown; soft; high plasticity	М		
0.05							0.	-0.05
0.1						V	7 6	-0.1
0.15					>			-0.15
0.2					C	•		-0.2
0.25					~		0,0	-0.25
0.3					CLAY; grey with some black and tan mottles; firm; low	D		-0.3
0.35					plasticity			-0.35
0.4		HT COMPB3 0.50	-					-0.4
0.45					20 10			_ 0.45
0.5					KR			-0.5
0.55					14 0			-0.55
0.6					6, , 0,			-0.6
0.65					10 XIO			_ 0.65
0.7								-0.7
0.75								_ 0.75
0.8			{(-0.8
_ _ _ 0.85		~10			KO'			_ _ 0.85
0.9								0.9
0.95		HT COMPB3 1.00			Sandy SILT; grey to light brown; very soft; low plasticity	М		-0.95
0.95								-0.95
- 1 				1-1-1-1-1	Termination Depth at:1.00 m			-1
1.05		, '0.						-1.05
1.1								1.1 _
1.15								-1.15
1.2								-1.2
1.25								-1.25
<u> </u>								F

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 09/06/2023 - 09/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		HT COMPB4 0.10			Sandy CLAY; brown; soft; low plasticity; about 25% sand	М		Ē
0.05								-0.05
0.1			-				7 ~~	-0.1
0.15						X), (1)	-0.15
_ _ _ 0.2								- 0.2
0.25							~0.	- - 0.25
							0	Ē
0.3					SAND; yellowish brown to brown; fine to coarse sand; very soft; low plasticity; well graded	М		0.3
0.35								-0.35
0.4		HT COMPB4 0.50						_ 0.4
0.45					20 10			-0.45
0.5					KA			-0.5
0.55								-0.55
0.6								- 0.6
0.65				•	To XIO			-0.65
0.7				X				-0.7
								Ē
0.75			9					0.75
0.8		•						-0.8
0.85								-0.85
0.9		HT COMPB4 1.00						-0.9
0.95		Y		/////	CLAY; grey with tan mottling; firm; high plasticity	М		-0.95
1			U			IVI		<u> </u>
1.05					Termination Depth at:1.00 m			-1.05
1.00		'.						-1.1
=								Ε
1.15								1.15
1.2								-1.2
1.25								-1.25
Notes								E

Notes

Drilling A	Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
DC-Diam (shovel), SD-Sonio	Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, and Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, dow Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 09/06/2023 - 09/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

						1	<u></u>	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
0.05		HT COMPC1 0.10			Sand TOPSOIL; dark brown; fine grained; not cohesive; abundant asphalt material	D	, 3	-0.05
0.1						\	37 000	-0.1
0.13								-0.13
0.25							0.0	-0.25
0.3					CLAY; grey with rust-red mottling; stiff; high plasticity	M		-0.3
0.35					180 7			-0.35 -
0.4		HT COMPC1 0.50			00, 0			-0.45
0.5					'K K			-0.5
0.55					27 20			-0.55
0.6					10. 410			-0.6 - -0.65
0.7								-0.7
0.75			9					-0.75
0.8		A C			Silty SAND; grey to light brown; fine grained sand; very soft; high plasticity; abundant asphalt	М	- 	-0.8 - -0.85
0.9		HT COMPC1 1.00	•					-0.9
0.95								-0.95
1					Termination Depth at:1.00 m			- -1
1.05								-1.05
1.15								-1.1 - -1.15
1.2								-1.2
_ 1.25 								-1.25
Notes			<u> </u>					<u> </u>

Notes

Drilling Abbreviations	Moisture Abbreviations	Moisture Abbreviations Consistency Abbreviations				
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Cc DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Ha (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drillin SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-WS-Window Sampler	and Excavation g, PT-Pushtube, M-Moist, VM-Very Moist, W-Wet, S-Saturated	t, Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard			

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 09/06/2023 - 09/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

Sample ID Sample ID Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators. HT COMPC2 0.10 O.15 O.25 O.35 O.4 O.45 O.55 HT COMPC2 0.50 HT COMPC2 0.50 HT COMPC2 0.50 HT COMPC2 0.50 HT COMPC2 0.50 HT COMPC2 0.50 HT COMPC2 0.50 HT COMPC2 0.50 HT COMPC2 0.50 HT COMPC2 0.50 HT COMPC2 0.50 HT COMPC2 0.50	
0.15 0.15 0.2 0.25 0.3 0.4 0.45 0.5	Elevation (m)
0.15 - 0.25 - 0.3 - 0.4 - 0.45 - 0.5	-
SAND with minor silt; light brown; fine to medium grained; very soft; low plasticity; well graded O.25	- - 0.05
SAND with minor silt; light brown; fine to medium grained; very soft; low plasticity; well graded O.2	- - 0.1
- 0.2 - 0.25 - 0.3 - 0.35 - 0.4 - 0.45 - 0.5	- - 0.15
- 0.3 - 0.35 - 0.4 - 0.45 - 0.5	-0.2
- 0.35 - 0.4 - 0.45 - 0.5	-0.25
0.5	-0.3
0.5	-0.35
0.5	-0.4
	-0.45
	0.5
E ^{0.53}	-0.55
E 0.6	-0.6
0.65	-0.65
E 0.7	-0.7
0.75 SAND; grey to rusty red; medium to coarse grained; very soft; M	-0.75
0.8 low plasticity; well graded	-0.8
0.85	-0.85
0.9 HT COMPC2 1.00	-0.9
0.95	-0.95
Termination Depth at:1.00 m	1-1-
E 1.05	- - 1.05
E_1.1	-1.1
1.15	-1.15
	1.2
- - 1.25	1.25
	:

Notes

Drilling Abbreviations	Moisture Abbreviations	Moisture Abbreviations Consistency Abbreviations				
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Cc DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Ha (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drillin SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-WS-Window Sampler	and Excavation g, PT-Pushtube, M-Moist, VM-Very Moist, W-Wet, S-Saturated	t, Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard			

Page 1 of 1

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 09/06/2023 - 09/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

<u> </u>								
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		HT COMPC3 0.10		333	Clay with trace sand TOPSOIL; brown; soft; low plasticity	D		
0.05				$ \rangle\rangle\rangle$				-0.05
0.1			1	}}			7 70	-0.1
0.15				} }		1		-0.15
0.2					CLAY; grey with tan and brown mottling; firm; high plasticity	М		-0.2
0.25					ODA, grey with tall and blown mottling, limit, mgh platforty		0.0	_ 0.25
0.3								-0.3
0.35								-0.35
0.4					10 1	7		-0.4
0.45		HT COMPC3 0.50						-0.45
0.43					V 73			-0.45
Εl								
0.55								-0.55
0.6					10,170			- 0.6
0.65								- 0.65
0.7								-0.7
0.75			7					-0.75
0.8		· C						-0.8
0.85								-0.85
0.9		HT COMPC3 1.00			SAND with some silt; grey; fine grained; very soft; low	М		-0.9
0.95					plasticity			-0.95
1					Termination Depth at:1.00 m			-1
1.05			ĺ					-1.05
1.1								-1.1
1.15								-1.15
1.2								-1.2
1.25								-1.25
								<u> </u>
Notes								

Notes

Drilling A	Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
DC-Diam (shovel), SD-Sonio	Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, and Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, dow Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

TEST PIT LOG

ENVIRONMENTAL-TEST PIT

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 09/06/2023 - 09/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
- 0.05		HT COMPC4 0.10			CLAY; brown with reddish brown mottles; firm; high plasticity	М	6. 1.	-0.05
0.1					Sandy silty CLAY; yellowish brown with tan mottles, soft, high plasticity	М		-0.1 -0.15
0.2							2	-0.2
0.25							0	-0.28
0.35					960	7		-0.35
0.45		HT COMPC4 0.50			00,70,			-0.45
0.55					14			-0.5 -0.55
0.6					(0);(0)			-0.6
- 0.65 - 0.7								-0.65 0.7
0.75			?					-0.75
0.8					KO,			-0.8 0.85
0.9		HT COMPC4 1.00			SAND with some silt; grey with reddish brown mottles; fine to medium sand; very soft; high plasticity	W	_	-0.9
1			Q		Termination Depth at:1.00 m			-1
1.05					тенничання рерига. т. од 11			-1.05
- 1.1 - 1.15								-1.1
1.2								-1.2
1.25								-1.25

Notes

Drilling A	Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
DC-Diam (shovel), SD-Sonio	Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, and Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, dow Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

TEST PIT LOG

ENVIRONMENTAL-TEST PIT

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 09/06/2023 - 09/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

L.,								
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		HT COMPD1 0.10			CLAY with trace fine sand; dark brown; very soft; low plasticity	М		
0.05							\	-0.05
0.1							7 6	-0.1
0.15						1		-0.15
0.2								-0.2
0.25							0.0	-0.25
0.3								-0.3
0.35					0.0			-0.35
0.4		HT COMPD1 0.50			CLAY; brownish grey with black mottling; firm; low plasticity;	М		-0.4
0.45		111 GOWN D1 0.30			about 10% fine sand	IVI		- 0.45
0.5					12 12 12 12 12 12 12 12 12 12 12 12 12 1			_ 0.5
0.55								-0.55
0.6								-0.6
0.65					To XIO			_ _ 0.65
0.7								_ _ 0.7
0.75								-0.75
0.73			1					-0.8
0.85		~40			kO'			-0.85
FI					SILT with trace clay; grey to yellowish brown with brown and rust coloured mottling; soft; high plasticity	М		-0.05 - - 0.9
0.9		HT COMPD1 1.00						Ē
0.95								-0.95
1					Termination Depth at:1.00 m			- 1
1.05		. 0.						-1.05
1.1								- -1.1
1.15								-1.15
1.2								-1.2
1.25								_ 1.25
Notes			<u> </u>					F

Notes

Drilling A	Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
DC-Diam (shovel), SD-Sonio	Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, and Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, dow Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 09/06/2023 - 09/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

ļ.,		r	_				1	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
0.05		HT COMPD2 0.10			Sandy CLAY; brown; soft; high plasticity	М	. >	- - - 0.05
0.1							4 20	-0.1
0.15					>			-0.15
0.2								- - - -
0.25					S		0	-0.25
0.3					Silty SAND; greyish brown; medium to coarse grained; soft; low plasticity	W		0.3 0.35
0.33		HT COMPD2 0.50			10, 11	7		-0.33 - - 0.4
0.45		HT COMPD2 0.50			00, 00,			-0.45
0.5					, K R			-0.5
0.55					14 0			-0.55
0.6					16,,70,			
- 0.65 - 0.7								0.65 0.7
0.75								-0.75
0.8					SILT; light grey with yellow and black mottles; firm; high	М		-0.8
0.85					plasticity	IVI		-0.85
0.9		HT COMPD2 1.00						-0.9
0.95								-0.95
- 1					Termination Depth at:1.00 m			1
1.05		' 0,						-1.05
1.1								
1.15 1.2								-1.15 - 1.2
1.25								-1.25
Notes								
Notes								

Drilling A	Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
DC-Diam (shovel), SD-Sonio	Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, and Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, dow Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 09/06/2023 - 09/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

0.1			Τ	1	1			T	1
0.05 0.1 0.15 0.2 0.2 0.3 0.3 0.35 0.4 HT COMPOS 0.50 0.6 0.6 0.6 0.7 0.7 0.75 0.8 0.8 0.8 0.8 0.99 0.99 SAND: grey; fine to medium grained; not cohesive; well 1.05 1.1 1.15 1.2 1.2 1.25	Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant	Moisture	COMMENTS	Elevation (m)
0.1 0.15 0.2 0.2 0.25 0.3 0.3 0.35 0.4 0.4 0.45 0.5 0.5 0.6 0.6 0.65 0.7 0.7 0.7 0.75 0.8 0.8 0.95 MIT COMPOS Tag SAND: grey: fine to medium grained; not cohesive; well 0.9 SAND: grey: fine to medium grained; not cohesive; well 0.9 Termination Depth at: 1.00 m 11 1.15 1.12 1.12 1.12 1.12			HT COMPD3 0.10			CLAY; brown; very soft; high plasticity; some roots	М		
0.2	0.1						\(\)	do to	-0.05
0.25 0.3 0.35 0.4 HT COMPD3 0.50 HT COMPD3 1900 HT COMPD3 1900 HT COMPD3 1900 SAND. grey, fine to medium grained; not cohesive; well graded 1.0 1.1 1.15 1.2 1.2 1.25	0.15					>			-0.15
-0.3 -0.3 -0.3 -0.4 -0.4 -0.4 -0.4 -0.5 -0.5 -0.6 -0.6 -0.6 -0.8 -0.8 -0.8 -0.9 -0.9 -0.9 -0.9 -0.9 -0.9 -0.9 -0.9	 0.2						•		-0.2
0.3	_ _ 0.25 _					Sandy CLAY; brown with tan and dark brown mottling; soft	M	0,0	-0.25
0.4 HT COMPO3 0.50 -0.45 -0.5 -0.55 -0.55 -0.6 -0.6 -0.6 -0.6 -0.7 -0.7 -0.7 -0.7 -0.8 -0.8 -0.8 -0.8 -0.9 -0.9 SAND: grey; fine to medium grained; not cohesive; well graded Termination Depth at:1.00 m -1.05 -1.1 -1.1 -1.1 -1.1 -1.1 -1.2 -1.2	0.3					low plasticity			-0.3
- 0.45 - 0.5 - 0.55 - 0.6 - 0.6 - 0.6 - 0.7 - 0.75 - 0.8 - 0.8 - 0.8 - 0.8 - 0.9 - 0	0.35					0.0			-0.35
0.45 0.5 0.55 0.66 0.66 0.66 0.7 0.7 0.75 0.8 0.85 0.99 HT COMPD3 fib0 Termination Depth at:1.00 m Termination Depth at:1.00 m	0.4		HT COMPD3 0.50	-			3		-0.4
-0.55 -0.6 -0.6 -0.65 -0.7 -0.7 -0.75 -0.8 -0.8 -0.8 -0.9 -0.9 -0.9 -0.9 -0.9 -0.9 -0.9 -0.9	 0.45					70' (0'			-0.45
- 0.6	0.5			-		K 6			-0.5
- 0.65 - 0.7 - 0.75 - 0.8 - 0.8 - 0.8 - 0.8 - 0.9 - 0.95 -	_ 0.55								-0.55
-0.75 -0.85 -0.85 -0.9 -0.95 -0.95 -0.96 -0.96 -0.97 -0.99 -0.99 -0.99 -0.99 -1.10 -1.11 -1.15 -1.21 -1.25	_ 0.6								- 0.6
-0.75 -0.85 -0.85 -0.9 -0.95 -0.95 -0.96 -0.96 -0.97 -0.99 -0.99 -0.99 -0.99 -1.10 -1.11 -1.15 -1.21 -1.25	 0.65					To XIO			-0.65
-0.75 -0.8 -0.85 -0.9 -0.95 -0.95 -0.95 -0.95 -0.95 -0.95 -0.95 -0.91 -0.95 -0.91 -0.95 -0.91 -0	-								-0.7
- 0.8 - 0.85 - 0.9 - 0.9 - 0.95 - 0.9 - 0.96 - 0.96 - 1.05 - 1.1 - 1.15 - 1.2 - 1.25									E
- 0.85 - 0.9 - 0.95 - 0.95 - 0.95 - 0.95 - 0.96 - 1.05 - 1.11 - 1.15 - 1.2 - 1.25				1					=
- 0.9			_40			kO'			
- 0.95 SAND; grey; fine to medium grained; not cohesive; well M									Ē
SAND; grey; fine to medium grained; not cohesive; well graded Termination Depth at:1.00 m -1.05 -1.1 -1.15 -1.2 -1.25			HT COMPD3 1.00						E
Termination Depth at:1.00 m - 1.05 - 1.1 - 1.15 - 1.2 - 1.25	- 0.95 -					SAND; grey; fine to medium grained; not cohesive; well			-0.95
- 1.1 - 1.15 - 1.2 - 1.25	- 1				******		PM C		-1
- 1.15 - 1.2 - 1.25	1.05								-1.05
-1.2 -1.25	1.1								-1.1
-1.25	1.15		_						-1.15
	1.2								-1.2
	_ 1.25								- 1.25
									_

Notes

Drilling A	Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
DC-Diam (shovel), SD-Sonio	Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, and Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, dow Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 09/06/2023 - 09/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		HT COMPD4 0.10			CLAY with trace sand; brown; soft; high plasticity; some roots	М		
0.05 - - - 0.1			-			\(\)	don to	-0.05
0.15								-0.15
0.2					C	•		-0.2
_ _ 0.25							0.0	-0.25
0.3								-0.3
0.35					0.0			-0.35
0.4		HT COMPD4 0.50				7		-0.4
_ 0.45		111 COM B4 0.50			70° (0°			-0.45
_ 0.5					V P			-0.5
0.55					SAND; grey to greyish brown; fine to coarse grained; not cohesive; well graded			-0.55
0.6								-0.6
_ 0.65				•				- - 0.65
0.7								-0.7
0.75								-0.75
=			7					=
0.8		- s C			kO'			-0.8
_ 0.85 _								-0.85
0.9		HT COMPD4 1.00	,					- -0.9
0.95								-0.95
- 1					Termination Depth at:1.00 m			- -1
_ 1.05								-1.05
1.1								-1.1
1.15								-1.15
1.2								-1.2
_ 1.25								- 1.25
Notes								

Notes

Drilling A	Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
DC-Diam (shovel), SD-Sonio	Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, and Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, dow Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

TEST PIT LOG

ENVIRONMENTAL-TEST PIT

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 09/06/2023 - 09/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
0.05		HT COMPE1 0.10			Sandy CLAY; brown; soft; high plasticity	М	4 29	
0.15 - 0.2						X), (3),	-0.15
0.25					Silty SAND; brown with some reddish brown mottling; fine grained sand; very soft; low plasticity	M	00	- - 0.25
0.35								-0.35
0.4 - - - - - - 0.45		HT COMPE1 0.50			06,76			0.4 0.45
0.55					14			-0.5 - -0.55
0.6 0.65					Clayey SAND; brownish red to grey; medium to coarse	М		
0.7			0		grained sand; very soft, low plasticity			-0.7 0.75
0.8		O'C			KO,			-0.8 0.85
		HT COMPE1 1:00						-0.9 0.9
1					Termination Depth at:1.00 m			-1
1.05 1.1					топпінацоп Беригас. г.оо ІІІ			-1.05 1.1
1.15								-1.15
1.25								-1.25

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Cc DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Ha (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drillin SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-WS-Window Sampler	and Excavation g, PT-Pushtube, M-Moist, VM-Very Moist, W-Wet, S-Saturated	t, Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

TEST PIT LOG

ENVIRONMENTAL-TEST PIT

Page 1 of 1

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 **Site** Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 09/06/2023 - 09/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		Г	_				T	1
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		HT COMPE2 0.10			CLAY; dark brown; soft; low plasticity	М		-
0.05			-			\	don th	-0.05
0.15					\			- -0.15
0.2						•		-0.2
0.25							0,0	-0.25
0.3								-0.3
0.35					6/8/3/3			-0.35
0.4		HT COMPE2 0.50	-					-0.4
0.45					20 10			-0.45
0.5					Sandy CLAY; grey-brown to dark brown; soft; high plasticity	М	Disused pipe at 0.6m bgl	-0.5
0.55								-0.55
0.6					(0)			-0.6
0.65					70 ///			-0.65
0.7								-0.7
0.75								-0.75
0.8					SILT with some sand; grey to brownish grey with some grey	М		-0.8
0.85					mottling; soft; high plasticity;	IVI		-0.85
0.9		HT COMPE2 1.00						-0.9
0.95		TH COM E2 1500						-0.95
1			U					-1
1.05					Termination Depth at:1.00 m			_ _ 1.05
1.1		.0.						_ _ 1.1
1.15								_ _ 1.15
1.10								-1.10
⊨ I								=
_ 1.25 _ _								1.25
<u> </u>						1	1	

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Cc DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Ha (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drillin SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-WS-Window Sampler	and Excavation g, PT-Pushtube, M-Moist, VM-Very Moist, W-Wet, S-Saturated	t, Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 09/06/2023 - 09/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		ı					1	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
0.05		HT COMPE3 0.10			FILL Clayey FILL; brown with black mottling; soft; low plasticity; fill material present - bricks to 0.2m	М	5	- - 0.05
0.1						Y		-0.15
0.2 - 0.25					CLAY; brown with black mottling; soft; low plasticity	M	3/10	0.2
0.3								-0.3
0.35		HT COMPE3 0.50			Clayey SAND; reddish brown; medium to coarse grained sand; very soft; low plasticity	М		-0.35
0.45 - 0.5					50 40			-0.45
0.55					and in			-0.55
0.65					John			-0.6 - 0.65
0.7			0					0.7
0.8		A C			kO'			-0.8 0.8
0.9		HT COMPE3 1.00						-0.9
0.95			0		Clayey SAND; light grey to reddish brown; fine to coarse grained sand; very soft; low plasticity Termination Depth at:1.00 m	W		-0.95 - -1
1.05 - 1.1		131						
1.15								-1.15
1.2 - - - 1.25								-1.2 1.25
<u> </u>			L			1	l	<u> </u>

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	M-Moist, VM-Very Moist,	Loose, L-Loose, MD-Medium	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 **Site** Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 09/06/2023 - 09/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		T				1	T	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
0.05		HT COMPE4 0.10			FILL Clayey sand FILL; dark brown to brown; coarse grained sand; non-cohesive; uniformly graded; abundant fill material - asphalt, brick		6. 1.	-0.05
0.15					FILL Fill material	X	3/13/1	0.1 0.15
0.2 - - - - 0.25					CLAY; brown with black mottling; soft; low plasticity	М	801	-0.2
0.3					Silty SAND; yellowish brown; fine to medium grained sand; very soft; high plasticity; some fill still present	М	Water pipe encountered at 0.6m bgl	-0.3 0.35
0.4 - - - 0.45		HT COMPE4 0.50	_		26/18/			-0.45
0.55			_		W C			-0.5 -0.55
0.65					16,,410,			-0.6 0.65
0.7								-0.7 0.75
0.8		_,(C			SILT; grey with black and tan mottling; firm; high plasticity	М		-0.8
0.03		HT COMPE4 1.00						-0.03
0.95			Ò		Termination Depth at:1.00 m			-0.95 - - -1
1.05 - 1.1					•			-1.05 1.1
1.15								-1.15
1.25								1.2 1.25
- I		l				1	l .	· .

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Cc DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Ha (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drillin SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-WS-Window Sampler	and Excavation g, PT-Pushtube, M-Moist, VM-Very Moist, W-Wet, S-Saturated	t, Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 09/06/2023 - 09/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		Г					Т	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
0.05		HT COMPF1 0.10			CLAY with some minor sand; brown; soft; low plasticity; some burnt fibrous material present (<5%)	М	, >	-0.05
0.1						\(\)	4 00	-0.1
0.15					>			-0.15
0.2						P	00,	0.2 0.25
0.3								-0.3
0.35					180			-0.35
0.4		HT COMPF1 0.50			CLAY: grey with black mottling; firm; high plasticity	М		0.4 0.45
0.5					K H			-0.5
0.55					12 11			-0.55
0.6					10, 410,			0.6 0.65
0.7					CLAY; brown with black mottling; soft; high plasticity	W	Wet due to clay drainage pipe at	-0.7
0.75			9				0.7m bgl	-0.75
0.8		A C			kO'			-0.8 - - -
0.9		HT COMPF1 1.00						-0.9
0.95								-0.95
1.05				<i>V/////</i>	Termination Depth at:1.00 m			-1 - - -
1.03								-1.03
1.15								_ 1.15
1.2								-1.2
1.25								1.25 _ _ _

Notes

Drilling A	Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
DC-Diam (shovel), SD-Sonio	Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, and Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, dow Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

TEST PIT LOG

Page 1 of 1

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 09/06/2023 - 09/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

<u> </u>		T				1	<u> </u>	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		HT COMPF2 0.10	Ì		CLAY; brown; soft; high plasticity	М		E
0.05								-0.05
0.1			-				7 70	-0.1
0.15						X		-0.15
E							10	
0.2								-0.2
0.25							0,0	-0.25
0.3								-0.3
0.35								- 0.35
0.4						7		-0.4
F		HT COMPF2 0.50						=
0.45					20			-0.45
0.5				0.	Clayey SILT; yellow brown to brown; soft; high plasticity	М	Disused water pipe at 0.65m bgl	-0.5
0.55				1.10				-0.55
0.6				77777	Sandy CLAY; grey with black mottling, firm; high plasticity	М	Drainage pipe at 0.8m bgl	-0.6
0.65					Salidy CLAT, grey with black mottling, littli, high plasticity	IVI	Drainage pipe at 0.6m bgi	_ 0.65
F								
0.7								-0.7
0.75			0					-0.75
0.8			10					-0.8
0.85								-0.85
0.9								_ 0.9
0.95		HT COMPF2 1.00						- - 0.95
0.95								-0.95
1				V.Z.Z.Z.Z	Termination Depth at:1.00 m			-1
1.05								-1.05
1.1								-1.1
1.15								_ _ 1.15
1.2								-1.2
								Ε Ι
1.25								-1.25
\vdash				<u> </u>				⊢ ⊢

Notes

Drilling A	Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
DC-Diam (shovel), SD-Sonio	Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, and Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, dow Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 09/06/2023 - 09/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
- - - - - - - - - 0.1		HT COMPF3 0.10			CLAY with trace sand; brown; soft; high plasticity; some roots	М	6, L	
0.15						Y		-0.15
0.2							3	-0.2 0.25
0.23							0	-0.23
0.35					Sandy, clayey SILT; dark brown; soft, high plasticity; some fill material present - black, thin, breakable/brittle, possibly burnt	7		-0.35
0.45		HT COMPF3 0.50			wood			-0.45
0.5								-0.5 0.55
0.6					(0): (0)			-0.6
0.65					A Silver			-0.65
0.75			0					-0.75
0.8		~ (C		<u> </u>	SILT; grey to tan with some black mottling; firm; high plasticity	М		-0.8 0.85
0.9		HT COMPF3 1.00						-0.9
0.95			0					-0.95
1.05					Termination Depth at:1.00 m			-1.05
1.1								-1.1
1.13								-1.13
1.25								-1.25

Notes

Drilling A	Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
DC-Diam (shovel), SD-Sonio	Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, and Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, dow Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 09/06/2023 - 09/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
- 0.05		HT COMPF4 0.10			CLAY with some sand; brown; low plasticity	М	6. 1	-0.05
- 0.1 - 0.15					CLAY; yellowish brown; firm; high plasticity	Y		-0.1 -0.15
- 0.2						•	2	-0.2
- 0.25 - 0.3							0	-0.25
- 0.35 - 0.4					180	7		-0.35
- 0.45		HT COMPF4 0.50			CLAY; brown to dark brown with some yellow mottling; soft; high plasticity	W		-0.4 -0.45
- 0.5 - 0.55								-0.5 0.55
- 0.6					1012			-0.6
- 0.65 - 0.7								-0.65 - -
- 0.75			7					-0.75
- 0.8 - 0.85					KO'			-0.8 - -0.85
- 0.9		HT COMPF4 1:00						-0.9
- 0.95 - 1			O		Termination Depth at:1.00 m			-0.95 -1
- 1.05								-1.05
- 1.1 - 1.15								-1.1 -1.15
- 1.2								-1.2
- 1.25								-1.25

Notes

Drilling A	Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
DC-Diam (shovel), SD-Sonio	Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, and Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, dow Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

Page 1 of 1

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 **Site** Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 12/06/2023 - 12/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		T	_				1	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		HT COMPG1 0.10		 	Sandy clay with minor sand TOPSOIL; brown; soft; high plasticity; some roots	М		
0.05							0.	-0.05
0.1				}}}		V	7	-0.1
0.15				}}}	_			-0.15
0.2				{{{{				-0.2
0.25								- 0.25
0.3					Sandy CLAY; light yellow brown to brown; firm; high plasticity	М		-0.3
0.35								-0.35
0.4		HT COMPG1 0.50	$\frac{1}{1}$					-0.4
0.45					20 10			-0.45
0.5			1		'L'			-0.5
0.55					14 C			-0.55
0.6					(0)			-0.6
0.65								-0.65
0.7								-0.7
0.75			0					-0.75
0.8								-0.8
0.85					SILT with trace sand; grey to light brown with brown mottling;	М		-0.85
0.9		HT COMPG1 1.00			soft; high plasticity			-0.9
0.95								-0.95
1					Termination Depth at:1.00 m			- -1
1.05					·			-1.05
1.1								1.1
1.15								-1.15
1.2								-1.2
1.25								-1.25
Notes								

Drilling A	Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
DC-Diam (shovel), SD-Sonio	Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, and Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, dow Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 12/06/2023 - 12/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		T	1			1	1	1
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
0.05		HT COMPG2 0.10			CLAY with trace sand; brown to dark brown; soft; low plasticity	М	. >	- - 0.05
0.1							4 20	-0.1
0.15					>			-0.15
0.2 - - - 0.25							3/10	-0.2 - - 0.25
0.23					Sandy CLAY; yellow brown to dark brown; firm; high plasticity		0	-0.23
0.35					Calley CEAT, yellow blown to dark blown, littly, light plasticity			-0.35
0.4		HT COMPG2 0.50						0.4
- 0.45 - 0.5					P. 40			0.45 0.5
0.55					M' N'			-0.55
0.6					(0), (0)			-0.6
0.65 - - - 0.7								-0.65 - -
0.75					SILT with some clay; grey to brown with some red and black	M		-0.75
0.8		·C			mottling; soft; high plasticity	"		-0.8
0.85		01						-0.85
- 0.9 - 0.95		HT COMPG2 1.00						-0.9 - -
1			U		Termination Depth at:1.00 m			<u>-1</u>
1.05					·			-1.05
1.1								-1.1
1.15 1.2								-1.15
1.25								_ 1.25
								F

Notes

Drilling A	Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
DC-Diam (shovel), SD-Sonio	Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, and Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, dow Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

TEST PIT LOG

ENVIRONMENTAL-TEST PIT

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 12/06/2023 - 12/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		Г					T	1
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
0.05		HT COMPG3 0.10			CLAY with minor sand; brown; soft; low plasticity	М	, >	-0.05
0.1						S	4 00	-0.1
0.15					>			-0.15
0.2					CLAY; brownish grey to dark brown; firm; low plasticity	M	00,	-0.25
0.3								-0.3
0.35					180			-0.35
0.4		HT COMPG3 0.50			06/16/			0.4 0.45
0.5					W M			-0.5
0.55					14 00			-0.55
0.6					SILT; off white to tan with some brown mottling; stiff; high plasticity	М		0.6 0.65
0.7								-0.7
0.75			7	\mathbb{Y}				_ 0.75 _
0.8		C			kO'			-0.8 - -0.85
0.03		HT COMPG3 1.00						-0.9
0.95								-0.95
1 05					Termination Depth at:1.00 m			-1
1.05								-1.05
1.15								-1.15
1.2								-1.2
1.25								

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Cc DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Ha (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drillin SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-WS-Window Sampler	and Excavation g, PT-Pushtube, M-Moist, VM-Very Moist, W-Wet, S-Saturated	t, Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

Page 1 of 1

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 **Site** Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 08/06/2023 - 08/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		Г				1	T	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		HT COMPH1 0.10			CLAY; dark brown; very soft; high plasticity	М		
0.05								-0.05
0.1			1				$q \sim \infty$	-0.1
E						X		
0.15					>			0.15
0.2)		-0.2
0.25							0.0	-0.25
0.3							V	-0.3
E								
0.35					SAND with minor clay; yellowish brown with some black staining; uniformly graded; low plasticity			0.35
0.4		HT COMPH1 0.50	┨		stanling, uniformly graded, low plasticity			-0.4
0.45								-0.45
0.5			1					- 0.5
E								0.55
0.55								0.55
0.6					(O) (A)			-0.6
0.65				. 4				-0.65
0.7								-0.7
E . 75								0.75
0.75			7					-0.75
0.8		40						-0.8
0.85					Silty SAND; grey with some black mottling; fine grained;	М		-0.85
0.9		UT COURT OF			uniformly graded; high plasticity			-0.9
0.95		HT COMPH1 1.00						-0.95
0.95								-0.95
1				1 1 1	Termination Depth at:1.00 m			1
1.05								-1.05
1.1								-1.1
F								_ _ 1.15
1.15								E I
1.2								-1.2
1.25								-1.25
								E

Notes

Drilling A	Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
DC-Diam (shovel), SD-Sonio	Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, and Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, dow Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 08/06/2023 - 08/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

	ļ.,		Γ				1	T T	
0.05 0.1 0.15 0.2 0.25 0.3 0.3 0.35 0.4 HTT COMPH2 0.50 Sapoly GLAY: greysh brownwith some black mottling: firm: 0.6 0.65 0.67 0.75 0.8 SAND with frace clay; reddish brown; medium to coarse 0.85 0.99 HTT COMPH2 TRO Termination Depth at:1.00 m Termination Depth at:1.00 m Termination Depth at:1.00 m	Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant	Moisture	COMMENTS	Elevation (m)
0.1	0.05		HT COMPH2 0.10			CLAY; brown to dark brown; very soft; high plasticity; about 30% gravels, cobbles and boulders	М		- - 0.05
0.2	Εl							7 %	
0.25 0.3 0.35 0.4 0.45 0.5 0.5 0.6 0.6 0.65 0.7 0.75 0.8 0.8 0.85 0.99 HT COMPH2 700 Termination Depth at:1.00 m Termination Depth at:1.00 m Termination Depth at:1.00 m	0.15					\	1		-0.15
- 0.3 - 0.35 - 0.4 - 0.4 - 0.45 - 0.5 - 0.5 - 0.5 - 0.5 - 0.6 - 0.66 - 0.65 - 0.7 - 0.7 - 0.75 - 0.8 - 0.85 - 0.9 - 0.9 - 0.95 - 1.05 - 1.15 -	F								
-0.55 -0.55 -0.6 -0.65 -0.65 -0.7 -0.75 -0.8 -0.85 -0.99 -0.95 -0.	Εl							0	
-0.55 -0.55 -0.6 -0.65 -0.65 -0.7 -0.75 -0.8 -0.85 -0.99 -0.95 -0.	F								
-0.55 -0.55 -0.6 -0.65 -0.65 -0.7 -0.75 -0.8 -0.85 -0.99 -0.95 -0.	0.4		HT COMPH2 0.50				7		-0.4
- 0.55 - 0.6 - 0.65 - 0.65 - 0.7 - 0.75 - 0.8 - 0.85 - 0.8 - 0.85 - 0.9 - 0.95 - 1.15 - 1.15 - 1.15 - 1.2	F					20 70			
- 0.6 Sandy CLAY; greyish brown with some black mottling; firm; M - 0.65 - 0.75 - 0.75 - 0.75 - 0.75 - 0.85 - 0.85 - 0.9 HT COMPH2 1:00 Termination Depth at:1.00 m - 1.05 - 1.15 - 1.2 - 1.15 - 1.2	F								
Own Down					Sandy CLAY: grayish brown with some black mottling; firm:	M			
-0.75 -0.8 -0.85 -0.95 -0.95 -0.95 -1.15 -1.15 -1.2	0.65					low plasticity;			-0.65
SAND with trace clay; reddish brown; medium to coarse grained; not cohesive; uniformly graded -0.85 -0.9 -0.95 -0.95 -0.95 -1.05 -1.1 -1.15 -1.2	Εl								
SAND with frace clay; reddish brown; medium to coarse grained; not cohesive; uniformly graded -0.85 -0.95 -0.95 Termination Depth at:1.00 m -1.05 -1.1 -1.15 -1.2	El			?					Ē
- 0.95						SAND with trace clay; reddish brown; medium to coarse grained; not cohesive; uniformly graded			
Termination Depth at:1.00 m -1.05 -1.1 -1.15 -1.2	0.9		HT COMPH2 1.00						-0.9
Termination Depth at:1.00 m - 1.05 - 1.15 - 1.15 - 1.2	0.95								0.95 _
- 1.1 - 1.15 - 1.2	1.05					Termination Depth at:1.00 m			-1 - -1.05
	1.1								
	1.15								_ -1.15
- 1.25 1.25	⊨ I								E
	_ 1.25 _ _ _								1.25 - -

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 08/06/2023 - 08/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
- - 0.05		HT COMPH3 0.10			Silty CLAY; dark brown; very soft; high plasticity; about 10% cobbles	М	Water pipe encountered at 0.5m	- - - - - - - - - - - - - - - - - - -
0.1						V	3 00	-0.1
- 0.15 - - - 0.2								-0.15 0.2
0.25							0.0	-0.25
0.3								-0.3
0.35								-0.35
- 0.4 - - - 0.45		HT COMPH3 0.50			CLAY with trace fine sand; reddish brown; soft; high plasticity	М		-0.4
0.45					A H			-0.5
0.55					14 0			-0.55
0.6					(0), '(0)			-0.6
- 0.65 - - - 0.7					7 01			-0.65 -
0.7 0.75								-0.75
0.8		.0	{(-0.8
0.85		0						-0.85
0.9		HT COMPH3 1.00	'					-0.9
0.95			0	,	SAND with trace clay; reddish brown to grey; medium to coarse grained; not cohesive; well graded			-0.95 -1
1.05					Termination Depth at:1.00 m			-1.05
- - - 1.1								-1.1
1.15								-1.15
- 1.2 - 1.25								-1.25
Notos								-1.23

Notes

Drilling A	Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
DC-Diam (shovel), SD-Sonio	Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, and Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, dow Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 **Site** Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 08/06/2023 - 08/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		Г					ı	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
0.05		HT TP 29 0.10			CLAY; brown; very soft; high plasticity; about 40% coarse gravel; fill material present- plate, glass	М		- - - 0.05
0.05 - 0.1							7 ~0	0.05 0.1
0.15						X		-0.15
0.2					>			-0.2
0.25							0.0	-0.25
0.3								-0.3
0.35					0.0.			-0.35
0.4		HT TP 29 0.50		/////	SAND; tanish brown; fine to medium grained; soft; low plasticity; well graded			- 0.4
0.45					plasticity, well graded			0.45
- 0.5 - 0.55								-0.5
0.55								-0.55 - -
0.65								-0.65
0.7								_ 0.7
0.75			0	V				-0.75
0.8		.0		<i>7</i>	SAND; grey with some reddish brown staining; medium to			-0.8
0.85					coarse grained; uniformly graded; non-cohesive			- 0.85
0.9		HT TP 29 1.00						- 0.9
0.95				•				-0.95
1.05					Termination Depth at:1.00 m			-1 - -
1.00		'0'						1.00
1.15								-1.15
1.2								-1.2
_ _ 1.25								_ 1.25

Notes

Drilling A	Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
DC-Diam (shovel), SD-Sonio	Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, and Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, dow Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

TEST PIT LOG

ENVIRONMENTAL-TEST PIT

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 08/06/2023 - 08/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

						1	ı	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
=		HT TP 30 0.10			Sandy SILT; dark brown; very soft; high plasticity; about 30% cobbles and gravels	М		_
0.05 					cossist and graves			-0.05
0.1								-0.1
0.15							7'\\	-0.15
0.2								-0.2
0.25					Silty CLAY with minor sand and fine gravels; brownish grey	M	0,0	-0.25
0.3					with some black mottling; firm; high plasticity			-0.3
0.35								-0.35
0.4		HT TP 30 0.50	-			3		-0.4
0.45					00,10			-0.45
0.5			-		KR			-0.5
0.55					17 0			-0.55
0.6					(0)			-0.6
0.65								-0.65
0.7								-0.7
0.75			0					-0.75
0.8								-0.8
0.85					KO .			-0.85
0.9		HT TP 30 1.00	•		SAND; brown to reddish brown with trace black mottling; fine			-0.9
0.95		· ·			to medium grained; very soft; low plasticity; well graded			-0.95
<u> </u>			\bigcup		Termination Depth at:1.00 m			- 1
1.05								-1.05
1.1								_ 1.1
1.15								_ 1.15
1.2								-1.2
1.25								_ 1.25
Notes								

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Cc DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Ha (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drillin SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-WS-Window Sampler	and Excavation g, PT-Pushtube, M-Moist, VM-Very Moist, W-Wet, S-Saturated	t, Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 08/06/2023 - 08/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		1					1	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		HT TP 31 0.10		333	Gravelly clay TOPSOIL; dark brown; very soft; high plasticity; about 20% fine to medium grained gravels	М		E
0.05					about 2070 mile to medium graniou granou		1	-0.05
0.1							7 6	-0.1
0.15				 {			7'\0	-0.15
0.2								-0.2
0.25							0.0	-0.25
0.3				[{ { }				-0.3
0.35								-0.35
0.4		HT TP 31 0.50						-0.4
0.45					Silty CLAY with minor sand; brownish grey; some black	М		_ 0.45
0.5					mottling; high plasticity	IVI		-0.5
0.55								-0.55
0.6								-0.6
0.65								-0.65
0.7								-0.7
0.75								-0.75
0.8			8					-0.8
0.85		~ 4 C			kO'			E
F								-0.85
0.9		HT TP 31 1.00			SILT with trace fine sand; grey to off white with some black mottling; soft; high plasticity	М		-0.9
0.95								-0.95
- 1					Termination Depth at:1.00 m			-1
1.05								-1.05
1.1								-1.1
1.15		•						-1.15
1.2								-1.2
1.25								-1.25
								<u>F</u>

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 13/06/2023 - 13/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

<u> </u>		r				1	T	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		NUR TP01 0.10		333	Sandy clay TOPSOIL; brown; soft; low plasticity; some roots	D		
0.05							6, 1	
El				} } }		V		
0.15					FILL Clayey sandy FILL; brown to light brown; fine to coarse; soft;	D	10.	- -0.15
0.2				\bowtie	low plasticity; well graded; building material present - metal cable, sheet insulation, rebar, concrete, clay pipe, brick, glass,			-0.2
0.25				\bowtie	wood		0,0	_ 0.25
0.3				\bowtie				-0.3
0.35					0.0			-0.35
0.4		NUR TP01 0.50	-	\bowtie				-0.4
0.45				\bowtie	76, 6			-0.45
0.5				\bowtie	K 12			_ 0.5
0.55					· / · / ·			-0.55
0.6								_ 0.6
0.65					To His			_ 0.65
0.7								_ 0.7
_ _ 0.75								-0.75
0.8			{(-0.8
0.85		210		\bowtie	ξO'			-0.85
0.9								_ _ 0.9
0.95		NUR TP01 1.00						_ _ 0.95
_								
<u> </u>					Termination Depth at:1.00 m			- 1
1.05		, '0						-1 .05
1.1								1.1
1.15								1.15
1.2								-1.2
_ 1.25								-1.25
Notes			<u> </u>					F

Notes

Drilling A	Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
DC-Diam (shovel), SD-Sonio	Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, and Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, dow Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 13/06/2023 - 13/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		Ι					T	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
0.05		NUR TP02 0.10			Clayey SAND; brown; fine to medium grained; soft; low plasticity; clay pipe remains present; some man-made cobbles (concrete)	D	6. 1.	-0.05
0.1				// xxx	FILL	D		-0.1 0.15
0.2					FILL Sandy clayey FILL; brown; soft; low plasticity; building material present - brick, tar seal, paint flakes, nails, concrete, rusted metal can, plastic bag	D	0.0	-0.2
0.25					Total Time and the state of the		0	
0.35								-0.35
0.4		NUR TP02 0.50						-0.4
0.45					20 40			0.45 0.5
0.55					N. M.			-0.55
0.6 - 0.65					16,, 40,			
0.65								-0.65
0.75			7					-0.75
0.8 - - - 0.85		~ (C			kO'			-0.8 - 0.85
0.9		NUR TP02 1.00						-0.9
0.95								-0.95
1.05					Termination Depth at:1.00 m			-1.05
1.1								-1.1
1.15								-1.15
_ 1.25								-1.25
-								<u> </u>

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Cc DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Ha (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drillin SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-WS-Window Sampler	and Excavation g, PT-Pushtube, M-Moist, VM-Very Moist, W-Wet, S-Saturated	t, Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 13/06/2023 - 13/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3	<u> </u>		T						1
0.05	Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant	Moisture	COMMENTS	Elevation (m)
0.15 0.25 0.	0.05		NUR TP03 0.10		}	sand; soft; low plasticity; tarseal present, some roots near	D	, >	- - - 0.05
0.2	0.1					Sandy CLAY; brown; soft; low plasticity; well graded	D	4 00	-0.1
0.25 0.3 0.35 0.4 0.4 0.5 0.5 0.6 0.6 0.6 0.7 0.75 0.8 0.9 0.9 NUR TP03 1.00 0.9 Termination Depth at:1.00 m Termination Depth at:1.00 m	F					>			-0.15
0.3	E I							00,	0.2 0.25
0.4	Εl							0	-0.3
0.45 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.9 0.9 0.9 0.9 NUR TP03 1.00 Termination Depth at:1.00 m Termination Depth at:1.00 m Termination Depth at:1.00 m	0.35								-0.35
0.55 0.60 0.65 0.7 0.7 0.75 0.8 0.9 0.95 NUR TP03 1.00 Termination Depth at:1.00 m Termination Depth at:1.00 m Termination Depth at:1.00 m	0.4		NUR TP03 0.50						-0.4
FILL Fill material; brick, concrete, tar seal, filtrous asbestos, paint flakes -0.5 -0.6 -0.6 -0.7 -0.7 -0.7 -0.8 -0.8 -0.9 NUR TP03 1.00 Termination Depth at:1.00 m	Εl					20 70			-0.45
0.65 -0.65 -0.7 -0.75 -0.8 -0.8 -0.8 -0.9 NUR TP03 1.00 -0.9 -0.9 -0.9 -1.1 -1.15 -1.15 -1.2	Εl				\bowtie	Fill material; brick, concrete, tar seal, fibrous asbestos, paint	D		-0.55
0.7	0.6				\bowtie				-0.6
- 0.75 - 0.8 - 0.8 - 0.8 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 1.05 - 1.1 - 1.15 - 1.15 - 1.2	0.65								
-0.8 -0.8 -0.8 -0.9 -0.9 -0.9 -0.9 -0.9 -1.05 -1.1 -1.15 -1.1 -1.15 -1.2	Εl					, , , , , ,			-0.7
0.9 NUR TP03 1.00 Termination Depth at: 1.00 m 1.05 1.11 1.15 1.12	Εl			?					-0.75
- 0.95 - 0.95 - 1.05 - 1.15 - 1.2	0.85								-0.85
Termination Depth at:1.00 m - 1.05 - 1.1 - 1.15 - 1.2	0.9		NUR TP03 1.00						-0.9
- 1.05 - 1.1 - 1.15 - 1.2	0.95			Ò					-0.95
E 1.1 E 1.15 E 1.2 E -1.2	1.05				 × ×)	Termination Depth at:1.00 m			-1 - - 1.05
	⊨ I		10						_ 1.1
	1.15								-1.15
= 1.25 = = -1.2 = = = = = = = = = = = = = = = = = = =	E I								-1.2
	1.25 								1.25 _ _

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 13/06/2023 - 13/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		NUR TP04 0.10		333	Clayey sand TOPSOIL; brown; medium grained sand; not cohesive; uniformly graded; some roots; remnants of brick	D		_
0.05				$ \rangle\rangle\rangle$	corresive, uniformly graded, some roots, reminants of brick			_ 0.05
0.1			-		FILL	D	7 70	-0.1
0.15				\bowtie	Sandy Clay FILL; brown; soft; low plasticity; building material	X		- 0.15
0.2				\bowtie			7.0	- - 0.2
E I				\bowtie		"		
0.25				\bowtie				0.25
0.3				\bowtie				-0.3
0.35				\bowtie	. 0.0			-0.35
0.4		NUR TP04 0.50	-	\bowtie		7		-0.4
0.45		1461(11 04 0.50		\bowtie	~ (° (°)			_ 0.45
0.5								- - 0.5
F				\bowtie				
0.55				\bowtie				0.55
0.6				\bowtie	10, 10,			- -0.6
0.65								-0.65
0.7) \(\alpha\)			-0.7
0.75					Sandy CLAY, brown; soft; low plasticity			-0.75
0.8			{(Salidy CEAT, brown, soit, low plasticity			- 0.8
0.85		~40			kO'			- - 0.85
F								
0.9		NUR TP04 1.00						0.9
0.95								-0.95
1					Termination Depth at:1.00 m			- -1
1.05								_ 1.05
1.1								_ 1.1
1.15								_ 1.15
1.2								-1.2
 -								=
_ 1.25 _								-1.25
Notes		l					1	

Drilling A	Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
DC-Diam (shovel), SD-Sonio	Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, and Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, dow Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 12/06/2023 - 12/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

ļ.,		<u> </u>					1	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
0.05		PAV TP01 0.10			Sandy CLAY; brown to dark brown; very soft; low plasticity	D	. >	-0.05
0.1							4 20	-0.1
0.15					>			-0.15
0.2						,		0.2 0.25
0.3					CLAY; grey with dark grey and tan mottles, stiff, low plasticity	M		-0.3
0.35					180			-0.35
0.4		PAV TP01 0.50			06/16/			0.4 0.45
0.5					W M			-0.5
0.55					14 00			-0.55
0.65					Sandy SILT, grey with tan mottles; soft; high plasticity; about 40% medium sand	W		0.6 0.65
0.7								-0.7
0.75			?					- 0.75
0.8		A C			kO '			-0.8 - - -0.85
0.9		PAV TP01 1.00						-0.9
0.95								_ 0.95
1.05					Termination Depth at:1.00 m			-1 - -
1.1								1.1
1.15		•						_ 1.15
1.2 - 1.25								
1.23								-1.20

Notes

Drilling A	Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
DC-Diam (shovel), SD-Sonio	Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, and Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, dow Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 13/06/2023 - 13/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		Г				_	1	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		WWTP TP01 0.10		333	Clay TOPSOIL; brown; soft; high plasticity; minor roots	М		E
0.05							4 20	-0.05 0.1
0.15					SILT with trace sand; grey to grey brown; firm; low plasticity	M), (1)	-0.15
0.2					SILT WITH trace same, grey to grey brown, illini, low plasticity	IVI		-
0.25							60	-0.25
0.3								-0.3
0.35								-0.35
0.4		WWTP TP01 0.50	1					-0.4
0.45					20 10			-0.45
0.5			1		KR			-0.5
0.55					14 0			-0.55
0.6					(0)			-0.6
0.65								-0.65
0.7				7.4.1	Sandy SILT; grey to reddish brown; soft; high plasticity; about	W	_	-0.7
0.75			0		30% coarse sand			-0.75
0.8		·C	50					-0.8
0.85								-0.85
0.9		WWTP TP01 1.00	-					-0.9
0.95								-0.95
1			\bigcup		Termination Depth at:1.00 m			-1
1.05					·			-1.05
1.1								1.1
1.15								-1.15
1.2								-1.2
1.25								-1.25
Notes								F

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Cc DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Ha (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drillin SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-WS-Window Sampler	and Excavation g, PT-Pushtube, M-Moist, VM-Very Moist, W-Wet, S-Saturated	t, Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 13/06/2023 - 13/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		<u> </u>					T	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		WWTP TP02 0.10		333	Clay TOPSOIL; brown; soft; high plasticity	М		
0.05								-0.05
0.1							7 70	-0.1
0.15						X), ()	-0.15
0.2								-
0.25					SILT with trace sand; grey; soft; high plasticity	W	~0.	_ _ 0.25
							0	E
0.3								-0.3
0.35								0.35
0.4		WWTP TP02 0.50						0.4
0.45					20 10			- - - - - - - - - - - - - -
0.5			-		Sandy SILT; grey; soft; high plasticity; about 40% medium to	М	_	-0.5
_ _ 0.55					coarse sand			-0.55
0.6								_ 0.6
_ 0.65					To XIO			- - 0.65
0.7								_ _ 0.7
								E
0.75			7					0.75
0.8		. C						0.8
0.85								- -0.85
0.9		WWTP TP02 1.00						_ 0.9
0.95		· ·						-0.95
1					Termination Depth at:1.00 m			<u>-1</u>
1.05					теппінацоп реригастьо пі			_ 1.05
1.1		'.0'						_ _ 1.1
-								E
1.15								-1.15
1.2								1.2
1.25								_ 1.25 _
Notes								<u>F</u>

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Cc DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Ha (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drillin SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-WS-Window Sampler	and Excavation g, PT-Pushtube, M-Moist, VM-Very Moist, W-Wet, S-Saturated	t, Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 13/06/2023 - 13/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

Ĺ,								
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		WWTP TP03 0.10		333	Clay TOPSOIL; brown; soft; low plasticity; some roots	М		
0.05				$ \rangle\rangle\rangle$				-0.05
0.1			-	$ \rangle\rangle\rangle$			7 70	-0.1
0.15				$ \rangle\rangle\rangle$		X		-0.15
0.2				} }				_ 0.2
0.25				} }			~°°	0.25
E					SILT; grey; firm; high plasticity	M	0	
0.3								0.3
0.35								0.35
0.4		WWTP TP03 0.50			9/8/			_ 0.4
0.45					20 10			_ 0.45
0.5			-		KK			-0.5
0.55							-	- - 0.55
0.6					Silty SAND: grey, sand is fine grained; very soft; high plasticity; uniformly graded			- - 0.6
0.65					10 XIO			
F								-
0.7								0.7
0.75			0					-0.75
0.8		40	10					-0.8
0.85								_ 0.85
0.9		WWTP TP03 1.00	1					-0.9
0.95		WWW 11 00 1.50						_ _ 0.95
								_ _ 1
					Termination Depth at:1.00 m			
1.05		, '0						- - - - -
- 1.1								- -1.1
1.15		*						-1.15
1.2								-1.2
1.25								_ 1.25
Notes								

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Cc DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Ha (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drillin SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-WS-Window Sampler	and Excavation g, PT-Pushtube, M-Moist, VM-Very Moist, W-Wet, S-Saturated	t, Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 13/06/2023 - 13/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		r				1		
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
0.05		WWTP TP04 0.10			Bouldery SAND; dark grey; coarse; not cohesive; gap graded; about 50% boulders; likely fill material; water level at 0.45m bgl	М	. >	- - - 0.05
0.1							7 %	-0.1
0.15				000	\			-0.15
0.2				0000				- 0.2
0.25				000			0	0.25 0.3
0.35				000				-0.35
0.4		WWTP TP04 0.50				7		- - 0.4
0.45			⊻		20 20			- 0.45
0.5								-0.5 - -
0.55				000				-0.55
0.65					Jo Ho			- - 0.65
0.7				0000				-0.7
0.75			2	3000				-0.75
0.8		\sim (C		000	(O)			0.8 0.85
0.9		WWTP TP04 1.00		0000				-0.9
0.95				0000				-0.95
1				0000	Termination Depth at:1.00 m			1
- 1.05 - - 1.1		(0)						1.05 1.1
1.15								-1.15
1.2								-1.2
1.25								_ 1.25
		l				1		

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 29/03/2023 - 29/03/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B3 TP01 0.1			Sandy SILT; brown	М		_
0.05							0. 1.	-0.05
0.1						V	7 0	-0.1
0.15							7.	-0.15
0.2					C			-0.2
0.25						A	0,0	-0.25
0.3					SILT with sand; yellow brown	M		-0.3
0.35					0.0			-0.35
0.4		B3 TP01 0.5	ł					-0.4
0.45					00,10			_ 0.45
0.5					KR			-0.5
0.55								-0.55
0.6								_ 0.6
0.65					10 XIO			- 0.65
0.7								_ 0.7
0.75				U				-0.75
0.8								-0.8
0.85					kO'			- - 0.85
0.9			•					0.9
0.95								-0.95
0.93								-0.93
105					Termination Depth at:1.00 m. Target depth reached.			1.05
1.05		, '0						-1.05
1.1								1.1 _
1.15								1.15
1.2								-1.2
1.25								- - - - -
<u> </u>			<u> </u>	l		1	l	F

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

Test Pit B3_TP03

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 29/03/2023 - 29/03/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		T		1	<u> </u>		1	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B3 TP03 0.1			Sandy SILT; brown	М		
0.05								-0.05
0.1								_ 0.1
0.15						X		-0.15
F					>		10	-0.15
0.2								-0.2
0.25					~0			-0.25
0.3		B3 TP03 0.4						-0.3
0.35		B3 1F03 0.4			SILT with sand; yellow brown	M		- 0.35
E I					1000	7		
0.4			1					-0.4
0.45					20 10			-0.45
0.5								-0.5
0.55								_ 0.55
0.6								-0.6
F					10,110			E
0.65								-0.65
0.7								-0.7
0.75				W				-0.75
0.8			{(- 0.8
F		_10			kOʻ			_
0.85			١.,					-0.85
0.9			,					0.9
0.95								-0.95
<u> </u>					Towns the Death of One Towns to			<u>-</u> 1
1.05					Termination Depth at:1.00 m. Target depth reached.			_ 1.05
F		'0'						
1.1								1.1 _
1.15		•						-1.15
1.2								-1.2
1.25								_ 1.25

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 28/03/2023 - 28/03/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B7 TP03 0.1		333	Sandy silt TOPSOIL; brown	М		
0.05				} }				-0.05
0.1				[{ { {		VC	7 00	-0.1
0.15				} }			1 ()	-0.15
0.2						•		-0.2
0.25							0,0	-0.25
0.3					Sandy SILT; light brown	M		-0.3
0.35					0.0			-0.35
0.4								-0.4
_ 0.45					20, 10			-0.45
0.5					KK			-0.5
0.55								-0.55
0.6		B7 TP03 0.7	-					-0.6
0.65		ss s			10 XIO			-0.65
0.7			-					_ 0.7
0.75								-0.75
0.8			{(_ 0.8
_ 0.85			7					- 0.85
0.9								_ 0.9
0.95								-0.95
_ 1			U					-1
1.05					Termination Depth at:1.00 m. Target depth reached.			-1.05
1.1		.0.						- 1.1
1.15								-1.15
1.2								-1.2
1.25								-1.25
- 1.20								1.20
Notes								

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

Test Pit B7_TP04

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 28/03/2023 - 28/03/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

						1	ī	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B7 TP04 0.1		333	Sandy silt TOPSOIL; brown	М		
0.05				[{ { }				-0.05
0.1				[{ { {				-0.1
E				} } }		V		=
0.15								-0.15
0.2					SILT with sand and some cobbles; light brown	М		-0.2
0.25					Old man danie dani		0.0	-0.25
E								E
0.3								-0.3
0.35								-0.35
0.4		B7 TP04 0.5						-0.4
- - 0.45		B7 11 04 0.0						-0.45
E								E
0.5								-0.5
0.55					N 10			-0.55
0.6								-0.6
- - 0.65					10 %/0			-0.65
E								F I
0.7								-0.7
0.75				Y				-0.75
0.8								-0.8
E		_30			kO '			E
0.85								-0.85
0.9				\mathbb{N}				-0.9
0.95		· ·						-0.95
_								
Ė .					Termination Depth at:1.00 m. Target depth reached.			
1.05								-1.05
1.1								-1.1
1.15								-1.15
_								-
1.2								-1.2
1.25								-1.25
								Ē.

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 28/03/2023 - 28/03/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		1					1	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B8 HA01 0.1		333	Sandy silt TOPSOIL; brown	М		
0.05								- -0.05
0.1								-0.1
0.15				[{{{		1		-0.15
0.2					Sandy SILT; light brown	М		-0.2
0.25					Saley GEI, ng. tr. Siewi		0.0	_ 0.25
0.3		B8 HA01 0.4						-0.3
0.35		B8 HAUT 0.4				'		-0.35
0.4					10 1	7		- - 0.4
0.45								0.45
0.43					V 70			-0.43 - - 0.5
F								
0.55								0.55
0.6					10,, 20,			
0.65								0.65 _
0.7								- -0.7
0.75			0					-0.75
0.8		. C		"				-0.8
0.85								-0.85
0.9								-0.9
0.95								-0.95
1					Termination Depth at:1.00 m. Target depth reached.			<u> </u>
1.05					Tommission Dopen as 1.00 m. Target deput readiled.			_ 1.05
1.1								_ 1.1
1.15								_ _ 1.15
1.2								-1.2
1.25								-1.25
1.25								-1.25 - -
<u> </u>					•			

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	M-Moist, VM-Very Moist,	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 16/03/2023 - 16/03/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		1						
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B16 TP04 0.1		333	Sandy silt TOPSOIL; brown	М		
0.05				$ \rangle\rangle\rangle$			\	-0.05
0.1			┨	$\frac{ \rangle}{1111}$	Sandy SILT; light brown;	M	Bricks observed in one corner of	-0.1
0.15						X	the test pit at approximatley 0.1 - 0.2m	-0.15
0.2								-0.2
_ 0.25							~0.	-0.25
F							6	E
0.3								-0.3
0.35					0/80/			-0.35
0.4								-0.4
0.45					20 10			-0.45
0.5								-0.5
0.55								-0.55
0.6								-0.6
0.65					10 *10			-0.65
0.7								-0.7
F		B16 TP04 0.8						E
0.75			7					-0.75
0.8				1				-0.8
0.85								-0.85
0.9								-0.9
0.95		· ·						-0.95
1					Townships Double std 00 to Tourst double speaked			<u> </u>
1.05					Termination Depth at:1.00 m. Target depth reached.			_ 1.05
1.1		'.0'						-1.1
F								E
1.15								1.15
1.2								-1.2
1.25								-1.25
\sqsubseteq			<u> </u>					<u> </u>

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 16/03/2023 - 16/03/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		<u> </u>	_				1	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
				333	Sandy silt TOPSOIL; brown	М	Plastic, and other anthropogenic	
0.05				} }			items observed	-0.05
0.1				[{ { {			7 70	-0.1
0.15				{		X		-0.15
E				{			10	E I
0.2		B16 TP05 0.3			Silty SAND; orange	М		-0.2
0.25							0,0	-0.25
0.3								-0.3
0.35								-0.35
0.4						1		-0.4
E								F
0.45					20 70			-0.45
0.5								-0.5
0.55								-0.55
0.6								-0.6
- - 0.65					10 XIC			-0.65
E								F
0.7								-0.7
0.75			0					-0.75
0.8								-0.8
- - 0.85					XO .			-0.85
0.9								-0.9
E								F
0.95								-0.95
1					Termination Depth at:1.00 m. Target depth reached.			- 1
1.05								-1.05
1.1								-1.1
								F
1.15								-1.15
1.2								-1.2
1.25								-1.25
								<u> </u>

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 16/03/2023 - 16/03/2023 Total Depth (m) 0.50 Logged By DJ Checked By CH

<u></u>		1						
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B16 TP06 0.1		333	Sandy silt TOPSOIL; brown	М		
0.05						Y	don th	-0.05
0.15				[{ { {	\			-0.15
0.2					Silty SAND; light brown	•		-0.2
0.25						1	0,0	-0.25
0.3								-0.3
0.35					0.0			_ 0.35
0.4		B16 TP06 0.5				7		-0.4
0.45		B10 11 00 0.5			~ (° (°)			- 0.45
0.5					4 1			-0.5
F					Termination Depth at:0.50 m. Refusal at 0.5m due to structure encountered.			
0.55								0.55
0.6					10,10			-0.6
0.65								-0.65
0.7								-0.7
0.75			0	\vee				-0.75
0.8								-0.8
0.85					KO .			-0.85
0.9		V'	•					_ 0.9
0.95								-0.95
			U					-1
1.05 - 1.1 - 1.15 - 1.2								-
F 1.05		, '0'						-1.05
F 1.1								1.1
1.15		*						_ 1.15
1.2								-1.2
1.25								_ 1.25
								E

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 17/03/2023 - 17/03/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

				,				
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B16 TP07 0.1		333	Sandy Silt TOPSOIL; brown	М	•	
0.05			-				4 20	-0.05 - - - -0.1
0.15					\	1		-0.15
0.2				$\stackrel{\longrightarrow}{\prod}$	Sandy SILT; light brown	М	Copper pipe encountered at	-0.2
0.25						1	0.2m. Drainage pipe encountered at 0.5m	- 0.25
0.3								-0.3
0.35								-0.35
0.4		B16 TP07 0.5	1		6,000			-0.4
0.45					20 10			-0.45
0.5			-					-0.5
0.55								_ 0.55
0.6					(0):			-0.6
0.65								-0.65
0.7								_ 0.7
0.75			0	Y				-0.75
0.8		B16 TP07 0.9						-0.8
0.85								-0.85
0.9			-	NN				-0.9
0.95		Y						_ 0.95
1								-1
1.05					Termination Depth at:1.00 m. Target depth reached.			_ 1.05
1.1		.0						-1.1
1.15								-1.15
1.2								-1.2
1.25								_ 1.25
								E

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 17/03/2023 - 17/03/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

L			_				T	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B16 TP08 0.1		333	Sandy silt TOPSOIL; brown	М		
0.05				} }				-0.05
0.1				$ \rangle\rangle\rangle$			7 ~~	-0.1
0.15				}}}		1), (1)	-0.15
0.2								-0.2
0.25					Sandy SILT; light brown	М	~°°	-0.25
E I							0	E
0.3						Ť		-0.3
0.35								-0.35
0.4		B16 TP08 0.5						-0.4
0.45					20 10			- -0.45
0.5								-0.5
0.55					17 0			_ 0.55
0.6					(0)			-0.6
0.65					10 XIO			-0.65
0.7								_ 0.7
0.75								-0.75
0.8			1					-0.8
E		_40			kO`			
0.85								-0.85
0.9								-0.9
0.95								-0.95
1					Termination Depth at:1.00 m. Target depth reached.			-1
1.05								- 1.05
1.1								-1.1
1.15								_ 1.15
1.2								-1.2
=								-1.25
1.25								-1.25
\vdash							1	

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	M-Moist, VM-Very Moist,	, ,	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 16/03/2023 - 16/03/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

L.,								
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B16 TP09 0.1		333	Sandy silt TOPSOIL; brown	М	•	
0.05				$ \rangle\rangle\rangle$				-0.05
0.1							7 20	-0.1
0.15						1), (1)	-0.15
0.2					Sandy SILT; light brown	М		- 0.2
_ 0.25					Sarity Sici, light blown	IVI	0.0	_ _ 0.25
0.3							V	-0.3
0.35								-0.35
					10 .1	7	·	
0.4		B16 TP09 0.5						-0.4
0.45					20 70			-0.45
0.5								0.5
0.55					13 6			-0.55
0.6					(0), (10)			
0.65								-0.65
0.7								-0.7
0.75			0	Y				-0.75
0.8								-0.8
0.85					KO .			-0.85
0.9		V	•					_ 0.9
0.95								- 0.95
_			U					<u>-</u> 1
1.05					Termination Depth at:1.00 m. Target depth reached.			-1.05
1.03		'0'						-1.00
-								Ξ
1.15								-1.15
1.2								-1.2
_ 1.25 _								_ - - - -
Notes			<u> </u>	<u> </u>				F

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

GHD

ENVIRONMENTAL-TEST PIT

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 **Site** Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui **Date Excavated** 23/03/2023 - 23/03/2023

Total Depth (m) 1.00 Logged By DJ Checked By CH

		<u> </u>						
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B59 TP01 0.1		0.0	Gravelly SILT with sand		•	
0.05								-0.05
0.1			1					-0.1
0.15								-0.15
0.2				9.00	_C			-0.2
0.25							0.0	-0.25
0.3					CLAY; blue grey with brown mottles			-0.3
0.35					On the state groy man promit motion			-0.35
0.4						7		-0.4
0.45					70° (0°			-0.45
0.5		B59 TP01 0.6	-		K 63			-0.5
0.55		B39 1F01 0.0						-0.55
0.6								-0.6
0.65					To XIO			-0.65
0.7								_ 0.7
0.75								-0.75
0.8			{(-0.8
0.85			7		kO'			-0.85
0.00								0.9
F								
0.95								-0.95
= 1				1	Termination Depth at:1.00 m. Target depth reached.			- 1
1.05		. 0.						- -1.05
- 1.1								-1.1
1.15								-1.15
1.2								-1.2
1.25								-1.25
E			<u> </u>					<u> </u>

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 23/03/2023 - 23/03/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		1					1	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B59 TP07 0.1			Sandy SILT; dark brown; some gravel	М		
0.05								-0.05
0.1							7 70	-0.1
0.15), (1)	-0.15
0.2								- 0.2
0.25					SILT with clay; brown	М	0,0	-0.25
0.3							0	
E I								-0.3
0.35						7		-0.35
0.4								-0.4
0.45					20 10			-0.45
0.5		B59 TP07 0.6						-0.5
0.55					N N			-0.55
0.6								-0.6
0.65				•				- 0.65
0.7								- 0.7
0.75								-0.75
-			1					=
0.8		· C			kO,			-0.8
0.85]					-0.85
0.9			ì					-0.9
0.95								-0.95
1					Termination Depth at:1.00 m. Target depth reached.	+		-1
1.05					100000000000000000000000000000000000000			-1.05
1.1								- -1.1
1.15								- - 1.15
–								=
1.2								-1.2
1.25 								-1.25
<u> </u>		L						r -

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	M-Moist, VM-Very Moist,	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 21/03/2023 - 21/03/2023 Total Depth (m) 0.70 Logged By DJ Checked By CH

				,				
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B63 TP03 0.1			ASPHALT			
0.05					Sandy GRAVEL; grey		Subgrade	-0.05
0.15					\	1		-0.15
0.2				<i>777711</i>	Silty CLAY with sand; light brown	М		-0.2
0.25							S.O.	-0.25
0.3								0.3 0.35
0.55						7		-0.4
0.45					20,70			-0.45
0.5					Silty CLAY; mottled brown-grey	М	Encountered pipe at 0.7m	-0.5
0.55					14 0			-0.55
0.6		B63 TP03 0.7			10, 10,			-0.6
0.65								0.65 _ _
0.7				G	Termination Depth at:0.70 m. End of hole at 0.7m due to pipe encountered.			-0.7 - -
0.8								-0.8
0.85								-0.85
0.9								-0.9
0.95			Ó					-0.95 - 1
1.05								-1.05
1.05 - 1.1 - 1.1 - 1.15		100						-1.1
1.15		•						_ 1.15
1.2								-1.2
1.25								1.25 _ _ _
1							·	

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

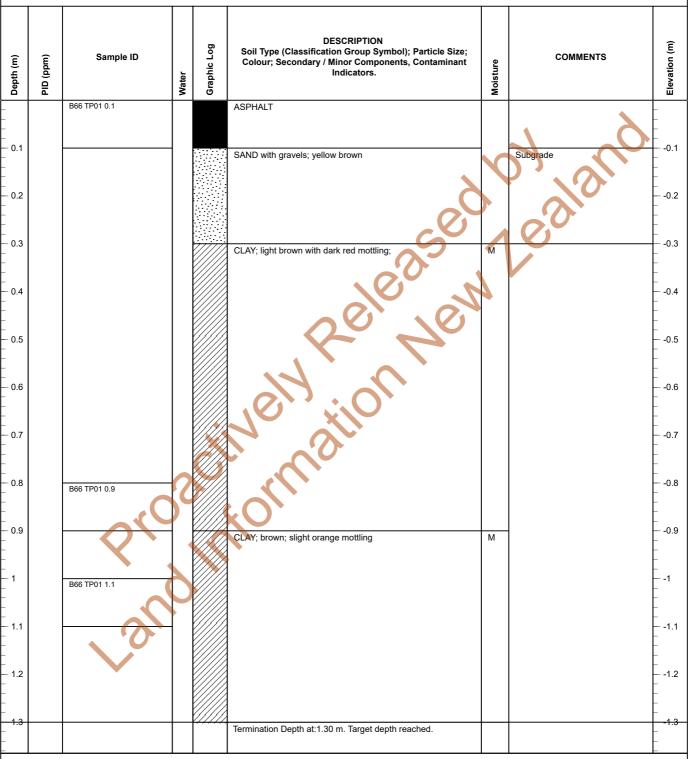
Location 149 Te Mawhai Rd, Tokanui Date Excavated 21/03/2023 - 21/03/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
					ASPHALT			
0.05								0.05 _
0.1		B63 TP04 0.2			Sandy GRAVEL; yellow brown		Subgrade	-0.1
0.15						X		-0.15
0.2				0 . 0			7.0	-0.2
- - 0.25					Silty CLAY with sand; light grey	М	0.0	- - 0.25
0.3							0	-0.3
E								
0.35					660			0.35
0.4								-0.4
0.45					20 10			- - - - -
0.5					Silty CLAY; mottled brown-grey	М		-0.5
0.55								-0.55
0.6		B63 TP04 0.7	-		0, 0,			_ 0.6
0.65		500 11 04 0.1						_ _ 0.65
0.7								- 0.7
E								E
0.75			7					0.75
0.8		, C						-0.8
0.85								- - - - -
0.9			1					_ 0.9
0.95								-0.95
1			\bigcup		Termination Depth at:1.00 m. Target depth reached.			<u>-1</u>
1.05					теннінацон Беритації. по ті. тагуєт цериттеаспец.			_ 1.05
1.1		.0.						_ _ 1.1
-								Ξ
1.15								-1.15
1.2								-1.2
1.25								- - - - -
Notes			<u> </u>					F

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	M-Moist, VM-Very Moist,	, ,	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

GHD


ENVIRONMENTAL-TEST PIT

Client Land Information New Zealand
Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui **Date Excavated** 21/03/2023 - 21/03/2023

Total Depth (m) 1.30 Logged By DJ Checked By CH

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 23/03/2023 - 23/03/2023 Total Depth (m) 0.90 Logged By DJ Checked By CH

L.,		<u> </u>					· · · · · · · · · · · · · · · · · · ·	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
					ASPHALT			
0.05								-0.05
0.1		B68 TP01 0.2	-		SAND with gravels; yellow brown		Subgrade	-0.1
0.15						1)'(0)'	-0.15
0.2				,,,,,,,			.0.	-0.2
0.25					CLAY with silt; grey with light brown mottling	М	00	_ 0.25
0.3							(-0.3
					-7			
0.35					0/800			-0.35
0.4								-0.4
0.45					20 10			- -0.45
0.5		B68 TP01 0.6						-0.5
0.55								-0.55
0.6					0, 0,			-0.6
0.65								-0.65
0.7								-0.7
El								
0.75			7					-0.75
0.8					(O)			-0.8
0.85								-0.85
0.9				/////	Termination Depth at:0.90 m. Target depth reached.			-0.9
0.95								-0.95
E 1								1
1.05								-1.05
1.1								-1.1
1.05 - 1.1 - 1.1 - 1.15								-1.15
								_
1.2								-1.2
1.25								-1.25
Notes			<u> </u>				l l	

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 23/03/2023 - 23/03/2023 Total Depth (m) 0.30 Logged By DJ Checked By CH

Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
					ASPHALT			
0.05								-0.05
0.1		B68 TP02 0.2			CAMP with graveles wellow have		Subgrade	-0.1
0.15		500 11 02 0.2			SAND with gravels; yellow brown	X	Subgrade	_ 0.15
F							7.0	E I
0.2						•		-0.2
0.25						1		-0.25
0.3					Termination Depth at:0.30 m. Refusal at 0.3m due to structure			-0.3
0.35					encountered.			-0.35
0.4						7		-0.4
0.45								-0.45
F					V 1			=
0.5								-0.5
0.55								-0.55
0.6					(O) (O)			-0.6
0.65								-0.65
0.7				X				-0.7
0.75								_ 0.75
E			~	-				
0.8		· C			(O)			-0.8
0.85								-0.85
0.9								-0.9
0.95		, and the second						-0.95
1			U					-1
1.05 - 1.1 - 1.15 - 1.2								_ 1.05
		'.0						_
['.']								-1.1
1.15								-1.15
1.2								-1.2
1.25								_ 1.25
								_

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 23/03/2023 - 23/03/2023 Total Depth (m) 1.20 Logged By DJ Checked By CH

Common C	L		<u> </u>					T	
0.05 0.1 0.15 0.2 0.2 0.25 0.3 0.4 0.45 0.5 0.5 0.6 0.6 0.7 0.75 0.8 0.85 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.9	Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant	Moisture	COMMENTS	Elevation (m)
0.1 B66 TP03 0.2 SAND with gravels; yellow brown						ASPHALT		•	
Clay with silt; grey with light brown mottling Clay with silt; grey with light brown mottling M Engbuntered cable at 0.4m -0.35 -0.4 -0.45 -0.55 -0.6 -0.66 -0.65 -0.7 -0.75 -0.8 -0.85 -0.9 -0.99 -0.95 -1 1.105 1.11 1.15 Termination Depth at: 1.20 m. Target depth reached.	0.05								-0.05
0.15 0.2 0.25 0.3 0.3 0.35 0.4 0.4 0.45 0.5 0.5 0.6 0.65 0.7 0.76 0.8 0.85 0.99 0.995 1 1.105 1.11 1.15 1.2 Termination Depth at: 1.20 m. Target depth reached. 0.2 0.25 0.2 0.25 0.2 0.25 0.3 0.4 Egsburtered cable at 0.4m 0.3 0.3 0.35 0.4 Egsburtered cable at 0.4m 0.3 0.3 0.35 0.4 Egsburtered cable at 0.4m 0.3 0.3 0.35 0.4 0.4 0.45 0.45 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.6	0.1		D69 TD02 0 2	1		CAND with any other plants and the same			-0.1
0.2	0.15		B00 1F03 0.2			SAND with gravels; yellow brown	X	Subgrade	0.15
0.3	E							10	
0.3	0.2			1					-0.2
Clay with silt; grey with light brown motuling 1 - 0.35 1 - 0.4 1 - 0.45 1 - 0.45 1 - 0.5 1 - 0.5 1 - 0.5 1 - 0.5 1 - 0.5 1 - 0.5 1 - 0.5 1 - 0.5 1 - 0.5 1 - 0.5 1 - 0.5 1 - 0.5 1 - 0.5 1 - 0.5 1 - 0.7 1 - 0.75 1 - 0.8 1 - 0.8 1 - 0.85 1 - 0.95 1 - 0.95 1 - 1.1 1 - 1.15 1 - 1.15 1 - 1.15 1 - 1.15 1 - 1.15 1 - 1.15	0.25							0,0	-0.25
0.35 0.4 0.45 0.5 0.5 0.6 0.6 0.6 0.7 0.76 0.8 0.95 0.95 1 1 1.10 1.15 1.11 1.15 1.12 Termination Depth at:1.20 m. Target depth reached.	0.3				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Classifik silk, was wide links brown as alding	M	Francisco de cable et 0 des	-0.3
0.4 B68 TP03 0.5 - 0.45 - 0.5 - 0.5 - 0.5 - 0.5 - 0.6 - 0.6 - 0.6 - 0.6 - 0.7 - 0.7 - 0.75 - 0.8 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 0.9 - 1.1 - 1.0 - 1.1 - 1.15 - 1.1	0.35					Clay with siit, grey with light brown motiling	IVI	Encountered cable at 0.4m	-0.35
- 0.45 - 0.5 - 0.5 - 0.6 - 0.6 - 0.6 - 0.7 - 0.7 - 0.75 - 0.8 - 0.8 - 0.9 - 0.9 - 1 - 1.15 -	E					10 .1	7		
0.5	0.4		B68 TP03 0.5	1					0.4
0.55 0.6 0.65 0.7 0.7 0.75 0.8 0.9 0.95 1 1.15 1.15 1.2 Termination Depth at:1.20 m. Target depth reached.	0.45					20 70			-0.45
-0.6 -0.65 -0.7 -0.7 -0.75 -0.8 -0.8 -0.85 -0.9 -0.9 -0.95 -1 -1.05 -1.1 -1.15 -1.15 -1.15 -1.15 -1.2 Termination Depth at:1.20 m. Target depth reached.	0.5			1					-0.5
-0.65 -0.7 -0.75 -0.8 -0.85 -0.9 -0.95 -1 -1.05 -1.11 -1.15 -1.15 -1.15 -1.2 Termination Depth at:1.20 m. Target depth reached.	0.55								-0.55
-0.65 -0.7 -0.75 -0.8 -0.85 -0.9 -0.95 -1 -1.05 -1.11 -1.15 -1.15 -1.15 -1.2 Termination Depth at:1.20 m. Target depth reached.									-06
0.7 -0.75 -0.8 -0.8 -0.85 -0.9 -0.95 -1 -1.15 -1.15 -1.15 -1.15 -1.15 -1.2 Termination Depth at:1.20 m. Target depth reached.	E					10 710			E
0.75 -0.8 -0.85 -0.9 -0.95 -1 -1.15 -1.15 -1.15 -1.15 -1.15 -1.15 -1.15 -1.20 m. Target depth reached.	0.65								-0.65 - -
0.85 -0.85 -0.99 -0.95 -1 -1.105 -1.11 -1.15 -1.15 -1.15 -1.15 -1.20 m. Target depth reached.	0.7								-0.7
- 0.85 - 0.99 - 0.95 - 1 - 1.05 - 1.105 - 1.115 - 1.15 - 1.15 - 1.15 - 1.15	0.75								-0.75
-0.9 -0.95 -1 -1.05 -1.1 -1.15 -1.15 -1.15 -1.2 Termination Depth at:1.20 m. Target depth reached.	0.8								-0.8
-0.9 -0.95 -1 -1.05 -1.1 -1.15 -1.15 -1.15 -1.2 Termination Depth at:1.20 m. Target depth reached.	E 0.85			7		kO'			-0.85
-0.95 -1 -1.05 -1.1 -1.15 -1.15 -1.15 -1.2 Termination Depth at:1.20 m. Target depth reached.	F								=
-1 -1.05 -1.05 -1.11 -1.15 -1.15 -1.15 -1.2 Termination Depth at:1.20 m. Target depth reached.	0.9								0.9
-1.05 -1.1 -1.15 -1.15 -1.15 -1.2 Termination Depth at:1.20 m. Target depth reached.	0.95								-0.95
-1.05 -1.1 -1.15 -1.15 -1.15 -1.2 Termination Depth at:1.20 m. Target depth reached.	1								-1
- 1.1	F								-1.05
-1.15 -1.15 -1.2 Termination Depth at:1.20 m. Target depth reached.	⊨ I		'.0'						
Termination Depth at:1.20 m. Target depth reached.	- 1				V ////				=
Termination Depth at:1.20 m. larget depth reached.	1.15								-1.15
-	1.2				<i>[/////</i>	Termination Depth at:1.20 m. Target depth reached.			-1.2
	1.25								-1.25
									E

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

GHD

ENVIRONMENTAL-TEST PIT

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 **Site** Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui **Date Excavated** 23/03/2023 - 23/03/2023

Total Depth (m) 1.00 Logged By DJ Checked By CH

		T					T	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B68 TP04 0.1			ASPHALT			=
0.05			-		SAND with gravels; yellow brown	~	Subgrade	-0.05 -0.1 -0.15
0.2								- - 0.2
0.25					CLAY with silt; grey with light brown mottling	M	00	-0.25
0.3					25			-0.3
0.35								-0.35
0.4		B68 TP04 0.5			0/0/0/			-0.4
0.45								-0.45
0.5			-					-0.5
0.55					10 N			-0.55
0.6					(0), '(0)			-0.6
0.65								0.65 0.7
0.75			0					-0.75
0.8		.0						-0.8
0.85								-0.85
0.9					, *			-0.9 -
E								- 0.00
= 1				<i>\/////</i>	Termination Depth at:1.00 m. Target depth reached.			-1
1.05		' 0,						- 1.05
- 1.1 - 1.15								1.1 1.15
 								
1.2								-1.2
1.25								1.25
\vdash							·	

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 23/03/2023 - 23/03/2023 Total Depth (m) 1.60 Logged By DJ Checked By CH

-		<u> </u>					Г	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
-		B68 TP06 0.1			ASPHALT			L
- - - - 0.1 - -					SAND with gravels; yellow brown		Subgrade	
- 0.2 								- 0.2 - - -
- 0.3 - - - -					SAND; brown	M	80	-0.3
0.4 0.5		B68 TP06 0.5			0/60/2			0.4 - - - - 0.5
- - - - - 0.6					20, 10,			- - - 0.6
- - - - 0.7					11/2/2			- - - 0.7
- - - 0.8					10, 40,			- - 0.8
- - 0.9 - -								- 0.9 - -
- - 1 - - -		• • •	?					- 1 - -
1.1 - - - - - 1.2		B68 TP06 1.2			CLAY with silt; light brown with brown mottling	М	Encountered cable at 1.6m	-1.1 - - - - - 1.2
- 1.2 - - - - - 1.3			0					1.2 - - - - 1.3
- - - - - 1.4								- - - 1.4
- - - - 1.5								- - - 1.5
- - 1.6								_ - -1.6
-					Termination Depth at:1.60 m. End of hole at 1.6m due to cable encountered.			-
-								-

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 **Site** Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui **Date Excavated** 23/03/2023 - 23/03/2023

Total Depth (m) 1.70 Logged By DJ Checked By CH

Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B68 TP07 0.1			ASPHALT			-
0.1		D00 TD07 0 0						<u>-</u> 0.
		B68 TP07 0.2			SAND with gravels; yellow brown		Subgrade	
0.2			$\frac{1}{2}$			1		-0
0.3					SAND; brown	М	00	- 0.
0.4							0	_ 0.
					-7	Ť		E
0.5		B68 TP07 0.6	+		SAND with gravels; black		Rag fragments observed	-0
0.0								E
0.6			1		CLAY with silt; grey with light brown mottling	М		-0: - -
0.7								_ 0
								E
8.0								-0
0.9								-0.
0.9								_
1					CLAY with silt; orange	М		1
			7		opy, margin, outlige	IVI		_
1.1		40	10					- -1
1.2								- - 1
								Ė.
1.3								1
			U					-
1.4		B68 TP07 1.5						1.
1.5								- - 1.
								Ė .
1.6		•						1
1.7			T	<i>Y././././</i>	Termination Depth at:1.70 m. Target depth reached.			-1

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	M-Moist, VM-Very Moist,	, ,	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 **Site** Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui **Date Excavated** 23/03/2023 - 23/03/2023

Total Depth (m) 1.70 Logged By DJ Checked By CH

Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
					ASPHALT			-
0.1		B68 TP08 0.2	-		SAND with gravel; yellow brown		Subgrade	-0.1
					Oracle with graver, yellow brown	V	Cabgrado	_
0.2			1		SAND; brown	М		- -0.
0.3							2 (- -0.
					SAND with gravels; black		Rag fragments observed	-
0.4		B68 TP08 0.5	1		CLAY with silt; light brown with brown mottling	М		- -0.
0.5								- - - 0.
						7		<u>-</u> -
0.6					70, 6			-0.
0.7					1 P			- - 0
								-
0.8								0
0.9								-0.
0.5								-0.
1					CLAY with silt; orange with brown mottling	М		1
, ,			7					-
1.1		*C			(O)			1.
1.2			1 ,					- 1.
					•			-
1.3								1 - -
1.4			Y					- 1
								_
1.5								1. -
1.6		B68 TP08 1.7	-					- - 1
		B00 1F00 1.7						
1.7			+	<i>[]]]]]</i>	Termination Depth at:1.70 m. Target depth reached.	-		-1

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 14/06/2023 - 14/06/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		r				1	T	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B71 TP01 0.10		333	Sandy clay TOPSOIL; brown; soft; low plasticity	М		
0.05				$ \rangle\rangle\rangle$				-0.05
0.1				$ \rangle\rangle\rangle$				-0.1
0.15				}}}		X		-0.15
0.2				}}}				- 0.2
F					CLAY; mottled brown and grey with some black mottles; firm; high plasticity	М		
0.25							0	0.25
0.3								-0.3
0.35					016.01			-0.35
0.4		B71 TP01 0.50						-0.4
0.45					70' (0)			_ 0.45
0.5					K 12			- - 0.5
0.55								-0.55
0.6								
F					10, 310			— - 0.6
0.65								-0.65
0.7								-0.7
0.75			0		Sandy CLAY with some fine gravel; mottled black and brown;	W		-0.75
0.8					soft; high plasticity;			-0.8
0.85					KO			-0.85
0.9								- - 0.9
0.95		B71 TP01 1.00						-0.95
E 0.93								-0.95
1				<i>7.7.7.7.7.7.</i>	Termination Depth at:1.00 m. Target depth reached.			-1
1.05		. ?						- 1.05
1.1								-1.1
1.15		•						-1.15
1.2								-1.2
1.25								_ 1.25
[.20
Notes								

Drilling A	Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
DC-Diam (shovel), SD-Sonio	Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, and Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, dow Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 23/03/2023 - 23/03/2023 Total Depth (m) 2.20 Logged By DJ Checked By CH

Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
- 0.1		B74 TP02 0.1			Sandy clay TOPSOIL; brown	M	1 nd	-0.1
0.3		B74 TP02 0.5					9/9/	
- 0.5					Silty CLAY; light brown with orange mottling	M		-0.5 0.6
- 0.7					26/0781	3		-0.7 0.8
0.9		B74 TP02 1.1			13/10/1			-0.9
- 1.1					Jo Silo			
1.3			?					-1.3 1.4
1.5		6,6						-1.5 - - - - 1.6
1.7		B74 TP02 1.9	Ö					-1.7 - - - 1.8
1.9		B74 TP02 2.1			Silty CLAY; grey; growndwater intrusion at 2.1m	SM		-1.9
2.1					Termination Depth at:2.20 m. Target depth reached.			- 2.1 - - -

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 23/03/2023 - 23/03/2023 Total Depth (m) 2.30 Logged By DJ Checked By CH

Sample ID Sample ID Sample ID Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators. COMMENTS	(m)
Depth Old Ol	Elevation (m)
B74 TP03 0.1	
	-0.1
	-0.2
	-0.3
Silty CLAY; light brown with orange mottling M	- - 0.4
	E
B74 TP03 0.6	— - 0.5
0.6	-0.6
0.6	-0.7
-0.8	-0.8
	_ 0.9
	<u> </u>
	=
	- -1.1
Silty CLAY; grey; growndwater intrusion at 2.1m SM	- -1.2
	-1.3
- 1.4	-1.4
1.5	-1.5
1.6	-1.6
	- - 1.7
	- - 1.8
	E
	-1.9
	- -2
E-2.1 B74 TP03 2.2	
	2.2
2.3 Termination Depth at:2.30 m. Target depth reached.	-2.3
Termination Depth at.2.30 III. Target depth reached.	<u> </u>

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 21/03/2023 - 21/03/2023 Total Depth (m) 2.30 Logged By DJ Checked By CH

		Γ	1			1	T	1
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B74 TP04 0.1			ASPHALT			
0.1				10° P	Sandy GRAVEL	M	Subgrade	-0.1
0.2				7////	Silty CLAY; light brown with occasional orange mottling	M	4 0	-0.2
0.3					, , , , ,) ' (V)	-0.3
0.4						•		-0.4
0.5							0,0	-0.5
0.6								-0.6
E		B74 TP04 0.7			0160			Ē
0.7								- 0.7
0.8					00,10			-0.8
0.9								-0.9
_ _ 1								-1
1.1								-1.1
1.2					Jo XII			-1.2
1.3								- 1.3
1.4								- 1.4
1.5			{(_ _ 1.5
E					KO			
1.6 								1.6
1.7					Silty CLAY; grey with orange mottling	М	-	1.7
1.8			U					-1.8
1.9								-1.9
2		B74 TP04 2.1						-2
2.1			-					_ _ -2 .1
2.2								-2.2
2.3								- 2.3
<u> </u>					Termination Depth at:2.30 m. Target depth reached.			E
		•	-			•		

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 20/03/2023 - 20/03/2023 Total Depth (m) 2.50 Logged By DJ Checked By CH

			1				<u> </u>	l
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		B74 TP06 0.1		333	sandy clay TOPSOIL; brown	М		
0.1				\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	0 or to 01 W. brown		4 20	-0.1 0.2
0.3					Sandy CLAY; brown	M),	-0.3
0.4		B74 TP06 0.5	1	//		•		-0.4
0.5					Silty CLAY; brown with infrequent orange mottling	M	0	-0.5
0.6								-0.6 0.7
0.8								-0.8
0.9					20 70			-0.9 - - - 1
1.1					W N			-1.1
1.2					(0): (0)			-1.2
1.3								
1.5		B74 TP06 1.5	0		Silty CLAY; grey			-1.5
1.6		«C						- 1.6
1.7								-1.7
1.9								-1.9
2								-2
2.1 - 2.2		(0.						
2.3								-2.3
2.4		B74 TP06 2.5						-2.4
2.5				* / / / /	Termination Depth at:2.50 m. Target depth reached.			-2.5

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 20/03/2023 - 20/03/2023 Total Depth (m) 1.60 Logged By DJ Checked By CH

		<u> </u>	_			1	T	1
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
_		B74 TP07 0.1		333	Sandy clay TOPSOIL; brown	М		-
- 0.1				}}} /*/	Sandy CLAY; brown	M	Cable encountered at approximatley 0.9m	-
 0.2 					>			- 0.2 -
0.3					60) *	0,0	- 0.3
- 0.4 								- 0.4 - -
- - 0.5 -					6,000			- - 0.5 - -
- - - - - -		B74 TP07 0.7			50 40			- 0.6 - -
- - 0.7 -					no les			- 0.7 - -
0.8					Johnson			0.8
- 0.9 - - -								0.9 - - -
1 		«C						1
1.1 - - - - - 1.2		01						1.1 1.2
1.2 - - - - - 1.3			0					1.2 1.3
- 1.3 - - - - 1.4								1.3 - - - - 1.4
- 1.5		B74 TP07 1.5						- - - - 1.5
- - -								_
- - 1.6 - - -					Termination Depth at:1.60 m. Target depth reached.			
Notes								

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 16/06/2023 - 16/03/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

							1	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
_ _ _ 0.05					Silty CLAY; dark brown	М	<u> </u>	-0.05
0.03							0~ \	-0.03
0.15		CHP TP01 0.2				X		-0.15
0.2					O'S CAND OF THE	X4		-0.2
0.25					Silty SAND; yellow	M	0.0	-0.25
0.3					25			-0.3
0.35					0.0			-0.35
0.4		CHP TP01 0.5						-0.4
0.45					20 70			-0.45
0.5								-0.5
0.55					22 62			-0.55
0.6 - - - - 0.65					10, 310			-0.6 - -0.65
0.03					7			-0.05
0.75								-0.75
0.8			{(-0.8
0.85								-0.85
0.9			•					-0.9
0.95								-0.95
1					Termination Depth at:1.00 m. Target depth reached.			-1
1.05		. 0						-1.05
1.1								1.1 _
1.15								-1.15
1.2 - 1.25								1.2 1.25
1.25 _ _ _								-1.25
Notes								

Notes

Drilling Abbreviation	ons	Moisture Abbreviations	Consistency Abbreviations	
DC-Diamond Core, (shovel), HFA-Hollo	w Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, FA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore,	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 23/03/2023 - 23/03/2023 Total Depth (m) 0.90 Logged By DJ Checked By CH

		1					1	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		CHP TP02 0.1			Silty CLAY; dark brown	М		
0.05							4 2	-0.05
0.15					\			-0.15
0.2					Silty SAND; yellow	М		_ 0.2
0.25							0	-0.25
0.3								0.3
0.35								- - - - -
0.4		CHP TP02 0.5			6/6/0			- -0.4
0.45					20 10			-0.45
0.5					KK			-0.5
0.55					14 0			-0.55
0.6					(0)			-0.6
0.65								-0.65
0.7					20			-0.7
0.75			0					-0.75
0.8								-0.8
0.85								_ 0.85
0.9					Termination Depth at:0.90 m. Target depth reached.			- -0.9
0.95								-0.95
1			P	•				_ 1
1.05								-1.05
1.1								_ 1.1
1.15		•						-1.15
1.2								-1.2
1.25								-1.25
Notes								=

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 23/03/2023 - 23/03/2023 Total Depth (m) 0.60 Logged By DJ Checked By CH

		1	_					
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		CHP TP03 0.2			Silty CLAY; dark brown	М	•	
0.05								-0.05
0.1								-0.1
0.15						1), (1)	-0.15
0.2					Silty SAND; yellow	М		-0.2
0.25					Silty SAND, yellow	IVI	0.0	- 0.25
0.3							O	-0.3
0.35						1		-0.35
0.60					6/8/0	7		-0.4
F								
0.45					\(\sigma_{\operatorname{\oper			-0.45
0.5								-0.5
0.55					13 6			-0.55
0.6					Termination Depth at:0.60 m, Refusal at 0.6m.			0.6
0.65								-0.65
0.7								-0.7
0.75			0	\bigcirc				-0.75
0.8				Γ,				-0.8
0.85					KO .			-0.85
0.9			•					- 0.9
_ 0.95								-0.95
			U					-1
1.05 - 1.1 - 1.1 - 1.15 - 1.2								-1.05
1.03		'0'						_
E '.								-1.1
1.15								-1.15
F 1								-1.2
1.25								-1.25
<u> </u>								F

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Cc DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Ha (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drillin SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-WS-Window Sampler	and Excavation g, PT-Pushtube, M-Moist, VM-Very Moist, W-Wet, S-Saturated	t, Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 16/03/2023 - 16/03/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

O.05 O.1 CHP_TP04 0.2 Silty CLAY; dark brown M CHP_TP04 0.2 Silty SAND; yellow M O.35 O.4 O.45					1	1	
0.15 0.15 0.2 0.25 0.3 0.35 0.45	Depth (m) PID (ppm)		Graphic Log	Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant	Moisture	COMMENTS	Elevation (m)
0.55 0.6 0.65 0.7 0.75 0.8 0.9 0.95 1.05 1.15 1.15 1.2	- 0.05 - 0.1 - 0.15 - 0.25 - 0.3 - 0.35 - 0.45 - 0.45 - 0.55 - 0.66 - 0.65 - 0.7 - 0.75 - 0.8 - 0.85 - 0.9 - 1.05 - 1.15 - 1.15	CHP_TP04 0.2		Silty SAND; yellow	Y		-0.05 -0.15 -0.25 -0.35 -0.45 -0.45 -0.65 -0.65 -0.76 -0.76 -0.85 -0.99 -1.15 -1.15 -1.25 -1.25

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Cc DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Ha (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drillin SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-WS-Window Sampler	and Excavation g, PT-Pushtube, M-Moist, VM-Very Moist, W-Wet, S-Saturated	t, Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 17/03/2023 - 17/03/2023 Total Depth (m) 1.70 Logged By DJ Checked By CH

			1			1		
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
-					Silty CLAY; dark brown	М		
0.1		DIP TP01 0.2	-					_ 0.1
0.2							7 6	- - 0.2
- U.2 - -							7'\0	
0.3					CLAY with sand; reddish brown	M		
- - - 0.4							0.0	_ _ 0.4
-		DIP TP01 0.5						-
0.5			1		06/60/			-0.5
- - 0.6					10 1	7		_ 0.6
								_
- 0.7 -					0-10			— - 0.7 –
0.8								-0.8
					14 0			_
_ 0.9 _					(6), "(O)			- - 0.9
1		DIP TP01 1.1	$\frac{1}{1}$					- 1
_ 1.1								_ _ 1.1
					SAND; light brown	М		
1.2			{(-1.2
- - - 1.3				77777	(O)			_ _ 1.3
_					CLAY with sand; reddish brown			_
1.4								-1.4
_ 1.5					CAND February			_ 1.5
_					SAND; light brown	М		_
1.6								1.6
1.7					Termination Depth at:1.70 m. Target depth reached.			- -1.7
<u> </u>					Tommission population of the range temperature.			
1.8 								1.8
1.9								_ 1.9
<u> </u>								
Notes								

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	M-Moist, VM-Very Moist,	Loose, L-Loose, MD-Medium	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

GHD

ENVIRONMENTAL-TEST PIT

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 **Site** Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui **Date Excavated** 17/03/2023 - 17/03/2023

Total Depth (m) 1.50 Logged By DJ Checked By CH

Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
- - - - - 0.1		DIP TP02 0.2			Silty CLAY; dark brown	М	4 29	- - - 0.1
- - - 0.2 -					CLAY with sand; reddish brown	X		- - 0.2 -
- 0.3 					60		S.O.	_ 0.3 _ _
- 0.4 - - - -		DIP TP02 0.5			6/6/2/2			
0.5 0.6					50,70,			0.5 0.6
- - - - 0.7					no. 145			_ _ 0.7
- 0.8 - -					No still			- 0.8
- 0.9 - - - -			?					- 0.9 - - -
1 1.1		DIP TP02 1.2)					1 - - - - 1.1
- - - - 1.2		DIF 1F02 1.2	O		SAND; light brown	М		- - - 1.2
- - - 1.3 - -		3						_ _ 1.3 _
_ _ 1.4 _ _								_ 1.4 _ _ _
1.5					Termination Depth at:1.50 m. Target depth reached.			- - 1.5 - -

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

GHD

ENVIRONMENTAL-TEST PIT

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui **Date Excavated** 17/03/2023 - 17/03/2023

Total Depth (m) 1.60 Logged By DJ Checked By CH

Sample ID Sample ID Self Type (Classaffication Group Symbol): Particle Size: Comments, Contaminant Indicators. Self Type (Classaffication Group Symbol): Particle Size: Comments, Contaminant Indicators. Self CLAY dark brown			r					ı	
0.1 DIP TP03 0.2 -0.1 -0.2 -0.3 -0.3 -0.4 -0.4 -0.5 -0.5 -0.5 -0.6 -0.6 -0.7 -0.8 -0.9 -0.9 -0.9 -0.9 -0.9 -0.9 -0.9 -0.9	Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant	Moisture	COMMENTS	Elevation (m)
0.2 -0.2 -0.2 -0.2 -0.2 -0.3 -0.3 -0.4 -0.4 -0.4 -0.5 -0.5 -0.5 -0.5 -0.5 -0.6 -0.8 -0.8 -0.9 -0.9 -0.9 -0.9 -0.9 -0.1 -1.1 -1.1 -1.1 -1.1 -1.1 -1.1 -1.1	-					Silty CLAY; dark brown	М		_
0.3 CLAY with sand; reddish brown -0.4 -0.4 -0.5 -0.5 -0.5 -0.6 -0.7 -0.7 -0.7 -0.8 -0.9 -1.1	- - 0.1 -		DIP TP03 0.2					4 20	- - 0.1 -
CLAY with sand; reddish brown -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1 -1.1 -1.1 -1.2 -1.3 -1.4 -1.5	- 0.2 					>			- 0.2
-0.5 -0.6 -0.6 -0.7 -0.7 -0.8 -0.9 -1 -1.1 -1.2 -1.3 -1.4 -1.5 -1.5	- 0.3 					CLAY with sand; reddish brown	r	0,0	- 0.3
- 0.6 - 0.7 - 0.8 - 0.8 - 0.9 - 1 - 1.1	- 0.4 - -								- 0.4
- 0.6 - 0.7 - 0.8 - 0.8 - 0.9 - 1 - 1.1	- 0.5 - -						7		- 0.5
- 0.8 - 0.9 - 1 - 1.1 - 1.1 - 1.2 - 1.3 - 1.4 - 1.5 - 1.6	- 0.6 		DIP TP03 0.7			50 Yo			-
- 0.9 - 1 - 1.1 - 1.1 - 1.1 - 1.2 - 1.3 - 1.4 - 1.5	- 0.7 					14 00			-
-1.1	- - 0.8 - -					10, 110,			
-1.1 DIP TP03 12 SAND; reddish brown to grey1.11.21.31.41.51.51.5	- 0.9 - - -								- 0.9
-1.2 SAND; reddish brown to grey -1.2 -1.3 -1.4 -1.5 -1.5	- - 1 - -		40	7					1 _ _
-1.3 -1.4 -1.5	1.1 		DIP TP03 1.2			SAND; reddish brown to grey	-		1.1
-1.4 -1.5	-								_ _ _ _
-1.5	-								1.3
	-								_ _ _ _
Termination Depth at:1.60 m. Target depth reached.	- - -								_ _ _ _
	1.6				 	Termination Depth at:1.60 m. Target depth reached.			-1.6 -
	-								

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 17/03/2023 - 17/03/2023 Total Depth (m) 1.60 Logged By DJ Checked By CH

Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
					Silty CLAY with sand; dark brown	М	Top of glass bottle observed in soil profile	-
0.1		HT TP25 0.2				S	3 00	-0.
0.2					>			-0
0.3					Sandy SILT with clay; orange brown	M	0,0	-0
0.4		HT TP25 0.5						0
0.5			+		3/80 31	1		-0
0.6					00,70			-0
).7								- - 0
0.8					16/1:10/			
.9								
			0	Y				- - 1
.1			36					- - - 1
		HT TP25 1.2			Silty SAND; light brown with orange mottling	M		
.2			7					1 - - -
.3		20						-1
.4								-
.5								1
.6			-		Termination Depth at:1.60 m. Target depth reached.			-1

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	M-Moist, VM-Very Moist,	, ,	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 17/03/2023 - 17/03/2023 Total Depth (m) 1.10 Logged By DJ Checked By CH

<u> </u>		r	_			1	T	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		HT TP27 0.1		333	Silty clay with sand TOPSOIL; dark brown	М		-
0.05							1	-0.05
0.1					Sandy SILT; black	M	Small chips and paintflakes	-0.1
0.15							observed, metal pipe and teaspoon	-0.15
0.2								-0.2
0.25							0.0	-0.25
0.3		HT TP27 0.4					, o	-0.3
0.35		111 1727 0.4						-0.35
0.4					10 1	1		-0.4
0.45		HT TP27 0.5			Sandy SILT with clay; brown	М		-0.45
0.5								-0.5
F								E
0.55								-0.55
0.6		HT TP27 0.7			10,1510			-0.6
0.65								-0.65
0.7			1					-0.7
0.75			7					-0.75
0.8		·C						-0.8
0.85								-0.85
0.9								-0.9
0.95								-0.95
1								-1
1.05								-1.05
1.1		10		Ш	Termination Depth at:1.10 m. Target depth reached.	_		-1.1
1.15					теннінаціон Беритак. г. то пі. тагдет дерті геаспед.			-1.15
1.2								-1.2
1.25								-1.25
								- 7.23

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Cc DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Ha (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drillin SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-WS-Window Sampler	and Excavation g, PT-Pushtube, M-Moist, VM-Very Moist, W-Wet, S-Saturated	t, Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 17/03/2023 - 17/03/2023 Total Depth (m) 0.90 Logged By DJ Checked By CH

Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
0.05		HT TP28 0.1		}	Silty clay TOPSOIL with sand; dark brown	М	Top of glass bottle observed in soil profile	-0.05
0.1			-	\ <u>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \</u>	Sandy SILT; light brown	M	Brick observed in material	-0.1
0.15								-0.15
0.2								-0.2
0.25							0,0	-0.25
0.3		HT TP28 0.5			Silty CLAY with sand; dark brown	М		-0.3
0.35								-0.35
0.4								
0.45					00 70			-0.45
0.5								-0.5
0.55								0.55 0.6
0.65					To XIO			0.65
0.7					Sandy SILT with clay; orange brown	М	-	-0.7
0.75					Sandy Sich with day, Gange brown	IVI		-0.75
0.8		.0						-0.8
0.85							-	- 0.85
0.9					Termination Depth at:0.90 m. Target depth reached.			-0.9
0.95								-0.95
1								-1
1 1.05 1.1		. 0						- 1.05
								-1.1
1.15								-1.15
1.2								1.2 1.25
_ 1.25 _ _								1.25
Notes								

Drilling A	Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
DC-Diam (shovel), SD-Sonio	Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, and Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, dow Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 16/03/2023 - 16/03/2023 Total Depth (m) 0.70 Logged By DJ Checked By CH

Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
					ASPHALT			
0.05							\	-0.05
0.1		SB2 TP02 0.2	-		Sandy GRAVEL; brown	D	Roading subgrade	-0.1
0.15				0.00		X		_ 0.15
0.2								- 0.2
0.25				0.00			00	-0.25
0.3				0.0			O	-0.3
F					Silty SAND with gravel; brown	М	Concrete foundation observed at approximately 0.4m,	E
0.35							Encountered wooden structure over unidentified cable at 0.7m.	-0.35
0.4								- 0.4
0.45					20 70			-0.45
0.5								-0.5
0.55					14 0			-0.55
0.6		SB2 TP02 0.7			(0) (0)			-0.6
0.65				•				-0.65
0.7					Towning time Delivery and Define Let 0.7m due to under			-0.7
0.75					Termination Depth at:0.70 m. Refusal at 0.7m due to wooden structure encountered.			-0.75
0.8			[[)				-0.8
0.85		~40			kO'			-0.85
F			•	(E
0.9								-0.9
0.95		_						-0.95
1								-1
1.05								-1.05
1.1								-1.1
1.05 - 1.1 - 1.15		•						-1.15
1.2								-1.2
1.25								_ 1.25
								Ë
Lau a								

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	M-Moist, VM-Very Moist,	, ,	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 16/03/2023 - 16/03/2023 Total Depth (m) 0.50 Logged By DJ Checked By CH

Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
					ASPHALT			=
0.05								-0.05
0.1		SB2 TP03 0.2			Sandy GRAVEL; brown	D	Roading subgrade	-0.1
0.15				0.00		X		-0.15
0.2								-0.2
0.25							60.	-0.25
E				0.0			6	E
0.3				0.00				-0.3
0.35								-0.35
0.4		SB2 TP03 0.5			Silty SAND with gravel; brown	М	Asbestos sheeting encountered	-0.4
0.45					20 10		at 0.4 - 0.5m	-0.45
0.5					Termination Depth at:0.50 m. End of hole at 0.5m due to			-0.5
0.55					asbestos sheeting encountered.			-0.55
0.6								-0.6
0.65								-0.65
F				X				
0.7								-0.7
0.75			7					-0.75
0.8		40		'				-0.8
0.85								-0.85
0.9		X		11				-0.9
0.95								-0.95
E 1			U					-1
1 05								-1.05
1.03		, '0'						E I
F 1.1								-1.1
1.05								-1.15
1.2								-1.2
1.25								-1.25
Ē								Ē

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

GHD

ENVIRONMENTAL-TEST PIT

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 **Site** Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui **Date Excavated** 20/03/2023 - 20/03/2023

Total Depth (m) 1.10 Logged By DJ Checked By CH

				1			1	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		SB4 TP01 0.1		333	Silty sand TOPSOIL; black	М	•	
0.05							1	-0.05
0.1							7 70	-0.1
0.15						X), (1)	-0.15
0.2				} } }				-0.2
0.25				[{{{			20.	- 0.25
E				[{ { {			0	E
0.3					Silty CLAY; light brown with orange mottling	М		-0.3
0.35								-0.35
0.4		SB4 TP01 0.5						-0.4
0.45					20 10			-0.45
0.5					KA			-0.5
0.55								-0.55
0.6								-0.6
0.65					10 X/C			_ 0.65
E								E l
0.7								-0.7
0.75			7					-0.75
0.8		40						-0.8
0.85								-0.85
0.9			•					-0.9
0.95		*						-0.95
E 1								_ 1
1.05								-1.05
1.1		'0'						
E					Termination Depth at:1.10 m. Target depth reached.			-1.1
1.15								-1.15
1.2								-1.2
1.25								1.25
Notes								F

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 20/03/2023 - 20/03/2023 Total Depth (m) 1.50 Logged By DJ Checked By CH

		Г					T	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
-				}	Silty sand TOPSOIL; black	М		-
_ _ 0.1		SB4 TP02 0.2					4 00	_ _ 0.1 _
_ _ 0.2 _					>			_ 0.2
_ _ 0.3 _					Silty CLAY; light brown	M	80,	_ 0.3 _
- - 0.4 -		SB4 TP02 0.5	-					- - 0.4 -
_ 0.5 						•		_ 0.5 _
_ _ 0.6 _					LA HO			_ 0.6 _
_ _ 0.7 _								_ 0.7 _
_ _ 0.8 _					10 Sille			_ 0.8 _
_ _ 0.9 _ _			7					_ 0.9
- - 1 -		~⟨C			kO'			_ 1 _
- 1.1 								- 1.1 -
_ 1.2 -			D					_ 1.2 _
_ 1.3 								_ 1.3 _
_ _ 1.4 _								_ 1.4
- - 1.5					Termination Depth at:1.50 m. Target depth reached.			- -1.5
					Tommadon Doper at 1.00 m. Target depur readred.			
								-

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 20/03/2023 - 20/03/2023 Total Depth (m) 0.60 Logged By DJ Checked By CH

						1	<u> </u>	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		SB4 TP03 0.1		333	Silty sand TOPSOIL; black	М		
0.05 0.1							1 20	-0.05
0.15						1		-0.15
0.2								-0.2
_ _ 0.25						1	6,0	-0.25
0.3		SB4 TP03 0.4			Silty CLAY; light brown with orange mottling	М	White plastic pipe with orange	-0.3
0.35							tape encountered	-0.35
0.4								-0.4
0.45					20 10			-0.45
0.5					KKK			-0.5
0.55					14 0			-0.55
0.6					Termination Depth at:0.60 m. End of hole at 0.6m due to			-0.6
0.65					service encountered.			-0.65
0.7				X				-0.7
0.75				V				-0.75
0.8								-0.8
0.85					CO			-0.85
0.9		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	•					-0.9
0.95								-0.95
1.05 - 1.1			U					-1
1.05								-1.05
1.1								-1.1
1.15								-1.15
1.2								-1.2
1.25								-1.25
_								Ē
Notes								

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 28/03/2023 - 28/03/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		1		,			_	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
E		SCH TP01 0.1		333	Sandy silt TOPSOIL; brown	М	•	
0.05								-0.05
0.1							7 70	-0.1
0.15						1), (0)	-0.15
0.2		SCH TP01 0.3			SILT; orange brown	М		-0.2
0.25		331111010.3			SiLi, drange brown	IVI	0.0	_ 0.25
0.3							0	-0.3
0.35								-0.35
E					180	7	Y	
0.4								-0.4
0.45					20 70			-0.45
0.5								-0.5
0.55					N 11			-0.55
0.6					(0)			-0.6
0.65								-0.65
0.7								-0.7
0.75				W				-0.75
0.8			{(-0.8
0.85					kO'			-0.85
0.9			•					-0.9
F								=
0.95								-0.95
					Termination Depth at:1.00 m. Target depth reached.			-1
1.05								1.05
1.1								- 1.1
1.15		•						-1.15
1.2								-1.2
1.25								-1.25

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 28/03/2023 - 28/03/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

							1	1
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		SCH TP02 0.1		333	Sandy silt TOPSOIL; brown	М		
0.05								-0.05
0.1							7 6	-0.1
0.15				[{ { {				-0.15
0.2		SCH TP02 0.3	$\frac{1}{2}$					-0.2
0.25							0.0	-0.25
0.3					SILT; orange brown	M		-0.3
0.35					OLI, orange brown	101		-0.35
0.4						7		-0.4
0.45					00, 00,			-0.45
0.5					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			-0.5
0.55								-0.55
0.6								-0.6
0.65					To XIO			-0.65
0.7								-0.7
0.75								-0.75
0.73			9					-0.73
		_4C			Sandy SILT; light brown	М		=
0.85								-0.85
0.9								-0.9
_ 0.95 _								-0.95
- 1 					Termination Depth at:1.00 m. Target depth reached.			-1
_ 1.05								1.05
1.1								-1.1
1.15		•						-1.15
1.2								-1.2
1.25								-1.25
Notes								F

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 28/03/2023 - 28/03/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

Ĺ.,							_	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		SCH TP03 0.1		333	Sandy silt TOPSOIL; brown	М		
0.05								-0.05
0.1							7 .70.	-0.1
0.15						X), \(\rangle\)	-0.15
0.2				333				_ 0.2
0.25					SILT; orange brown	М	~~	- - 0.25
F							0	
0.3								0.3
0.35								-0.35
0.4								-0.4
0.45								_ 0.45
0.5					Sandy SILT; light brown	М		-0.5
0.55					Sandy SILI; light brown	IVI		- 0.55
0.6								- - 0.6
F		SCH TP03 0.7			10 %			
0.65								-0.65
0.7								-0.7
0.75			0	M				-0.75
0.8								-0.8
0.85								_ 0.85
0.9			•					_ 0.9
- - 0.95								-0.95
E 3.00								0.00
				 	Termination Depth at:1.00 m. Target depth reached.			-1
1.05		. 0						1.05 _
1.1								_ 1.1
1.15		•						-1.15
1.2								-1.2
_ 1.25								_ 1.25
١								

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 28/03/2023 - 28/03/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

L								
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		SCH TP04 0.1		333	Sandy silt TOPSOIL; brown	М		Ē
0.05							1	0.05
0.1				[{ { {		\	7	-0.1
0.15							, (W)	-0.15
0.2					SILT; pale brown	М		_ 0.2
0.25							0,0	-0.25
0.3								-0.3
0.35					0.0			-0.35
0.4					silt; brown orange	M		-0.4
0.45								-0.45
0.5		SCH TP04 0.6			K 6			-0.5
0.55		001111040.0						-0.55
0.6								_ 0.6
0.65					10 410			_ 0.65
0.7								- 0.7
0.75								-0.75
0.8			7					-0.8
0.85		~40			kO'			-0.85
0.83			•					
Εl								-0.9
0.95								-0.95
1 1					Termination Depth at:1.00 m. Target depth reached.			- 1
1.05		. 0						1.05
1.1								1.1 _
1.15		*						-1.15
1.2								-1.2
1.25								_ 1.25
								Ē

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 29/03/2023 - 29/03/2023 Total Depth (m) 0.90 Logged By DJ Checked By CH

<u></u>							1	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		TRF TP01 0.1			Silty CLAY; dark brown	М		
0.05								-0.05
0.1								-0.1
0.15								-0.15
0.2					Sandy SILT; light brown	М		-0.2
0.25							0.0	-0.25
0.3								-0.3
0.35						'		-0.35
0.4					6/8/0	7		-0.4
_ 0.45		TRF TP01 0.5						_ _ 0.45
0.5					V 13			-0.5
0.55								-0.55
E								
0.6					10, 310			0.6 - -
0.65					7			-0.65
0.7								-0.7
0.75			7					-0.75
0.8				1				-0.8
0.85								-0.85
0.9					Termination Depth at:0.90 m. Target depth reached.			0.9
0.95								-0.95
1								1
1.05								-1.05
1.1								-1.1
1.15								-1.15
1.2								-1.2
_ 1.25								-1.25
								-
Notes								1

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	M-Moist, VM-Very Moist,	, ,	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 29/03/2023 - 29/03/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

		<u> </u>	_			1	Τ	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		TRF TP02 0.1			Silty CLAY; dark brown	М		<u> </u>
0.05								-0.05
0.1							7 70	-0.1
0.15						X		_ 0.15
E					>		10	E l
0.2					Sandy SILT; light brown	М		-0.2
0.25							0,0	-0.25
0.3								-0.3
_ _ 0.35								-0.35
0.4					10 1	7		-0.4
E		TRF TP02 0.5						E
0.45					20 70			-0.45
0.5								-0.5
0.55					14 0			-0.55
0.6								-0.6
0.65								_ _ 0.65
E								E l
0.7								- -0.7
0.75			0	M				-0.75
0.8			1					-0.8
- - 0.85					KO .			-0.85
0.9								- 0.9
					<u> </u>			=
0.95		_						-0.95
1				1	Termination Depth at:1.00 m. Target depth reached.			-1
1.05								-1.05
1.1								-1.1
1.15								-1.15
								-
1.2								-1.2
1.25								-1.25
<u> </u>								Ė.

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 29/03/2023 - 29/03/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

L,								
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		TRF TP03 0.1			Silty CLAY; dark brown	М		Ē
0.05								-0.05
0.1						VC	N N	-0.1
0.15							7.	-0.15
0.2		TRF TP03 0.3			Sandy SILT; light brown	М		-0.2
0.25							0,0	-0.25
0.3								-0.3
0.35					0.0			-0.35
0.4								-0.4
0.45					20, 10,			-0.45
0.5					K 12			_ 0.5
0.55								-0.55
0.6								_ 0.6
0.65					To Alo			-0.65
0.7								- -
0.75								-0.75
0.8			~					-0.8
0.85		~ * C			kO'			-0.85
FI								E
0.9								0.9 _
0.95								-0.95
1					Termination Depth at:1.00 m. Target depth reached.			-1
1.05		. 0						1.05
1.1								1.1
1.15		•						-1.15
1.2								-1.2
1.25								_ 1.25
								Ė

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 22/03/2023 - 22/03/2023 Total Depth (m) 0.90 Logged By DJ Checked By CH

L.,				,				
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		WD2 TP01 0.1		333	Sandy silt TOPSOIL; brown	М	Fragments of glass and paint flakes present in topsoil	
0.05								-0.05
0.1					Silty SAND; light brown	M	A N	-0.1
0.15								-0.15
0.2		WD 2 TP01 0.3						-0.2
0.25							0.0	_ 0.25
0.3							O	-0.3
0.35					0/80/			-0.35
E l					10 .1	7	*	E
0.4		WD2 TP01 0.5						0.4 _
0.45					20 70			0.45
0.5								-0.5
0.55					N- 111			-0.55
0.6					(O) (O)			-0.6
0.65								-0.65
0.7								_ 0.7
0.75								-0.75
0.8								- 0.8
0.85					kO'			-0.85
0.9			•					-0.9
F					Termination Depth at:0.90 m. Target depth reached.			E
0.95								-0.95
<u> </u>								_ 1
1.05		· ?						- 1.05
1.1								- 1.1
1.15		_						-1.15
1.2								-1.2
1.25								_ 1.25
								E
Notes		·						

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 22/03/2023 - 22/03/2023 Total Depth (m) 0.90 Logged By DJ Checked By CH

L.,		<u> </u>					 	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		WD2 TP02 0.1		}	Sandy silt TOPSOIL; brown	М	Fragments of glass and paint flakes present in topsoil	
0.05							1	-0.05
0.1				[{ { {		VC	N N	-0.1
0.15) · (V)	-0.15
0.2								-0.2
0.25							0,0	-0.25
0.3		WD2 TP02 0.4						-0.3
0.35					0.0			-0.35
0.4					Silty SAND; light brown with some organic mottling	M		-0.4
0.45					City G-11D, fight Diown with one displace from the			_ 0.45
0.5					K 17			-0.5
0.55								-0.55
0.6								_ 0.6
0.65				•				-0.65
0.7								-0.7
0.75								-0.75
0.8			7					-0.8
0.85		~40			kO'			-0.85
F			•					-0.83
0.9					Termination Depth at:0.90 m. Target depth reached.			
0.95								-0.95
F 1								<u>-</u> -1
1.05								-1.05
F 1.1								-1.1
1.15		•						-1.15
1.2								-1.2
1.25								-1.25
Notes								F

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	M-Moist, VM-Very Moist,	, ,	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 22/03/2023 - 22/03/2023 Total Depth (m) 1.60 Logged By DJ Checked By CH

Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
- 0.1		WD2 TP03 0.1			Sandy silt TOPSOIL; brown	М	Paint flakes present in topsoil	-0.1
- 0.2					SAND; light brown	M	37 200	-0.1 - - - 0.2
					5			- - -
0.3		WD2 TP03 0.4					00	0.3 0.4
0.5					Silty SAND; orange	М		0.4 - - - 0.5
- 0.6					06/0			
- 0.7					'K K			-0.0 - - - - 0.7
- 0.8								-0.8
0.9					10 sile			- - - 0.9
- 1			0					- - - 1
- 1.1		WD2 TP03 1.2	5					- - - 1.1
1.2		WD2 IF03 I.2			SAND; light brown; thin brown layer at approximately 1.5m			_ _ _ 1.2
- 1.3			D					_ _ _ 1.3
- 1.4								
1.5								_ _ _ 1.5
1.6					Termination Depth at:1.60 m. Target depth reached.			-1.6
					Tommation Deptit at 1.00 m. Talget deptil reached.			F

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 22/03/2023 - 22/03/2023 Total Depth (m) 1.50 Logged By DJ Checked By CH

		1		,				1
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
_		WD2 TP04 0.1		333	Silty sand TOPSOIL; brown	М	•	
- - - 0.1 - -						S	4 00	- - 0.1 - -
- - 0.2 -					>			- 0.2 -
- - 0.3 - -						1	00	- 0.3
0.4 		WD2 TP04 0.5			Silty SAND; light brown	М	Paint flakes observed at 0.4m metal pipe and bricks observed at 0.5 - 0.6m	-0.4
- - 0.5 -					06/0		at 0.5 - 0.011	- 0.5 -
- - 0.6 -					1/2 H			- 0.6
0.7					20.61			- - 0.7 -
- - - - - -					Je dile			- - 0.8 -
- - - 0.9								- - 0.9 -
- - - 1		WD2 TP04 1.1						- - 1 -
_ _ _ 1.1		WD2 TP04 1.2			Silty SAND; grey with orange mottling	SM		- - - -1.1
_ _ _ 1.2								- - - 1.2
_ _ _ 1.3								- - - 1.3
_ _ _ _ 1.4								_ - - 1.4
- - -								-
- 1.5 - - -					Termination Depth at:1.50 m. Target depth reached.			-1.5 - - - -
Notes					<u> </u>	<u> </u>		

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	M-Moist, VM-Very Moist,	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 22/03/2023 - 22/03/2023 Total Depth (m) 1.00 Logged By DJ Checked By CH

				I			1	
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
		WD2 TP06 0.1		333	Sandy silt TOPSOIL; brown	М		
0.05							1	-0.05
0.1							7 6	-0.1
0.15				{{{{		1		-0.15
0.2		WD2 TP06 0.3		<u> </u>	Sandy SILT; brown	М		-0.2
_ 0.25		WB2 11 00 0.3			Salluy SiLi, blowii	IVI	00	- 0.25
0.3								-0.3
_					Sitly SAND; light brown	М		E
0.35								-0.35
0.4								-0.4
0.45					20 10			-0.45
0.5								-0.5
0.55								-0.55
0.6								-0.6
- - 0.65				•				-0.65
0.7								-0.7
E								=
0.75			7					-0.75
0.8								-0.8
0.85								-0.85
0.9								-0.9
0.95		, and the second second second second second second second second second second second second second second se						-0.95
1			U		Townington Double and 00 on Township to the de-			-1
1.05					Termination Depth at:1.00 m. Target depth reached.			-1.05
1.1		'0'						-1.1
⊨ I								<u> </u>
1.15								-1.15
1.2								-1.2
1.25								-1.25
Notes								<u> </u>

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 22/03/2023 - 22/03/2023 Total Depth (m) 1.10 Logged By DJ Checked By CH

Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
0.05		WD2 TP07 0.1			Sandy silt TOPSOIL; brown	М	6. 1.	-0.05
0.15					>	X	3/1	-0.1 0.15
0.2					SAND with silt; light brown	М	801	-0.2
0.3					SAND with silt; orange	М	Concrete observed at approximately 0.4 - 0.5m	-0.35
0.4		WD2 TP07 0.5			20,70			-0.4
0.5					W O			-0.5
0.65					Jo, Jilo,			-0.6
0.7			0					-0.75
0.8					(0)			-0.8
0.9								-0.9
1 - 1 - 1.05								
1.1 - 1.15					Termination Depth at:1.10 m. Target depth reached.			-1.1 -1.15
1.2 - 1.25								-1.2 1.25
Notes								<u> </u>

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	M-Moist, VM-Very Moist,	, ,	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 22/03/2023 - 22/03/2023 Total Depth (m) 0.90 Logged By DJ Checked By CH

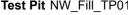
<u> </u>								
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
				}	Sandy silt TOPSOIL; brown	М		
0.05				[{ { {			1 0	-0.05
0.1		WD2 TP08 0.2				V	7 0	0.1
0.15					\			-0.15
0.2				$ \rangle\rangle\rangle$	SAND with silt; orange	М	Concrete observed at	-0.2
0.25					60	A	approximately 0.4 - 0.5m	-0.25
0.3								-0.3
0.35					0.0			-0.35
0.4		WD2 TP08 0.5			0000			-0.4
0.45					20,10			-0.45
0.5			-		KR			-0.5
0.55					17 0			-0.55
0.6								-0.6
0.65				•	10 XIO			-0.65
0.7								_ 0.7
0.75								_ 0.75
0.8								-0.8
0.85		~10						-0.85
0.9			4					-0.9
0.95					Termination Depth at:0.90 m. Target depth reached.			-0.95
Г I								1
E '								-
1.05 - 1.1		, '0'						-1.05
								-1.1
1.15								-1.15
FΙ								-1.2
1.25								1.25
Notes		l	<u> </u>			I	l	

Drilling A	Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
DC-Diam (shovel), SD-Sonio	Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, and Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, dow Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated		Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

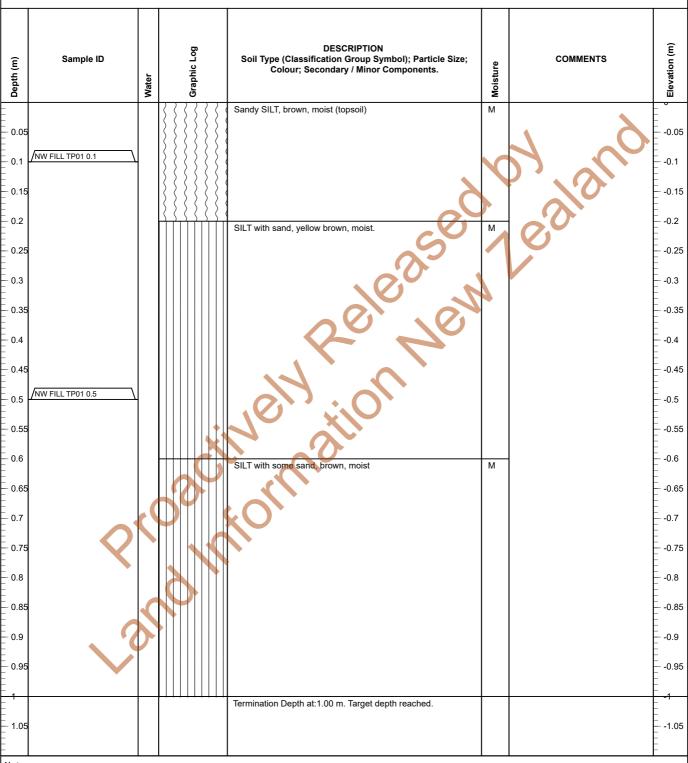

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 22/03/2023 - 22/03/2023 Total Depth (m) 1.60 Logged By DJ Checked By CH

		Г	_	1		1	Т	1
Depth (m)	PID (ppm)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components, Contaminant Indicators.	Moisture	COMMENTS	Elevation (m)
-		WD2 TP09 0.1		333	Sandy silt TOPSOIL; brown	М		-
- 0.1 				<u>}}</u>	Sand with silt; light brown	M	4 20	- - 0.1
- - 0.2 -					SAND with silt; orange	M	Concrete observed at approximately 0.4 - 0.5m	-0.2
_ _ 0.3 _					COL	<i>y</i>	0,0	_ 0.3 _ _
- 0.4 - -								_ 0.4 _ _
- 0.5 - - -					Silty SAND; light brown	М		-
- - 0.6 - -		WD2 TP09 0.7			Po Ho			- 0.6 - -
- - 0.7 - -					20, 615			_ 0.7 _ _
0.8					Jo dilo			0.8
- 0.9 - - -								0.9
1 - - -		- 4C						1
1.1 - - - -		Q \\	•					1.1
1.2 - - - -			0					1.2
- 1.3 - - - -								1.3
- 1.4 - - - -		WD2 TP09 1.5						1.4
- 1.5 - - - -								1.5
- 1.6 - -					Termination Depth at:1.60 m. Target depth reached.			-1.6 - -

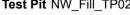
Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard


ENVIRONMENTAL-TEST PIT

TEST PIT LOG

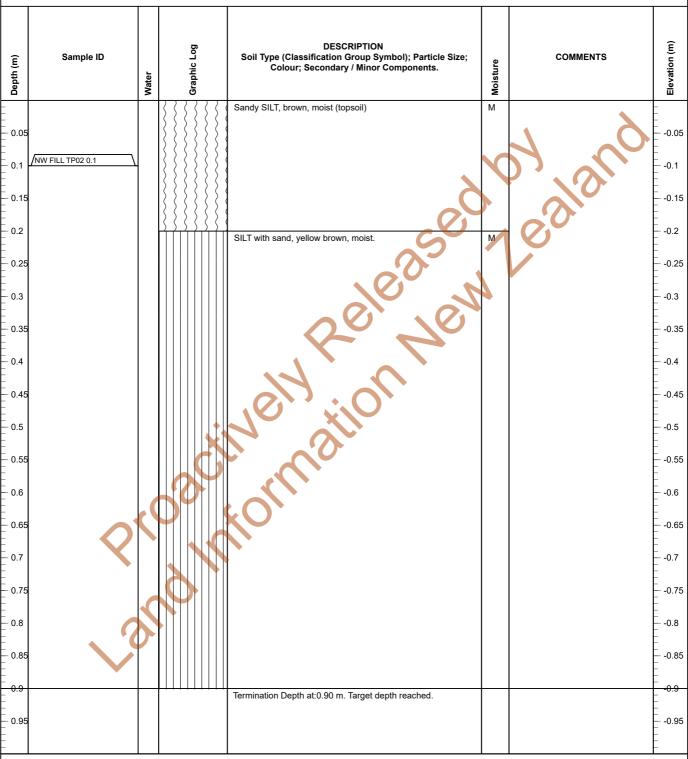
Client Land Information New Zealand Project LINZ - Former Tokanui Hospital


Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 11/09/2023 - 11/09/2023 Total Depth (m) 1.00 Logged By DJ Checked By

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard


ENVIRONMENTAL-TEST PIT

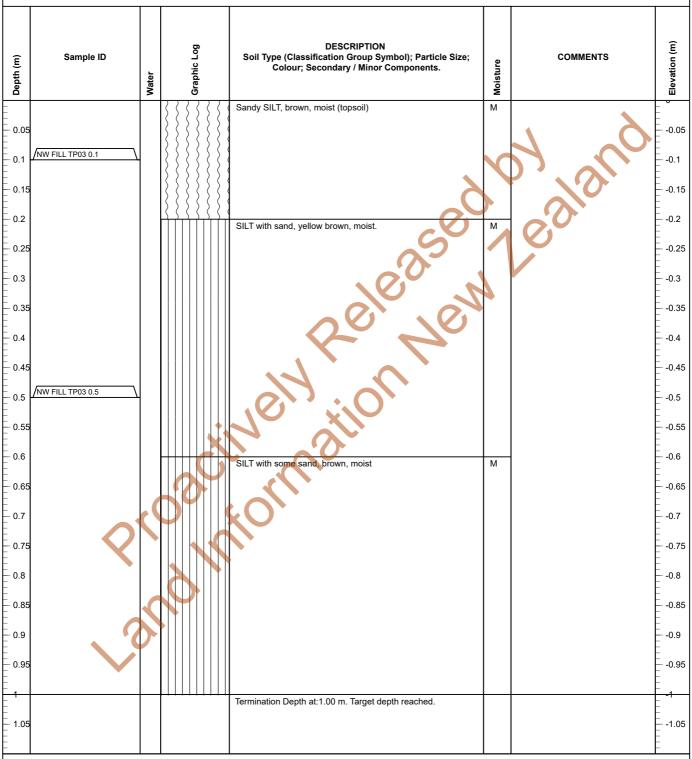
TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 11/09/2023 - 11/09/2023 Total Depth (m) 0.90 Logged By DJ Checked By

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	l ' '	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard


ENVIRONMENTAL-TEST PIT

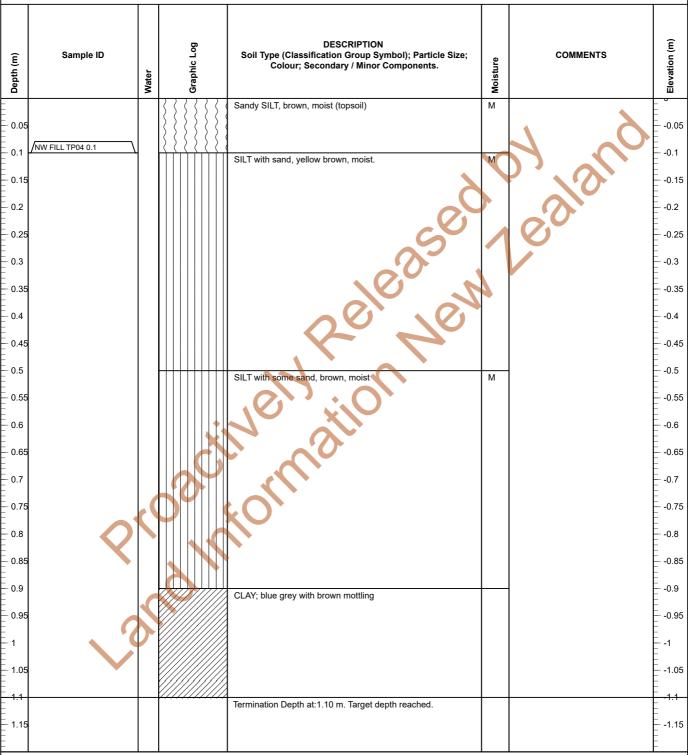
TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 11/09/2023 - 11/09/2023 Total Depth (m) 1.00 Logged By DJ Checked By

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	1 '	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard


ENVIRONMENTAL-TEST PIT

TEST PIT LOG

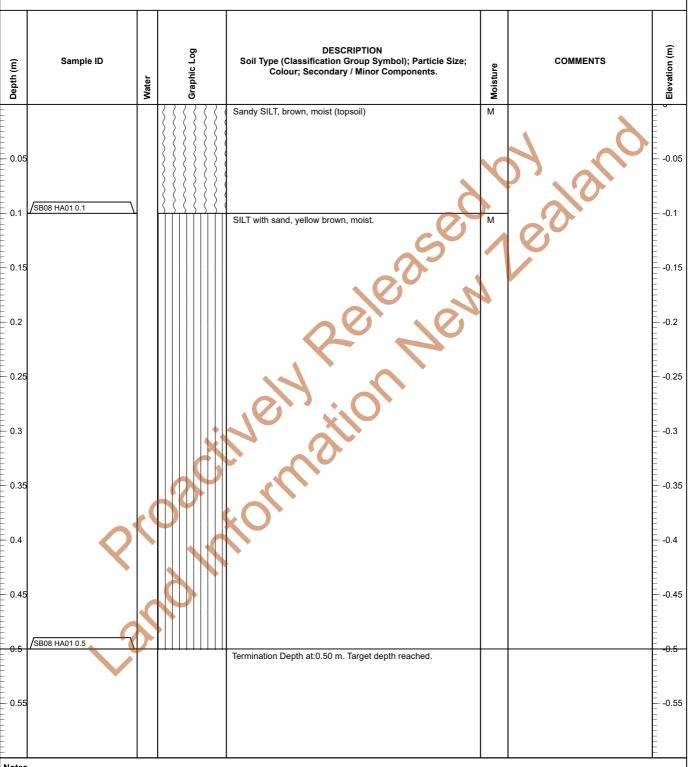
Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 11/09/2023 - 11/09/2023 Total Depth (m) 1.10 Logged By DJ Checked By

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard


ENVIRONMENTAL-TEST PIT

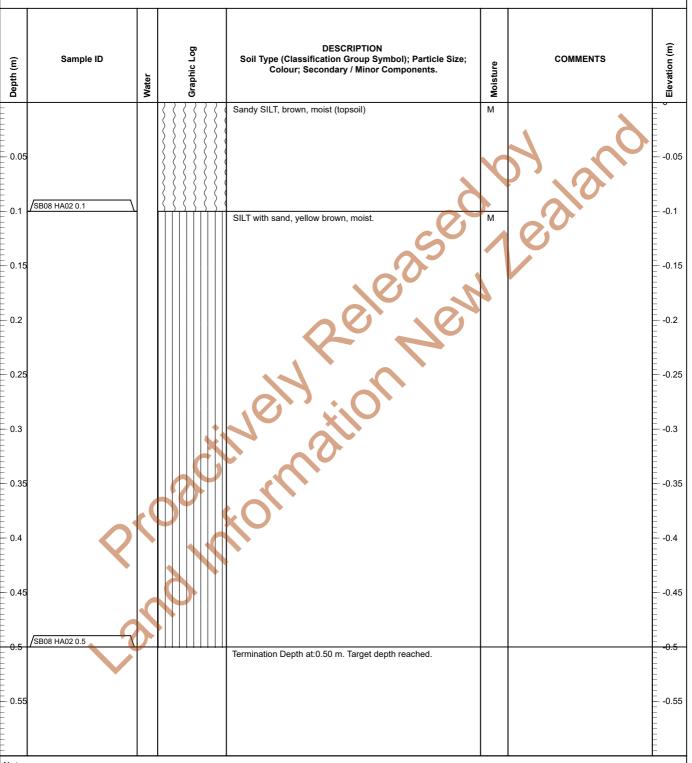
TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 12/09/2023 - 12/09/2023 Total Depth (m) 0.50 Logged By DJ Checked By

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard


ENVIRONMENTAL-TEST PIT

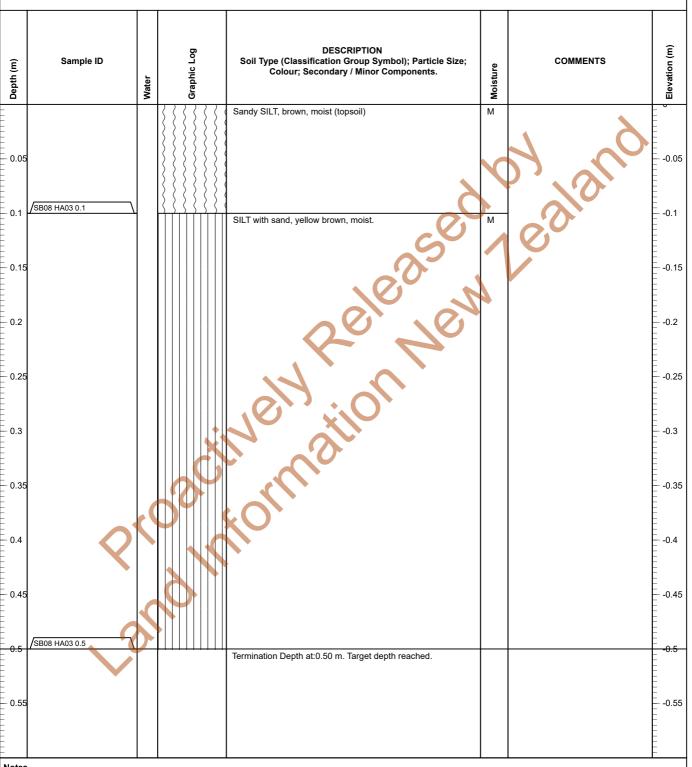
TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 12/09/2023 - 12/09/2023 Total Depth (m) 0.50 Logged By DJ Checked By

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard


ENVIRONMENTAL-TEST PIT

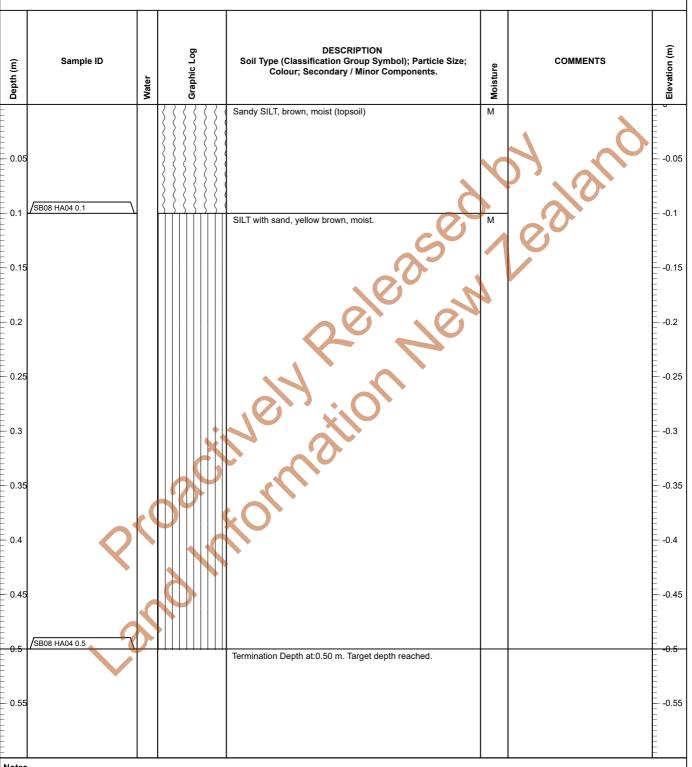
TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 12/09/2023 - 12/09/2023 Total Depth (m) 0.50 Logged By DJ Checked By

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard


ENVIRONMENTAL-TEST PIT

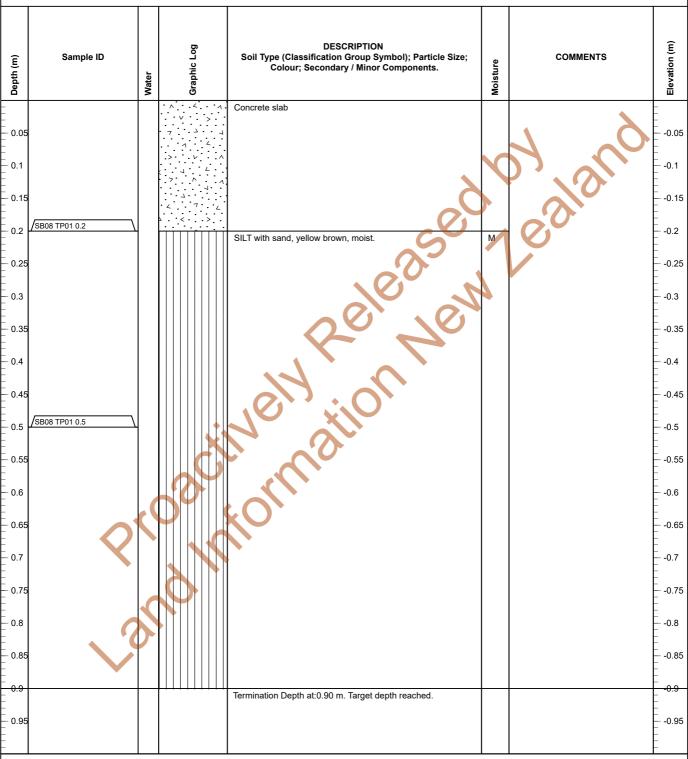
TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 12/09/2023 - 12/09/2023 Total Depth (m) 0.50 Logged By DJ Checked By

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard


ENVIRONMENTAL-TEST PIT

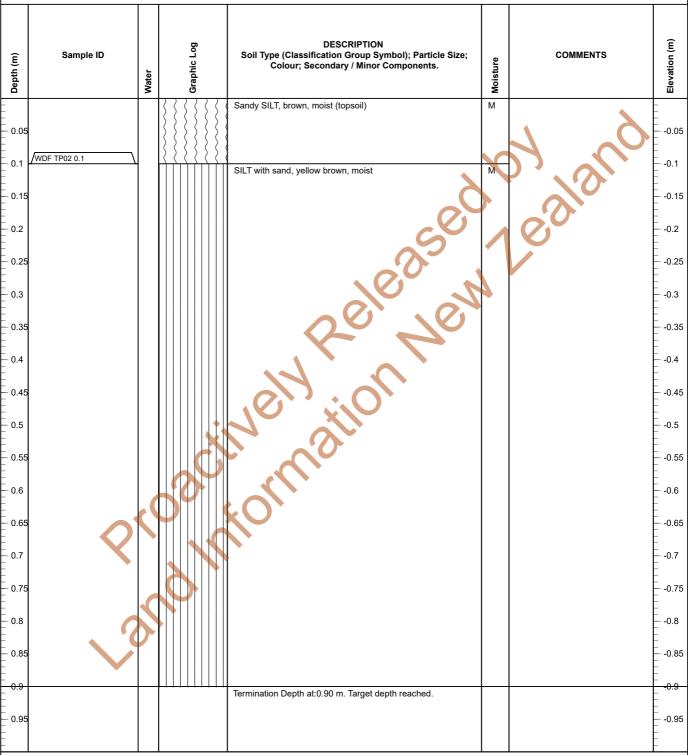
TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 12/09/2023 - 12/09/2023 Total Depth (m) 0.90 Logged By DJ Checked By

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	l ' '	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard


ENVIRONMENTAL-TEST PIT

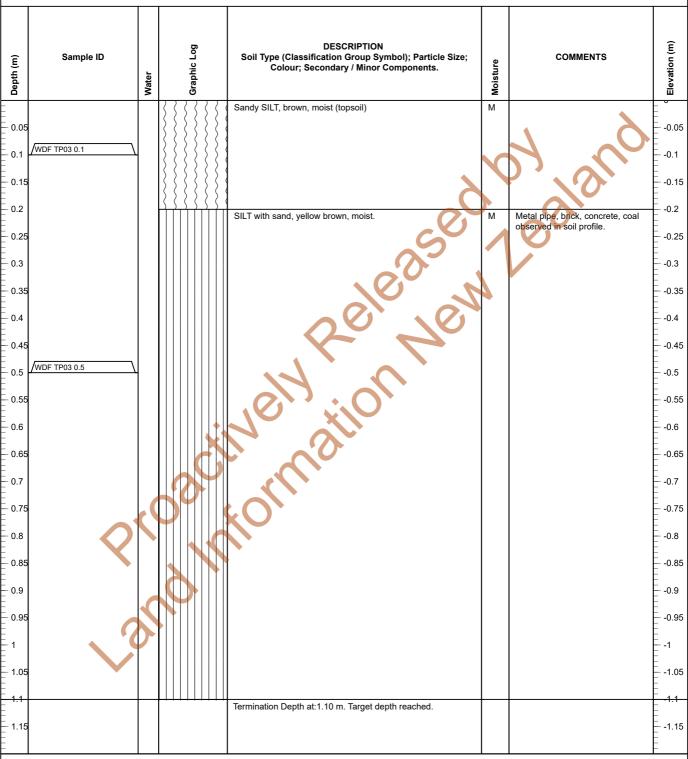
TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 11/09/2023 - 11/09/2023 Total Depth (m) 0.90 Logged By DJ Checked By

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard


ENVIRONMENTAL-TEST PIT

TEST PIT LOG

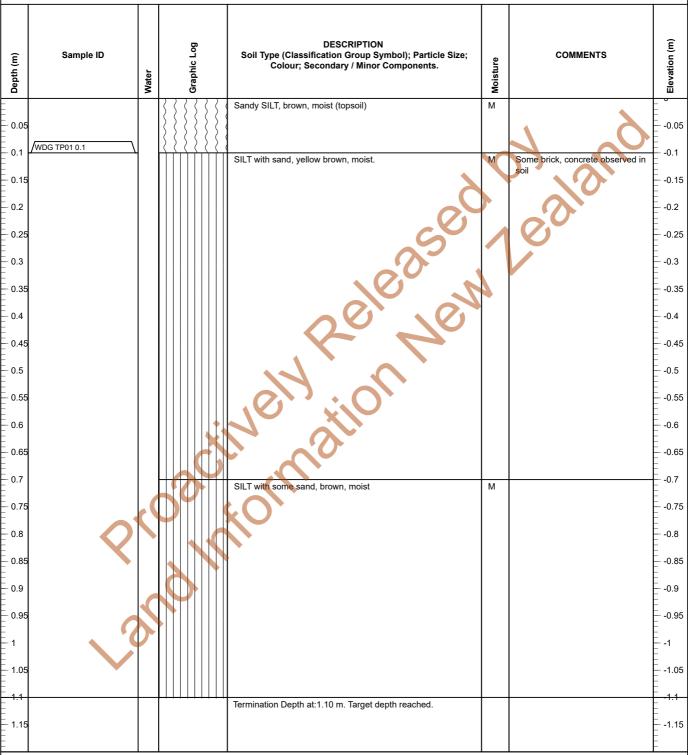
Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 11/09/2023 - 11/09/2023 Total Depth (m) 1.10 Logged By DJ Checked By

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard


ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

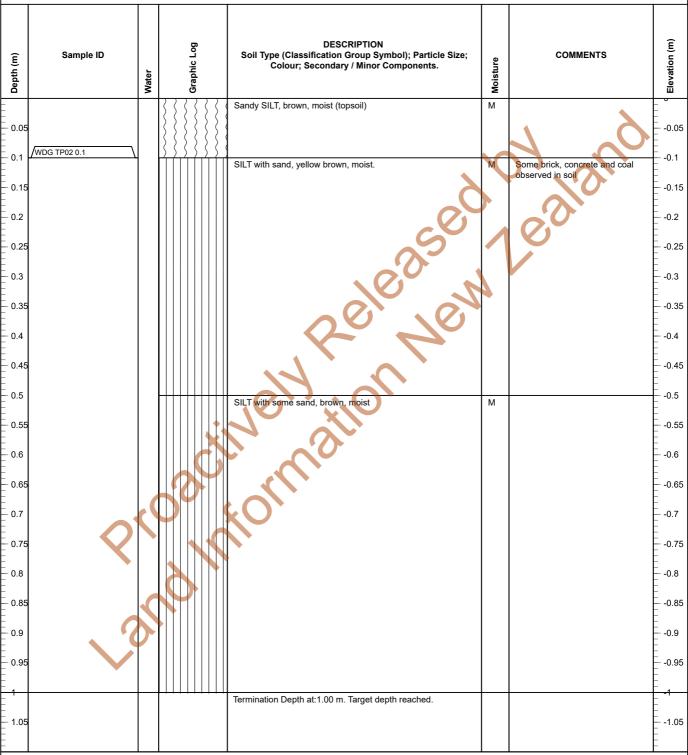
Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 11/09/2023 - 11/09/2023 Total Depth (m) 1.10 Logged By DJ Checked By

Notes

DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation M-Moist, VM-Very Moist, Loose, L-Loose, MD-Medium Soft, S-Soft, F-Firm,	Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
(shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler W-Wet, S-Saturated Dense, D-Dense, VD - Very Dense, VD - Very Stiff, H-Hard	DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore,	, ,, , ,	Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very	ST-Stiff, VST-Very Stiff,

ENVIRONMENTAL-TEST PIT


Page 1 of 1

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui **Date Excavated** 11/09/2023 - 11/09/2023

Total Depth (m) 1.00 Logged By DJ Checked By

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard


ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 11/09/2023 - 11/09/2023 Total Depth (m) 0.90 Logged By DJ Checked By

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 12/09/2023 - 12/09/2023 Total Depth (m) 1.00 **Logged By** DJ Checked By

					1	T	
Depth (m)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components.	Moisture	COMMENTS	Elevation (m)
-			33333	Sandy SILT, brown, moist (topsoil)	М		-
_ _ 0.05							-0.05
_	/WDH TP01 0.1					7 ~~	Ė
0.1				SILT with sand, yellow brown, moist.	М	Some brick, concrete observed in soil	-0.1
_ 0.15						SOII	-0.15
_							Ė
- 0.2 -				20		0,0	0.2
_ _ 0.25							-0.25
- - - 0.3				26/64	'		F
U.3 				10 .1	7		-0.3
0.35							-0.35
- - - 0.4				20 10			-0.4
- 0.4							-0.4
0.45							-0.45
- - - 0.5							-0.5
- - -				10,10			F 0.0
_ _ 0.55							-0.55
_ _ _ 0.6				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			-0.6
-				SILT with some sand, brown, moist	M		F
0.65							-0.65
- - - 0.7		~ (-0.7
-							E
- 0.75 -		Ť					-0.75
- - - 0.8							-0.8
							E
0.85 	_	1					-0.85
- - - 0.9							-0.9
							F
0.95 							-0.95
- - 1				Townships Double and 00 or Townships and double			<u> </u>
_				Termination Depth at:1.00 m. Target depth reached.			E
- 1.05							1.05
-							F
Notes	1						

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard

ENVIRONMENTAL-TEST PIT

TEST PIT LOG

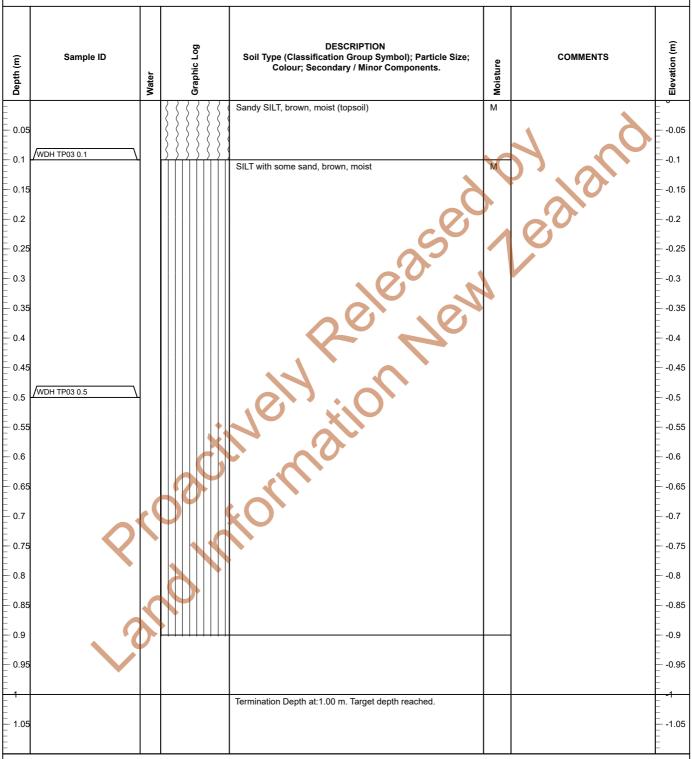
Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 12/09/2023 - 12/09/2023 Total Depth (m) 0.90 **Logged By** DJ Checked By

	•					·	
Depth (m)	Sample ID	Water	Graphic Log	DESCRIPTION Soil Type (Classification Group Symbol); Particle Size; Colour; Secondary / Minor Components.	Moisture	COMMENTS	Elevation (m)
0.05 - 0.15 - 0.25 - 0.35 - 0.45 - 0.45 - 0.65 - 0.65 - 0.65 - 0.75 - 0.85 - 0.85 - 0.85	WDH TP02 0.1			SILT with sand, yellow brown, moist. SILT with some sand, brown, moist Termination Depth at:0.90 m. Target depth reached.	M	Some brick, concrete observed in soil	-0.05 -0.15 -0.2 -0.25 -0.35 -0.4 -0.45 -0.55 -0.6 -0.65 -0.7 -0.85 -0.85
Notes							-

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations	
AH-Air Hammer, AR-Air Rotary, BE-Bucket Excavation, CC-Concrete Coring, DC-Diamond Core, FH-Foam Hammer, HA-Hand Auger, HE-Hand Excavation (shovel), HFA-Hollow Flight Auger, NDD-Non Destructive Drilling, PT-Pushtube, SD-Sonic Drilling, SFA-Solid Flight Auger, SS-Split Spoon, WB-Wash Bore, WS-Window Sampler	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard


TEST PIT LOG

ENVIRONMENTAL-TEST PIT

Client Land Information New Zealand Project LINZ - Former Tokanui Hospital

Project No. 12559090 Site Tokanui DSI

Location 149 Te Mawhai Rd, Tokanui Date Excavated 12/09/2023 - 12/09/2023 Total Depth (m) 1.00 Logged By DJ Checked By

Notes

Drilling Abbreviations	Moisture Abbreviations	Consistency Abbreviations		
, , , , , , , , , , , , , , , , , , , ,	D-Dry, SM-Slightly Moist, M-Moist, VM-Very Moist, W-Wet, S-Saturated	Granular Soils VL-Very Loose, L-Loose, MD-Medium Dense, D-Dense, VD - Very Dense	Cohesive Soils VS-Very Soft, S-Soft, F-Firm, ST-Stiff, VST-Very Stiff, H-Hard	

Appendix Ealand Photolog Proactively Releasion Proactively Rein New York and Information

Photo 1 – SB2_TP 03: Asbestos board

Photo 2 – WD2_TP 04: Metal pipe

Photo 3 – WD2_TP 03: Brick fragments

Photo 4 – HT_TP 25: Brick fragments

Photo 5 – HT_COMP E2: Asphalt

Photo 6 – HT_COMP C1: tile and concrete fragment.

Photo 7 – NUR_TP04 Concrete slab and brick fragments

Photo 8 – DS02_TP 03: Brick and pipe fragments through surface of ground.

Photo 9 – B26_TP 02: Wood and glass in excavated material.

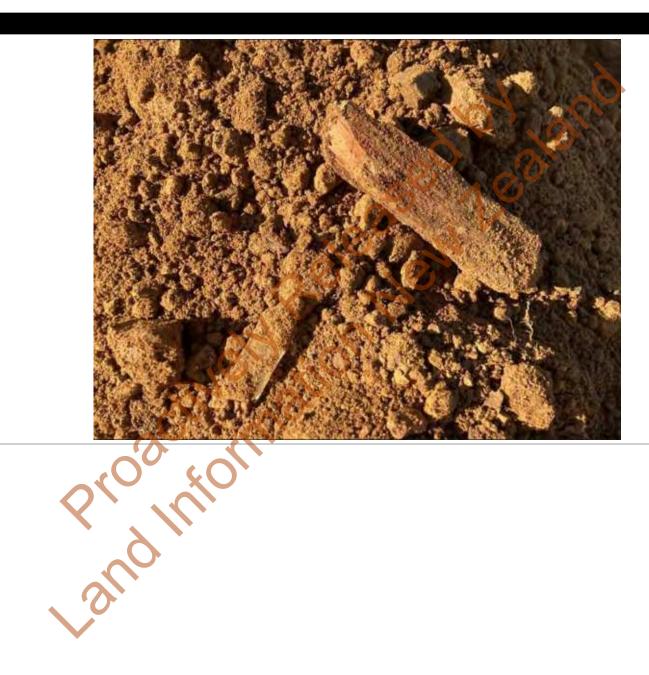


Plate X1: Looking southeast from towards northwest corner of building 1 (B1).

Plate X2: Looking southeast towards northeast corner of B2.

Plate X3: Representative soil profile at B2.



Plate X4: Looking northwest towards southeast corner of B3.

Plate X5: Looking northwest towards southeast corner of B4.

Plate X6: Looking east towards western sides of B5 and B6.

Plate X7: Looking east towards western sides of B5 and B6.

Plate X8: Representative soil profile at B8.

Plate X9: Looking north towards southern side of B9.



Plate X10: Looking southeast towards northwest corner of B10.

Plate X11: Looking north towards southwest corner of B11.

Plate X12: Representative soil profile at B11.

Plate X13: Looking north towards southwest corner of B12.

Plate X14: Looking east towards western wall of B15.

Plate X15: Representative soil profile at B15.

Plate X16: Looking southwest towards B17.

Plate X17: Looking northwest towards B19

Plate X18: Looking northwest towards B20.

Plate X19: Looking northwest towards southeast corner of B21 and B22.

Plate X20: Representative soil profile at B22.

Plate X21: Looking southwest from northwest corner of B23

Plate X22: Looking northeast towards B25.

Plate X23: Looking northwest from southeast corner of B26.

Plate X24: Looking southwest from northeast corner of B27.

Plate X25: Looking southwest towards B28.

Plate X26: Looking northeast towards southeast corner of B30 and B31.

Plate X27: Representative soil profile at B30.

Plate X28: Looking north towards B35.

Plate X29: Looking southeast towards B36. B36-B39 in background.

Plate X30: Representative soil profile at B38.

Plate X31: Looking north towards B41 and B42.

Plate X32: Representative soil profile at B44.

Plate X33: Looking north towards B45 and B46.

Plate X34: Looking east towards B47 from B42.

Plate X35: Looking southwest towards southeast corner of B48.

Plate X36: Representative soil profile at B50.

Plate X37: Looking north towards B50.

Plate X38: Looking south towards B51.

Plate X39: Looking east towards B52.

Plate X40: Looking south from B53 towards B54 (water tower).

Plate X41: Looking northwest towards B55.

Plate X42: Representative soil profile at B55.

Plate X43: Looking west towards eastern wall of B55.

Plate X44: Looking south towards southeast corner of B59.

Plate X45: Looking north towards southeast corner of B60-B62.

Plate X46: Looking north towards B63.

Plate X47: Representative soil profile at B65.

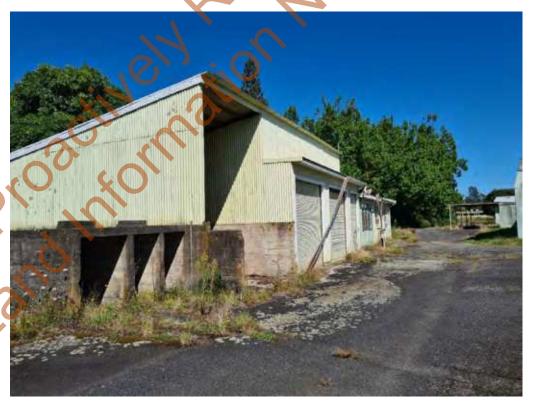


Plate X48: Looking southwest towards B66.

Plate X49: Looking north towards B67 and B68.

Plate X50: Looking north towards B70.

Plate X50: Looking north towards B75.

Plate X50: Looking north towards location of former Nurse's Home.

Plate X51: Looking northeast towards location of former Ward F.

Plate X52: Representative soil profile at location of former Ward H.

Appendix X: Site photographs

Plate X1: Looking towards northwest corner of building B2

Plate X2: Looking towards southwest corner of building B11

Plate X3: Looking towards southwest corner of building B59

... southwest corner of b

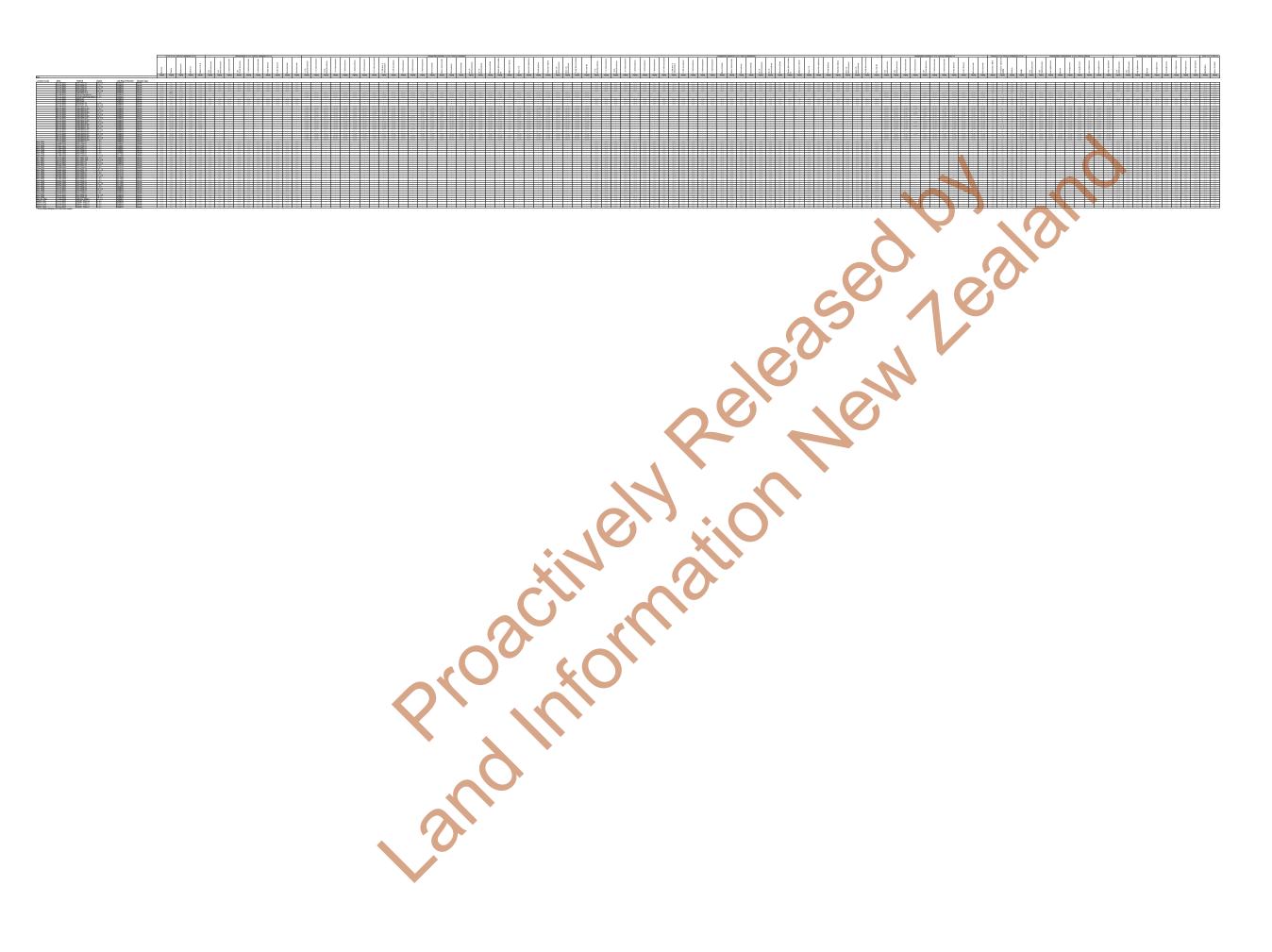
													$-\mathbb{F}$		Heavy n	netals, screen	As,Cd,Cr,Cu,Ni,Pb,Zn,Hg				
								<u> </u>							(I/+III)						
							E	≣						[E					Ε	
						Soron	Sadmin	Chromi	Copper	ead	Aercun	E ke	Zuc	Arsenic	Chromi	Copper	ead	licke	Inc	Servilliu	
EQL						mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg m	g/kg	mg/kg mg/kg	mg/kg	mg/kg	mg/kg mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location Code	Date	Field ID	Depth	Lab Report Nun	nber Sample Type				u u	ļ.						'	'				
	28 Mar 2023 28 Mar 2023	B7 TP03 0.1 B7 TP04 0.1		3219033 3219033	Normal Normal	<20 <20	0.19 0.16	8 7	185 20	80 51	0.10 <0.10	5 1	116 130		-	-		-	-	0.9 0.7	
	28 Mar 2023 28 Mar 2023	B8 HA01 0.1 SCH TP01 0.1		3219033 3219033	Normal Normal	<20 <20	0.92 <0.10	12 11	130 33	750 22	1.17 0.16	6	140 36		-	-		-	-	0.6 1.0	÷
	28 Mar 2023 28 Mar 2023 28 Mar 2023	SCH TP01 0.3 SCH TP02 0.1 SCH TP03 0.1		3219033 3219033 3219033	Normal Normal	<20 <20 <20	0.10 0.19 0.24	12 11 10	56 39 30	21 75 43	0.35 0.19 0.17	6 1	36 100 75		-	-		-	-	0.9 1.0	
	28 Mar 2023 28 Mar 2023	SCH TP03 0.7 SCH TP04 0.1		3219033 3219033	Normal Normal	<20 <20	0.13 0.18	12	29 32	18.4 56	0.18 0.17	6	45 97		-	-		-		1.3 0.9	-
	29 Mar 2023 29 Mar 2023	TRF TP01 0.1 TRF TP01 0.5		3221506 3221506	Normal Normal	<20 <20	0.12 <0.10	6 7	9 14	18.2 14.3	0.13 <0.10	3 4	43 35		-	-		-	-	0.7	
	29 Mar 2023 29 Mar 2023	TRF TP02 0.1 TRF TP03 0.1		3221506 3221506	Normal Normal	<20 <20	0.16 0.21	7	10 12	21 18.5	<0.10 <0.10	3	78 56		-	-		-		0.9 1.0	
	29 Mar 2023 08 Jun 2023	TRF TP03 0.5 DUP A1 B59 TP02 0.1	0-01	3221506 3299078	Normal Field_D	<20 <20 <20	<0.10 <0.10 <0.10	9	9 13 16	15.9 20	<0.10 <0.10 <0.10	4	34 32		-	-				0.8	-
	12 Jun 2023 12 Jun 2023 12 Jun 2023	B59 TP02 0.1 B59 TP02 0.5 B59 TP03 0.1	0.4 - 0.5 0 - 0.1	3299078 3299078 3299078	Normal Normal Normal	<20 <20 <20	<0.10	26 28 30	16	12.0 12.9 13.1	<0.10	15	60 61 137		-	-				0.7 0.7 0.5	
	12 Jun 2023 12 Jun 2023	B74 HA02 0.1 B74 HA02 0.5	0 - 0.1 0.4 - 0.5	3299078 3299078	Normal Normal	<20 <20	<0.10 <0.10	12 14	22 26	23	<0.10 0.12	9	73 52		-	-	: :		Y	0.8	-
	12 Jun 2023 12 Jun 2023	COMP A 0.1 COMP A 0.5	0 - 0.1 0.4 - 0.5	3299078 3299078	Normal Normal	<20 <20	0.40 <0.10	9 8	42 13	31 21	0.13 <0.10	4	117 42	: :	-	-	: :	4		0.9	-
	12 Jun 2023 12 Jun 2023	COMP B 0.1 COMP B 0.5	0 - 0.1 0.4 - 0.5	3299078 3299078	Normal Normal	25 <20	0.36 <0.10	9 8	35 14	27 18.4	0.17 <0.10	4	126 36		- :	-		Y	-	0.9	
	12 Jun 2023 12 Jun 2023	COMP C 0.1 COMP C 0.5 COMP D 0.1	0 - 0.1 0.4 - 0.5	3299078 3299078 3299078	Normal Normal	340 41 <20	0.25 <0.10	10 8	33 22 50	24 19.4	0.33 <0.10	5	82 44		-	-		1 -	-	1.2 0.8	-
	12 Jun 2023 12 Jun 2023 12 Jun 2023	COMP D 0.5 COMP E 0.1	0 - 0.1 0.4 - 0.5 0 - 0.1	3299078 3299078 3299078	Normal Normal Normal	<20 <20 70	0.51 <0.10 0.32	9 10	13 36	33 21 83	0.18 <0.10 0.12	3	140 38 97		-	-		-	-	1.2 0.8 1.1	
	12 Jun 2023 12 Jun 2023	COMP E 0.5 COMP F 0.1	0.4 - 0.5 0 - 0.1	3299078 3299078	Normal Normal	<20 <20	<0.10 0.29	8 9	11 34	17.1 74	<0.10 0.18	5 1	33 118		-		7	-	-	0.7 0.9	1
	12 Jun 2023 12 Jun 2023	COMP F 0.5 COMP G 0.1	0.4 - 0.5 0 - 0.1	3299078 3299078	Normal Normal	<20 23	0.16 0.47	9	24 64	33 56	0.13 0.51	10 1	87 157		-			-		1.0	
	12 Jun 2023 12 Jun 2023 12 Jun 2023	COMP G 0.5 COMP H 0.1 COMP H 0.5	0.4 - 0.5 0 - 0.1 0.4 - 0.5	3299078 3299078 3299078	Normal Normal	<20 360 <20	0.23 0.36 <0.10	9 11 9	28 42 16	23 57 23	0.15 0.30 <0.10	19 1	70 123 35			V) : : : : : : : : : : : : : : : : : : :			1.2 1.4 0.9	-
	12 Jun 2023 12 Jun 2023 12 Jun 2023	Dup E3 Dup E4	0.4 10.0	3299078 3299078 3299078	Field_D Field_D	<20 <20 <20	<0.10 <0.10 <0.10	10 23	22	21 12.6	<0.10 <0.10 <0.10	6	49				: :		1	0.6 0.5	-
	12 Jun 2023 13 Jun 2023	HSP SED 01 0.1 WWTP DIS-SED 0.10	0 - 0.1 0 - 0.1	3299078 3299078	Normal Normal	-	-	-	-	-	-		-	5 0.32 4 <0.10	8	47 18	143 <0.10 15.1 <0.10	9 5	185 56	1.3 0.6	<20 <20
	13 Jun 2023 14 Jun 2023	WWTP SEEPAGE-SED B66 HA01	0.10 - 0.1	3299078 3299078	Normal Normal	2,700	1.93	47	220	1,470	0.77		910	5 <0.10	8 -	21	17.7 0.31	-	47	1.2 4.5	<20
	14 Jun 2023 14 Jun 2023 14 Jun 2023	B66 HA02 DIP HA01 0.10 DIP HA02 0.10	0 - 0.1 0 - 0.1	3299078 3299078 3299078	Normal Normal Normal	360 210 300	2.6 0.43 0.50	31 12 10	154 50 75	780 88 104	0.85 0.29	25 2	.190 220 164						-	0.9 1.5 1.6	
	14 Jun 2023 19 Jun 2023	DIP HA03 0.10 B74 HA01 0.1	0 - 0.1 0 - 0.1	3299078 3299078	Normal Normal	<20 <20	0.35 <0.10	15 10	72 21	85 22	0.28 <0.10	7 1	160 52		:	-		:	-	0.9	-
	19 Jun 2023 23 Jun 2023	B74 HA01 0.5 HSP SED 01 0.3	0.4 - 0.5 0.2 - 0.3	3299078 3299078	Normal Normal	<20	<0.10	8 -	17 -	17.9	<0.10		41	5 0.12	10	27	43 <0.10	- 6	90	0.9 0.9	<20
	23 Jun 2023 23 Jun 2023	HSP SED 01 0.05 HSP SED 02 0.3	0 - 0.1 0.2 - 0.3	3299078 3299078	Normal Normal	- :	- :	-	-	-	-	-		5 0.16 6 0.45	8	27 42	55 <0.10 32 <0.10	6 5 7	98 160 141	1.0	<20 <20
	23 Jun 2023 23 Jun 2023 23 Jun 2023	HSP SED 02 0.05 HSP SED 03 0.3 HSP SED 03 0.05	0 - 0.1 0.2 - 0.3 0 - 0.1	3299078 3299078 3299078	Normal Normal Normal	-		-	-	-	-			5 0.23 7 0.24 6 0.25	12 10 9	27 27	68 0.10 96 0.10 33 <0.10	6	117	1.0 0.9 0.9	40 <20 <20
	23 Jun 2023 23 Jun 2023	HSP SED 04 0.3 HSP SED 04 0.05	0.2 - 0.3 0 - 0.1	3299078 3299078	Normal Normal	-	-	-	-	-	-	-		6 0.44 5 0.42		67 54	63 <0.10 42 <0.10	6 7	260 250	1.0 1.0	<20 <20
	23 Jun 2023 23 Jun 2023	HSP SED 05 0.3 HSP SED 05 0.05	0.2 - 0.3 0 - 0.1	3299078 3299078	Normal Normal	-	-	-	•	-	-			6 <0.10 2 <0.10	7	15 17	13.0 <0.10 10.7 <0.10	4 5	47 51	1.3 1.0	<20 <20
	23 Jun 2023 23 Jun 2023	STR SED 01 0.3 STR SED 01 0.05	0.2 - 0.3	3299078 3299078	Normal Normal	- :	-	-	-	-			-	5 0.12 4 0.11 7 0.41		16 16	30 <0.10 37 <0.10	4 4 7	88 77	1.0 0.9	<20 <20 <20
	23 Jun 2023 23 Jun 2023 23 Jun 2023	STR SED 02 0.3 STR SED 02 0.05 STR SED 03 0.3	0.2 - 0.3 0 - 0.1 0.2 - 0.3	3299078 3299078 3299078	Normal Normal	-		-	-				-	6 0.41 5 0.30	12 11	27 28 31	27 0.11 23 <0.10 130 <0.10	6 7	126 127 115	1.3 1.3 1.3	<20 <20
	23 Jun 2023 23 Jun 2023	STR SED 03 0.05 STR SED 04 0.3	0 - 0.1 0.2 - 0.3	3299078 3299078	Normal Normal	-	-	-		7.4	-:	-	-	5 0.24 <2 <0.10		28 10	42 <0.10 15.4 <0.10	6 4	111 52	1.2	<20 <20
	23 Jun 2023 29 Jun 2023	STR SED 04 0.05 SB 01 TP 01 0.1	0 - 0.1 0 - 0.1	3299078 3299078	Normal Normal	<20	<0.10	- 11	13	17.5	<0.10		42	4 0.19	10	18	15.0 <0.10	-	75 -	1.4 0.5	<20
	29 Jun 2023 29 Jun 2023	SB 01 TP 01 0.5 SB 02 TP 01 0.1	0.4 - 0.5 0 - 0.1	3299078 3299078	Normal Normal	<20 <20 <20	<0.10	8 9	11 39	16.4 27	<0.10 <0.10		35 68		-	-		-	-	0.6 0.7 1.7	-
	29 Jun 2023 29 Jun 2023 29 Jun 2023	SB 05 TP 01 0.1 SB 05 TP 01 0.5 SB 06 TP 01 0.1	0 - 0.1 0.4 - 0.5 0 - 0.1	3299078 3299078 3299078	Normal Normal	<20 <20 <20	<0.10 <0.10 <0.10	16 20	49 48	25 25 10.7	0.16 <0.10 <0.10	9 11	78 78		-	-		-	-	1.7 1.6 0.7	-
	29 Jun 2023 29 Jun 2023	SB 07 TP 01 0.1 SB 07 TP 01 0.5	0 - 0.1 0.4 - 0.5	3299078 3299078	Normal Normal	<20 <20 <20	<0.10 <0.10	18 15	73 21	25 11.7	<0.10 <0.10	11 8	66 56		-	-		-	-	0.6 0.6	-
MC TDO:	11 Sep 2023 11 Sep 2023	NW FILL TP04 0.1 WDF TP03 0.5		3362681 3362681	Normal Normal	<20 <20	0.13 <0.10	11 26	19 35	14.9 20	0.27 0.12		27 53		-	-		-	-	1.0 2.3	- :
B16_TP01 B16_TP04 B16_TP06	12 Jun 2023 16 Mar 2023 16 Mar 2023	Dup E5 B16 TP04 0.1 B16 TP06 0.1	0 - 0.1 0 - 0.1	3299078 3209697 3209697	Field_D Normal Normal	<20 172 1,430	<0.10 0.47 0.11	7 12 10	9 64 36	16.3 196 35	<0.10 <0.10 <0.10		80 155 220		-	-		-	-	0.5 2.4 9.4	-
B16_TP06 B16_TP07	16 Mar 2023 17 Mar 2023	B16 TP06 0.5 B16 TP07 0.1	0.4 - 0.5 0 - 0.1	3209697 3209697	Normal Normal	54 <20	0.11 0.24	9	14 21	20 51	0.11 0.14	5 1	47 108			-		-	-	1.0	-
B19_TP01 B19_TP01	19 Jun 2023 19 Jun 2023	B19 TP01 0.1 B19 TP01 0.5	0 - 0.1 0.4 - 0.5	3299078 3299078	Normal Normal	<20 <20	0.27 <0.10	12 8	36 18	54	0.10 <0.10	7 1	171 76		-	-		-	-	1.0	-
B19_TP02 B19_TP02 B25_HA01	19 Jun 2023 19 Jun 2023	B19 TP02 0.1 B19 TP02 0.5	0 - 0.1 0.4 - 0.5	3299078 3299078	Normal Normal	<20 >20	0.80 <0.10	11 9	43 10 18	58 20	0.22 <0.10	4 .	131 42		-	-		-	-	1.6 0.7 1.1	-
B25_HA01 B25_HA01 B25_HA02	20 Jun 2023 20 Jun 2023 20 Jun 2023	B25 HA01 0.1 B25 HA01 0.5 B25 HA02 0.1	0 - 0.1 0.4 - 0.5 0 - 0.1	3299078 3299078 3299078	Normal Normal	<20 <20 <20	0.21 <0.10 <0.10	9 7 9	18 8	17.8 15.5 22	0.13 <0.10 0.12	3	109 34 65		-	-		-	-	1.1 0.5 0.7	-
325_HA02 325_HA03	20 Jun 2023 20 Jun 2023	B25 HA02 0.5 B25 HA03 0.1	0.4 - 0.5 0 - 0.1	3299078 3299078	Normal Normal	<20 <20	<0.10	9	14	16.6 16.7	0.11	5 4	42 77		-	-		-	-	0.8	-
325_HA03 326_TP01	20 Jun 2023 19 Jun 2023	B25 HA03 0.5 B26 TP01 0.1	0.4 - 0.5 0 - 0.1	3299078 3299078	Normal Normal	<20 40	<0.10 0.31	11 13	12 69	16.8 290	<0.10 0.17	7 1	57 158		-	-		-	-	0.6 1.1	-
326_TP02 326_TP02	19 Jun 2023 19 Jun 2023	B26 TP02 0.1 B26 TP02 0.5	0 - 0.1 0.4 - 0.5	3299078 3299078	Normal Normal	47 31	0.33	13 13	71 38	260 44	0.17 0.13	6	63 63	: :	-	- :		-	-	1.1	-
26_TP03 26_TP03 34_TP01	19 Jun 2023 19 Jun 2023 07 Jun 2023	B26 TP03 0.1 B26 TP03 0.5 B34 TP 01 0.10	0 - 0.1 0.4 - 0.5 0 - 0.1	3299078 3299078 3299078	Normal Normal	32 23 <20	0.42 0.28 0.23	12 11 11	68 43 26	260 260 38	0.15 0.17 <0.10	6 1	151 103 138		-	-		-	-	1.3 1.3 0.9	-
4_TP01 4_TP01 4_TP02	07 Jun 2023 07 Jun 2023 07 Jun 2023	B34 TP 01 0.50 B34 TP 02 0.10	0.4 - 0.5 0 - 0.1	3299078 3299078 3299078	Normal Normal	<20 <20 <20	0.23 0.21 0.35	9	26 60	40 121	0.14	4	88 133		-	-		-	-	1.3	-
34_TP02 34_TP03	07 Jun 2023 07 Jun 2023	B34 TP 02 0.50 B34 TP 03 0.10	0.4 - 0.5 0 - 0.1	3299078 3299078	Normal Normal	<20 <20	0.11	11	18 34	21 39	0.17 0.14	5 9	48 92		-	-		-	-	1.3 1.1	-
34_TP03 34_TP04	07 Jun 2023 07 Jun 2023	B34 TP 03 0.50 B34 TP 04 0.10	0.4 - 0.5 0 - 0.1	3299078 3299078	Normal Normal	<20 <20	0.26 <0.10	8 5	26 12	22 20	0.12 <0.10	3	72 38		-	-		-	-	1.1 0.5	-
334_TP04 334_TP05	07 Jun 2023 07 Jun 2023	B34 TP 04 0.50 B34 TP 05 0.10	0.4 - 0.5 0 - 0.1	3299078 3299078	Normal Normal	<20 <20	0.43	9 26	17 56	24 105	0.10 0.15	38 2	39 220		-	-		-	-	0.7 1.2	-
334_TP05 334_TP06 334_TP06	07 Jun 2023 07 Jun 2023	B34 TP 05 0.50 B34 TP 06 0.10 B34 TP 06 0.50	0.4 - 0.5 0 - 0.1 0.4 - 0.5	3299078 3299078 3299078	Normal Normal	<20 <20 < 20		10 10 9	11 41 19	23 187 22	<0.10 0.12 0.10	10 2 5	32 210 52		-	-		-	-	0.6 1.5 0.6	-
	07 Jun 2023		0 - 0.1	3299078	Normal Normal	23	0.34 <0.10	24 9	37 13	49 21	<0.10 <0.10 <0.10	40 1	110 33		-	-		-	-	1.1 0.5	-
334_TP07 334_TP07	07 Jun 2023 07 Jun 2023 07 Jun 2023	B34 TP 07 0.10 B34 TP 07 0.50	0.4 - 0.5	3299078												1		-	-	1.0	1 -
B34_TP07 B34_TP07 B35_HA01 B35_HA01	07 Jun 2023 07 Jun 2023 12 Jun 2023 12 Jun 2023	B34 TP 07 0.50 B35 HA01 0.10 B35 HA01 0.50	0.4 - 0.5 0 - 0.1 0.4 - 0.5	3299078 3299078	Normal Normal	<20 <20	0.50 <0.10	14 7	57 12	630 54	0.54 <0.10	3	260 43	<u> </u>	-	-				0.6	-
B34_TP07 B35_HA01 B35_HA01 B35_HA04 B35_HA04	07 Jun 2023 07 Jun 2023 12 Jun 2023 12 Jun 2023 12 Jun 2023 12 Jun 2023 12 Jun 2023	B34 TP 07 0.50 B35 HA01 0.10 B35 HA01 0.50 B35 HA04 0.10 B35 HA04 0.50	0 - 0.1 0.4 - 0.5 0 - 0.1 0.4 - 0.5	3299078 3299078 3299078 3299078	Normal Normal Normal Normal	<20 20 20 <20 <20	<0.10 0.41 0.10	14 7 11 9	12 43 14	54 360 87	<0.10 0.23 <0.10	3 6 6 2 3	43 210 74		-	-		-	-	0.6 1.0 0.7	-
334_TP07 335_HA01 335_HA01 335_HA04	07 Jun 2023 07 Jun 2023 12 Jun 2023 12 Jun 2023	B34 TP 07 0.50 B35 HA01 0.10 B35 HA01 0.50 B35 HA04 0.10	0 - 0.1 0.4 - 0.5 0 - 0.1	3299078 3299078 3299078	Normal Normal Normal	<20 20 <20 <20 <20 <20 <20 <20	<0.10 0.41	7	12 43	54 360	< 0.10	3 6 2 3 5 4	43		-	-		-	-	0.6 1.0	-

J	в	c	ď	м

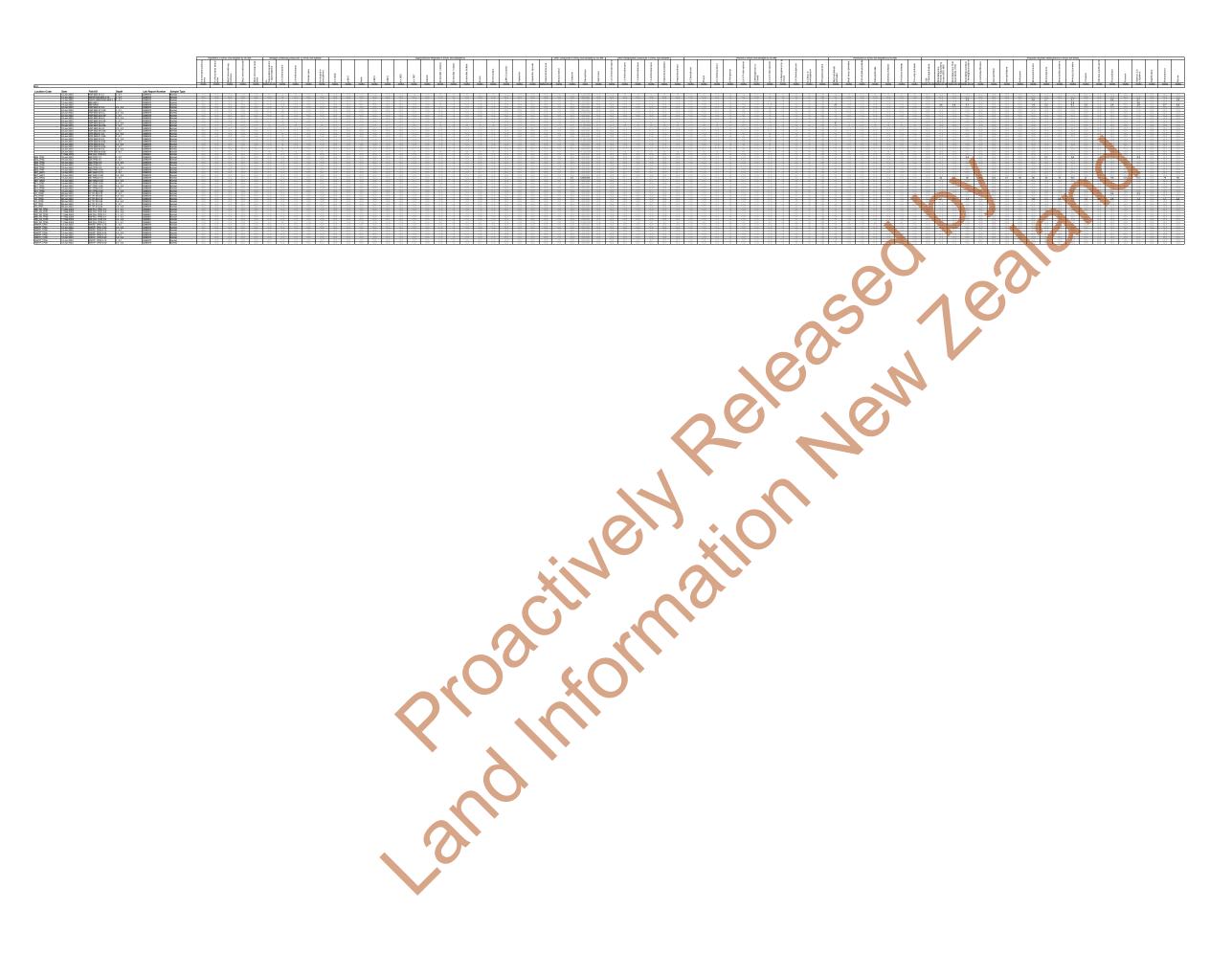
									$\overline{}$	$\overline{}$						Heavy metals, screen	As,Cd,Cr,Cu,I	Ni,Pb,Zn,Hg				_	
								Î,								<u> </u>							
							Ę	E .			_				Ę	€		_			E		
						Boron	Cadmit	Chromi	Coppe	-ead	Mercur	Vickel	Sinc	Arsenic	Cadmit	Chromi	ead	Mercur	Nickel	Zuc	3erylliu	Boron	
B35_TP03	07 Jun 2023	B35 TP 03 0.10	0 - 0.1	3299078	Normal	mg/kg 185	mg/kg 0.38	mg/kg 12	mg/kg 59	mg/kg 260	mg/kg <0.10	mg/kg 13	mg/kg 270	mg/kg m	ng/kg	mg/kg mg/kg	mg/kg	mg/kg	mg/kg	mg/kg mg	g/kg mg/kg 0.5 -	٦	
B35_TP03 B35_TP04	07 Jun 2023 07 Jun 2023	B35 TP 03 0.50 B35 TP 04 0.10	0.4 - 0.5 0 - 0.1	3299078 3299078	Normal Normal	<20 <20	<0.10 <0.10	8 7	9 13	18.4 30	<0.10 <0.10	3 5	29 66	- :	-	: :	-	- :	-	- 0	0.9 - 0.8 -	=	
B35_TP04 B35_TP05	07 Jun 2023 07 Jun 2023	B35 TP 04 0.50 B35 TP 05 0.10	0.4 - 0.5 0 - 0.1	3299078 3299078	Normal Normal	<20 <20	0.17 <0.10	9 5	19 9	35 69	0.18 < 0.10	2	59 53	-	-		-	-	-	- C	0.9		
B35_TP05 B59_TP04	07 Jun 2023 14 Jun 2023	B35 TP 05 0.50 B59 TP04 0.10	0.4 - 0.5 0 - 0.1	3299078 3299078	Normal Normal	<20 175	0.40	11 25	10 28	23 61	<0.10 0.12	25	37 135	-	-		-	-	-	- 1	1.1 -		
B59_TP04 B63_TP01 B63_TP03	14 Jun 2023 14 Jun 2023 21 Mar 2023	B59 TP04 0.50 B63 TP01 0.10 B63 TP03 0.1	0.4 - 0.5 0 - 0.1 0 - 0.1	3299078 3299078 3211645	Normal Normal Normal	<20 <20	<0.10	9 9	14 11 4	8.2 4.3	0.10 <0.10 <0.10	3 11	56 54 22		-			-	-	- (1.3 0.4 0.2	4	
B63_TP04 B66_TP01	21 Mar 2023 21 Mar 2023	B63 TP04 0.2 B66 TP01 0.1	0.1 - 0.2	3211645 3211645	Normal Normal	<20 <20	<0.10	8	10 870	16.5 12.1	<0.10	4 2	37 40		-			-	-		0.7 -		
B66 TP01	21 Mar 2023 21 Mar 2023	B66 TP01 0.9 B66 TP01 1.1	0.8 - 0.9	3211645 3211645	Normal Normal	<20 <20	<0.10 <0.10	6	13	16.9 15.5	<0.10	3 7	32 61	-	-		-	-	-	- 0	0.6 -		
B66_TP01 B66_TP01 B67_HA01	21 Mar 2023 14 Jun 2023	B66 TP01 1.1 B67 HA01 0.10	1 - 1.1 0 - 0.1	3213233 3299078	Normal Normal	<20	<0.10	9	12	6.3	<0.10	7	33	-	-		-	-	-	- (0.4	\exists	
B67_HA01 B67_HA02	14 Jun 2023 14 Jun 2023	B67 HA01 0.50 B67 HA02 0.10	0.4 - 0.5 0 - 0.1	3299078 3299078	Normal Normal	<20 580	<0.10 0.17	5 18	46	4.5 29	<0.10 0.10	3 29	24 72	-	-		-	-	·	1	0.3 - 1.0 -		
B67_HA02 B68_TP06	14 Jun 2023 20 Mar 2023	B67 HA02 0.50 B68 TP06 0.1	0.4 - 0.5 0 - 0.1	3299078 3211645	Normal Normal	84 <20	<0.10	15 15	22 18	17.5 10.8	0.10 <0.10	6 23	45 51	-	-		-	-	-	- 0	0.9 -		
B68_TP08 B71_TP01 B71_TP01	20 Mar 2023 14 Jun 2023	B68 TP08 0.2 B71 TP01 0.10 B71 TP01 0.50	0.1 - 0.2 0 - 0.1 0.4 - 0.5	3211645 3299078 3299078	Normal Normal Normal	<20 <20	0.16	4 10 12	24 32	3.8 23 18.4	0.11 0.13	6	20 65 42	-	-		-	- :		- 1	0.2 - 1.0 - 1.3 -	= 5 // `	P
B71_TP02 B71_TP02	14 Jun 2023 14 Jun 2023 14 Jun 2023	B71 TP01 0.50 B71 TP02 0.10 B71 TP02 0.50	0-0.1	3299078 3299078	Normal Normal	<20	0.26	11 26	35 62	27	0.15	6	66		-		-	1		- 1	1.2	5 U	
B73_TP01 B73_TP01	20 Jun 2023 20 Jun 2023	B73 TP01 0.1 B73 TP01 0.5	0 - 0.1 0.4 - 0.5	3299078 3299078	Normal Normal	<20 <20	0.40	10	20	47 20	0.13 <0.10	4	73	-	-			7		- 1	1.1	71	
BWL_TP01 BWL_TP01	08 Jun 2023 08 Jun 2023	BWL TP 01 0.10 BWL TP 01 0.50	0 - 0.1 0.4 - 0.5	3299078 3299078	Normal Normal	<20 <20	0.14 <0.10	8	17 10	34 15.0	<0.10 <0.10	4 3	74 51	-	-		-			- 1	1.0 -		
BWL_TP02 BWL_TP02	08 Jun 2023 08 Jun 2023	BWL TP 02 0.10 BWL TP 02 0.50	0 - 0.1 0.4 - 0.5	3299078 3299078	Normal Normal	<20 <20	0.17 <0.10	8 5	16 5	33 17.1	0.12 <0.10	5	77 21	-	-				-	- (0.7 -		
BWL_TP03 BWL_TP03	08 Jun 2023 08 Jun 2023	BWL TP 03 0.10 BWL TP 03 0.50	0 - 0.1 0.4 - 0.5	3299078 3299078	Normal Normal	<20 <20	0.20 <0.10	7	21 13	30 18.2	0.15 <0.10	5	72 39		-				-	- 0	0.8		
BWL_TP04 BWL_TP04	08 Jun 2023 08 Jun 2023	BWL TP 04 0.10 BWL TP 04 0.50 DUP B1	0 - 0.1 0.4 - 0.5	3299078 3299078 3299078	Normal Normal Field D	<20 <20 <20	0.33 <0.10	9 6 9	36 6	82 21 111	0.18 <0.10 0.17	5 3 6	103 28 102		-	· ·		-	-	- 0	1.0 - 0.3 - 1.0 -	=	
BWL_TP05 BWL_TP05	08 Jun 2023 08 Jun 2023 08 Jun 2023	BWL TP 05 0.10 BWL TP 05 0.50	0 - 0.1 0.4 - 0.5	3299078 3299078 3299078	Normal Normal	<20 <20 <20	0.31 <0.10 <0.10	5	28 9 10	111 15.6 17.2	<0.17 <0.10 <0.10	2	36 45	-	- 4		1	-		- 0	1.0 - 0.5 - 0.5 -	7	
BWL_TP06 BWL_TP06	08 Jun 2023 08 Jun 2023	BWL TP 06 0.10 BWL TP 06 0.50	0 - 0.1 0.4 - 0.5	3299078 3299078	Normal Normal	<20 <20	0.20	9	19 6	18.6 16.3	0.15	5	74 23	-	-		-	-		- 0).9 -).3 -	7	
CHP_TP01 CHP_TP01	16 Mar 2023 16 Mar 2023	CHP TP01 0.2 CHP TP01 0.5	0.1 - 0.2 0.4 - 0.5	3209697 3209697	Normal Normal	<20 <20	<0.10 <0.10	9	11 10	163 19.8	<0.10 <0.10	6	56 24		:		-			- 0	0.4 -	\exists	
CHP_TP04 CHP_TP04	16 Mar 2023 16 Mar 2023	CHP TP04 0.2 CHP TP04 0.6	0.1 - 0.2 0.5 - 0.6	3209697 3209697	Normal Normal	<20 <20	0.13 <0.10	7 5	117 17	35 19.4	<0.10 <0.10	4 3	280 66			/ Y		: (- (0.8 - 0.8 -	\exists	
DIP_TP01 DIP_TP02	17 Mar 2023 17 Mar 2023	DIP TP01 0.2 DIP TP02 0.2	0.1 - 0.2 0.1 - 0.2	3209697 3209697	Normal Normal	109 <20	0.27	14 8	54 55	65 80	0.15	15 6	134 97				-			- (1.0 -		
DIP_TP03 DS01_TP01	17 Mar 2023 12 Jun 2023	DIP TP03 0.2 DS01 TP01 0.10 DS01 TP01 0.50	0.1 - 0.2 0 - 0.1	3209697 3299078 3299078	Normal Normal	1,200 <20	0.23 <0.10	15 8 7	60 30	59 44 38	0.20	102 4 4	95 41	K : L						- 1	2.8 - 1.0 - 0.7 -	_	
DS01_TP01 DS01_TP02 DS01_TP03	12 Jun 2023 12 Jun 2023 12 Jun 2023	DS01 TP01 0.50 DS01 TP02 0.10 DS01 TP03 0.10	0.4 - 0.5 0 - 0.1 0 - 0.1	3299078 3299078 3299078	Normal Normal Normal	<20 <20 <20	<0.10 0.17 0.13	9	24 16 25	38 24 34	<0.10 <0.10 <0.10	5 4	35 63 49		: 1		1		-	- (0.7 - 0.8 - 1.1 -	=	
DS01_TP03 DS01_TP03 DS01_TP03	12 Jun 2023 12 Jun 2023 12 Jun 2023	DS01 TP03 0.10 DS01 TP03 0.50 DUP C1	0.4 - 0.5	3299078 3299078	Normal Field D	<20 <20	<0.10 0.13	3	4 26	32 34	<0.10	<2 5	20	- :	-		:		-	- (0.4 -	7	
DS01_TP04 DS01_TP05	12 Jun 2023 12 Jun 2023	DS01 TP04 0.10 DS01 TP05 0.10	0 - 0.1 0 - 0.1	3299078 3299078	Normal Normal	<20 <20	<0.10	6 10	13 20	29 30	<0.10	3 5	30 50	-	-		-	-	-	- (0.6 -	\exists	
DS01_TP05 DS02_TP01	12 Jun 2023 19 Jun 2023	DS01 TP05 0.50 DS02 TP01 0.1	0.4 - 0.5 0 - 0.1	3299078 3299078	Normal Normal	<20 <20	<0.10 0.25	6	5 51	31 47	<0.10 0.27	8	24 94	:	-		· ·	-	-	- (0.4 -		
DS02_TP01 DS02_TP02	19 Jun 2023 12 Jun 2023	DS02 TP01 0.5 Dup E1	0.4 - 0.5	3299078 3299078	Normal Field_D	<20 <20	<0.10 0.20	32 16	70 46	21 23	0.43	14	83 70	: -	-		-	-	-	- 1	1.9 -		
DS02_TP02 DS02_TP03 DS02_TP03	19 Jun 2023 20 Jun 2023 20 Jun 2023	DS02 TP02 0.1 DS02 TP03 0.1 DS02 TP03 0.5	0 - 0.1 0 - 0.1 0.4 - 0.5	3299078 3299078 3299078	Normal Normal	<20 <20 <20	0.21 0.62 0.16	14 13 14	45 55 56	25 490 71	0.19 0.11 0.10	7	72 200 290	7 :	-	•	-	-	-	- (1.1 -	=	
DS02_TP03 DS02_TP04 DS02_TP05	20 Jun 2023 20 Jun 2023 20 Jun 2023	DS02 TP03 0.5 DS02 TP04 0.1 DS02 TP05 0.1	0.4 - 0.5 0 - 0.1 0 - 0.1	3299078 3299078 3299078	Normal Normal Normal	<20 <20 <20	0.16 0.23 0.48	8 17	56 20 50	36 240	0.10 0.15 0.14	4 7	290 75 109				-		-	- (1.0 - 0.7 - 1.0 -	4	
DS02_TP05 DS02_TP05 DS03_TP01	20 Jun 2023 21 Jun 2023	DS02 TP05 0.5 DS03 TP01 0.1	0.4 - 0.5 0 - 0.1	3299078 3299078	Normal Normal	<20 <20	<0.10	9	28	19.9	<0.10	6	30 181	: 1		. :	-	-	-	- 1	1.1 -	7	
DS03_TP01 DS03_TP02	21 Jun 2023 21 Jun 2023	DS03 TP01 0.5 DS03 TP02 0.1	0.4 - 0.5 0 - 0.1	3299078 3299078	Normal Normal	<20 <20	<0.10 0.39	9	11 23	31	<0.10 0.18	3 5	45 85				-	-	-	- (0.6 - 1.0 -	3	
DS03_TP02 DS03_TP03	21 Jun 2023 21 Jun 2023	DS03 TP02 0.5 DS03 TP03 0.1	0.4 - 0.5 0 - 0.1	3299078 3299078	Normal Normal	<20 <20	<0.10 0.37	9	11 101	112	0.12 <0.10	4	40 112				-	-	-	- (0.5 -	\exists	
DS03_TP03 DS03_TP04	21 Jun 2023 12 Jun 2023	DS03 TP03 0.5 Dup F1	0.4 - 0.5	3299078 3299078	Normal Field_D	<20 <20	<0.10 <0.10	9	9 8	22 17.8	<0.10	4	31 36				-	-	-	- C	0.4 -	=	
DS03_TP04 DS03_TP04 HT_CompC3	21 Jun 2023 21 Jun 2023	DS03 TP04 0.1 DS03 TP04 0.5 HT COMPC3 0.10	0 - 0.1 0.4 - 0.5	3299078 3299078	Normal Normal	<20 <20	0.27 <0.10	12 10	98	18.7 30	0.11 <0.10 0.43	4 4	91 39	1:4	-		-	-	-	- C	1.0 - 0.7 -	=	
HT_CompC3 HT_CompE2 HT_CompE4	09 Jun 2023 09 Jun 2023 09 Jun 2023	HT COMPCS 0.10 HT COMPE2 0.10 HT COMPE4 0.10	0 - 0.1 0 - 0.1 0 - 0.1	3299078 3299078 3299078	Normal Normal Normal	<20 23 47	0.30 0.36 0.13	8 10 11	30 42 29	30 36 22	0.43 0.21 <0.10	5 27	119 175 72		-				-	- 0	0.7 - 0.8 - 0.9 -	7	
HT_CompE4 HT_TP25 HT_TP25	17 Mar 2023 17 Mar 2023	HT TP25 0.2 HT TP25 1.2	0.1 - 0.2 1.1 - 1.2	3209697 3209697	Normal Normal	650 <20	0.13	11 7	109	51 19.3	0.16 <0.10	50	97 28		-			-	-	- 2	2.0 -	7	
HT_TP27 HT_TP27	17 Mar 2023 17 Mar 2023	HT TP27 0.1 HT TP27 0.5	0 - 0.1 0.4 - 0.5	3209697 3209697	Normal Normal	380 <20	0.14 <0.10	13	28	83 18.3	<0.10 <0.10	35	81 31	-	-		-	-	-	- 1	1.7 -	\exists	
HT_TP27 HT_TP28	17 Mar 2023 17 Mar 2023	HT TP27 0.7 HT TP28 0.1	0.6 - 0.7 0 - 0.1	3209697 3209697	Normal Normal	49 128	<0.10 0.10	6	9 27	22 43	<0.10 0.26	5 14	44 50	-	-	: :	-	-	-	- (0.4 -	_	
HT_TP29 HT_TP29	08 Jun 2023 08 Jun 2023	HT TP 29 0.10 HT TP 29 0.50	0 - 0.1 0.4 - 0.5	3299078 3299078	Normal Normal	<20 <20	0.34	9	32 8	159 19.8	0.14	7	148 33	-	-		-	-	-	- 0	0.9 -	=	
HT_TP30 HT_TP30 HT_TP31	08 Jun 2023 08 Jun 2023 08 Jun 2023	HT TP 30 0.10 HT TP 30 0.50 HT TP 31 0.10	0 - 0.1 0.4 - 0.5 0 - 0.1	3299078 3299078 3299078	Normal Normal Normal	79 <20	0.39 <0.10 0.19	9 9 11	39 13 26	145 21 83	<0.10	16 4 11	121 38 123	-	-		-	-	-	- 2 - 0	2.2 - 0.7 - 0.8 -	=	
HT_TP31 NUR_TP01	08 Jun 2023 08 Jun 2023 13 Jun 2023	HT TP 31 0.10 HT TP 31 0.50 NUR TP01 0.10	0 - 0.1 0.4 - 0.5 0 - 0.1	3299078 3299078 3299078	Normal Normal Normal	25 <20 <20	0.19 0.22 0.15	8 21	26 26 48	38	<0.10	6 9	88 93		-			1 -	-	- 1	1.3 - 1.2 -	7	
NUR_TP01 NUR_TP02	13 Jun 2023 13 Jun 2023	NUR TP01 0.50 NUR TP02 0.10	0.4 - 0.5 0 - 0.1	3299078 3299078	Normal Normal	<20 <20	<0.10 0.25	18	44	26	0.16 0.11	8	70 129	-	-			-	-	- 1	1.1 -	7	
NUR_TP02 NUR_TP03	13 Jun 2023 13 Jun 2023	NUR TP02 0.50 NUR TP03 0.10	0.4 - 0.5 0 - 0.1	3299078 3299078	Normal Normal	<20 <20	0.16 0.15	14 18	40 39	47 27	0.17 0.14	9 10	93 73		-	: :	-	-	-	- 1	1.0 - 1.1 -	3	
NUR_TP03 NUR_TP04	13 Jun 2023 13 Jun 2023	NUR TP03 0.50 NUR TP04 0.10	0.4 - 0.5 0 - 0.1	3299078 3299078	Normal Normal	<20 <20	0.10 0.27	15	40 40		0.16 0.13	10 9	51 84	-	-	: :	-	-	-	- 1	1.2 -	\exists	
NW_Fill_TP01 NW_Fill_TP01	11 Sep 2023 11 Sep 2023	NW FILL TP01 0.1 NW FILL TP01 0.5	0.1 - 0.1 0.5 - 0.5	3362681 3362681	Normal Normal	<20 <20	0.18 <0.10	10	25 19	13.6 15.3	0.19 0.12	6	43 31	-	-		-	-	-	- 0	1.0 -	=	
NW_Fill_TP02 NW_Fill_TP03 NW_Fill_TP03	11 Sep 2023 11 Sep 2023 11 Sep 2023	NW FILL TP02 0.1 NW FILL TP03 0.1 NW FILL TP03 0.5	0.1 - 0.1 0.1 - 0.1 0.5 - 0.5	3362681 3362681 3362681	Normal Normal Normal	<20 <20 <20	0.22 0.34 <0.10	8 8 12	28 26 13	15.0 12.4 14.4	0.15 0.17 0.12	4	71 50 26	-	-		-	-	-	- 1	0.8 - 1.0 - 0.6 -	=	
NW_FIII_TP03 NW_FIII_TP04 NW FILL TP01	11 Sep 2023 11 Sep 2023 12 Sep 2023	NW FILL TP03 0.5 NW FILL TP04 0.1 DUP J1	0.1 - 0.1	3362681 3362681	Normal Field D	101 <20	0.40	46 12	151	17.5 15.8	<0.12	70 6	670 30	-	-			-	-	- C	0.0 -	7	
PAV_TP01 PAV_TP01	12 Jun 2023 12 Jun 2023	PAV TP01 0.10 PAV TP01 0.50	0 - 0.1 0.4 - 0.5	3299078 3299078	Normal Normal	<20 <20	0.19	16	33 21	41	0.14 0.13 0.15	5	143 46	-	-		-	-	-	- 0	0.7 -	7	
PAV_TP02 SB2_TP02	12 Jun 2023 16 Mar 2023	PAV TP02 0.10 SB2 TP02 0.2	0 - 0.1 0.1 - 0.2	3299078 3209697	Normal Normal	<20 <20	0.12	6	41 19	45 18.4	0.12	3 10	76 96	-	-		-	-	-	- 0).9 -).6 -	\exists	
SB2_TP03 SB4_TP01	16 Mar 2023 20 Mar 2023	SB2 TP03 0.2 SB4 TP01 0.1	0.1 - 0.2 0 - 0.1	3209697 3211645	Normal Normal	<20 <20	0.10 0.24	10 10	21 26	38 27	<0.10 0.15	5 5	139 116	-	-	: :	-	-	-	- C	0.6 -	\exists	
SB4_TP02 SB4_TP02	20 Mar 2023 20 Mar 2023	SB4 TP02 0.2 SB4 TP02 0.5	0.1 - 0.2 0.4 - 0.5	3211645 3211645	Normal Normal	71 <20	0.28 <0.10	13 5	42 15	12.2	0.20 <0.10	10	98 29	-	-		-	-	-	- 1	1.1 -		
SB4_TP03 SB8_TP01	20 Mar 2023 12 Sep 2023	SB4 TP03 0.1 SB08 TP01 0.2 SB08 TP01 0.5	0 - 0.1 0.2 - 0.2 0.5 - 0.5	3211645 3362681	Normal Normal	22	0.25 <0.10	10 15 13	24 54	35 18.8	<0.10 0.19	8 16	132 41	-			-	-	-	- 1	1.0 - 1.0 -	_	
CD0_TF01				3362681	Normal	<20	<0.10	13	27	18.6	0.13	8	39	+ - +			-		-		0.7 -	\dashv	
SB8_TP01 WD2_TP01	12 Sep 2023 22 Mar 2023 22 Mar 2023	WD2 TP01 0.1	0 - 0.1	3214115	Normal	<20	0.14	9	16 15	41 35	0.12	4	62		: +		-		-:-		7 -	_	
SB8_TP01		WD2 TP01 0.1 WD2 TP02 0.1 WD2 TP03 0.1 WD2 TP04 0.1 WD2 TP05 0.1	0 - 0.1 0 - 0.1 0 - 0.1 0 - 0.1	3214115 3214115 3214115 3214115	Normal Normal Normal Normal	<20 <20 <20 <20	0.14 0.20 0.29 0.15	9 8 9 8	15 23 22 18	35 45 89	0.12 0.12 0.15 0.10	4 4 5 4	60 94 79	-	-		-	-	-	- 0	0.7 - 0.9 - 0.7 -	=	

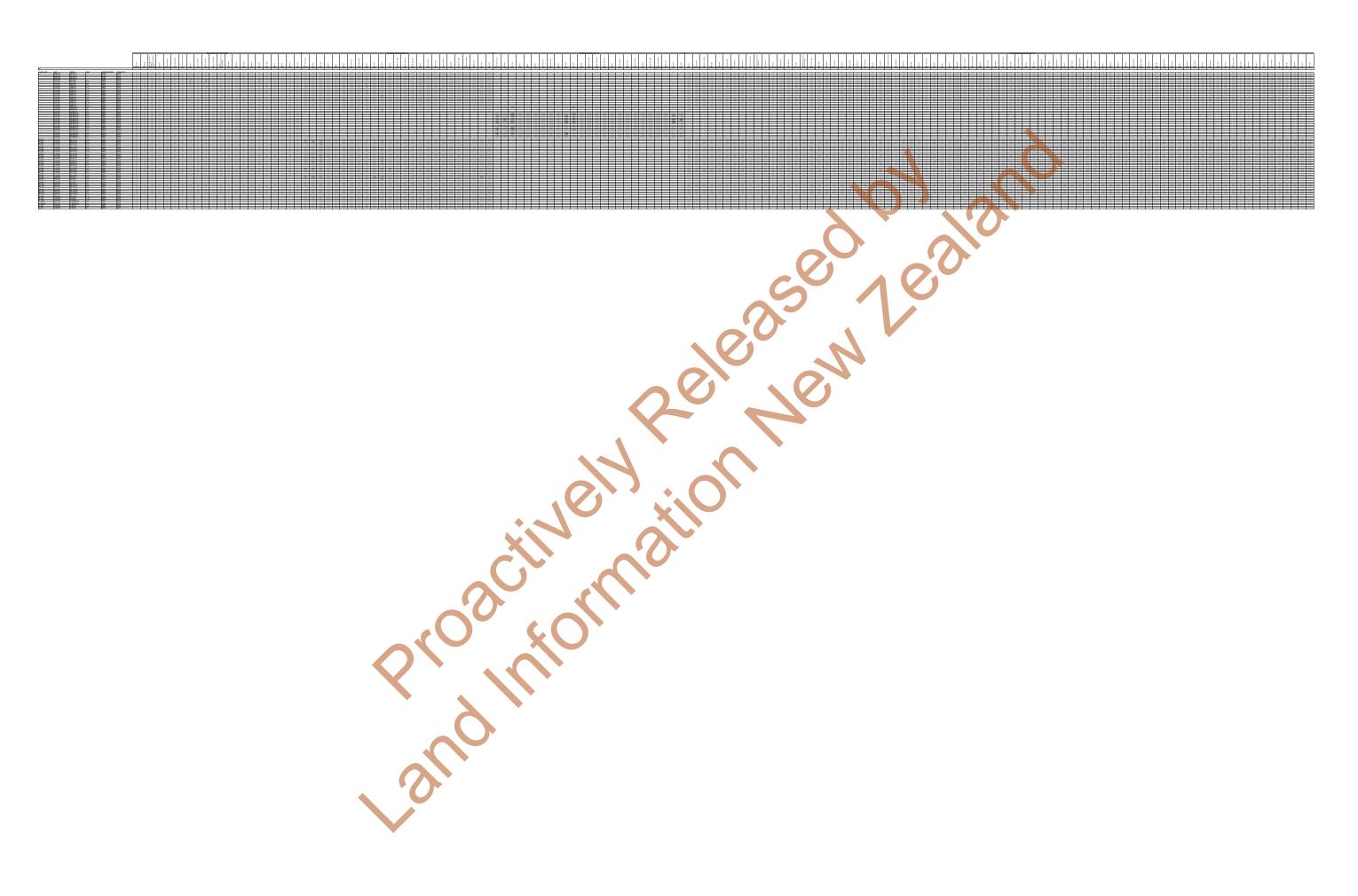
WD2_TP08 22 Mar 2023 WD2_TP09 22 Mar 2023 WDF_TP01 11 Sep 2023 WDF_TP02 11 Sep 2023 WDF_TP02 11 Sep 2023 WDG_TP01 11 Sep 2023 WDG_TP03 11 Sep 2023 WDG_TP03 11 Sep 2023 WDG_TP03 11 Sep 2023 WDH_TP03 12 Sep 2023 WDH_TP01 12 Sep 2023 WDH_TP03 12 Sep 2023 WDH_TP03 12 Sep 2023 WDH_TP03 12 Sep 2023 WDH_TP03 12 Sep 2023 WDH_TP03 12 Sep 2023 WDH_TP03 12 Sep 2023 WDH_TP03 13 Jun 2023 WWTP_TP01 13 Jun 2023 WWTP_TP01 13 Jun 2023 WWTP_TP02 13 Jun 2023 WWTP_TP03 13 Jun 2023 WWTP_TP03 13 Jun 2023 WWTP_TP04 13 Jun 2023 WWTP_TP0	WD2 TP08 0.2	3214115 3214115 3302881 3302881 3302881 3302881 3302881 3302881 3302881 3302881 3302881 3302881 3302881 3302881 3302881 3302881 3302881 3289078 3289078 3289078 3289078 3289078 3289078 3289078	Heavy metals, screen As Cd. Cr. Cu. NL.Ph.Zn. Hg Heavy metals, screen As Cd. Cr. Cu. NL.Ph.Zn. Hg	- 0.9 - 0.8 - 0.10 - 0.
			Productive Nation Age New York Control of the Nation Age New York Control of the Nation Age New York Control of the Nation Age New York Control of the Nation Age Nat	

 Appendix F
 1

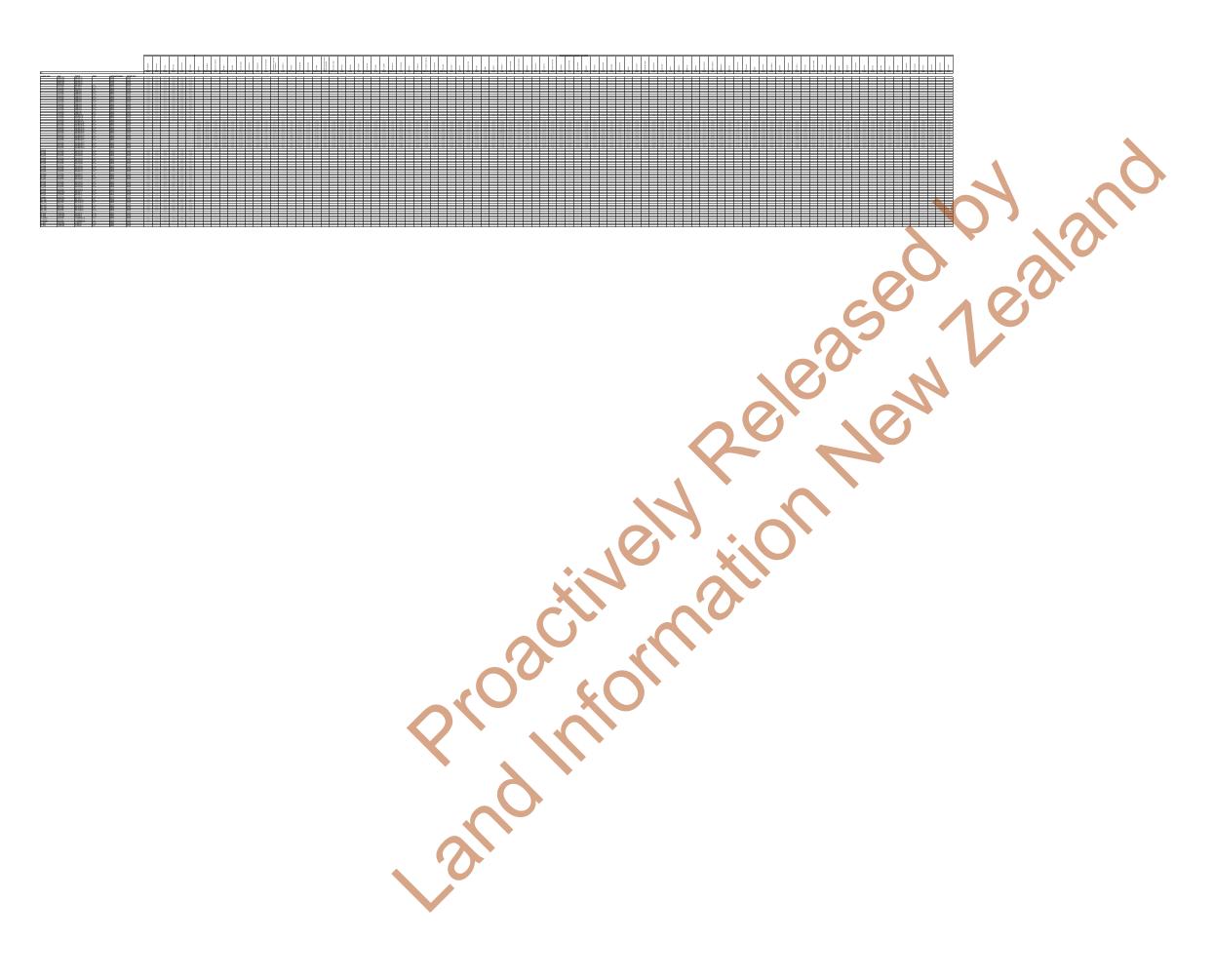

 152 2
 1

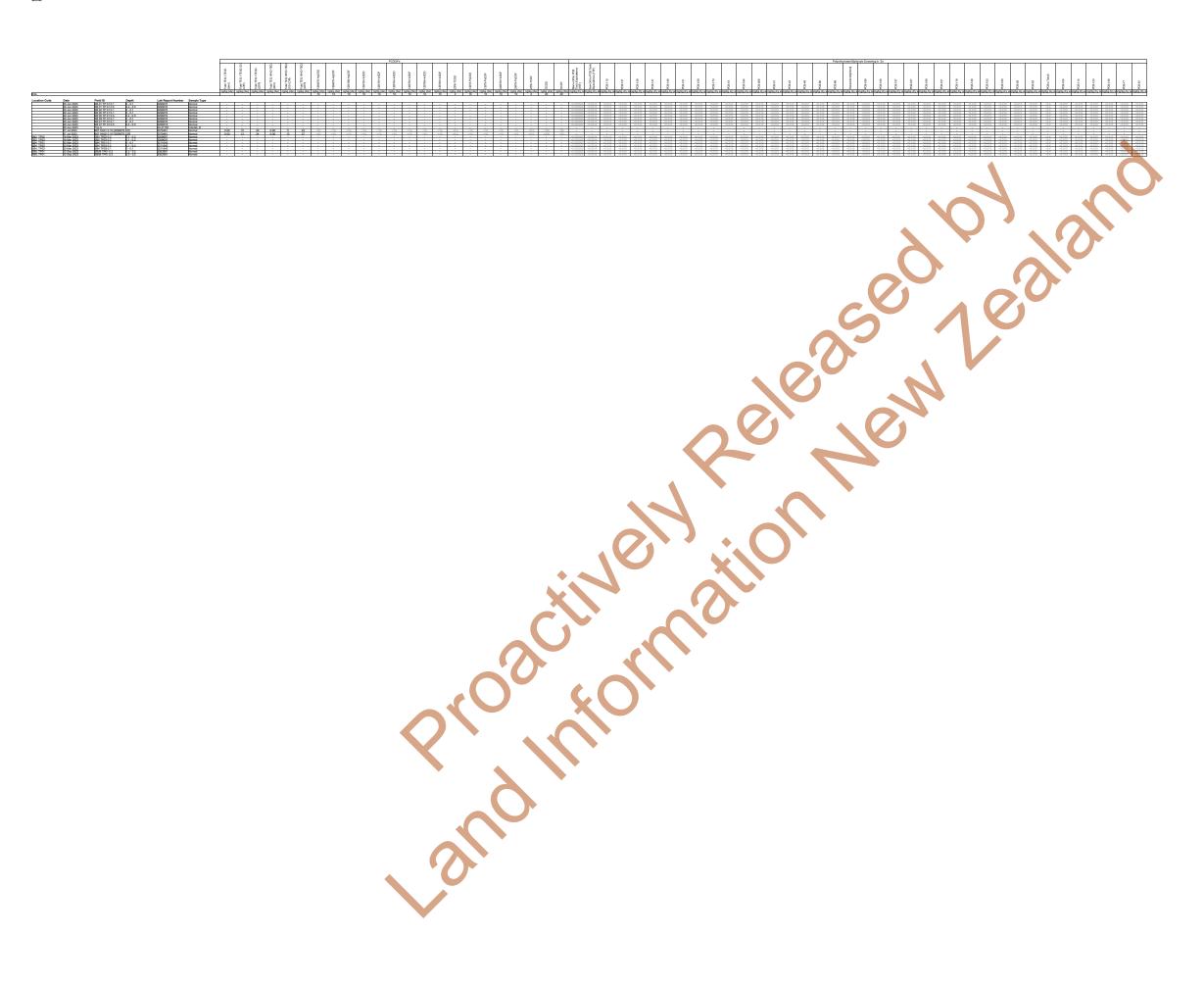
 1 TPH, PM and BTEX
 LINZ - Former Token LINZ


						_																														
							BTEX in Sc	il by Headsp	ace GC-MS	T	- 1		+ 1							Poly	ydic Aromati	c Hydrocarbo	ins Screening	in Soil								1	Total	Petroleum H	lydrocarbons i	.n Soil
										·	ne valency NES	ne Toxio TEF)	anthene	halene	8		fhalene		eu eu		90808	8	anthene	erylene		привови						f total) -		'		ugo
						e	8	enzene	(0) 8	d g ω) e	(ajpyrer cy Equiv r (PEF)	(a)pyrer alence ((b)fluora (i)fluora	hyfnaph	(e)pyre	æ	hyfnaph	phthene	phthyle	90808	a)anthra	(a)pyre	(k)fluor	(g,h,i)p	eue	z(a,h)ar	mhene	90 5	rene	mhrene		(Sum o	36	98	ا ا	314 Fills
						Benze	Tolue	Efryb	Xylen	Xylen	Benzo Poten Factor	Benzo	Benzo	2-med	Benzo	Penyle	1-Med	Aoens	Aoene	Amfins	Benz(Benzo	Benzo	Benzo	Chrys	Diben	Fluore	Fluore	c,d)p)	Phene	Pyren	PAHs Lab o	2150	C7-C3	67	C10-C
EQL						mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg dry wti	ng/kg dry wtn	ng/kg dry wt	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg m	ig/kg mg/	kg mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location Code	Date	Field ID	Depth 0.4 - 0.5	Lab Report Number	Sample Type																															
	12 Jun 2023 12 Jun 2023	B16 TP01 0.5 B16 TP02 0.1	0.4 - 0.5	3299078 3299078	Normal		-				<0.029	<0.029	0.016	<0.012	<0.012	<0.012	< 0.012	<0.012	<0.012	<0.012	<0.012	0.017	< 0.012	0.013	<0.012	<0.012	<0.012	<0.012 0	.012 <0.0	6 <0.012	< 0.012	<0.3	<40	<80	<20	<20
	12 Jun 2023	B16 TP02 0.5	0.4 - 0.5	3299078	Normal						<0.026	<0.026	<0.013	<0.013	<0.013	<0.013	<0.013	<0.011	<0.013	< 0.013	<0.011	<0.013	< 0.013	<0.013	<0.013	<0.011	<0.013	<0.013	0.013 <0.0	7 <0.013	<0.013	<0.4	<40	<80	<20	<20
	14 Jun 2023 14 Jun 2023	B66 HA01 B66 HA02		3299078 3299078	Normal Normal	-		-	-		-	-	-	-							-		-			-	-	-		-	-	-		2,500 17,900		<30 80
B16_TP01	12 Jun 2023	B16 TP01 0.1	0 - 0.1	3299078	Normal						< 0.027	< 0.027	<0.011	<0.011	<0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	<0.011	<0.011	<0.011	<0.011 <	0.011 <0.0	6 0.049	< 0.011	<0.3	¥40	<80	<20	<20
B16_TP01 B16_TP04	12 Jun 2023 16 Mar 2023	Dup E5 B16 TP04 0.1	0 - 0 1	3299078 3209697	Field_D Normal	-		-	-		<0.032	<0.031	<0.013	<0.013	<0.013	<0.013	<0.013	<0.013	<0.013	<0.013	<0.013	<0.013	<0.013	<0.013	<0.013	<0.013	<0.013	<0.013 <0.011	0.013 <0.0	0.014	<0.013	<0.4	45	<80	<20	<20 <20
B16 TP06	16 Mar 2023	B16 TP06 0.1	0 - 0.1	3209697	Normal					-	< 0.033	<0.033	<0.014	<0.014	<0.014	< 0.014	< 0.014	< 0.014	< 0.014	< 0.014	< 0.014	<0.014	< 0.014	<0.014	<0.014	<0.014	<0.014	<0.014 <	0.014 <0.0	7 <0.014	< 0.014	< 0.4	94	97	<20	<20
B16_TP07 B16_TP08	17 Mar 2023 17 Mar 2023	B16 TP07 0.1 B16 TP08 0.1	0 - 0.1	3209697 3209697	Normal Normal	- :	- :	- :	- :	- :	0.060 <0.034	<0.059	0.045	<0.013	0.023	<0.013	<0.013	<0.013	<0.013	<0.013	0.027	0.041 0.022	<0.017	0.032	0.030 0.019		0.058		.028 <0.0	0.021 07 <0.014	0.057		<40	<80	<20	<20
B16 TP08	17 Mar 2023	B16 TP08 0.5	0.4 - 0.5	3209697	Normal						< 0.034	< 0.034	< 0.014	<0.014	<0.014	< 0.014	<0.014	< 0.014	< 0.014	< 0.014	< 0.014	< 0.014	< 0.014	< 0.014	< 0.014	<0.014	< 0.014	<0.014 <	0.014 <0.0	7 <0.014	< 0.014	<0.4	<40	<80	<20	<20
B16_TP09 B16_TP09	16 Mar 2023 16 Mar 2023	B16 TP09 0.1 B16 TP09 0.5	0 - 0.1 0.4 - 0.5	3209697 3209697	Normal Normal	- :	- :	- :	-	- :	<0.033	<0.033	0.026 <0.014	<0.014	0.015 <0.014	<0.014	<0.014	<0.014	<0.014	<0.014	< 0.014	0.021 <0.014	<0.014	0.022 <0.014	0.015 <0.014	<0.014	0.032 <0.014	<0.014 0 <0.014 <	.019 <0.0 0.014 <0.0	0.015 7 <0.014	0.030	<0.4	<40	<80	<20 <20	<20 <20
B26_TP01	19 Jun 2023	B26 TP01 0.1	0 - 0.1	3299078	Normal																									- '		-	64	<80	<20	<20
B26 TP02 B26 TP02	19 Jun 2023 19 Jun 2023	B26 TP02 0.1 B26 TP02 0.5	0 - 0.1 0.4 - 0.5	3299078 3299078	Normal Normal	-	- :	-	-	- :						- :		-	- :			-	-	-	- :	-	-	-		-			54	×80 ×90	<20	<20
B26_TP03 B63_TP03	19 Jun 2023 21 Mar 2023	B26 TP03 0.1 B63 TP03 0.1	0 - 0.1	3299078 3211645	Normal Normal						*	**		.0.044		-0.044	-0.044		-0.044	-0.044	-0.044	-0.044	-0.044	-0.044		-0.044	-0.044				-		99 1	99	<20	-20
B63 TP04	21 Mar 2023 21 Mar 2023	B63 TP04 0.2	0 - 0.1	3211645	Normal	-		-	-	- :	< 0.026	<0.026	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	< 0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011 <	0.011 <0.0	< 0.011	<0.014	<0.3	<40	<80	<20	120
B65_TP01 B65_TP01	21 Mar 2023 16 Jun 2023 16 Jun 2023	B65 TP01 0.1	0 - 0.1	3299078 3299078	Normal Normal	< 0.05	<0.05	< 0.05	< 0.05	<0.10	7.2	7.1	5.5 0.020	0.092	2.6	1.41	0.122	0.78	0.112	1.64	4.2	4.9 0.016	2.1	3.2	4.1 0.015		9.1	0.48	3.6 0.0	5.5	8.9 0.026	59	300	320	-20	120
B65 TP01	16 Jun 2023 16 Jun 2023	B65 TP01 0.5	1.4 - 1.5	3299078	Normal	<0.07	<0.07	<0.07	<0.07	<0.13	0.035	0.035		<0.016	0.026	0.023	< 0.016	< 0.015	<0.016	< 0.016	0.036	0.016	0.023	0.030	0.015	<0.016		<0.016 0	.036 <0.0	0.031	0.026		<40	<90	-30	<20
B65 TP02	16 Jun 2023	B65 TP02 0.1	0 - 0.1	3299078	Normal	<0.07	<0.07	<0.07	< 0.07	<0.13	0.47		0.35	< 0.014	0.20	0.066	<0.014	0.021	< 0.014	0.038	0.24	0.32	0.135	0.22	0.26	0.048		0.016	0.22 <0.	0.30	0.57	3.6	<40	<80	<20	<20
B65_TP02 B65_TP03	16 Jun 2023 23 Jun 2023 16 Jun 2023	B65 TP02 1.0 B65 TP02 2.0	0.9 - 1 1.9 - 2	3299078 3299078	Normal Normal	<0.07	<0.07	<0.07	<0.07	<0.14	<0.035	<0.035	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.010	<0.010	<0.010	<0.015 <0.02 <	0.02 <0	<0.04 0 <0.02	<0.015	<0.5	<40 <50	<100	<30 -30	<20
B65_TP03		B65 TP03 0.1	0 - 0.1	3299078		< 0.05	<0.05	< 0.05	< 0.05	<0.10	1.13	1.12	0.87	0.011	0.38	0.197	0.015	0.131	0.012	0.28	0.73	0.75	0.33	0.45	0.65	0.111	1.66	0.100 (0.53 < 0.0	0.84	1.56	9.6	<40	<80	<20	<20
B65 TP03 B65 TP03	16 Jun 2023 16 Jun 2023 21 Mar 2023	B65 TP03 0.5 B65 TP03 1.5 B66 TP01 0.1	0.4 - 0.5 1.4 - 1.5	3299078 3299078	Normal Normal Normal	<0.07	<0.07	<0.07	<0.07	<0.14	< 0.036	<0.036	<0.016	<0.016	<0.016	<0.016	< 0.015	<0.016	<0.016	< 0.016	<0.015	< 0.015	<0.016	< 0.015	<0.016	<0.016	<0.015	<0.016 <	0.015 <0.0	8 <0.015 8 <0.046	<0.016	<0.4	<40	<90	430	<20
B66_TP01 B66_TP01	21 Mar 2023 21 Mar 2023	B66 TP01 0.1 B66 TP01 0.9	0 - 0.1 0.8 - 0.9	3211645	Normal	<0.05	< 0.05	<0.05	< 0.05	<0.10	0.51	0.51	0.41	<0.011	0.21	0.085	< 0.011	< 0.011	< 0.011	< 0.011	0.22	0.35	0.177	0.25	0.27	0.053	0.29	<0.011	0.26 <0.1	0.015	0.29	2.9	78	V8P	<20	<20
B68_TP01	23 Mar 2023	B68 TP01 0.2	0.1 - 0.2	3211645 3214115	Normal Normal	-	- :	- :	-	- :	0.80	0.79	0.64	<0.017	0.31	0.129	<0.017	<0.017	0.021	0.030	0.41	0.54	0.25	0.33	0.37	0.083	0.56	<0.017	0.36 <0.0	0.054	0.47	4.6	82	83	<20	<20
B68 TP01 B68 TP02	23 Mar 2023 23 Mar 2023	B68 TP01 0.6 B68 TP02 0.2	0.5 - 0.6 0.1 - 0.2	3214115 3214115	Normal						<0.036	<0.035	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	< 0.015	<0.015	< 0.015	<0.015	< 0.015	<0.015	<0.015	<0.015	<0.015	0.016 <0.0	8 <0.015 6 0.46	<0.015	<0.4	124	390	<30	<20
B68 TP03	23 Mar 2023	B68 TP03 0.2	0.1 - 0.2	3214115	Normal Normal	-	- :	- :	-	- :	0.126	0.124	2.6 0.103	<0.012	1.27 0.049	0.021	< 0.012	< 0.040	< 0.014	0.018	0.085	0.084	0.041	1.26 0.044	0.080	<0.014	0.22	0.017	.048 -0.0	0.059	3.1 0.147	1.0	<40	<80	<20	<20
B68_TP03 B68_TP04	23 Mar 2023 23 Mar 2023	B68 TP03 0.5 B68 TP04 0.1	0.4 - 0.5	3214115 3214115	Normal Normal						<0.036	<0.036	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	< 0.015	<0.015	<0.015	<0.015	<0.015	<0.015 <	0.015 <0:0	18 <0.015 16 0.099	< 0.015	40.4	V40	<90	<30	<20
B68 TP04	23 Mar 2023	B68 TP04 0.5	0.4 - 0.5	3214115	Normal						< 0.037	<0.036	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	< 0.015	< 0.015	<0.015	< 0.015	< 0.015	< 0.015	<0.015	< 0.015	<0.015	<0.815	0.015 <0.0	0.035	40.015	40.4	<40	×90	<30	<20
B68_TP06 B68_TP06	20 Mar 2023 20 Mar 2023	B68 TP06 0.1	0 - 0.1	3211645	Normal Normal	- :	- :	- :	-	- :	<0.026	<0.026	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	< 0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.014 <1	1.011 <0.0	0.011 06 <0.011	<0.011	40.3	<49	<80	<20	<20 <20
B68 TP07	20 Mar 2023	B68 TP07 0.2	0.1 - 0.2	3211645	Normal						< 0.027	<0.027	<0.011	<0.011	<0.011	<0.011	< 0.011	< 0.011	< 0.011	< 0.011	<0.011	< 0.011	< 0.011	< 0.011	<0.011	<0.011	×0.011	<0.011	011 <0.0	6 <0.011	<0.011	40.3	<48	<80	<20	<20
B68_TP08 B74_TP01	20 Mar 2023 23 Mar 2023	B68 TP08 0.2 B74 TP01 0.1	0.1 - 0.2	3211645	Normal Normal	- :	- :	- :	-	- :	<0.027	<0.027	<0.012	<0.012	<0.012	<0.012	<0.012	<0.012	<0.012	<0.012	<0.012	<0.012	< 0.012	<0.012	<0.012	<0.012	<0.012	<0.012 <	0.012 <0.0	0.012	<0.012	<0.3	<40	<80 <90	<20	<20 <20
B74_TP02	23 Mar 2023	B74 TP02 0.1	0 - 0.1	3214115 3214115	Normal Normal			- :		-	-	- :	- :	-	-		-		-						- :					-			49	<80	<20	<20
B74 TP02 B74 TP02	23 Mar 2023 23 Mar 2023	B74 TP02 0.5 B74 TP02 1.9	0.4 - 0.5	3214115 3214115	Normal Normal	- :	- :		-	- :				-	- :	- :	-	-			- :	-	-	-	- :					-	-		<40	<90 <90	<30	<20 <20
B74 TP02	23 Mar 2023	B74 TP02 2.1	2 - 2.1	3214115	Normal									-											- 4								<40	<90	<30	<20
B74_TP03 B74_TP03	23 Mar 2023 23 Mar 2023	B74 TP03 0.1 B74 TP03 2.2	0 - 0.1 2.1 - 2.2	3214115	Normal Normal	- :	- :	- :		- :		- :	- :		- :	- :			- :		- :			_			·	-			· :		<40 <40	<90	<30	<20 <20
B74 TP04	21 Mar 2023	B74 TP04 0.1	0 - 0.1	3211645	Normal				-		-	-	-		-		-		-		-	-	-			7.							41	<80	<20	<20
B74_TP04 B74_TP04	21 Mar 2023 21 Mar 2023	B74 TP04 0.7 B74 TP04 2.1	0.6 - 0.7 2 - 2.1	3211645 3211645	Normal Normal	-		-	-		-				- :	-	-	-				-	-	-				-		-	-	-	<40 <40	<90	<30	<20
B74 TP06	20 Mar 2023	B74 TP06 0.1	0 - 0.1	3211645	Normal										-															_ (·	.		54	<90	<30	<20
B74_TP06 B74_TP07	20 Mar 2023 20 Mar 2023	B74 TP06 2.5 B74 TP07 0.1	2.4 - 2.5 0 - 0.1	3211645 3211645	Normal Normal	-	- :	- :	-	- :	- :	- :	- :		- :	- :	- :	-	- :		- :	-				-	-	-			-	-	<40	<90	<30	<20
HT_CompC3 HT_TP25	09 Jun 2023	HT COMPC3 0.10	0 - 0.1	3299078	Normal						< 0.036	<0.036	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	< 0.015	<0.045	<0.915	<0.015	<0.015	<0.015	0.015	(0.01g	< 0.015	<0.4				
HT TP27	17 Mar 2023 17 Mar 2023	HT TP25 0.2 HT TP27 0.1	0.1 - 0.2	3209697 3209697	Normal Normal	- :	- :	- :		- :	- :	- :	- :	-	- :	- :	-	-	- :		- :	-		-	4 7	-	-			4 -	-	-	<40	<80	<20	<20
HT_TP28 NW Fill TP04	17 Mar 2023 11 Sep 2023	HT TP28 0.1 NW FILL TP04 0.1	0 - 0.1 0.1 - 0.1	3209697 3362681	Normal Normal																			-			- 4						<40	<80	<20	<20
NW FILL TP01	12 Sep 2023	DUP J1	0.1 - 0.1	3362681	Field D	- :		- :	- :	- :	< 0.037	< 0.037	<0.016	<0.016	<0.016	<0.016	<0.016	< 0.016	<0.016	< 0.016	<0.016	<0.016	<0.016	<0.01B	<0.016	<0.016	<0.016	<0.016	0.016 <0.0	<0.016	<0.016	<0.4	*120	<300	- 10	- 00
SB2_TP02 SB2_TP02	16 Mar 2023 16 Mar 2023	SB2 TP02 0.2 SB2 TP02 0.7	0.1 - 0.2 0.6 - 0.7	3209697 3209697	Normal Normal				-			0.137	0.097	<0.011	0.058	0.022	< 0.011	0.011	< 0.011	0.036	0.070	0.096	0.038	0.061	0.067	0.014	0.170	0.011 0	.061 <0/	6 0.135 7 0.21	0.158	1.1	<40	<80 >on	<20	<20
SB2_TP03	16 Mar 2023	SB2 TP03 0.2	0.1 - 0.2	3209697	Normal	-	-	- :	-	-	0.48	0.48	0.36	<0.013	0.22	0.085	<0.013	< 0.013	0.035	0.068	0.194	0.33	0.128	0.28	0.194	0.052	0.29	<0.013	0.26 <0.0	7 0.054	0.31	2.8	53	<80	<20	<20
SB2 TP03 SB4 TP01	16 Mar 2023	SB2 TP03 0.5 SB4 TP01 0.1	0.4 - 0.5 0 - 0.1	3209697	Normal						0.62	0.61 0.142	0.49	<0.013	0.30	0.100	<0.013	<0.013	0.056	0.035		0.42	0.172 0.047	0.35	0.32	0.060	0.50	<0.013	.080 <0.0	0.094 0.024	0.61 0.128	4.2	<40	<80	<20	<20
SB4 TP01	20 Mar 2023 20 Mar 2023	SB4 TP01 0.5	0.4 - 0.5	3211645 3211645	Normal Normal			-		- :	< 0.040	< 0.039	< 0.017	<0.017	0.058 <0.017	< 0.024	<0.017	<0.017	< 0.015	< 0.017	< 0.017	<6.017	< 0.047	0.055 <0.017	<0.017	<0.014	×0.017	<0.017	7.017 <0.0	9 <0.017	< 0.017	< 0.4	<40	<90	<30	<20
SB4_TP02 SB4_TP02	20 Mar 2023 20 Mar 2023	SB4 TP02 0.2 SB4 TP02 0.5	0.1 - 0.2 0.4 - 0.5	3211645 3211645	Normal Normal				- :	- :	<0.038	<0.038	0.025	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	0.016	0.018	<0.016	<0.016	<0.016	<0.016	0.035	<0.016 <0.017	0.016 <0.0	18 < 0.016	0.025	<0.4	88	98	<30 <30	<20
SB4_TP02 SB4_TP03 SB4_TP03	20 Mar 2023	SB4 TP03 0.1	0 - 0.1	3211645 3211645 3211645	Normal						0.043	0.042	0.034	<0.014	0.018	<0.014	<0.014	<0.014	< 0.017	<0.01/		0.028	<0.017	0.015	0.027		0.062		.016 <0.0	7 0.020	0.042	<0.4	48	<80	<20	<20
SB4_TP03 SB8_TP01	20 Mar 2023 12 Sep 2023	SB4 TP03 0.4 SB08 TP01 0.2	0.3 - 0.4 0.2 - 0.2	3211645 3362681	Normal Normal						0.199	0.196	0.160	<0.015	0.074	0.029	<0.015	<0.015	<0.015	0.021		0.136	0.063	0.069	0.153		0.30	<0.015 0	.078 <0.0	8 0.027	0.27	1.5	<40 <40	<90 zgn	<30	<20
SB8_TP01	12 Sep 2023	SB08 TP01 0.5	0.5 - 0.5	3362681	Normal									- 1	-	- :	- :	- :		- 1								-	: :	- :			<40	<90	<30	<20
WDH TP02	12 Sep 2023	DUP J2		3362681	Field D						0.37	0.37	0.29	<0.012	0.153	0.057	<0.012	<0.012	<0.012	0.021	0.20	0.25	0.131	0.179	0.165	0.034	0.36	<0.012 0	.178 <0.0	6 0.047	0.35	2.4				


壓

Test Annual Park Control of the Cont




Appends of Table of State of S

AND CONTRACTOR OF THE PROPERTY

Land Information New Zealand Tokanui DSI LINZ - Former Tokanui Hospital

						Asbest	os in Soil	Asbestos	in Soil ESdat	t Electronic	Asbestos ir	n Soil Present	ce / Absence					.0	New Zealand	Guidelines Se	emi Quantitat	tive Asbestos	s		_		
						Veight		stos	oestos	spestos	stos	oestos	thestos	aldu	Weight	as Asbestos % of Total	ibrous 6 of Tota	ACM as % nple	Pibrous Asbestos of Total		timation'	mm Igon	5	estos as	estos as itos	estos in able)	
						ceived \	/eight	ite Asbe	otle Ast	doilite As	ite Asbe	otle Ask	dollite As	1 Subsar	ceived	estos as A s as % of iple	stos as F stos as %	itos in A al Samp	ined Fib stos + As as % of le	/eight	d AF Esti	ple Fracti nm to >2r	ple Fracti	nt of Asber tos Fines le)	nt of Asb as Asbes le)	nt of Asb (Non-Fri	(%) aur
						d As Re	Dry W	SO EY Detect	5 Detect	Detect	Som W Detect	5 Detect	S Detect	g dry wt	a As Re	Asbes Fines Samp	Asbee Asbee Samp	% Asbee	Comb Asbee A Fines Samp	a Dry W	a dry wt	Sam <10r	Sam >10n	Melgh Asbes (Friab	Weigh Friab	A A CM	Woistr
EQL Location Code	Date	Field ID	Depth	Lab Report Numb	er Sample Type	9	9	Donos	Dottos	Dottos	Dottox	Dottor	Dottos	guiywi	9	75 1110	20 1111	70 1071	2 111	9	g di y iit	g ory mr	g sily m	g ury m.	g u.y m.	g siy m	
Location Code	28 Mar 2023 28 Mar 2023	B7 TP03 0.1 B7 TP04 0.1	Бериі	3220306 3220306	Normal Normal	-		0	0	0	-	-	-	53.8 57.9	599.0 503.0	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	492.2 395.2	269.7 292.7	127.5 101.7	94.1 <0.1	<0.00001 <0.00001	<0.00001 < <0.00001 <	<0.00001 <0.00001	18 21
	28 Mar 2023 14 Jun 2023 14 Jun 2023	B8 HA01 0.1 B66 HA01 B66 HA02		3219033 3299080 3299080	Normal Normal Normal	240.0	171.6	0	1.0 1.0	0	-			53.9 52.8	321.2 313.6	0.079 0.007	<0.001 <0.001	<0.001 <0.001	0.079 0.007	278.5 263.9	182.8 121.7	57.8 82.6	37.4 59.4	0.2213 0.01821	<0.00001 < <0.00001 <	<0.00001 <0.00001	13 16
	14 Jun 2023 14 Jun 2023 14 Jun 2023	DIP HA01 0.1 DIP HA02 0.1 DIP HA03 0.1	0 - 0.1 0 - 0.1 0 - 0.1	3299080 3299080 3299080	Normal Normal Normal	-	-	0 0	0 0	0	-	-	-	53.3 53.2 57.1	559.8 662.8 753.2	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	321.4 488.6 540.5	267.9 292.4 392.5	52.4 103.9 106.9	91.4 39.4	<0.00001 <0.00001 <0.00001	<0.00001 < <0.00001 < <0.00001 <	<0.00001 <0.00001 <0.00001	43 26 28
	11 Sep 2023 11 Sep 2023 11 Sep 2023	NW FILL TP01 0.1 NW FILL TP01 0.5 NW FILL TP02 0.1		3362886 3362886 3362886	Normal Normal Normal	-	-	0	0	0	-	-	-	56.1 53.2 59.7	459.4 497.5 584.6	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	292.3 320.6 419.0	269.3 277.8 320.5	21.5 42.0 97.3	<0.1 <0.1 <0.1	<0.00001 <0.00001 <0.00001	<0.00001 < <0.00001 < <0.06001 <	<0.00001 <0.00001 <0.00001	36 36 28 35
	11 Sep 2023 11 Sep 2023 11 Sep 2023	NW FILL TP03 0.1 NW FILL TP03 0.5 NW FILL TP04 0.1		3362886 3362886 3362886	Normal Normal Normal	-	-	0 0	0 0	0	-	-	-	56.1 55.3 53.2	472.2 506.9 573.2	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	352.6 379.5	271.8 284.9 324.7	32.3 66.7 53.6	<0.1 <0.1 <0.1	<0.00001 <0.00001	<0.00001 < <0.00001 <	<0.00001 <0.00001 <0.00001	30
	11 Sep 2023 11 Sep 2023 11 Sep 2023	NW FILL TP04 0.5 WDF TP01 0.1 WDF TP02 0.1		3362886 3362886 3362886	Normal Normal Normal	-	-	0	0 0	0	-	-	-	55.6 58.6 56.6	590.1 792.2 596.9	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	403.4 607.3 403.8	228.0 196.6 213.5	173.0 190.1 159.8	<0.1 219.9 28.9	<0.00001 <0.00001 <0.00001	<0.00001 < <0.00001 < <0.00001 <	<0.00001 <0.00001 <0.00001	32 23 32 40
	11 Sep 2023 11 Sep 2023	WDF TP03 0.1 WDF TP03 0.5 WDG TP01 0.1		3362886 3362886 3362886	Normal Normal Normal	-	-	0	0	0	-	-	-	55.3 58.7 50.6	563.6 565.3 577.6	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	337.2 328.8 416.1	136.6 183.3 275.7	200.2 123.1 126.7	<0.1 21.8 13.4	<0.00001 <0.00001	<0.00001 < <0.00001 < <0.00001 <	<0.00001 <0.00001 <0.00001	40 42 28
	11 Sep 2023 11 Sep 2023 11 Sep 2023 11 Sep 2023	WDG TP02 0.1 WDG TP03 0.1 WDG TP03 0.5		3362886 3362886 3362886	Normal Normal Normal	-	-	0	0	0	-	-	-	54.6 56.6 56.5	503.4 585.8 549.8	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	305.0 410.6 316.9	286.1 312.7 238.9	15.7 82.4 77.1	2.8 15.3 <0.1	<0.00001 <0.00001 <0.00001	<0.00001 < <0.00001 < <0.00001 <	<0.00001 <0.00001 <0.00001	42 28 39 30 42
	12 Sep 2023 12 Sep 2023	WDH TP01 0.1 WDH TP02 0.1 WDH TP03 0.1		3362886 3362886 3362886	Normal Normal Normal	-	-	0	0	0	-	-	-	58.3 57.3 59.9	691.8 891.9 655.3	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	566.0 802.0 495.0	219.2 215.5 224.5	156.2 283.0 90.0	190.5 303.2 180.0	< 0.00001	<0.00001 < <0.00001 < <0.00001 <	<0.00001 <0.00001 <0.00001	18
B16_TP04 B16_TP06	12 Sep 2023 12 Sep 2023 16 Mar 2023 16 Mar 2023	WDH TP03 0.5 B16 TP04 0.1 B16 TP06 0.1	0 - 0.1 0 - 0.1	3362886 3212697	Normal Normal Normal	-	-	0	0 0	0	-	-	-	55.4 58.8 54.9	545.4 854.9 636.7	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	366.5 746.8 473.5	237.0 299.8 406.5	83.5 379.3 66.5	45.5 67.4	<0.00001 <0.00001 0.00155	<0.00001 <0.00001 <0.00001	<0.00001 <0.00001	33 13
B16_TP06 B16_TP07	16 Mar 2023 17 Mar 2023	B16 TP06 0.5 A B16 TP07 0.1	0.4 - 0.5 0 - 0.1	3212697 3212697 3212697 3299080	Normal Normal	-	-	0	0	0	-	-	-	53.1 55.9 58.2	730.3 676.1 681.4	<0.001	<0.001	<0.001	<0.001 <0.001 <0.001	566.0 516.3 511.2	562.0 478.9	3.7 34.9 177.3	<0.1 2.0 98.3	<0.00001 <0.00001	<0.00001	<0.00001 <0.00001	26 22 24 25
B26_TP01 B26_TP02 B26_TP02	19 Jun 2023 19 Jun 2023 19 Jun 2023	B26 TP01 0.1 B26 TP02 0.1 B26 TP02 0.5	0 - 0.1 0 - 0.1 0.4 - 0.5	3299080 3299080	Normal Normal Normal	-	-	0	0	0	-	-	-	55.9 52.4	698.4 459.8	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	539.3 318.1	224.7 212.5	195.0 99.3	118.5 5.0	<0.00001 <0.00001 0.00005	<0.00001	<0.00001 <0.00001 <0.00001	31
B26_TP03 B34_TP03 B34_TP04	19 Jun 2023 07 Jun 2023 07 Jun 2023	B26 TP03 0.1 B34 TP 03 0.10 B34 TP 04 0.10	0 - 0.1 0 - 0.1 0 - 0.1	3299080 3299080 3299080	Normal Normal	-	-	0	0	0	-	-	-	57.3 57.8 55.5	671.1 772.3 792.8	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	614.9	225.4 399.5 545.0	174.3 51.9 46.1	99.0 103.1 23.2	<0.00001 <0.00001	<0.00001 < <0.00001 <	<0.00001 <0.00001	25 28 22
B35_TP02 B35_TP02 B35_TP03	07 Jun 2023 07 Jun 2023 07 Jun 2023	B35 TP 02 0.10 B35 TP 02 0.50 B35 TP 03 0.10	0 - 0.1 0.4 - 0.5 0 - 0.1	3299080 3299080 3299080	Normal Normal Normal	-	-	0	0 0 1.0	0 0 1.0	-	-	-	57.6 56.7 56.1	820.7 695.6 759.0	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	721,8 480.4 640.7	297.5 462.4 258.7	408.6 17.1 322.9	15.5 <0.1 59.0	<0.00001 <0.00001 0.00211	<0.00001 < <0.00001 < <0.00001 <	<0.00001 <0.00001 <0.00001	22 12 31 16
B35_TP04 B35_TP04 B35_TP05	07 Jun 2023 07 Jun 2023 07 Jun 2023	B35 TP 04 0.10 B35 TP 04 0.50 B35 TP 05 0.10	0 - 0.1 0.4 - 0.5 0 - 0.1	3299080 3299080 3299080	Normal Normal Normal	-	-	0	0	0	-	-	-	53.2 54.2 54.0	619.1 633.0 681.8	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	474.1 460.0 606.1	431.2 534.6	30.6 28.2 70.3	<0.1 1.2	<0.00001 <0.00001 <0.00001	<0.00001 < <0.00001 < <0.00001 <	<0.00001 <0.00001 <0.00001	23 27 11
B59_TP04 B59_TP04 B63_TP03	14 Jun 2023 14 Jun 2023 21 Mar 2023	B59 TP04 0.10 B59 TP04 0.50 B63 TP03 0.1 B63 TP04 0.2	0 - 0.1 0.4 - 0.5 0 - 0.1	3299080 3299080 3213233	Normal Normal Normal	-	-	0 0	0 0	0	-	-	-	50.4 52.4 53.7	750.4 610.8 1,041.2	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	647.3 425.5 944.9	234.2 158.2 548.6	235.8 193.8 242.2	176.8 72.2 153.9	<0.00601 <0.00001 <0.00001	<0.00001 < <0.00001 < <0.00001 <	<0.00001 <0.00001 <0.00001	14 30 9
B63_TP04 B66_TP01 B66_TP01	21 Mar 2023 21 Mar 2023 21 Mar 2023	B63 TP04 0.2 B66 TP01 0.1 B66 TP01 0.9	0.1 - 0.2 0 - 0.1 0.8 - 0.9	3213233 3213233 3213233	Normal Normal Normal	-	-	0	0 0	0	-	-	-	50.2 59.0 53.0	745.7 915.9 815.2	<0.001 <0.001 <0.001	<0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	548.1 842.7 549.3	135.6 496.8 547.4	246.2 168.8	165,4 177.0 <0.1	40.00001 40.00001 -0.00001	<0.00001 < <0.00001 < <0.00001 <	<0.00001 <0.00001 <0.00001	26 8 33
B66_TP01 B67_HA01 B67_HA01	21 Mar 2023 14 Jun 2023 14 Jun 2023	B66 TP01 1.1 B67 HA01 0.10 B67 HA01 0.50	1 - 1.1 0 - 0.1 0.4 - 0.5	3213233 3299080 3299080	Normal Normal Normal	-	-	0	0	0	-	-	-	54.9 59.0 58.9	742.7 1,007.3 1.012.5	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	462.0 957.2 869.9	402.7 270.7 611.9	57.6 231.6 106.9	<0.1 454.5 150.2	<0.00001 <0.00001 <0.00001	<0.00001 < <0.00001 < <0.00001 <	<0.00001 <0.00001 <0.00001	33 38 5 14
B67_HA02 B67_HA02 B68_TP06	14 Jun 2023 14 Jun 2023 20 Mar 2023	B67 HA02 0.10 B67 HA02 0.50	0 - 0.1 0.4 - 0.5 0 - 0.1	3299080 3299080 3213233	Normal Normal Normal	-	-	0	1.0 0	0	-	-	-	55.8 54.2 58.0	856.2 691.9 964.2	<0.001 <0.001 <0.001	<0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	791.2 445.4 886.8	166.5 272.2 293.3	279.5 146.9 233.9	342.7 23.8 359.1	0.00009 <0.00001 <0.00001	<0.00001 < <0.00001 < <0.00001 <	<0.00001 <0.00001 <0.00001	8 36 8
B68_TP06 B68_TP07 B68_TP08 CHP_TP01	20 Mar 2023 20 Mar 2023 16 Mar 2023	B68 TP07 0.1 B68 TP08 0.2 CHP TP01 0.2	0 - 0.1 0.1 - 0.2 0.1 - 0.2	3213233 3213233 3212697	Normal Normal Normal	-	-	0	0 0 1.0	0	-	-	-	56.3 59.3 54.6	894.3 891.1 985.2	<0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	823.9 810.9 922.4	336.4 611.8 212.2	155.2 96.0 336.8	332.1 81.8 373.4	<0.00001 <0.00001 0.00320	<0.00001 < <0.00001 < <0.00001 <	<0.00001 <0.00001 <0.00001	8 9 6
CHP_TP01 CHP_TP01 CHP_TP01 CHP_TP01	16 Mar 2023 16 Mar 2023 16 Mar 2023	CHP TP01 0.2 CHP TP01 0.5 CHP TP01 0.5	0.1 - 0.2 0.4 - 0.5 0.4 - 0.5	3212716 3212697 3212716	Normal Normal Normal	243.1	227.9 - 129.3	0	0	0	-	-	-	56.1	601.1	<0.001	<0.001	<0.001	<0.001	449.9	423.7	14.4	11.7	<0.00001	<0.00001 <	<0.00001	25
CHP_TP04 CHP_TP04 CHP_TP04	16 Mar 2023 16 Mar 2023 16 Mar 2023	CHP TP04 0.2 CHP TP04 0.6 CHP TP04 0.6	0.1 - 0.2 0.5 - 0.6 0.5 - 0.6	3212716 3212697 3212716	Normal Normal Normal	156.8 - 161.3	115.4	0	- 0	- 0	-	-	-	55.3	- 646.6	×0.001	<0.001	<0.001	<0.001	481.4	481.1	<0.1	<0.1	<0.00001	<0.00001 <	<0.00001	26
DS01_TP01 DS01_TP01 DS01_TP02	12 Jun 2023 12 Jun 2023 12 Jun 2023	DS01 TP01 0.10 DS01 TP01 0.50 DS01 TP02 0.10	0 - 0.1 0.4 - 0.5 0 - 0.1	3299080 3299080 3299080	Normal Normal Normal	-	-	0 0	0	0	-	-	-	56.0 59.5 53.9	571.9 705.0 619.1	<0.001	<0.001	<0.001 <0.001	<0.001 <0.001	367.7 468.6 442.9	350.0 451.3 222.7	17.2 17.1 118.3	<0.1 <0.1 101.8	<0.00001 <0.00001	<0.00001 < <0.00001 <	<0.00001 <0.00001	36 34
DS01_TP03 DS01_TP03 DS01_TP04	12 Jun 2023 12 Jun 2023	DS01 TP02 0.10 DS01 TP03 0.10 DS01 TP03 0.50 DS01 TP04 0.10	0 - 0.1 0 - 0.1 0.4 - 0.5 0 - 0.1	3299080 3299080 3299080	Normal Normal	-	-	0	0	0	-	-		52.9 50.2	595.7 777.0 628.2	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001	<0.001 <0.001 <0.001	374.6 533.1 401.7	314.6 532.6 308.0	59.1 <0.1 93.3	<0.1 <0.1	<0.00001 <0.00001 <0.00001	<0.00001 < <0.00001 < <0.00001 <	<0.00001	28 37 31 36
DS01_TP05 DS01_TP05	12 Jun 2023 12 Jun 2023 12 Jun 2023	DS01 TP05 0.10 DS01 TP05 0.50	0 - 0.1 0.4 - 0.5	3299080 3299080	Normal Normal Normal	-	-	0	0	0	-	• 4	- 1	52.7 54.4	578.2 766.3	<0.001 <0.001 <0.001	<0.001	<0.001	<0.001 <0.001 <0.001	375.3 514.8	282.4 514.3	92.4 <0.1	<0.1 <0.1	<0.00001 <0.00001 <0.00001	<0.00001 < <0.00001 < <0.00001 <	<0.00001 <0.00001 <0.00001	35 33
DS02_TP01 DS02_TP01 DS02_TP02	20 Jun 2023 20 Jun 2023 19 Jun 2023	DS02 TP01 0.1 DS02 TP01 0.5 DS02 TP02 0.1	0 - 0.1 0.4 - 0.5 0 - 0.1	3299080 3299080 3299080	Normal Normal Normal	-	-	0	0	0		1	-:-	56.1 50.2 55.1	441.3 359.6 626.8	<0.001 <0.001 <0.001	<0.001	<0.001	<0.001 <0.001 <0.001	257.1 206.2 404.3	156.3 94.5 213.6	99.4 109.1 159.8	<0.1 <0.1 29.0	<0.00001 <0.00001	<0.00001 < <0.00001 < <0.00001 <	<0.00001 <0.00001 <0.00001	42 43 36 31
DS02_TP03 DS02_TP03 DS02_TP04	20 Jun 2023 20 Jun 2023 20 Jun 2023	DS02 TP03 0.1 DS02 TP03 0.5 DS02 TP04 0.1	0 - 0.1 0.4 - 0.5 0 - 0.1	3299080 3299080 3299080	Normal Normal Normal	-	-	0	0	0		÷		50.6 51.0 50.1	866.1 489.4 473.3	<0.001 <0.001 <6.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	601.6 294.0 290.4	444.6 154.6 242.1	99.3 135.8 46.8	50.6 2.1 <0.1	<0.00001 <0.00001 <0.00001	<0.00001 < <0.00001 < <0.00001 <	<0.00001 <0.00001 <0.00001	40 39
DS02_TP05 DS02_TP05 DS03_TP01	20 Jun 2023 20 Jun 2023 21 Jun 2023	DS02 TP05 0.1 DS02 TP05 0.5 DS03 TP01 0.1	0 - 0.1 0.4 - 0.5 0 - 0.1	3299080 3299080 3299080	Normal Normal Normal	-	-	0	0	0				53.5 55.7 56.6	440.4 371.2 620.7	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	260.2 223.3 437.8	165.4 127.8 314.2	78.2 94.2 119.9	16.0 <0.1 2.7	<0.00001 <0.00001 <0.00001	<0.00001 < <0.00001 < <0.00001 <	<0.00001 <0.00001 <0.00001	41 40 29
DS03_TP01 DS03_TP02 DS03_TP02	21 Jun 2023 21 Jun 2023 21 Jun 2023	DS03 TP01 0.5 DS03 TP02 0.1 DS03 TP02 0.5	0.4 - 0.5 0 - 0.1 0.4 - 0.5	3299080 3299080 3299080	Normal Normal Normal	-	-	0	0 0	0	1) :	-	59.4 52.4 54.7	633.1 611.7 674.8	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	393.7 499.8	476.0 278.3 399.8	10.6 112.3 98.6	<0.1 <0.1 <0.1	<0.00001 <0.00001 <0.00001	<0.00001 < <0.00001 < <0.00001 <	<0.00001 <0.00001 <0.00001	23 36 26
DS03_TP03 DS03_TP03 DS03_TP04	21 Jun 2023 21 Jun 2023 21 Jun 2023	DS03 TP03 0.1 DS03 TP03 0.5 DS03 TP04 0.1	0 - 0.1 0.4 - 0.5 0 - 0.1	3299080 3299080 3299080	Normal Normal Normal	-	-	0 0	0 0 1.0	0		-	-	55.0 53.9 53.8	658.4 687.4 712.1	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	462.0 500.3 515.7	355.2 431.9 343.1	105.1 67.1 147.3	<0.1 <0.1 24.0	<0.00001 <0.00001 0.00026	<0.00001 < <0.00001 < <0.00001 <	<0.00001 <0.00001 <0.00001	30 27 28
DS03_TP04 HT_TP25 HT_TP27	21 Jun 2023 17 Mar 2023 17 Mar 2023	DS03 TP04 0.5 HT TP25 0.2 HT TP27 0.1	0.4 - 0.5 0.1 - 0.2 0 - 0.1	3299080 3212697 3212697	Normal Normal Normal	-	-	0	0	0	1	-		56.1 54.2 53.7	653.4 784.5 606.9	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	458.0 669.6 486.3	375.3 269.9 283.6	127.2	<0.1 216.4 75.3	<0.00001 <0.00001 <0.00001	<0.00001 < <0.00001 < <0.00001 <	<0.00001 <0.00001 <0.00001	30 15 20
HT_TP28 HT_TP29 NUR_TP01	17 Mar 2023 08 Jun 2023 13 Jun 2023	HT TP28 0.1 HT TP 29 0.10 NUR TP01 0.10	0 - 0.1 0 - 0.1 0 - 0.1	3212697 3299080 3299080	Normal Normal Normal	-	-	0	0 0	0 0	-			58,8 50.6 53.0	673.6 743.7 634.2	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	522.3 611.8 447.9	341.0 233.5 307.6	111.0 213.3 127.2	69.8 165.0 12.9	<0.00001 <0.00001 <0.00001	<0.00001 < <0.00001 < <0.00001 <	<0.00001 <0.00001 <0.00001	22 18 29
NUR_TP01 NUR_TP02 NUR_TP03	13 Jun 2023 13 Jun 2023 13 Jun 2023	NUR TP01 0.50 NUR TP02 0.10 NUR TP03 0.10	0.4 - 0.5 0 - 0.1 0 - 0.1	3299080 3299080 3299080	Normal Normal Normal	-		0	0 0	0 0	-	-		53.1 51.7 55.0	572.2 825.6 589.6	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	415.2	283.6 330.3 247.2	82.0 239.3 96.1	3.3 96.3 71.6	0.00096 <0.00001 <0.00001	<0.00001 < <0.00001 < <0.00001 <	<0.00001 <0.00001 <0.00001	35 19 30
NUR_TP03 NUR_TP04 PAV_TP01	13 Jun 2023 13 Jun 2023 12 Jun 2023	NUR TP03 0.50 NUR TP04 0.10 PAV TP01 0.10	0.4 - 0.5 0 - 0.1 0 - 0.1	3299080 3299080 3299080	Normal Normal Normal	-		0 0	0 0	0	-		:	53.2 54.8 57.2	549.0 581.7 638.4	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	354.2 396.4 475.4	273.5 261.7 240.1	63.0 108.4 139.5	16.8 26.0 95.4	<0.00001 · <0.00001 · <0.00001	<0.00001 < <0.00001 < <0.00001 <	<0.00001 <0.00001 <0.00001	35 32 26
PAV_TP01 PAV_TP02 SB2_TP02	12 Jun 2023 12 Jun 2023 16 Mar 2023	PAV TP01 0.50 PAV TP02 0.10 SB2 TP02 0.2	0.4 - 0.5 0 - 0.1 0.1 - 0.2	3299080 3299080 3212697	Normal Normal Normal	-	X	0	0 0	0	-	÷	-	53.0 50.7 57.5	593.6 588.9 1,070.0	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001		250.9 341.4 217.8	140.8 65.0 439.8	30.2 8.8 371.1	<0.00001 <0.00001 <0.00001	<0.00001 < <0.00001 < <0.00001 <	<0.00001 <0.00001 <0.00001	29 29 4
SB2_TP03 SB4_TP01 SB4_TP02	16 Mar 2023 20 Mar 2023 20 Mar 2023	SB2 TP03 0.2 SB4 TP01 0.1 SB4 TP02 0.2	0.1 - 0.2 0 - 0.1 0.1 - 0.2	3212697 3213233 3213233	Normal Normal Normal	-		0	1.0 0 0	1.0 0			-	57.3 50.8 53.6	822.9 646.6 682.5	0.009 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	0.009 <0.001 <0.001		309.2 416.4 320.8	232.8 84.4 157.4	167.8 <0.1 16.1	0.06124 <0.00001	<0.00001 < <0.00001 < <0.00001 <	<0.00001 <0.00001 <0.00001	14 22 27
SB4_TP02 SB4_TP03 SB8_HA01	20 Mar 2023 20 Mar 2023 12 Sep 2023	SB4 TP02 0.5 SB4 TP03 0.1 SB08 HA01 0.1	0.4 - 0.5 0 - 0.1 0.1 - 0.1	3213233 3213233 3362886	Normal Normal Normal	-	-	0	0	0	-	-	-	51.5 55.7 53.5	794.4 731.8 515.2	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	522.9 590.9 328.9	522.0 192.2	<0.1 333.9 51.9	<0.1 64.6 10.5	<0.00001 <0.00001	<0.00001 < <0.00001 < <0.00001 <	<0.00001 <0.00001 <0.00001	34 19 36
SB8_HA01 SB8_HA02 SB8_HA02	12 Sep 2023 12 Sep 2023 12 Sep 2023	SB08 HA01 0.5 SB08 HA02 0.1 SB08 HA02 0.5	0.5 - 0.5 0.1 - 0.1 0.5 - 0.5	3362886 3362886 3362886	Normal Normal Normal	-	-	0 0	0 1.0 0	0 0	-	-	-	53.6 54.9 52.7	623.9 543.1 538.9	<0.001 0.003 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 0.003 <0.001			49.1 30.8 34.2	6.1 3.1 21.2	<0.00001 0.00821 <0.00001	<0.00001 < <0.00001 < <0.00001 <	<0.00001 <0.00001 <0.00001	33 40
SB8_HA03 SB8_HA03 SB8_HA04	12 Sep 2023 12 Sep 2023 12 Sep 2023 12 Sep 2023	SB08 HA03 0.1 SB08 HA03 0.5 SB08 HA04 0.1	0.1 - 0.1 0.5 - 0.5 0.1 - 0.1	3362886 3362886 3362886	Normal Normal Normal	-	-	0	0	0 0	-	-	-	52.9 50.4 52.0	541.4 545.9 471.5	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	338.5 370.5 295.2	285.2 308.8 244.5	46.5 55.9 39.4	6.4 5.4 11.1	<0.00001 <0.00001 <0.00001	<0.00001 < <0.00001 < <0.00001 <	<0.00001 <0.00001 <0.00001	32 37 32 37
SB8_HA04 WD2_TP01 WD2_TP02	12 Sep 2023 12 Sep 2023 22 Mar 2023 22 Mar 2023	SB08 HA04 0.5 WD TP01 0.1 WD TP02 0.1	0.5 - 0.5 0 - 0.1 0 - 0.1	3362886 3216641 3216641	Normal Normal Normal	-	-	0	0	0	-	-	-	53.3 50.8 57.4	489.5 687.4 681.8	<0.001 <0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	325.8 505.3 508.7	261.9 315.2 325.8	63.7 188.5 169.5	<0.1 <0.1 11.1	<0.00001 · · · · · · · · · · · · · · · · ·	<0.00001 < <0.00001 <	<0.00001	33 26 25
WD2_TP02 WD2_TP03 WD2_TP04 WD2_TP05	22 Mar 2023 22 Mar 2023 22 Mar 2023 22 Mar 2023	WD TP03 0.1 WD TP04 0.1 WD TP05 0.1	0 - 0.1 0 - 0.1 0 - 0.1 0 - 0.1	3216641 3216641 3216641	Normal Normal Normal	-		0	0	0	-	-	-	51.8 54.9 50.9	627.7 638.0 645.6	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	455.0 459.8	278.4 321.6 311.8	157.9 137.2 148.9	18.3 <0.1 5.3	<0.00001 · <0.00001 ·	<0.00001 < <0.00001 < <0.00001	<0.00001	28 28 28 28
WD2_TP06 WD2_TP07	22 Mar 2023 22 Mar 2023	WD2 TP06 0.1 WD2 TP07 0.1 WD2 TP08 0.2	0 - 0.1 0 - 0.1	3216641 3216641	Normal Normal		7	0	0	0	-	-	-	52.8 51.0	597.9 613.8 577.0	<0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	403.2 429.9	317.8 321.7	83.0 99.3	1.5 8.0	<0.00001 · <0.00001 ·	<0.00001 < <0.00001 <	<0.00001	33 30
WD2_TP08 WD2_TP09 WWTP_TP01	22 Mar 2023 22 Mar 2023 13 Jun 2023	WD2 TP09 0.1 WWTP TP01 0.10	0.1 - 0.2 0 - 0.1 0 - 0.1	3216641 3216641 3299080 3299080	Normal Normal Normal	1		0	0 0	0	-	-	-	57.5 54.0 51.8	636.4 697.1	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001	<0.001 <0.001 <0.001	505.4	324.9 349.2 447.7	70.7 93.2 50.0	<0.1 <0.1 7.2	<0.00001 · <0.00001 · <0.00001 ·	<0.00001 < <0.00001 < <0.00001 <	<0.00001 <0.00001	31 30 27
WWTP_TP01 WWTP_TP02 WWTP_TP02	13 Jun 2023 13 Jun 2023 13 Jun 2023	WWTP TP01 0.50 WWTP TP02 0.10 WWTP TP02 0.50	0.4 - 0.5 0 - 0.1 0.4 - 0.5	3299080 3299080	Normal Normal Normal	-		0	0	0	-	-	-	53.0 51.2 59.3	800.3 693.3 755.7	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	552.6 508.5 482.1	550.7 356.0 481.6	1.7 113.6 <0.1	<0.1 38.5 <0.1	<0.00001 · <0.00001 ·	<0.00001 < <0.00001 < <0.00001 <	<0.00001 <0.00001	31 27 36
WWTP_TP03 WWTP_TP03 WWTP_TP04	13 Jun 2023 13 Jun 2023 13 Jun 2023	WWTP TP03 0.10 WWTP TP03 0.50 WWTP TP04 0.10	0 - 0.1 0.4 - 0.5 0 - 0.1	3299080 3299080 3299080	Normal Normal Normal			0	0 0	0 0	-	-	-	56.1 54.5 55.9	725.9 783.2 881.4	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001	<0.001 <0.001 <0.001		410.4 479.8 159.1	113.8 105.3 203.0	30.3 3.4 415.6	<0.00001 · <0.00001 · <0.00001 ·	<0.00001 < <0.00001 < <0.00001 <	<0.00001 <0.00001 <0.00001	24 25 12

靈

Appendix F Table 7 Asbestos Appendix F
Table 8

TULP and SFLP

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns 19

LILY - Former Towns

		н	eavy metals, tot	tals, screen As,	Cd,Cr,Cu,Ni,Pt	,Zn		Heavy metals	s, totals, trace	As,Cd,Cr,Cu,Ni,F	b,Zn									Polycyclic Aroma	atic Hydrocarb	bons Screening	in Wate					SPL	P Profile		TCLP	Profile	
		Arsenic	Chromium (III+VI)	Copper	Lead	NEkel Zho	Arsenic Castrium	Chromkm (III+VI)	Copper	peog	Nickel	847	Berylum Boron	Mercury	Acenaphthene	Acenaph trylene	Anthracene Berz/alanthra.onne	Вегио(а)ругете	Berzolb+jfluoranthene	Berzo(k)fluoranthene	Berzo(g.h.i)perylene	Chrysene	Diberz(a.h.) anthracene Fluoranthere	Fluorene	Indeno(1.2.3-c.d)pyrene	Naphthalene	Phenanthrene	Pyrene SPLP final pH	SPLP Sample Weight	Mass of test sample	O SINCE	per (mitter HCL)	pH (Final)
EQL		ng/L mg/L	mg/L	mg/L	mg/L	mg/L mg/L	mg/L mg/	/L mg/L	. mg/L	mg/L	mg/L m	g/L mg	/L mg/L	mg/L	µg/L	μg/L	ha/F ha	/L µg/L	μg/L	µg/L	µg/L	µg/L	ıg/L µg/L	. µg/l	⊥ μg/L	µg/L	µg/L ;	µg/L pH Units	9	g pH	ınits pH u	units pH units	pH units
Location Code Date Field ID Depth Lab Report Number Sample Ty	•	•	•					•		•	•		•		•	•	•	•	•	•	•	•					•	•		•		•	
16 Mar 2023 B16 TP04 0.1 [3209697.9] 3325652 Normal				T - T														-						-	-	T - I		- 9.3	50	- 1			T - 1
16 Mar 2023 B16 TP04 0.13209697.91 3325952 Normal 16 Mar 2023 B16 TP04 0.13209697.12 3325952 Normal 16 Mar 2023 CHF TP06 0.13209697.12 3325952 Normal 16 Mar 2023 CHF TP01 0.2 (2029967.15) 3325952 Normal 16 Mar 2023 CHF TP04 0.2 (2029967.7) 3325952 Normal											-							_												50	0 9.	1 2.8	6.5
16 Mar 2023 CHP TP04 0.2 (3209697.7) 3325652 Normal							-									-				-				-						100	9 7,		4.9
17 Mar 2023 DIP TP03 0.2 [3209697.25] 3325652 Normal 17 Mar 2023 HT TP25 0.2 [3209697.28] 3325652 Normal											-							_												50	9 8.	7 1.6	5.1
17 Mar 2023 HT TP25 0.2 [3209697.28] 3325652 Normal 21 Mar 2023 B66 TP01 0.1 [3211645.29] 3325652 Normal		: :	-	-	-			-	-		-		-	-		-		-	- :	-	-	-		-				: :	-	100	9 6	9 1.5	4.9
07 Jun 2023 B34 TP 05 0.10 [3299078.13] 3325652 Normal 07 Jun 2023 B34 TP 06 0.10 [3299078.16] 3325652 Normal											-									-									50	50	9 6.	3 1.5	4.9
07 Jun 2023 834 FP 06 0.10 3299078.16 3325652 Normal		: :	-					-	-	-	-		-	-	-	-		-	- :		-	-		-	-	-		- 9.8 - 9.1	50	- :	- 1	3 1.5	<u> </u>
															-					-								. 9.8		50	9 7.	5 1.5	5.0
12_Jun 2023 PAV TP01 0.10 12399078.2111 3326562 Normal 13.Jun 2023 WWTP TP03.0.10 [3299078.171] 3326562 Normal 14.Jun 2023 B89 TP04 0.10 [3299078.219] 3326562 Normal 14.Jun 2023 B89 TP04 0.10 [3299078.219] 3326562 Normal		: :	- :	- : -	- :			- :	- :	- :	- : -		-	- :				- :	:-	- :			: :	- :	- :	- :	-	- 9.8	50	100	0 6	3 1.5	5.0
14 Jun 2023 B59 TP04 0.10 [3299078.219] 3326652 Normal											-								-	•								- 9.4	50	- 4	·		-
14 Jun 2023 B66 HA01 [3299078,225] 3325652 Normal											-							_												100	8 0	5 2.7	6.6
14 Jun 2023 B67 HA02 0.10 [3299078.229] 3325652 Normal		: :	-	-	-			-	-		-		-	-		-		-	- :	-	-	-		-	4				-	50	0 9	3 1.7	5.3
14 Jun 2023 B71 TP02 0.10 [3299078.234] 3325652 Normal											-														1			9.4	101	- :		3 1.5 5 2.7 2 1.8 3 1.7 - 3 1.8 9 1.6 7 1.6	-
14 Jun 2023 DIP HA02 0.10 [3299078.239] 3325652 Normal 19 Jun 2023 B19 TP01 0.1 [3299078.251] 3325652 Normal		: :	-					-	-	-	-		-	-	-	-		-	- :		-	-		-		- :		-	-	101	9 7.	9 1.6	5.0
19 Jun 2023 B26 TP01 0.1 [3299078.266] 3325652 Normal								-			-																			50	9 7.	7 1.6	5.1
19 Jun 2023 B26 TP02 0.1 [3299078.267] 3325652 Normal 20 Jun 2023 B73 TP01 0.1 [3299078.264] 3325652 Normal		: :	-					-	-	-	-		-	-	-	-		-	- :		-	-			_								
20 Jun 2023 DS02 TP03 0.1 [3299078.309] 3325652 Normal											-									-									-	50 /	0 6	8 1.6 5 1.5 1 1.5	5.0
20 Jun 2023 DS02 TP03 0.5 [3299078.310] 3325652 Normal 20 Jun 2023 DS02 TP05 0.1 [3299078.315] 3325652 Normal			-					_		-	-				-	-		-	- :	-	-	-		+	-	-	-	. 95	50	100	6.	.5 1.5	5.0
21 Jun 2023 DS03 TP03 0.1 [329078 364] 3325652 Normal 23 Jun 2023 HSP SED 01 0.1 [329078 363] 3325652 Normal		: :	-					- 1	-	-					-	-		-	-									- 0.5	· ·	100	9 6.	1 1.5	4.9
21 Jun 2023 DS93 TP93.0 1 [3299078.324] 3326562 Normal 23 Jun 2023 HSP SED 01.0 1 [3299078.363] 3326562 Normal 23 Jun 2023 HSP SED 04 0.6 [3299078.367] 3326562 Normal 23 Jun 2023 HSP SED 04 0.6 [3299078.370] 3326562 Normal			-		-			-	_		-				-			-		-			- 4	4				9.2	50			1 1.5 	-
									_	-	-				-				-	-						-		6.9	100				-
25 July 2023 51 N 6210 03 (269907 6.309) 53.2090. 07 Jul 2023 HT TP 29 0.10 [329907 8.333] 3325652 Normal 07 Jul 2023 HT TP 30 0.10 [329907 8.36] 3325652 Normal			-						-		-				-					-					_				-	50	0 6.	5 1.5	5.0
			-		-		<0.0011 <0.000	0.0008	3 0.0037	0.0058	0.00138 0.0	133 -		-	-	-		-	- :	- :		-										. 1.6	
20 Jul 2023 B16 TP06 0.1 [3209697.12] [TCLP Extract] 3325652 Normal	<	0.021 < 0.0011	<0.011	< 0.011	<0.0021 0.0086	0.017 0.034					-											. 4											-
20 Jul 2023 B19 TP01 0.1 [3299078.251] [TCLP Extract] 3325652 Normal 20 Jul 2023 B26 TP01 0.1 [3299078.266] [TCLP Extract] 3325652 Normal	<	0.021 0.0024	<0.011		0.134	<0.011 0.109 <0.011 0.44		-	-	-	-			-	-	-		-	-	-	-	-	.		-		-		1		-		-
20 Jul 2023 B26 TP02 0.1 [3299078.267] [SPLP Extract] 3325652 Normal						<0.011 0.197					0.00074 0.0									-			- 1		-		-						•
20 Jul 2023 B34 TP 05 0.10 [3299078.13] [TCLP Extract] 3325652 Normal 20 Jul 2023 B34 TP 06 0.10 [3299078.16] [SPLP Extract] 3325652 Normal	<	0.021 <0.0011	<0.011	<0.011	<0.0021	<0.011 0.197	<0.0011 <0.000	0.0007	9 0.0047	0.0079	0.00099 0.0	164 .	-	-		-	: :	-	- :	-	-	-	-	-	-			7 7	-	-:	_	: - :	
20. lul 2023 R35 H&01 0 10 [3299078 179] [TCL P Extract] 3325652 Normal	<	0.021 < 0.0011	<0.011	< 0.011	0.032	<0.011 0.40									-				-	-					-			4 1					-
20 AJ 2022 BS 17 PG 9.0 N (2020/972.8) (SPAP Extent) 3325652 Normal 20 AJ 2022 BS 17 PG 9.0 N (2020/972.8) (SPAP Extent) 3325652 Normal 20 AJ 2023 BS 17 PG 9.0 N (2020/972.2) (TCLP Extent) 3325652 Normal 20 AJ 2023 BS 14 PG 9.0 Normal 20 AJ 2023 BS 14 PG 9.0 Normal 20 AJ 2023 BS 14 PG 9.0 Normal 20 AJ 2023 BS 14 PG 9.0 Normal 20 AJ 2023 BS 14 PG 9.0 NORMAL 20 AJ 2023 BS 14 PG 9.0 NORMAL 20 AJ 2023 BS 14 PG 9.0 NORMAL 20 AJ 2023 BS 9.0 NORMAL 20 NORMAL			-				0.0034 <0.000 0.0031 <0.000	0.002	1 0.0045	0.023	0.00076 0. 0.00077 0.0	126 -			-					-	-	7			-								-
20 Jul 2023 666 HA02 [329907 82.79] [FCF Extract] 3325652 Normal 20 Jul 2023 666 HA02 [329907 82.6] [TCF Extract] 3325652 Normal	<	0.0019		0.075	0.066	0.041 1.26	0.0031	0.0011	7 0.00156	0.0046	- 0.00077			-	-	-	: :	-		-				-		<0,5	-		-	-			+ :
20 Jul 2023 B66 HA02 [3299078 2296] [TCLP Extract] 3326652 Normal	<	0.0059	< 0.011	0.081	0.080	0.019 2.5					-				<0.10	<0.10 <	0.10 <0.	10 < 0.10	< 0.10	<0.10	<0.18	<0.16	0 10 <0.1	0 <0.2	<0.40	<0,5	<0.4	0.2		-			-
20 Jul 2023 865 FP0 0.113211645.29 TCLP Extract 3325652 Normal 20 Jul 2023 867 HA02 0.10 3029078.229 TCLP Extract 3325652 Normal 20 Jul 2023 871 FP2 0.10 3259078.234 ISPLP Extract 3325652 Normal	<	0.021 <0.0011	< 0.011	<0.011	<0.0021	<0.011 0.034 <0.011 0.029		-	-		-		-	-	17.4	0.13	5.8 0.2	23 <0.10	< 0.10	< 0.10	48.10	0,21	0.10 5.9	10.1	<0.10	0.6	25	4.3	-	- :			+ :-
					-		<0.0011 <0.000	0.0009	2 0.0028	0.00129	<0.00053 0.0	071 -										-											-
20 Jul 2023 873 FD10 1.1 (229078 284) [SPLP Extract] 3325652 Normal 20 Jul 2023 CHP FD10 1.2 (3209078 284) [SPLP Extract] 3325652 Normal 20 Jul 2023 CHP FD4 0.2 (3209697.7) [TCLP Extract] 3325652 Normal 20 Jul 2023 CHP FD4 0.2 (3209697.7) [TCLP Extract] Normal	<	0.021 <0.0011	< 0.011	<0.011	0.24	<0.011 0.057	<0.0011 <0.000	. 0.0008	8 0.0022	0.0034	<0.00053 0.0	121 -		-	-	-		-	- :				: :	-	-		-		-	- :		: :	+:-
20 Jul 2023 CHP TP04 0.2 [3299097.7] [TCLP Extract] 3325652 Normal 20 Jul 2023 DIP HA02 0.10 [3299078 239] [TCLP Extract] 3325652 Normal	<	0.021 <0.0011	<0.011	0.055	0.0022	<0.011 0.68					-																						
20 Jul 2023 DIP HA02 0.10 [3299078 239] [TCLP Extract] 3325652 Normal 20 Jul 2023 DIP TP03 0.2 [329697 25] [TCLP Extract] 3325652 Normal	<	0.021 <0.0011	<0.011	<0.011	<0.0021	<0.011 0.070 <0.011 0.049 <0.011 0.27		-	-	-				-	-	-		-			-		: :						-	- :			+:-
20 Jul 2023 DS02 TP03 0.1 [3299078.309] [TCLP Extract] 3325652 Normal	<	0.0021 0.0022	< 0.011	< 0.011	0.083														-		-				-								
20 Jul 2023 DS02 TP03 0.5 [3299078.310] [TCLP Extract] 3325652 Normal 20 Jul 2023 DS02 TP05 0.1 [3299078.315] [SPLP Extract] 3325652 Normal	<	0.0017	<0.011	0.013		<0.011 1.42	0.0012 <0.000	0.003	2 0.0098	0.020	0.00137 0.			- :	-				7: 4		-			-		- : -		: :	-	- :			+ :
20 Jul 2023 OS02 TP05 0.1 (2299078.315) [SPLP Extract] 3325652 Normal 20 Jul 2023 DS03 TP03 0.1 (2299078.315) [SPLP Extract] 3325652 Normal 20 Jul 2023 HSP SED 0.1 (1299078.359) [SPLP Extract] 3325652 Normal 20 Jul 2023 HSP SED 0.1 (1299078.359) [SPLP Extract] 3325652 Normal	<	0.0018	< 0.011	< 0.011	0.116	<0.011 0.33	0.0012 <0.000	NO.E3 -0.C3		0.0021								4	1					4	·								-
			+ :		-:-		<0.0011 <0.000 0.0025 <0.000	0.000 0053 <0.000	53 0.0028	0.0021	<0.00053 0.0 0.00056 0.0	114 -			-:-	-				-	-	-		7	-		-		+ :	-			+ :
20 Jul 2023 HT TP25 0.2 (2009897.28) [TCLP Extract] 33:25652 Normal 20 Jul 2023 HT TP 29 0.1 (3:29907.13) [TCLP Extract] 33:25652 Normal 20 Jul 2023 HT TP 20 0.1 (3:29907.13) [TCLP Extract] 33:25652 Normal 20 Jul 2023 HT TP 20 0.1 (3:29907.13) [TCLP Extract] 33:25652 Normal	<	0.0011	< 0.011	0.018	<0.0021 0.082	<0.011 0.038 <0.011 0.28					-									-/				1 .									
20 Jul 2023 HT TP25 0.2 (200967 28) [TCLP Extract] 3326562 Normal 20 Jul 2023 HT TP 29 0.10 (3299078.133) [TCLP Extract] 3326562 Normal 20 Jul 2023 HT TP 30 0.10 (3299078.136) [TCLP Extract] 3326562 Normal 20 Jul 2023	<	2.021 <0.0011	<0.011	<0.011	0.082	<0.011 0.28	- : :	-	-	- :				-	<0.10	<0.10	0.10 <0	10 <0.90	<0.10	<0.10	<0.10	<0.10	0.10 <0.1	40.2	<0.10	<0.5	<0.4	on 2	- :	- :	_		
20 Jul 2023 PAV TP01 0.10 [3299078.211] [SPLP Extract] 3325652 Normal			-				<0.0011 <0.000	0.0011	1 0.0074	0.0033	0.00078 0.0 <0.00053 0.0	135 -								-													
20 Jul 2023 PAV TPO1 0. 10 E299078.211 ESP. Estated 322:662 Normal 20 Jul 2023 STR SED 03 0.3 3299078.251 SFP. Estated 322:662 Normal 20 Jul 2023 STR SED 03 0.3 3299078.359 SPP Estated 322:662 Normal 20 Jul 2023 STR SED 03 0.3 3299078.359 SPP Estated 322:662 Normal 20 Jul 2023 STR SED 03 0.3 3299078.251 CILIC Estated 322:662 Normal 20 Jul 2023 Norma	<	0.021 <0.0011	< 0.011	<0.011	0.0112	<0.011 0.104	0.0019 <0.000	3053 <0.000	53 0.0009.	0.00110	<0.00053 0.0			-	-	-	-		-	-	-	-	-		-		-		-		-		-
															<	?				7	1												

<u>₩</u>

Appendix Galand Laboratory certificates Proactively attornation And Internation

R J Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205 Hamilton 3240 New Zealand

6 0508 HILL LAB (44 555 22) **\(\sqrt{+64} 78582000 \)** mail@hill-labs.co.nz www.hill-labs.co.nz

Certificate of Analysis

Page 1 of 12

SPv3

(Amended)

Client: Contact:

GHD Limited David Jackson C/- GHD Limited PO Box 660

Waikato Mail Centre Hamilton 3240

Lab No: **Date Received: Date Reported: Quote No:**

Order No:

Submitted By:

16-Jun-2023 124299 12559090 12559090 **Client Reference:**

3209697

21-Mar-2023

David Jackson

Sample Type: Soil CHP TP01 0.2 Sample Name: SB2 TP02 0.2 SB2 TP02 0.7 SB2 TP03 0.2 SB2 TP03 0.5 16-Mar-2023 16 Mar-2023 16-Mar-2023 16-Mar-2023 16-Mar-2023 3209697.4 3209697.5 3209697.1 3209697.2 3209697.3 Lab Number: Individual Tests Dry Matter g/100g as rcvd 94 79 77 Total Recoverable Beryllium mg/kg dry wt 0.6 0.6 0.4 8 Heavy metals plus Boron Total Recoverable Arsenic mg/kg dry wt 4 3 < 20 < 20 < 20 Total Recoverable Boron mg/kg dry wt Total Recoverable Cadmium mg/kg dry wt < 0.10 0.10 < 0.10 Total Recoverable Chromium 15 9 mg/kg dry wt 10 Total Recoverable Copper 19 11 mg/kg dry wt Total Recoverable Lead mg/kg dry wt 18.4 38 163 Total Recoverable Mercury < 0.10 0.10 < 0.10 mg/kg dry wt 6 Total Recoverable Nickel 10 mg/kg dry wt 5 Total Recoverable Zinc 96 139 56 mg/kg dry wt Polycyclic Aromatic Hydrocarbons Screening in Soil* Total of Reported PAHs in Soil 1.1 mg/kg dry wt 4.6 2.8 42 1-Methylnaphthalene mg/kg drywt < 0.011 < 0.013 < 0.013 < 0.013 2-Methylnaphthalene mg/kg dry wt < 0.011 < 0.013 < 0.013 < 0.013 < 0.011 < 0.013 Acenaphthylene mg/kg dry wt 0.035 0.056 Acenaphthene mg/kg dry wt 0.011 0.013 < 0.013 < 0.013 mg/kg dry wt 0.036 0.068 0.035 Anthracene 0.021 0.070 Benzo[a]anthracene mg/kg dry wt 0.34 0.194 0.33 Benzo[a]pyrene (BAP) mg/kg dry wt 0.096 0.52 0.33 0.42 Benzo[a]pyrene Potency Equivalency Factor (PEF) NES* mg/kg dry wt 0.139 0.73 0.62 0.48 Benzo[a]pyrene Toxic mg/kg dry wt 0.137 0.73 0.48 0.61 Equivalence (TEF)* Benzo[b]fluoranthene + Benzo[j] mg/kg dry wt 0.097 0.49 0.53 0.36 fluoranthene Benzo[e]pyrene mg/kg dry wt 0.058 0.31 0.22 0.30 Benzo[g,h,i]perylene mg/kg dry wt 0.061 0.36 0.28 0.35 Benzo[k]fluoranthene 0.038 0.20 0.172 mg/kg dry wt 0.128 _ Chrvsene 0.067 0.32 0.194 0.32 mg/kg dry wt Dibenzo[a,h]anthracene mg/kg dry wt 0.014 0.063 0.052 0.060 Fluoranthene 0.170 0.50 0.51 0.29 mg/kg dry wt Fluorene mg/kg dry wt 0.011 < 0.013 < 0.013 < 0.013 _ Indeno(1,2,3-c,d)pyrene 0.061 0.35 0.34 mg/kg dry wt 0.26 Naphthalene mg/kg dry wt < 0.06 < 0.07 < 0.07 < 0.07 Perylene 0.022 0.114 0.085 0.100 mg/kg dry wt Phenanthrene 0.135 0.21 0.054 0.094 mg/kg dry wt

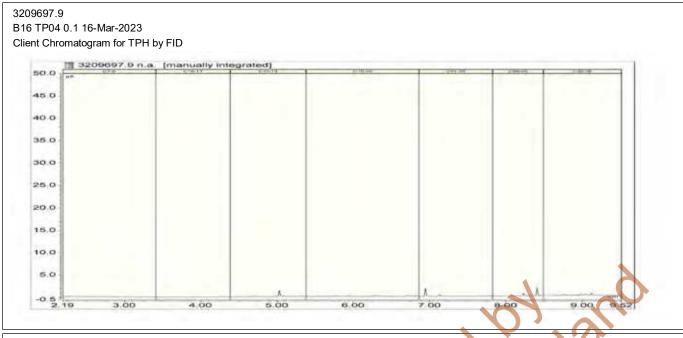
This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked * or any comments and interpretations, which are not accredited.

Sample Type: Soil						
	Sample Name:	SB2 TP02 0.2 16-Mar-2023	SB2 TP02 0.7 16-Mar-2023	SB2 TP03 0.2 16-Mar-2023	SB2 TP03 0.5 16-Mar-2023	CHP TP01 0.2 16-Mar-2023
	Lab Number:	3209697.1	3209697.2	3209697.3	3209697.4	3209697.5
Polycyclic Aromatic Hydroc	arbons Screening in S					
Pyrene	mg/kg dry wt	0.158	0.66	0.31	0.61	-
Polychlorinated Biphenyls S	Screening in Soil*					
PCB-18	mg/kg dry wt	< 0.010	-	< 0.010	-	-
PCB-28	mg/kg dry wt	< 0.010	-	< 0.010	-	-
PCB-31	mg/kg dry wt	< 0.010	-	< 0.010	-	-
PCB-44	mg/kg dry wt	< 0.010	-	< 0.010	-	-
PCB-49	mg/kg dry wt	< 0.010	-	< 0.010	-	-
PCB-52	mg/kg dry wt	< 0.010	-	< 0.010	-	-
PCB-60	mg/kg dry wt	< 0.010	-	< 0.010	-	-
PCB-77	mg/kg dry wt	< 0.010	-	< 0.010	-	-
PCB-81	mg/kg dry wt	< 0.010	-	< 0.010	-	-
PCB-86	mg/kg dry wt	< 0.010	-	< 0.010	-	
PCB-101	mg/kg dry wt	< 0.010	-	< 0.010	<i>3</i> -	
PCB-105	mg/kg dry wt	< 0.010	-	< 0.010) }- ~	7 -
PCB-110	mg/kg dry wt	< 0.010	-	< 0.010	Y - (1)	· -
PCB-114	mg/kg dry wt	< 0.010	-	< 0.010		-
PCB-118	mg/kg dry wt	< 0.010	-	< 0.010	~.0	-
PCB-121	mg/kg dry wt	< 0.010	-	< 0.010	10	-
PCB-123	mg/kg dry wt	< 0.010	-	< 0.010	_	-
PCB-126	mg/kg dry wt	< 0.010	-	< 0.010	-	-
PCB-128	mg/kg dry wt	< 0.010	- (/)	< 0.010	-	-
PCB-138	mg/kg dry wt	< 0.010		< 0.010	-	-
PCB-141	mg/kg dry wt	< 0.010	70	< 0.010	-	-
PCB-149	mg/kg dry wt	< 0.010	- •	< 0.010	-	-
PCB-151	mg/kg dry wt	< 0.010	-	< 0.010	-	-
PCB-153	mg/kg dry wt	< 0.010		< 0.010	-	-
PCB-156	mg/kg dry wt	< 0.010 < 0.010		< 0.010	-	-
PCB-157 PCB-159	mg/kg dry wt mg/kg dry wt	< 0.010		< 0.010 < 0.010	-	-
PCB-167	mg/kg dry wt	< 0.010		< 0.010	-	-
PCB-169	mg/kg dry wt	< 0.010		< 0.010	<u>-</u>	_
PCB-170	mg/kg dry wt	< 0.010	-	< 0.010	<u>-</u>	_
PCB-180	mg/kg dry wt	< 0.010	<u> </u>	< 0.010	<u>-</u>	_
PCB-189	mg/kg dry wt	< 0.010	_	< 0.010	<u>-</u>	_
PCB-194	mg/kg dry wt	< 0.010	_	< 0.010	_	_
PCB-206	mg/kg dry wt	< 0.010	_	< 0.010	<u>-</u>	_
PCB-209	mg/kg dry wt	< 0.010	_	< 0.010	<u>-</u>	-
Mono-Ortho PCB Toxic Equivalence (TEF)*	mg/kg dry wt	< 0.000003	-	< 0.000003	-	-
Non-Ortho PCB Toxic Equivalence (TEF)*	mg/kg dry wt	< 0.0014	-	< 0.0014	-	-
Total PCB (Sum of 35 congeners)	mg/kg dry wt	< 0.4	-	< 0.4	-	-
Total Petroleum Hydrocarb	ons in Soil					
C7 - C9	mg/kg dry wt	< 20	< 20	< 20	< 20	-
C10 - C14	mg/kg dry wt	< 20	< 20	< 20	< 20	-
C15 - C36	mg/kg dry wt	< 40	< 40	53	< 40	-
Total hydrocarbons (C7 - C	36) mg/kg dry wt	< 80	< 80	< 80	< 80	-
	Sample Name:	CHP TP01 0.5 16-Mar-2023	CHP TP04 0.2 16-Mar-2023	CHP TP04 0.6 16-Mar-2023	B16 TP04 0.1 16-Mar-2023	B16 TP06 0.5 16-Mar-2023
	Lab Number:	3209697.6	3209697.7	3209697.8	3209697.9	3209697.11
Individual Tests						
Dry Matter	g/100g as rcvd	-	-	-	92	-
Total Recoverable Beryllium	n mg/kg dry wt	0.5	0.8	0.8	2.4	1.0

Sample Type: Soil						
	ample Name:	CHP TP01 0.5 16-Mar-2023	CHP TP04 0.2 16-Mar-2023	CHP TP04 0.6 16-Mar-2023	B16 TP04 0.1 16-Mar-2023	B16 TP06 0.5 16-Mar-2023
	Lab Number:	3209697.6	3209697.7	3209697.8	3209697.9	3209697.11
8 Heavy metals plus Boron				ı		
Total Recoverable Arsenic	mg/kg dry wt	2	4	3	6	4
Total Recoverable Boron	mg/kg dry wt	< 20	< 20	< 20	172	54
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	0.13	< 0.10	0.47	0.11
Total Recoverable Chromium	mg/kg dry wt	7	7	5	12	9
Total Recoverable Copper	mg/kg dry wt	10	117	17	64	14
Total Recoverable Lead	mg/kg dry wt	19.8	35	19.4	196	20
Total Recoverable Mercury	mg/kg dry wt	< 0.10	< 0.10	< 0.10	< 0.10	0.11
Total Recoverable Nickel	mg/kg dry wt	3	4	3	44	7
Total Recoverable Zinc	mg/kg dry wt	24	280	66	155	47
Polycyclic Aromatic Hydrocarbor	ns Screening in S	oil*				
Total of Reported PAHs in Soil	mg/kg dry wt	_	_	_	< 0.3	<u> </u>
1-Methylnaphthalene	mg/kg dry wt	_	-	_	< 0.011	
2-Methylnaphthalene	mg/kg dry wt		_	_	< 0.011	
Acenaphthylene	mg/kg dry wt		_	_	< 0.011	<u> </u>
Acenaphthene	mg/kg dry wt	<u>-</u>		-	< 0.011	-
Anthracene		<u> </u>	-		< 0.011	<i></i>
	mg/kg dry wt		-		< 0.011	-
Benzo[a]anthracene	mg/kg dry wt	-	-			-
Benzo[a]pyrene (BAP)	mg/kg dry wt	-	-	6	< 0.011	-
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES*	mg/kg dry wt	-	- (3 - '	< 0.026	-
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	-	10,	N	< 0.026	-
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	-	20°	(0)	< 0.011	-
Benzo[e]pyrene	mg/kg dry wt	-	- 5		< 0.011	-
Benzo[g,h,i]perylene	mg/kg dry wt	-	-	-	< 0.011	-
Benzo[k]fluoranthene	mg/kg dry wt	-	-	-	< 0.011	-
Chrysene	mg/kg dry wt			-	< 0.011	-
Dibenzo[a,h]anthracene	mg/kg dry wt		, * , (-) *	-	< 0.011	-
Fluoranthene	mg/kg dry wt		XI	-	< 0.011	-
Fluorene	mg/kg dry wt	-	7 -	-	< 0.011	-
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	- 0	-	-	< 0.011	-
Naphthalene	mg/kg dry wt	-	-	-	< 0.06	-
Perylene	mg/kg dry wt	-	-	-	< 0.011	-
Phenanthrene	mg/kg dry wt		-	-	< 0.011	-
Pyrene	mg/kg dry wt		_	-	0.011	-
Total Petroleum Hydrocarbons in			l	1		
C7 - C9	mg/kg dry wt	-	_	_	< 20	
C10 - C14	mg/kg dry wt	-		-	< 20	<u>-</u>
C15 - C36	mg/kg dry wt	-	_	-	45	<u> </u>
			-			
Total hydrocarbons (C7 - C36)	mg/kg dry wt	-	-	-	< 80	-
BTEX in VOC Soils by Headspa				1		
Benzene	mg/kg dry wt	-	-	-	< 0.15	-
Ethylbenzene	mg/kg dry wt	-	-	-	< 0.3	-
Toluene	mg/kg dry wt	-	-	-	< 0.3	-
m&p-Xylene	mg/kg dry wt	-	-	-	< 0.3	-
o-Xylene	mg/kg dry wt		-	-	< 0.3	-
Halogenated Aliphatics in VOC S	Soils by Headspa	ce GC-MS				
Bromomethane (Methyl Bromide)) mg/kg dry wt	-	-	-	< 0.3	-
Carbon tetrachloride	mg/kg dry wt	-	_	-	< 0.3	-
Chloroethane	mg/kg dry wt	-	_	-	< 0.3	-
Chloromethane	mg/kg dry wt	-	_	-	< 0.3	-
1,2-Dibromo-3-chloropropane	mg/kg dry wt	<u> </u>	_	_	< 0.5	
1,2-Dibromoethane (ethylene	mg/kg dry wt		_	_	< 0.3	
dibromide, EDB)		<u>-</u>	-	-		<u>-</u>
Dibromomethane	mg/kg dry wt	-	-	-	< 0.3	-

Sample Type: Soil						
	Sample Name:	CHP TP01 0.5 16-Mar-2023	CHP TP04 0.2 16-Mar-2023	CHP TP04 0.6 16-Mar-2023	B16 TP04 0.1 16-Mar-2023	B16 TP06 0.5 16-Mar-2023
	Lab Number:	3209697.6	3209697.7	3209697.8	3209697.9	3209697.11
Halogenated Aliphatics in VOC	C Soils by Headspa	ce GC-MS				
1,3-Dichloropropane	mg/kg dry wt	-	-	-	< 0.3	-
Dichlorodifluoromethane	mg/kg dry wt	-	-	-	< 0.5	-
1,1-Dichloroethane	mg/kg dry wt	-	-	-	< 0.3	-
1,2-Dichloroethane	mg/kg dry wt	-	-	-	< 0.3	-
1,1-Dichloroethene	mg/kg dry wt	-	-	-	< 0.3	-
cis-1,2-Dichloroethene	mg/kg dry wt	-	-	-	< 0.3	-
trans-1,2-Dichloroethene	mg/kg dry wt	-	-	-	< 0.3	-
Dichloromethane (methylene chloride)	mg/kg dry wt	-	-	-	< 3	-
1,2-Dichloropropane	mg/kg dry wt	-	-	_	< 0.3	-
1,1-Dichloropropene	mg/kg dry wt	-	-	-	< 0.3	-
cis-1,3-Dichloropropene	mg/kg dry wt	-	_	_	< 0.3	
trans-1,3-Dichloropropene	mg/kg dry wt	-	_	_	< 0.3	
Hexachlorobutadiene	mg/kg dry wt	-	_	-	< 0.3	\(\frac{1}{2}\)
1,1,1,2-Tetrachloroethane	mg/kg dry wt	-	_		< 0.3	-
1.1.2.2-Tetrachloroethane	mg/kg dry wt		_		< 0.3	_
Tetrachloroethene	mg/kg dry wt	-	-	20	< 0.3	-
(tetrachloroethylene)					. 0.0	
1,1,1-Trichloroethane	mg/kg dry wt	-	-	5	< 0.3	-
1,1,2-Trichloroethane	mg/kg dry wt	-	- 6	- '	< 0.3	-
Trichloroethene (trichloroethylene)	mg/kg dry wt	-	0	- 1	< 0.3	-
Trichlorofluoromethane	mg/kg dry wt	-		114	< 0.3	-
1,2,3-Trichloropropane	mg/kg dry wt	-		(P ₁)	< 0.5	-
1,1,2-Trichlorotrifluoroethane (Freon 113)	mg/kg dry wt	-	7	70	< 0.3	-
Vinyl chloride	mg/kg dry wt	-	-	-	< 0.3	-
Haloaromatics in VOC Soils by	y Headspace GC-M	ns .				
Bromobenzene	mg/kg dry wt			-	< 0.3	-
1.3-Dichlorobenzene	mg/kg dry wt	10		-	< 0.3	-
4-Chlorotoluene	mg/kg dry wt		-	_	< 0.3	-
Chlorobenzene (monochlorobenzene)	mg/kg dry wt	-	} -	-	< 0.3	-
1,2-Dichlorobenzene	mg/kg dry wt		_	_	< 0.3	
1,4-Dichlorobenzene	mg/kg dry wt		_	_	< 0.3	
2-Chlorotoluene	mg/kg dry wt		<u>-</u>	_	< 0.3	<u> </u>
1,2,3-Trichlorobenzene	mg/kg dry wt			_	< 0.3	
1,2,4-Trichlorobenzene	mg/kg dry wt	-		_	< 0.3	
1,3,5-Trichlorobenzene	mg/kg dry wt	_	<u>-</u>	_	< 0.3	<u>-</u> -
Monoaromatic Hydrocarbons in		adenace GC-MS	_	_	٠.٠٠	-
•		adspace GC-IVIS			×00	
n-Butylbenzene	mg/kg dry wt	-	-	-	< 0.3	-
tert-Butylbenzene	mg/kg dry wt	-	-	-	< 0.3	-
Isopropylbenzene (Cumene)	mg/kg dry wt	-	-	-	< 0.3	-
4-Isopropyltoluene (p-Cymene)		-	-	-	< 0.3	-
n-Propylbenzene	mg/kg dry wt	-	-	-	< 0.3	-
sec-Butylbenzene	mg/kg dry wt	-	-	-	< 0.3	-
Styrene	mg/kg dry wt	-	-	-	< 0.3	-
1,2,4-Trimethylbenzene	mg/kg dry wt	-	-	-	< 0.3	-
1,3,5-Trimethylbenzene	mg/kg dry wt	-	-	-	< 0.3	-
Ketones in VOC Soils by Head						
2-Butanone (MEK)	mg/kg dry wt	-	-	-	< 30	-
4-Methylpentan-2-one (MIBK)	mg/kg dry wt	-	-	-	< 6	-
Acetone	mg/kg dry wt	-	-	-	< 30	-
Methyl tert-butylether (MTBE)	mg/kg dry wt	-	-	-	< 0.3	-

Sample Type: Soil						
S	ample Name:	CHP TP01 0.5	CHP TP04 0.2	CHP TP04 0.6	B16 TP04 0.1	B16 TP06 0.5
	I ala Niverala au	16-Mar-2023	16-Mar-2023	16-Mar-2023	16-Mar-2023	16-Mar-2023
Trihalomethanes in VOC Soils I	Lab Number:	3209697.6	3209697.7	3209697.8	3209697.9	3209697.11
Bromodichloromethane	· · · · · · · · · · · · · · · · · · ·	-IVIO			< 0.3	
	mg/kg dry wt	-	-	-		-
Bromoform (tribromomethane)	mg/kg dry wt	-	-	-	< 0.5	-
Chloroform (Trichloromethane)	mg/kg dry wt	-	-	-	< 0.3	-
Dibromochloromethane	mg/kg dry wt	-	-	-	< 0.3	-
Other VOC in Soils by Headspa						
Carbon disulphide	mg/kg dry wt	-	-	-	< 0.3	-
Naphthalene	mg/kg dry wt	-	-	-	< 0.3	-
S	ample Name:	B16 TP06 0.1 16-Mar-2023	B16 TP09 0.1 16-Mar-2023	B16 TP09 0.5 16-Mar-2023	B16 TP07 0.1 17-Mar-2023	B16 TP08 0.1 17-Mar-2023
	Lab Number:	3209697.12	3209697.13	3209697.14	3209697.15	3209697.17
Individual Tests						
Dry Matter	g/100g as rcvd	71	73	71	74	71
Total Recoverable Beryllium	mg/kg dry wt	9.4	-	-	1.3	
8 Heavy metals plus Boron				Y	77	
Total Recoverable Arsenic	mg/kg dry wt	12	-	-	5	-
Total Recoverable Boron	mg/kg dry wt	1,430	-	-	< 20	-
Total Recoverable Cadmium	mg/kg dry wt	0.11	-	0.	0.24	-
Total Recoverable Chromium	mg/kg dry wt	10	-		9	-
Total Recoverable Copper	mg/kg dry wt	36	-	77 - 1	21	-
Total Recoverable Lead	mg/kg dry wt	35	- ~ 7		51	-
Total Recoverable Mercury	mg/kg dry wt	< 0.10	\- (7)	- 1	0.14	-
Total Recoverable Nickel	mg/kg dry wt	220			5	-
Total Recoverable Zinc	mg/kg dry wt	220	2(1)	(7-1)	108	-
Polycyclic Aromatic Hydrocarbo	ons Screening in S	Soil*	A .			
Total of Reported PAHs in Soil	mg/kg dry wt	< 0.4	< 0.4	< 0.4	0.4	< 0.4
1-Methylnaphthalene	mg/kg dry wt	< 0.014	< 0.014	< 0.014	< 0.013	< 0.014
2-Methylnaphthalene	mg/kg dry wt	< 0.014	< 0.014	< 0.014	< 0.013	< 0.014
Acenaphthylene	mg/kg dry wt	< 0.014	< 0.014	< 0.014	< 0.013	< 0.014
Acenaphthene	mg/kg dry wt	< 0.014	< 0.014	< 0.014	< 0.013	< 0.014
Anthracene	mg/kg dry wt	< 0.014	< 0.014	< 0.014	< 0.013	< 0.014
Benzo[a]anthracene	mg/kg dry wt	< 0.014	< 0.014	< 0.014	0.027	0.016
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.014	0.021	< 0.014	0.041	0.022
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES	mg/kg dry wt	< 0.033	< 0.033	< 0.033	0.060	< 0.034
Benzo[a]pyrene Toxic	mg/kg dry wt	< 0.033	< 0.033	< 0.033	0.059	< 0.034
Equivalence (TEF)*						
Benzo[b]fluoranthene + Benzo[j] fluoranthene] mg/kg dry wt	< 0.014	0.026	< 0.014	0.045	0.026
Benzo[e]pyrene	mg/kg dry wt	< 0.014	0.015	< 0.014	0.023	< 0.014
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.014	0.022	< 0.014	0.032	0.018
Benzo[k]fluoranthene	mg/kg dry wt	< 0.014	< 0.014	< 0.014	0.017	< 0.014
Chrysene	mg/kg dry wt	< 0.014	0.015	< 0.014	0.030	0.019
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.014	< 0.014	< 0.014	< 0.013	< 0.014
Fluoranthene	mg/kg dry wt	< 0.014	0.032	< 0.014	0.058	0.040
Fluorene	mg/kg dry wt	< 0.014	< 0.014	< 0.014	< 0.013	< 0.014
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.014	0.019	< 0.014	0.028	0.015
Naphthalene	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Perylene	mg/kg dry wt	< 0.014	< 0.014	< 0.014	< 0.013	< 0.014
Phenanthrene	mg/kg dry wt	< 0.014	0.015	< 0.014	0.021	< 0.014
Pyrene	mg/kg dry wt	< 0.014	0.030	< 0.014	0.057	0.036
Total Petroleum Hydrocarbons i	in Soil					
C7 - C9	mg/kg dry wt	< 20	< 20	< 20	< 20	< 20
C10 - C14	mg/kg dry wt	< 20	< 20	< 20	< 20	< 20
C15 - C36	mg/kg dry wt	94	< 40	< 40	< 40	< 40
Total hydrocarbons (C7 - C36)	mg/kg dry wt	97	< 80	< 80	< 80	< 80


Sample Type: Soil						
Sai	mple Name:	B16 TP06 0.1	B16 TP09 0.1	B16 TP09 0.5	B16 TP07 0.1	B16 TP08 0.1
	-1. N	16-Mar-2023	16-Mar-2023	16-Mar-2023	17-Mar-2023	17-Mar-2023
	ab Number:	3209697.12	3209697.13	3209697.14	3209697.15	3209697.17
BTEX in VOC Soils by Headspac			.00		.00	.00
Benzene	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
Ethylbenzene	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
Toluene	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
m&p-Xylene	mg/kg dry wt	< 0.5	< 0.5	-	< 0.5	< 0.5
o-Xylene	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
Halogenated Aliphatics in VOC S			1			
Bromomethane (Methyl Bromide)	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
Carbon tetrachloride	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
Chloroethane	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
Chloromethane	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
1,2-Dibromo-3-chloropropane	mg/kg dry wt	< 0.5	< 0.5	-	< 0.5	< 0.5
1,2-Dibromoethane (ethylene dibromide, EDB)	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
Dibromomethane	mg/kg dry wt	< 0.3	< 0.3	- \	< 0.3	< 0.3
1,3-Dichloropropane	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
Dichlorodifluoromethane	mg/kg dry wt	< 0.5	< 0.5	-	< 0.5	< 0.5
1,1-Dichloroethane	mg/kg dry wt	< 0.3	< 0.3		< 0.3	< 0.3
1,2-Dichloroethane	mg/kg dry wt	< 0.3	< 0.3	20	≥0.3	< 0.3
1,1-Dichloroethene	mg/kg dry wt	< 0.3	< 0.3	5- /	< 0.3	< 0.3
cis-1,2-Dichloroethene	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
trans-1,2-Dichloroethene	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
Dichloromethane (methylene chloride)	mg/kg dry wt	< 5	< 5		< 5	< 5
1,2-Dichloropropane	mg/kg dry wt	< 0.3	< 0.3		< 0.3	< 0.3
1,1-Dichloropropene	mg/kg dry wt	< 0.3	< 0.3	3 -	< 0.3	< 0.3
cis-1,3-Dichloropropene	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
trans-1,3-Dichloropropene	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
Hexachlorobutadiene	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
1,1,1,2-Tetrachloroethane	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
1,1,2,2-Tetrachloroethane	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
Tetrachloroethene (tetrachloroethylene)	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
1,1,1-Trichloroethane	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
1,1,2-Trichloroethane	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
Trichloroethene (trichloroethylene)	mg/kg dry wt	< 0,3	< 0.3	-	< 0.3	< 0.3
Trichlorofluoromethane	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
1,2,3-Trichloropropane	mg/kg dry wt	< 0.5	< 0.5	-	< 0.5	< 0.5
1,1,2-Trichlorotrifluoroethane (Freon 113)	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
Vinyl chloride	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
Haloaromatics in VOC Soils by H	eadspace GC-N	MS				
Bromobenzene	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
1,3-Dichlorobenzene	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
4-Chlorotoluene	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
Chlorobenzene (monochlorobenzene)	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
1,2-Dichlorobenzene	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
1,4-Dichlorobenzene	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
2-Chlorotoluene	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
1,2,3-Trichlorobenzene	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
1,2,4-Trichlorobenzene	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
1,3,5-Trichlorobenzene	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
Monoaromatic Hydrocarbons in V		adspace GC-MS	1	1		
n-Butylbenzene	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
tert-Butylbenzene	mg/kg dry wt	< 0.3	< 0.3	_	< 0.3	< 0.3
,	3 3 ",					

Sample Type: Soil						
Sa	mple Name:	B16 TP06 0.1	B16 TP09 0.1	B16 TP09 0.5	B16 TP07 0.1	B16 TP08 0.1
	ala Niverala aus	16-Mar-2023	16-Mar-2023	16-Mar-2023	17-Mar-2023	17-Mar-2023
	Lab Number:	3209697.12	3209697.13	3209697.14	3209697.15	3209697.17
Monoaromatic Hydrocarbons in \	-		-02		. 0.2	- 0.2
Isopropylbenzene (Cumene)	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
4-Isopropyltoluene (p-Cymene)	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
n-Propylbenzene	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
sec-Butylbenzene	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
Styrene	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
1,2,4-Trimethylbenzene	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
1,3,5-Trimethylbenzene	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
Ketones in VOC Soils by Headspace GC-MS						
2-Butanone (MEK)	mg/kg dry wt	< 50	< 50	-	< 50	< 50
4-Methylpentan-2-one (MIBK)	mg/kg dry wt	< 10	< 9	-	< 9	< 10
Acetone	mg/kg dry wt	< 50	< 50	-	< 50	< 50
Methyl tert-butylether (MTBE)	mg/kg dry wt	< 0.3	< 0.3	-	< 0.3	< 0.3
Trihalomethanes in VOC Soils by						
Bromodichloromethane	mg/kg dry wt	< 0.3	< 0.3	- \	< 0.3	< 0.3
Bromoform (tribromomethane)	mg/kg dry wt	< 0.5	< 0.5		< 0.5	< 0.5
Chloroform (Trichloromethane)	mg/kg dry wt	< 0.3	< 0.3	-()	< 0.3	< 0.3
Dibromochloromethane	mg/kg dry wt	< 0.3	< 0.3	0,	< 0.3	< 0.3
Other VOC in Soils by Headspace	ce GC-MS				1 ()	
Carbon disulphide	mg/kg dry wt	< 0.3	< 0.3	9 - 1	< 0.3	< 0.3
Naphthalene	mg/kg dry wt	< 0.3	< 0.3	- 4	< 0.3	< 0.3
Sa	mple Name:	B16 TP08 0.5	DIP TP01 0.2	DIP TP02 0.2	DIP TP03 0.2	HT TP25 0.2
		17-Mar-2023	17-Mar-2023	17-Mar-2023	17-Mar-2023	17-Mar-2023
	_ab Number:	3209697.18	3209697.19	3209697.22	3209697.25	3209697.28
Individual Tests			/			
Dry Matter	g/100g as rcvd	71	82	76	79	81
Total Recoverable Beryllium	mg/kg dry wt	4-	1.0	0.9	2.8	2.0
8 Heavy metals plus Boron						
Total Recoverable Arsenic	mg/kg dry wt	1(/-)	11	7	14	11
Total Recoverable Boron	mg/kg drywt	-	109	< 20	1,200	650
Total Recoverable Cadmium	mg/kg dry wt	-	0.27	0.27	0.23	0.22
Total Recoverable Chromium	mg/kg dry wt	-	14	8	15	11
Total Recoverable Copper	mg/kg dry wt		54	55	60	109
Total Recoverable Lead	mg/kg dry wt	1-1	65	80	59	51
Total Recoverable Mercury	mg/kg dry wt	-	0.15	0.22	0.20	0.16
Total Recoverable Nickel	mg/kg dry wt	<u> </u>	15	6	102	50
Total Recoverable Zinc	mg/kg dry wt	-	134	97	95	97
Organochlorine Pesticides Scree	ening in Soil					
Aldrin	mg/kg dry wt	-	< 0.012	< 0.013	< 0.013	< 0.012
alpha-BHC	mg/kg dry wt	-	< 0.012	< 0.013	< 0.013	< 0.012
beta-BHC	mg/kg dry wt	-	< 0.012	< 0.013	< 0.013	< 0.012
delta-BHC	mg/kg dry wt	-	< 0.012	< 0.013	< 0.013	< 0.012
gamma-BHC (Lindane)	mg/kg dry wt	-	< 0.012	< 0.013	< 0.013	< 0.012
cis-Chlordane	mg/kg dry wt	-	< 0.012	< 0.013	< 0.013	< 0.012
trans-Chlordane		_	< 0.012	< 0.013	< 0.013	< 0.012
2,4'-DDD	mg/kg dry wt					
	mg/kg dry wt	-	< 0.012	< 0.013	< 0.013	< 0.012
4,4'-DDD		-			< 0.013 < 0.013	< 0.012 < 0.012
4,4'-DDD 2,4'-DDE	mg/kg dry wt		< 0.012	< 0.013		
	mg/kg dry wt	-	< 0.012 < 0.012	< 0.013 < 0.013	< 0.013	< 0.012
2,4'-DDE	mg/kg dry wt mg/kg dry wt mg/kg dry wt	-	< 0.012 < 0.012 < 0.012	< 0.013 < 0.013 < 0.013	< 0.013 < 0.013	< 0.012 < 0.012
2,4'-DDE 4,4'-DDE	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	- - -	< 0.012 < 0.012 < 0.012 < 0.012	< 0.013 < 0.013 < 0.013 < 0.013	< 0.013 < 0.013 < 0.013	< 0.012 < 0.012 < 0.012
2,4'-DDE 4,4'-DDE 2,4'-DDT	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	- - -	< 0.012 < 0.012 < 0.012 < 0.012 < 0.012	< 0.013 < 0.013 < 0.013 < 0.013 < 0.013	< 0.013 < 0.013 < 0.013 < 0.013	< 0.012 < 0.012 < 0.012 < 0.012
2,4'-DDE 4,4'-DDE 2,4'-DDT 4,4'-DDT	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	- - - -	< 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012	< 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013	< 0.013 < 0.013 < 0.013 < 0.013 < 0.013	< 0.012 < 0.012 < 0.012 < 0.012 < 0.012
2,4'-DDE 4,4'-DDE 2,4'-DDT 4,4'-DDT Total DDT Isomers	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	- - - -	< 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.08	< 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.08	< 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.08	< 0.012 < 0.012 < 0.012 < 0.012 < 0.012 < 0.08

Sample Type: Soil						
	Sample Name:	B16 TP08 0.5 17-Mar-2023	DIP TP01 0.2 17-Mar-2023	DIP TP02 0.2 17-Mar-2023	DIP TP03 0.2 17-Mar-2023	HT TP25 0.2 17-Mar-2023
	Lab Number:	3209697.18	3209697.19	3209697.22	3209697.25	3209697.28
Organochlorine Pesticides Sc	reening in Soil					
Endosulfan sulphate	mg/kg dry wt	-	< 0.012	< 0.013	< 0.013	< 0.012
Endrin	mg/kg dry wt	-	< 0.012	< 0.013	< 0.013	< 0.012
Endrin aldehyde	mg/kg dry wt	-	< 0.012	< 0.013	< 0.013	< 0.012
Endrin ketone	mg/kg dry wt	-	< 0.012	< 0.013	< 0.013	< 0.012
Heptachlor	mg/kg dry wt	-	< 0.012	< 0.013	< 0.013	< 0.012
Heptachlor epoxide	mg/kg dry wt	-	< 0.012	< 0.013	< 0.013	< 0.012
Hexachlorobenzene	mg/kg dry wt	-	< 0.012	< 0.013	< 0.013	< 0.012
Methoxychlor	mg/kg dry wt	-	< 0.012	< 0.013	< 0.013	< 0.012
Polycyclic Aromatic Hydrocart	bons Screening in S	oil*				
Total of Reported PAHs in Soi	il mg/kg dry wt	< 0.4	-	-	-	-
1-Methylnaphthalene	mg/kg dry wt	< 0.014	-	-	-	-
2-Methylnaphthalene	mg/kg dry wt	< 0.014	-	-	-	
Acenaphthylene	mg/kg dry wt	< 0.014	-	-	-	
Acenaphthene	mg/kg dry wt	< 0.014	-	-	<u> </u>	-
Anthracene	mg/kg dry wt	< 0.014	-	-	Y - 10	-
Benzo[a]anthracene	mg/kg dry wt	< 0.014	-	-		-
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.014	-			-
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES	mg/kg dry wt	< 0.034	-	50	10	-
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	< 0.034	- (· ·	-	-
Benzo[b]fluoranthene + Benzo fluoranthene	o[j] mg/kg dry wt	< 0.014	70	Ni	-	-
Benzo[e]pyrene	mg/kg dry wt	< 0.014	(7-1)	1 (7-1)	-	-
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.014	2	16	-	-
Benzo[k]fluoranthene	mg/kg dry wt	< 0.014	-	-	-	-
Chrysene	mg/kg dry wt	< 0.014	- ^	-	-	-
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.014	- ()	-	-	-
Fluoranthene	mg/kg dry wt	< 0.014	* , (-)	-	-	-
Fluorene	mg/kg dry wt	< 0.014	X	-	-	-
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.014	76.	-	-	-
Naphthalene	mg/kg dry wt	< 0.07	-	-	-	-
Perylene	mg/kg dry wt	< 0.014	-	-	-	-
Phenanthrene	mg/kg dry wt	< 0.014	-	-	-	-
Pyrene	mg/kg dry wt	< 0.014	-	-	-	-
Total Petroleum Hydrocarbons	s in Soil					
C7 - C9	mg/kg dry wt	< 20	-	-	-	< 20
C10 - C14	mg/kg dry wt	< 20	-	-	-	< 20
C15 - C36	mg/kg dry wt	< 40	-	-	-	< 40
Total hydrocarbons (C7 - C36)	,	< 80	-	-	-	< 80
	Sample Name:	HT TP25 1.2 17-Mar-2023	HT TP27 0.1 17-Mar-2023	HT TP27 0.5 17-Mar-2023	HT TP27 0.7 17-Mar-2023	HT TP28 0.1 17-Mar-2023
	Lab Number:	3209697.30	3209697.31	3209697.32	3209697.33	3209697.35
Individual Tests	- Lux Hullingi.	5_55557.50	525557.01	525557.02	523001.00	323337.00
Dry Matter	g/100g as rcvd		84	_	-	75
Total Recoverable Beryllium	mg/kg dry wt	0.7	1.7	0.3	0.4	1.2
8 Heavy metals plus Boron	mg/ng dry Wt	0.1	1.7	0.0	JT	1.2
Total Recoverable Arsenic	mg/kg dry wt	< 2	7	3	3	4
				_		
Total Recoverable Boron	mg/kg dry wt	< 20	380	< 20	49	128
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	0.14	< 0.10	< 0.10	0.10
Total Recoverable Chromium	mg/kg dry wt	7	13	8	6	9
Total Recoverable Copper	mg/kg dry wt	10	28	9	9	27
Total Recoverable Lead	mg/kg dry wt	19.3	83	18.3	22	43
Total Recoverable Mercury	mg/kg dry wt	< 0.10	< 0.10	< 0.10	< 0.10	0.26
Total Recoverable Nickel	mg/kg dry wt	3	35	3	5	14

Alpha-BHC	Sample Type: Soil								
Lab Number: 3209697.30 3209697.31 3209697.32 3209697.33 3209697.35 8 Heavy metals plus Boron Total Recoverable Zinc mg/kg dry wt 28 81 31 44 50 Organochlorine Pesticides Screening in Soil Aldrin mg/kg dry wt - < 0.012		Sample Name:	HT TP25 1.2	HT TP27 0.1	HT TP27 0.5	HT TP27 0.7	HT TP28 0.1		
8 Heavy metals plus Boron Total Recoverable Zinc mg/kg dry wt 28 81 31 44 50 Organochlorine Pesticides Screening in Soil Aldrin mg/kg dry wt - < 0.012 < 0.013 alpha-BHC mg/kg dry wt - < 0.012 < 0.013 beta-BHC mg/kg dry wt - < 0.012 < 0.013 deta-BHC mg/kg dry wt - < 0.012 < 0.013 damma-BHC mg/kg dry wt - < 0.012 < 0.013 damma-BHC (Lindane) mg/kg dry wt - < 0.012 < 0.013 damma-BHC (Lindane) mg/kg dry wt - < 0.012 < 0.013 damma-BHC (Lindane) mg/kg dry wt - < 0.012 < 0.013 damma-BHC (Lindane) mg/kg dry wt - < 0.012 < 0.013 dis-Chlordane mg/kg dry wt - < 0.012 < 0.013 dis-Chlordane mg/kg dry wt - < 0.012 < 0.013 dis-Chlordane mg/kg dry wt - < 0.012 < 0.013 d.4.*DDD mg/kg dry wt - < 0.012 < 0.013 d.4.*DDD mg/kg dry wt - < 0.012 < 0.013 d.4.*DDD mg/kg dry wt - < 0.012 < 0.013 d.4.*DDE mg/kg dry wt - < 0.012 < 0.013 d.4.*DDE mg/kg dry wt - < 0.012 < 0.013 d.4.*DDT mg/kg dry wt - < 0.012 < 0.013 d.4.*DDT mg/kg dry wt - < 0.012 < 0.013 d.4.*DDT mg/kg dry wt - < 0.012 < 0.013 d.4.*DDT mg/kg dry wt - < 0.012 < 0.013 d.4.*DDT mg/kg dry wt - < 0.012 < 0.013 d.4.*DDT mg/kg dry wt - < 0.012 < 0.013 d.4.*DDT mg/kg dry wt - < 0.012 < 0.013 d.4.*DDT mg/kg dry wt - < 0.012 < 0.013 d.4.*DDT mg/kg dry wt - < 0.012 < 0.013 d.4.*DDT mg/kg dry wt - < 0.012 < 0.013 dendosulfan I mg/kg dry wt - < 0.012 < 0.013 endosulfan I mg/kg dry wt - < 0.012 < 0.013 endosulfan I mg/kg dry wt - < 0.012 < 0.013 endosulfan I mg/kg dry wt - < 0.012 < 0.013 endrin alchelyde mg/kg dry wt - < 0.012 < 0.013 endrin deleyde mg/kg dry wt - < 0.012 < 0.013 endrin ketone mg/kg dry wt - < 0.012 < 0.013 endrin ketone mg/kg dry wt - < 0.012 < 0.013 endrin ketone mg/kg dry wt - < 0.012 < 0.013 endrin ketone mg/kg dry wt - < 0.012 < 0.013 endrin ketone mg/kg dry wt - < 0.012 < 0.013 endrin ketone mg/kg dry wt - < 0.012 < 0.013 endrin ketone mg/kg dry wt - < 0.012 < 0.013 endrin ketone mg/kg dry wt - < 0.012									
Total Recoverable Zinc mg/kg dry wt 28 81 31 44 50 Organochlorine Pesticides Screening in Soil Aldrin mg/kg dry wt 2 0.012 - 0.013 Aldrin mg/kg dry wt 2 0.012 - 0.0013 Aldrin mg/kg dry wt 2 0.012 - 0.0013 Aldrin mg/kg dry wt 2 0.012 - 0.0013 Aldrin mg/kg dry wt 2 0.012 - 0.0013 Aldrin mg/kg dry wt 3 0.012 - 0.0013 Aldrin mg/kg dry wt 3 0.012 - 0.0013 Aldrin mg/kg dry wt 4 0.0012 - 0.0013 Aldrin mg/kg dry wt 5 0.012 - 0.0013 Aldrin mg/kg dry wt 5 0.012 - 0.0013 Aldrin mg/kg dry wt 6 0.012 - 0.0013 Aldrin mg/kg dry wt 7 0.0012 - 0.0013 Aldrin mg/kg dry wt 7 0.		Lab Number:	3209697.30	3209697.31	3209697.32	3209697.33	3209697.35		
Organochlorine Pesticides Screening in Soil Aldrin mg/kg dry wt alpha-BHC mg/kg dry wt beta-BHC 0.012 - - 0.013 gamma-BHC (Lindane) mg/kg dry wt beta-BHC - <td>, ,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	, ,								
Aldrin mg/kg dry wt alpha-BHC mg/kg dry wt alpha-BHC mg/kg dry wt alpha-BHC mg/kg dry wt alpha-BHC mg/kg dry wt alpha-BHC mg/kg dry wt alpha-BHC mg/kg dry wt alpha-BHC mg/kg dry wt alpha-BHC (Lindane) mg/kg dry wt alpha-BHC (Lindane) mg/kg dry wt alpha-BHC (Lindane) mg/kg dry wt alpha-BHC (Lindane) mg/kg dry wt alpha-BHC (Lindane) mg/kg dry wt alpha-BHC alpha-BHC (Lindane) mg/kg dry wt alpha-BHC alpha-BHC (Lindane) mg/kg dry wt alpha-BHC alpha-BHC (Lindane) mg/kg dry wt alpha-BHC alpha-BHC alpha-BHC (Lindane) mg/kg dry wt alpha-BHC alpha-BHC alpha-BHC alpha-BHC alpha-BHC alpha-BHC alpha-BHC alpha-BHC alpha-BHC alpha-BHC alpha-BHC (Lindane) mg/kg dry wt alpha-BHC alpha	Total Recoverable Zinc	mg/kg dry wt	28	81	31	44	50		
alpha-BHC mg/kg dry wt	Organochlorine Pesticides So	Organochlorine Pesticides Screening in Soil							
beta-BHC mg/kg dry wt - < 0.012 < 0.013 delta-BHC mg/kg dry wt - < 0.012 < 0.013 gamma-BHC (Lindane) mg/kg dry wt - < 0.012 < 0.013 gamma-BHC (Lindane) mg/kg dry wt - < 0.012 < 0.013 trans-Chlordane mg/kg dry wt - < 0.012 < 0.013 trans-Chlordane mg/kg dry wt - < 0.012 < 0.013 trans-Chlordane mg/kg dry wt - < 0.012 < 0.013 trans-Chlordane mg/kg dry wt - < 0.012 < 0.013 trans-Chlordane mg/kg dry wt - < 0.012 < 0.013 trans-Chlordane mg/kg dry wt - < 0.012 < 0.013 4,4*DDD mg/kg dry wt - < 0.012 < 0.013 4,4*DDE mg/kg dry wt - < 0.012 < 0.013 4,4*DDE mg/kg dry wt - < 0.012 < 0.013 4,4*DDE mg/kg dry wt - < 0.012 < 0.013 4,4*DDT mg/kg dry wt - < 0.012 < 0.013 4,4*DDT mg/kg dry wt - < 0.012 < 0.013 4,4*DDT mg/kg dry wt - < 0.012 < 0.013 10DT Isomers mg/kg dry wt - < 0.012 < 0.013 10DT Isomers mg/kg dry wt - < 0.012 < 0.013 Endosulfan I mg/kg dry wt - < 0.012 < 0.013 Endosulfan I mg/kg dry wt - < 0.012 < 0.013 Endosulfan I mg/kg dry wt - < 0.012 < 0.013 Endosulfan II mg/kg dry wt - < 0.012 < 0.013 Endosulfan I mg/kg dry wt - < 0.012 < 0.013 Endosulfan Bendshide mg/kg dry wt - < 0.012 < 0.013 Endosulfan Bendshide mg/kg dry wt - < 0.012 < 0.013 Endosulfan I mg/kg dry wt - < 0.012 < 0.013 Endosulfan Bendshide mg/kg dry wt - < 0.012 < 0.013 Endrin Metone mg/kg dry wt - < 0.012 < 0.013 Endrin Metone mg/kg dry wt - < 0.012 < 0.013 Endrin Metone mg/kg dry wt - < 0.012 < 0.013 Endrin Metone mg/kg dry wt - < 0.012 < 0.013 Endrin Metone mg/kg dry wt - < 0.012 < 0.013 Endrin Metone mg/kg dry wt - < 0.012 < 0.013 Endrin Metone mg/kg dry wt - < 0.012 < 0.013 Endrin Metone mg/kg dry wt - < 0.012 < 0.013 Endrin Metone mg/kg dry wt - < 0.012 < 0.013 Endrin Metone mg/kg dry wt - < 0.012 < 0.013 Endrin Metone mg/kg dry wt - < 0.012 < 0.013 Endrin Metone mg/kg dry wt - < 0.012 < 0.013 Endrin Metone mg/kg dry wt - < 0.012 < 0.013 Endrin Metone mg/kg dry wt - < 0.012 < 0	Aldrin	mg/kg dry wt	-	< 0.012	-	-	< 0.013		
delta-BHC mg/kg dry wt - < 0.012	alpha-BHC	mg/kg dry wt	-	< 0.012	-	-	< 0.013		
gamma-BHC (Lindane) mg/kg dry wt - < 0.012 < 0.013 cis-Chlordane mg/kg dry wt - < 0.012 < 0.013 trans-Chlordane mg/kg dry wt - < 0.012 < 0.013 trans-Chlordane mg/kg dry wt - < 0.012 < 0.013 trans-Chlordane mg/kg dry wt - < 0.012 < 0.013 2,4-DDD mg/kg dry wt - < 0.012 < 0.013 2,4-DDD mg/kg dry wt - < 0.012 < 0.013 2,4-DDD mg/kg dry wt - < 0.012 < 0.013 2,4-DDE mg/kg dry wt - < 0.012 < 0.013 2,4-DDE mg/kg dry wt - < 0.012 < 0.013 2,4-DDE mg/kg dry wt - < 0.012 < 0.013 2,4-DDT mg/kg dry wt - < 0.012 < 0.013 2,4-DDT mg/kg dry wt - < 0.012 < 0.013 2,4-DDT mg/kg dry wt - < 0.012 < 0.013 2,4-DDT mg/kg dry wt - < 0.012 < 0.013 2,4-DDT mg/kg dry wt - < 0.012 < 0.013 2,4-DDT mg/kg dry wt - < 0.012 < 0.013 2,4-DDT mg/kg dry wt - < 0.012 < 0.013 2,4-DDT mg/kg dry wt - < 0.012 < 0.013 2,4-DDT mg/kg dry wt - < 0.012 < 0.013 2,4-DDT mg/kg dry wt - < 0.012 < 0.013 2,4-DDT mg/kg dry wt - < 0.012 < 0.013 2,4-DDT mg/kg dry wt - < 0.012 < 0.013 2,4-DDT mg/kg dry wt - < 0.012 < 0.013 2,4-DDT mg/kg dry wt - < 0.012 < 0.013 2,4-DDT mg/kg dry wt - < 0.012 < 0.013 2,4-DDT mg/kg dry wt - < 0.012 < 0.013 2,4-DDT mg/kg dry wt - < 0.012 < 0.013 2,4-DDT mg/kg dry wt - < 0.012 < 0.013 2,4-DDT mg/kg dry wt - < 0.012 < 0.013 2,4-DDT mg/kg dry wt - < 0.012 < 0.013 2,4-DDT mg/kg dry wt - < 0.012 < 0.013 2,4-DDT mg/kg dry wt - < 0.012 < 0.013 2,4-DDT mg/kg dry wt - < 0.012 < 0.013 2,4-DDT mg/kg dry wt - < 0.012 < 0.013 2,4-DDT mg/kg dry wt - < 0.012 < 0.013 2,4-DDT mg/kg dry wt - < 0.012 < 0.013 2,4-DDT mg/kg dry wt - < 0.012 < 0.013 2,4-DDT mg/kg dry wt - < 0.012 < 0.013 2,4-DDT mg/kg dry wt - < 0.012 < 0.013 2,4-DDT mg/kg dry wt - < 0.012 < 0.013 2,4-DDT mg/kg dry wt - < 0.012 < 0.013 2,4-DDT mg/kg dry wt - < 0.012 < 0.013 2,4-DDT mg/kg dry wt - < 0.012 < 0.013 2,4-DDT mg/kg dry wt -	beta-BHC	mg/kg dry wt	-	< 0.012	-	-	< 0.013		
cis-Chlordane	delta-BHC	mg/kg dry wt	-	< 0.012	-	-	< 0.013		
trans-Chlordane mg/kg dry wt - < 0.012 < 0.013 2,4'-DDD mg/kg dry wt - < 0.012 < 0.013 4,4'-DDD mg/kg dry wt - < 0.012 < 0.013 4,4'-DDE mg/kg dry wt - < 0.012 < 0.013 4,4'-DDE mg/kg dry wt - < 0.012 < 0.013 4,4'-DDE mg/kg dry wt - < 0.012 < 0.013 4,4'-DDT mg/kg dry wt - < 0.012 < 0.016 2,4'-DDT mg/kg dry wt - < 0.012 < 0.013 4,4'-DDT mg/kg dry wt - < 0.012 < 0.013 4,4'-DDT mg/kg dry wt - < 0.012 < 0.013 1	gamma-BHC (Lindane)	mg/kg dry wt	-	< 0.012	-	-	< 0.013		
2,4'-DDD mg/kg dry wt - < 0.012 < 0.013 4,4'-DDD mg/kg dry wt - < 0.012 < 0.013 2,4'-DDE mg/kg dry wt - < 0.012 < 0.013 2,4'-DDE mg/kg dry wt - < 0.012 < 0.013 4,4'-DDE mg/kg dry wt - < 0.012 < 0.016 2,4'-DDT mg/kg dry wt - < 0.012 < 0.013 4,4'-DDT mg/kg dry wt - < 0.012 < 0.013 4,4'-DDT mg/kg dry wt - < 0.012 < 0.013 Total DDT Isomers mg/kg dry wt - < 0.012 < 0.013 Total DDT Isomers mg/kg dry wt - < 0.012 < 0.08 Dieldrin mg/kg dry wt - < 0.012 < 0.08 Endosulfan I mg/kg dry wt - < 0.012 < 0.013 Endosulfan II mg/kg dry wt - < 0.012 < 0.013 Endosulfan sulphate mg/kg dry wt - < 0.012 < 0.013 Endrin mg/kg dry wt - < 0.012 < 0.013 Endrin mg/kg dry wt - < 0.012 < 0.013 Endrin ketone mg/kg dry wt - < 0.012 < 0.013 Endrin ketone mg/kg dry wt - < 0.012 < 0.013 Heptachlor mg/kg dry wt - < 0.012 < 0.013 Heptachlor mg/kg dry wt - < 0.012 < 0.013 Heptachlor mg/kg dry wt - < 0.012 < 0.013 Heptachlor mg/kg dry wt - < 0.012 < 0.013 Heptachlor mg/kg dry wt - < 0.012 < 0.013 Heptachlor mg/kg dry wt - < 0.012 < 0.013 Heptachlor mg/kg dry wt - < 0.012 < 0.013 Heptachlor mg/kg dry wt - < 0.012 < 0.013 Heptachlor mg/kg dry wt - < 0.012 < 0.013 Heptachlor mg/kg dry wt - < 0.012 < 0.013 Heptachlor mg/kg dry wt - < 0.012 < 0.013 Heptachlor mg/kg dry wt - < 0.012 < 0.013 Heptachlor mg/kg dry wt - < 0.012 < 0.013 Heptachlor mg/kg dry wt - < 0.012 < 0.013 Heptachlor mg/kg dry wt - < 0.012 < 0.013 Total Petroleum Hydrocarbons in Soil C7 - C9 mg/kg dry wt - < 20 < 20 C10 - C14 mg/kg dry wt - < 20 < 20 C15 - C36 mg/kg dry wt - < 400 < 400	cis-Chlordane	mg/kg dry wt	-	< 0.012	-	-	< 0.013		
4,4'-DDD mg/kg dry wt - < 0.012 < 0.013 2,4'-DDE mg/kg dry wt - < 0.012 < 0.013 4,4'-DDE mg/kg dry wt - < 0.012 < 0.013 4,4'-DDT mg/kg dry wt - < 0.012 < 0.016 2,4'-DDT mg/kg dry wt - < 0.012 < 0.013 4,4'-DDT mg/kg dry wt - < 0.012 < 0.013 4,4'-DDT mg/kg dry wt - < 0.012 < 0.013 Total DDT Isomers mg/kg dry wt - < 0.007 < 0.08 Dieldrin mg/kg dry wt - < 0.012 < 0.013 Endosulfan I mg/kg dry wt - < 0.012 < 0.013 Endosulfan II mg/kg dry wt - < 0.012 < 0.013 Endosulfan sulphate mg/kg dry wt - < 0.012 < 0.013 Endrin mg/kg dry wt - < 0.012 < 0.013 Endrin mg/kg dry wt - < 0.012 < 0.013 Endrin ketone mg/kg dry wt - < 0.012 < 0.013 Endrin ketone mg/kg dry wt - < 0.012 < 0.013 Heptachlor mg/kg dry wt - < 0.012 < 0.013 Heptachlor mg/kg dry wt - < 0.012 < 0.013 Heptachlor mg/kg dry wt - < 0.012 < 0.013 Heptachlor mg/kg dry wt - < 0.012 < 0.013 Heptachlor mg/kg dry wt - < 0.012 < 0.013 Heptachlor mg/kg dry wt - < 0.012 < 0.013 Heptachlor mg/kg dry wt - < 0.012 < 0.013 Heptachlor mg/kg dry wt - < 0.012 < 0.013 Heptachlor mg/kg dry wt - < 0.012 < 0.013 Heptachlor mg/kg dry wt - < 0.012 < 0.013 Total Petroleum Hydrocarbons in Soil C7 - C9 mg/kg dry wt - < 20 < 20 C10 - C14 mg/kg dry wt - < 20 < 20 C15 - C36 mg/kg dry wt - < 400 < 40	trans-Chlordane	mg/kg dry wt	-	< 0.012	-	-	< 0.013		
2,4'-DDE mg/kg dry wt - < 0.012 0.013 4,4'-DDE mg/kg dry wt - < 0.012 0.016 2,4'-DDT mg/kg dry wt - < 0.012 < 0.013 4,4'-DDT mg/kg dry wt - < 0.012 < 0.013 4,4'-DDT mg/kg dry wt - < 0.012 < 0.013 Total DDT Isomers mg/kg dry wt - < 0.012 < 0.08 Dieldrin mg/kg dry wt - < 0.012 < 0.08 Dieldrin mg/kg dry wt - < 0.012 < 0.013 Endosulfan I mg/kg dry wt - < 0.012 < 0.013 Endosulfan II mg/kg dry wt - < 0.012 < 0.013 Endosulfan II mg/kg dry wt - < 0.012 < 0.013 Endosulfan sulphate mg/kg dry wt - < 0.012 < 0.013 Endrin mg/kg dry wt - < 0.012 < 0.013 Endrin mg/kg dry wt - < 0.012 < 0.013 Endrin mg/kg dry wt - < 0.012 < 0.013 Endrin mg/kg dry wt - < 0.012 < 0.013 Endrin ketone mg/kg dry wt - < 0.012 < 0.013 Endrin ketone mg/kg dry wt - < 0.012 < 0.013 Endrin ketone mg/kg dry wt - < 0.012 < 0.013 Endrin ketone mg/kg dry wt - < 0.012 < 0.013 Endrin ketone mg/kg dry wt - < 0.012 < 0.013 Heptachlor mg/kg dry wt - < 0.012 < 0.013 Heptachlor epoxide mg/kg dry wt - < 0.012 < 0.013 Heptachlor mg/kg dry wt - < 0.012 < 0.013 Methoxychlor mg/kg dry wt - < 0.012 < 0.013 Total Petroleum Hydrocarbons in Soil C7 - C9 mg/kg dry wt - < 20 < 20 C10 - C14 mg/kg dry wt - < 400 < 40	2,4'-DDD	mg/kg dry wt	-	< 0.012	-	-	< 0.013		
4.4*-DDE	4,4'-DDD	mg/kg dry wt	-	< 0.012	-	-	< 0.013		
2,4'-DDT mg/kg dry wt - <0.012 <0.013 4,4'-DDT mg/kg dry wt - <0.012 <0.013 Total DDT Isomers mg/kg dry wt - <0.007 <0.08 Dieldrin mg/kg dry wt - <0.012 <0.013 Endosulfan I mg/kg dry wt - <0.012 <0.013 Endosulfan II mg/kg dry wt - <0.012 <0.013 Endosulfan II mg/kg dry wt - <0.012 <0.013 Endosulfan sulphate mg/kg dry wt - <0.012 <0.013 Endrin mg/kg dry wt - <0.012 <0.013 Endrin mg/kg dry wt - <0.012 <0.013 Endrin mg/kg dry wt - <0.012 <0.013 Endrin laldehyde mg/kg dry wt - <0.012 <0.013 Endrin ketone mg/kg dry wt - <0.012 <0.013 Endrin ketone mg/kg dry wt - <0.012 <0.013 Endrin ketone mg/kg dry wt - <0.012 <0.013 Heptachlor mg/kg dry wt - <0.012 <0.013 Heptachlor mg/kg dry wt - <0.012 <0.013 Hexachlorobenzene mg/kg dry wt - <0.012 <0.013 Hexachlorobenzene mg/kg dry wt - <0.012 <0.013 Methoxychlor mg/kg dry wt - <0.012 <0.013 Total Petroleum Hydrocarbons in Soil C7 - C9 mg/kg dry wt - <20 <20 C10 - C14 mg/kg dry wt - <20 <20 C15 - C36 mg/kg dry wt - <400 <40	2,4'-DDE	mg/kg dry wt	-	< 0.012	-	-	< 0.013		
4,4'-DDT	4,4'-DDE	mg/kg dry wt	-	< 0.012	-	<u> </u>	0.016		
Total DDT Isomers mg/kg dry wt - < 0.07 < 0.08 Dieldrin mg/kg dry wt - < 0.012 - < 0.013 Endosulfan I mg/kg dry wt - < 0.012 < 0.013 Endosulfan II mg/kg dry wt - < 0.012 < 0.013 Endosulfan sulphate mg/kg dry wt - < 0.012 < 0.013 Endrin mg/kg dry wt - < 0.012 < 0.013 Endrin mg/kg dry wt - < 0.012 < 0.013 Endrin aldehyde mg/kg dry wt - < 0.012 < 0.013 Endrin ketone mg/kg dry wt - < 0.012 < 0.013 Endrin ketone mg/kg dry wt - < 0.012 < 0.013 Heptachlor mg/kg dry wt - < 0.012 < 0.013 Heptachlor epoxide mg/kg dry wt - < 0.012 < 0.013 Hexachlorobenzene mg/kg dry wt - < 0.012 < 0.013 Methoxychlor mg/kg dry wt - < 0.012 < 0.013 Total Petroleum Hydrocarbons in Soil C7 - C9 mg/kg dry wt - < 20 < 20 C10 - C14 mg/kg dry wt - < 40 < 40	2,4'-DDT	mg/kg dry wt	-	< 0.012	-)-	< 0.013		
Dieldrin mg/kg dry wt -	4,4'-DDT	mg/kg dry wt	-	< 0.012	-		< 0.013		
Endosulfan I mg/kg dry wt - <0.012 <0.013 Endosulfan II mg/kg dry wt - <0.012 <0.013 Endosulfan sulphate mg/kg dry wt - <0.012 <0.013 Endrin mg/kg dry wt - <0.012 <0.013 Endrin aldehyde mg/kg dry wt - <0.012 <0.013 Endrin ketone mg/kg dry wt - <0.012 <0.013 Endrin ketone mg/kg dry wt - <0.012 <0.013 Heptachlor mg/kg dry wt - <0.012 <0.013 Heptachlor mg/kg dry wt - <0.012 <0.013 Heptachlor epoxide mg/kg dry wt - <0.012 <0.013 Hexachlorobenzene mg/kg dry wt - <0.012 <0.013 Methoxychlor mg/kg dry wt - <0.012 <0.013 Total Petroleum Hydrocarbons in Soil C7 - C9 mg/kg dry wt - <20 <20 C10 - C14 mg/kg dry wt - <40 <40 C15 - C36 mg/kg dry wt - <40 <40	Total DDT Isomers	mg/kg dry wt	-	< 0.07	-		< 0.08		
Endosulfan II mg/kg dry wt - < 0.012 < 0.013 Endosulfan sulphate mg/kg dry wt - < 0.012 < 0.013 Endrin mg/kg dry wt - < 0.012 < 0.013 Endrin aldehyde mg/kg dry wt - < 0.012 < 0.013 Endrin ketone mg/kg dry wt - < 0.012 < 0.013 Endrin ketone mg/kg dry wt - < 0.012 < 0.013 Heptachlor mg/kg dry wt - < 0.012 < 0.013 Heptachlor epoxide mg/kg dry wt - < 0.012 < 0.013 Hexachlorobenzene mg/kg dry wt - < 0.012 < 0.013 Hexachlorobenzene mg/kg dry wt - < 0.012 < 0.013 Methoxychlor mg/kg dry wt - < 0.012 < 0.013 Total Petroleum Hydrocarbons in Soil C7 - C9 mg/kg dry wt - < 20 < 20 C10 - C14 mg/kg dry wt - < 400 < 40	Dieldrin	mg/kg dry wt	-	< 0.012			< 0.013		
Endosulfan sulphate mg/kg dry wt - < 0.012 < 0.013 Endrin mg/kg dry wt - < 0.012 < 0.013 Endrin aldehyde mg/kg dry wt - < 0.012 < 0.013 Endrin ketone mg/kg dry wt - < 0.012 < 0.013 Heptachlor mg/kg dry wt - < 0.012 < 0.013 Heptachlor epoxide mg/kg dry wt - < 0.012 < 0.013 Hexachlorobenzene mg/kg dry wt - < 0.012 < 0.013 Hexachlorobenzene mg/kg dry wt - < 0.012 < 0.013 Methoxychlor mg/kg dry wt - < 0.012 < 0.013 Total Petroleum Hydrocarbons in Soil C7 - C9 mg/kg dry wt - < 20 < 20 C10 - C14 mg/kg dry wt - < 20 < 20 C15 - C36 mg/kg dry wt - < 40 < 40	Endosulfan I	mg/kg dry wt	-	< 0.012		101	< 0.013		
Endrin mg/kg dry wt - < 0.012 < 0.013 Endrin aldehyde mg/kg dry wt - < 0.012 < 0.013 Endrin ketone mg/kg dry wt - < 0.012 < 0.013 Heptachlor mg/kg dry wt - < 0.012 < 0.013 Heptachlor epoxide mg/kg dry wt - < 0.012 < 0.013 Hexachlorobenzene mg/kg dry wt - < 0.012 < 0.013 Methoxychlor mg/kg dry wt - < 0.012 < 0.013 Total Petroleum Hydrocarbons in Soil C7 - C9 mg/kg dry wt - < 20 < 20 C10 - C14 mg/kg dry wt - < 20 < 20 C15 - C36 mg/kg dry wt - < 440 < 440	Endosulfan II	mg/kg dry wt	-	< 0.012	9 - /	<u> </u>	< 0.013		
Endrin aldehyde mg/kg dry wt - < 0.012 - < 0.013 Endrin ketone mg/kg dry wt - < 0.012 < 0.013 Heptachlor mg/kg dry wt - < 0.012 < 0.013 Heptachlor epoxide mg/kg dry wt - < 0.012 < 0.013 Hexachlorobenzene mg/kg dry wt - < 0.012 < 0.013 Methoxychlor mg/kg dry wt - < 0.012 < 0.013 Total Petroleum Hydrocarbons in Soil C7 - C9 mg/kg dry wt - < 20 < 20 C10 - C14 mg/kg dry wt - < 20 < 20 C15 - C36 mg/kg dry wt - < 440 < 440	Endosulfan sulphate	mg/kg dry wt	-	< 0.012	-	-	< 0.013		
Endrin ketone mg/kg dry wt - <0.012 - <0.013 Heptachlor mg/kg dry wt - <0.012 - <0.013 Heptachlor epoxide mg/kg dry wt - <0.012 - <0.013 Hexachlorobenzene mg/kg dry wt - <0.012 - <0.013 Hexachlorobenzene mg/kg dry wt - <0.012 - <0.013 Methoxychlor mg/kg dry wt - <0.012 - <0.013 Total Petroleum Hydrocarbons in Soil C7 - C9 mg/kg dry wt - <20 - <20 C10 - C14 mg/kg dry wt - <20 - <20 C15 - C36 mg/kg dry wt - <40 - <40	Endrin	mg/kg dry wt	-	< 0.012		-	< 0.013		
Heptachlor mg/kg dry wt - < 0.012 < 0.013 Heptachlor epoxide mg/kg dry wt - < 0.012 < 0.013 Hexachlorobenzene mg/kg dry wt - < 0.012 < 0.013 Methoxychlor mg/kg dry wt - < 0.012 < 0.013 Total Petroleum Hydrocarbons in Soil C7 - C9 mg/kg dry wt - < 20 < 20 C10 - C14 mg/kg dry wt - < 20 < 20 C15 - C36 mg/kg dry wt - < 40 < 40	Endrin aldehyde	mg/kg dry wt	-			-	< 0.013		
Heptachlor epoxide mg/kg dry wt - < 0.012 < 0.013 Hexachlorobenzene mg/kg dry wt - < 0.012 < 0.013 Methoxychlor mg/kg dry wt - < 0.012 < 0.013 Total Petroleum Hydrocarbons in Soil C7 - C9 mg/kg dry wt - < 20 < 20 C10 - C14 mg/kg dry wt - < 20 < 20 C15 - C36 mg/kg dry wt - < 40 < 440	Endrin ketone	mg/kg dry wt	-	< 0.012	(0)	-	< 0.013		
Hexachlorobenzene mg/kg dry wt - < 0.012 < 0.013 Methoxychlor mg/kg dry wt - < 0.012 < 0.013 Total Petroleum Hydrocarbons in Soil C7 - C9 mg/kg dry wt - < 20 < 20 C10 - C14 mg/kg dry wt - < 20 < 20 C15 - C36 mg/kg dry wt - < 40 < 40	Heptachlor	mg/kg dry wt	-	< 0.012		-	< 0.013		
Methoxychlor mg/kg dry wt < 0.012 - - < 0.013 Total Petroleum Hydrocarbons in Soil C7 - C9 mg/kg dry wt - < 20	Heptachlor epoxide	mg/kg dry wt	-	< 0.012	-	-	< 0.013		
Total Petroleum Hydrocarbons in Soil C7 - C9	Hexachlorobenzene	mg/kg dry wt	-	< 0.012	-	-	< 0.013		
C7 - C9 mg/kg dry wt - < 20 < 20 C10 - C14 mg/kg dry wt - < 20 < 20 C15 - C36 mg/kg dry wt - < 40 < 40	Methoxychlor	mg/kg dry wt	14	< 0.012	-	-	< 0.013		
C10 - C14 mg/kg dry wt - < 20 < 20 C15 - C36 mg/kg dry wt - < 40 - < 40	Total Petroleum Hydrocarbons in Soil								
C15 - C36 mg/kg dry wt - < 40 < 40	C7 - C9	mg/kg dry wt	10	< 20	-	-	< 20		
	C10 - C14	mg/kg dry wt	- (< 20	-	-	< 20		
Total hydrocarbons (C7 - C36) mg/kg dry wt - < 80 < 80	C15 - C36	mg/kg dry wt	-	< 40	-	-	< 40		
	Total hydrocarbons (C7 - C36	6) mg/kg dry wt		< 80	-	-	< 80		

Analyst's Comments

Amended Report: This certificate of analysis replaces report '3209697-SPv2' issued on 06-Apr-2023 at 3:42 pm. Reason for amendment: Additional metals testing added.

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Labs, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil							
Test	Method Description	Default Detection Limit	Sample No				
Individual Tests							
Environmental Solids Sample Drying*	Air dried at 35°C Used for sample preparation. May contain a residual moisture content of 2-5%.	-	1, 3, 5-9, 11-12, 15, 19, 22, 25, 28, 30-33, 35				
Total of Reported PAHs in Soil	Sonication extraction, GC-MS analysis. In-house based on US EPA 8270.	0.03 mg/kg dry wt	1-4, 9, 12-15, 17-18				

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Dry Matter	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. (Free water removed before analysis, non-soil objects such as sticks, leaves, grass and stones also removed). US EPA 3550.	0.10 g/100g as rcvd	1-4, 9, 12-15, 17-19, 22, 25, 28, 31, 35
Total Recoverable Beryllium	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.2 mg/kg dry wt	1, 3, 5-9, 11-12, 15, 19, 22, 25, 28, 30-33, 35
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES*	BaP Potency Equivalence calculated from; Benzo(a)anthracene x 0.1 + Benzo(b)fluoranthene x 0.1 + Benzo(j)fluoranthene x 0.1 + Benzo(k)fluoranthene x 0.1 + Benzo(a)pyrene x 1.0 + Chrysene x 0.01 + Dibenzo(a,h)anthracene x 1.0 + Fluoranthene x 0.01 + Indeno(1,2,3-c,d)pyrene x 0.1. Ministry for the Environment. 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health. Wellington: Ministry for the Environment.	0.024 mg/kg dry wt	1-4, 9, 12-15, 17-18
Benzo[a]pyrene Toxic Equivalence (TEF)*	Benzo[a]pyrene Toxic Equivalence (TEF) calculated from; Benzo[a]pyrene x 1.0 + Benzo(a)anthracene x 0.1 + Benzo(b) fluoranthene x 0.1 + Benzo(k)fluoranthene x 0.1 + Chrysene x 0.01 + Dibenzo(a,h)anthracene x 1.0 + Indeno(1,2,3-c,d)pyrene x 0.1. Guidelines for assessing and managing contaminated gasworks sites in New Zealand (GMG) (MfE, 1997).	0.024 mg/kg dry wt	1-4, 9, 12-15, 17-18
TPH Oil Industry Profile + PAHscreen	Sonication extraction, GC-FID and GC-MS analysis. Tested on as received sample. In-house based on US EPA 8015 and US EPA 8270.	0.010 - 70 mg/kg dry wt	1-4, 9, 12-15, 17-18
8 Heavy metals plus Boron	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP-MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 20 mg/kg dry wt	1, 3, 5-9, 11-12, 15, 19, 22, 25, 28, 30-33, 35
Organochlorine Pesticides Screening in Soil	Sonication extraction, GC-ECD analysis. Tested on as received sample. In-house based on US EPA 8081.	0.010 - 0.06 mg/kg dry wt	19, 22, 25, 28, 31, 35
Polychlorinated Biphenyls Screening in Soil*	Sonication extraction, GC-MS analysis. Tested on dried sample. In-house based on US EPA 8270.	0.00000020 - 0.2 mg/kg dry wt	1, 3
Volatile Organic Compounds Screening in Soil by Headspace GC-MS	Sonication extraction, Headspace GC-MS analysis. Tested on as received sample. In-house based on US EPA 8260 and 5021.	0.13 - 30 mg/kg dry wt	9, 12-13, 15, 17
Total Petroleum Hydrocarbons in Soil	110 110		
Client Chromatogram for TPH by FID	Small peaks associated with QC compounds may be visible in chromatograms with low TPH concentrations. QC peaks are as follows: one peak in the C12 - 14 band, the C21 - 25 band and the C30 - 36 band. All QC peaks are corrected for in the reported TPH concentrations.	-	3, 9, 12
C7 - C9	Solvent extraction, GC-FID analysis. In-house based on US EPA 8015.	20 mg/kg dry wt	1-4, 9, 12-15, 17-18, 28, 31, 35
C10 - C14	Solvent extraction, GC-FID analysis. Tested on as received sample. In-house based on US EPA 8015.	20 mg/kg dry wt	1-4, 9, 12-15, 17-18, 28, 31, 35
C15 - C36	Solvent extraction, GC-FID analysis. Tested on as received sample. In-house based on US EPA 8015.	40 mg/kg dry wt	1-4, 9, 12-15, 17-18, 28, 31, 35
Total hydrocarbons (C7 - C36)	Calculation: Sum of carbon bands from C7 to C36. In-house based on US EPA 8015.	70 mg/kg dry wt	1-4, 9, 12-15, 17-18, 28, 31, 35

Testing was completed between 23-Mar-2023 and 16-Jun-2023. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Kim Harrison MSc

Proactively Released Lealan and Information Revenue an Client Services Manager - Environmental

3209697-SPv3 Hill Labs Page 12 of 12 Lab No:

◆ 0508 HILL LAB (44 555 22)
 ♦ +64 7 858 2000
 ☑ mail@hill-labs.co.nz
 ⊕ www.hill-labs.co.nz

Certificate of Analysis

Page 1 of 12

Client: Contact: GHD Limited
David Jackson
C/- GHD Limited
PO Box 660
Weikete Meil Con

PO Box 660 Waikato Mail Centre Hamilton 3240 Lab No:
Date Received:
Date Reported:
Quote No:

22-Mar-2023 16-Jun-2023 124299

3211645

(Amended)

SPv3

Order No: 12559090
Client Reference: 12559090
Submitted By: David Jackson

Sample Type: Soil						
	Sample Name:	SB4 TP01 0.1	SB4 TP01 0.5	SB4 TP02 0.2	SB4 TP02 0.5	SB4 TP03 0.1
		20-Mar-2023	20-Mar-2023	20-Mar-2023	20-Mar-2023	20-Mar-2023
	Lab Number:	3211645.1	3211645.2	3211645.3	3211645.4	3211645.5
Individual Tests						
Dry Matter	g/100g as rcvd	70	60	64	59	69
Total Recoverable Beryllium	mg/kg dry wt	0.9	-	1.1	1,6	1.0
8 Heavy metals plus Boron					2.0.	
Total Recoverable Arsenic	mg/kg dry wt	6	-	15	12	9
Total Recoverable Boron	mg/kg dry wt	< 20	-	71	< 20	22
Total Recoverable Cadmium	mg/kg dry wt	0.24	-	0.28	< 0.10	0.25
Total Recoverable Chromium	mg/kg dry wt	10	- ()	13	5	10
Total Recoverable Copper	mg/kg dry wt	26	0	42	15	24
Total Recoverable Lead	mg/kg dry wt	27	76	23)	12.2	35
Total Recoverable Mercury	mg/kg dry wt	0.15	- 5	0.20	< 0.10	< 0.10
Total Recoverable Nickel	mg/kg dry wt	5	-	10	2	8
Total Recoverable Zinc	mg/kg dry wt	116		98	29	132
Polycyclic Aromatic Hydrocarbons Screening in Soil*						
Total of Reported PAHs in Soi	I mg/kg dry wt	1.0	< 0.4	< 0.4	< 0.4	< 0.4
1-Methylnaphthalene	mg/kg dry wt	< 0.015	< 0.017	< 0.016	< 0.017	< 0.014
2-Methylnaphthalene	mg/kg dry wt	< 0.015	< 0.017	< 0.016	< 0.017	< 0.014
Acenaphthylene	mg/kg dry wt	< 0.015	< 0.017	< 0.016	< 0.017	< 0.014
Acenaphthene	mg/kg dry wt	< 0.015	< 0.017	< 0.016	< 0.017	< 0.014
Anthracene	mg/kg dry wt	< 0.015	< 0.017	< 0.016	< 0.017	< 0.014
Benzo[a]anthracene	mg/kg dry wt	0.084	< 0.017	0.016	< 0.017	0.027
Benzo[a]pyrene (BAP)	mg/kg dry wt	0.096	< 0.017	0.018	< 0.017	0.028
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES	mg/kg dry wt S*	0.143	< 0.040	< 0.038	< 0.040	0.043
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	0.142	< 0.039	< 0.038	< 0.040	0.042
Benzo[b]fluoranthene + Benzo fluoranthene	[j] mg/kg dry wt	0.117	< 0.017	0.025	< 0.017	0.034
Benzo[e]pyrene	mg/kg dry wt	0.058	< 0.017	< 0.016	< 0.017	0.018
Benzo[g,h,i]perylene	mg/kg dry wt	0.055	< 0.017	< 0.016	< 0.017	0.015
Benzo[k]fluoranthene	mg/kg dry wt	0.047	< 0.017	< 0.016	< 0.017	< 0.014
Chrysene	mg/kg dry wt	0.080	< 0.017	< 0.016	< 0.017	0.027
Dibenzo[a,h]anthracene	mg/kg dry wt	0.014	< 0.017	< 0.016	< 0.017	< 0.014
Fluoranthene	mg/kg dry wt	0.171	< 0.017	0.035	< 0.017	0.062
Fluorene	mg/kg dry wt	< 0.015	< 0.017	< 0.016	< 0.017	< 0.014
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	0.060	< 0.017	< 0.016	< 0.017	0.016
Naphthalene	mg/kg dry wt	< 0.08	< 0.09	< 0.08	< 0.09	< 0.07
Perylene	mg/kg dry wt	0.024	< 0.017	< 0.016	< 0.017	< 0.014
Phenanthrene	mg/kg dry wt	0.024	< 0.017	< 0.016	< 0.017	0.020

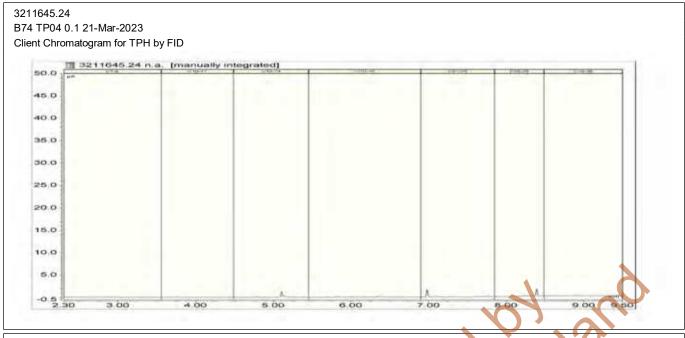
This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked * or any comments and interpretations, which are not accredited.

Sample Type: Soil						
	Sample Name:	SB4 TP01 0.1 20-Mar-2023	SB4 TP01 0.5 20-Mar-2023	SB4 TP02 0.2 20-Mar-2023	SB4 TP02 0.5 20-Mar-2023	SB4 TP03 0.1 20-Mar-2023
	Lab Number:	3211645.1	3211645.2	3211645.3	3211645.4	3211645.5
Polycyclic Aromatic Hydroc	arbons Screening in S	oil*				
Pyrene	mg/kg dry wt	0.128	< 0.017	0.025	< 0.017	0.042
Polychlorinated Biphenyls S	Screening in Soil*					
PCB-18	mg/kg dry wt	< 0.010	-	< 0.010	-	< 0.010
PCB-28	mg/kg dry wt	< 0.010	-	< 0.010	-	< 0.010
PCB-31	mg/kg dry wt	< 0.010	-	< 0.010	-	< 0.010
PCB-44	mg/kg dry wt	< 0.010	-	< 0.010	-	< 0.010
PCB-49	mg/kg dry wt	< 0.010	-	< 0.010	-	< 0.010
PCB-52	mg/kg dry wt	< 0.010	-	< 0.010	-	< 0.010
PCB-60	mg/kg dry wt	< 0.010	-	< 0.010	-	< 0.010
PCB-77	mg/kg dry wt	< 0.010	-	< 0.010	-	< 0.010
PCB-81	mg/kg dry wt	< 0.010	-	< 0.010	-	< 0.010
PCB-86	mg/kg dry wt	< 0.010	-	< 0.010	-	< 0.010
PCB-101	mg/kg dry wt	< 0.010	-	< 0.010	<u> </u>	< 0.010
PCB-105	mg/kg dry wt	< 0.010	-	< 0.010))	< 0.010
PCB-110	mg/kg dry wt	< 0.010	-	< 0.010	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	< 0.010
PCB-114	mg/kg dry wt	< 0.010	-	< 0.010		< 0.010
PCB-118	mg/kg dry wt	< 0.010	-	< 0.010	2.0.	< 0.010
PCB-121	mg/kg dry wt	< 0.010	-	< 0.010	10	< 0.010
PCB-123	mg/kg dry wt	< 0.010	-	0.010	-	< 0.010
PCB-126	mg/kg dry wt	< 0.010	- (< 0.010	-	< 0.010
PCB-128	mg/kg dry wt	< 0.010	10	< 0.010	-	< 0.010
PCB-138	mg/kg dry wt	< 0.010		< 0.010	-	< 0.010
PCB-141 PCB-149	mg/kg dry wt	< 0.010	70	< 0.010	-	< 0.010
PCB-149 PCB-151	mg/kg dry wt	< 0.010 < 0.010	-	< 0.010 < 0.010	-	< 0.010 < 0.010
PCB-151	mg/kg dry wt mg/kg dry wt	< 0.010	-	< 0.010	-	< 0.010
PCB-156	mg/kg dry wt	< 0.010		< 0.010	-	< 0.010
PCB-157	mg/kg dry wt	< 0.010		< 0.010	<u> </u>	< 0.010
PCB-159	mg/kg dry wt	< 0.010		< 0.010	_	< 0.010
PCB-167	mg/kg dry wt	< 0.010	1	< 0.010	-	< 0.010
PCB-169	mg/kg dry wt	< 0.010	^ -	< 0.010	-	< 0.010
PCB-170	mg/kg dry wt	< 0.010	-	< 0.010	-	< 0.010
PCB-180	mg/kg dry wt	< 0.010	-	< 0.010	-	< 0.010
PCB-189	mg/kg dry wt	< 0.010	_	< 0.010	_	< 0.010
PCB-194	mg/kg dry wt	< 0.010	_	< 0.010	_	< 0.010
PCB-206	mg/kg dry wt	< 0.010	-	< 0.010	-	< 0.010
PCB-209	mg/kg dry wt	< 0.010	-	< 0.010	-	< 0.010
Mono-Ortho PCB Toxic Equivalence (TEF)*	mg/kg dry wt	< 0.000003	-	< 0.000003	-	< 0.000003
Non-Ortho PCB Toxic Equivalence (TEF)*	mg/kg dry wt	< 0.0014	-	< 0.0014	-	< 0.0014
Total PCB (Sum of 35 congeners)	mg/kg dry wt	< 0.4	-	< 0.4	-	< 0.4
Total Petroleum Hydrocarbo			i			
C7 - C9	mg/kg dry wt	< 20	< 30	< 30	< 30	< 20
C10 - C14	mg/kg dry wt	< 20	< 20	< 20	< 20	< 20
C15 - C36	mg/kg dry wt	< 40	< 40	88	< 40	48
Total hydrocarbons (C7 - C	36) mg/kg dry wt	< 80	< 90	98	< 90	< 80
	Sample Name:	SB4 TP03 0.4 20-Mar-2023	B68 TP06 0.1 20-Mar-2023	B68 TP06 0.5 20-Mar-2023	B68 TP07 0.2 20-Mar-2023	B68 TP08 0.2 20-Mar-2023
	Lab Number:	3211645.6	3211645.7	3211645.8	3211645.10	3211645.13
Individual Tests						
Dry Matter	g/100g as rcvd	67	92	88	91	89

Sample Type: Soil						
\$	Sample Name:	SB4 TP03 0.4 20-Mar-2023	B68 TP06 0.1 20-Mar-2023	B68 TP06 0.5 20-Mar-2023	B68 TP07 0.2 20-Mar-2023	B68 TP08 0.2 20-Mar-2023
	Lab Number:	3211645.6	3211645.7	3211645.8	3211645.10	3211645.13
8 Heavy metals plus Boron						
Total Recoverable Arsenic	mg/kg dry wt	-	8	-	-	3
Total Recoverable Boron	mg/kg dry wt	-	< 20	-	-	< 20
Total Recoverable Cadmium	mg/kg dry wt	-	< 0.10	-	-	< 0.10
Total Recoverable Chromium	mg/kg dry wt	-	15	-	-	4
Total Recoverable Copper	mg/kg dry wt	-	18	-	-	3
Total Recoverable Lead	mg/kg dry wt	-	10.8	-	-	3.8
Total Recoverable Mercury	mg/kg dry wt	-	< 0.10	-	-	< 0.10
Total Recoverable Nickel	mg/kg dry wt	-	23	-	-	3
Total Recoverable Zinc	mg/kg dry wt	-	51	-	-	20
Polycyclic Aromatic Hydrocarb	ons Screening in S	oil*				
Total of Reported PAHs in Soil	mg/kg dry wt	1.5	< 0.3	< 0.3	< 0.3	< 0.3
1-Methylnaphthalene	mg/kg dry wt	< 0.015	< 0.011	< 0.012	< 0.011	< 0.012
2-Methylnaphthalene	mg/kg dry wt	< 0.015	< 0.011	< 0.012	< 0.011	< 0.012
Acenaphthylene	mg/kg dry wt	< 0.015	< 0.011	< 0.012	< 0.011	< 0.012
Acenaphthene	mg/kg dry wt	< 0.015	< 0.011	< 0.012	< 0.011	< 0.012
Anthracene	mg/kg dry wt	0.021	< 0.011	< 0.012	< 0.011	< 0.012
Benzo[a]anthracene	mg/kg dry wt	0.150	< 0.011	< 0.012	< 0.011	< 0.012
Benzo[a]pyrene (BAP)	mg/kg dry wt	0.136	< 0.011	< 0.012	< 0.011	< 0.012
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES	mg/kg dry wt	0.199	< 0.026	0.028	< 0.027	< 0.027
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	0.196	< 0.026	< 0.027	< 0.027	< 0.027
Benzo[b]fluoranthene + Benzo[fluoranthene	j] mg/kg dry wt	0.160	< 0.011	< 0.012	< 0.011	< 0.012
Benzo[e]pyrene	mg/kg dry wt	0.074	< 0.011	< 0.012	< 0.011	< 0.012
Benzo[g,h,i]perylene	mg/kg dry wt	0.069	< 0.011	< 0.012	< 0.011	< 0.012
Benzo[k]fluoranthene	mg/kg dry wt	0.063	< 0.011	< 0.012	< 0.011	< 0.012
Chrysene	mg/kg dry wt	0.153	< 0.011	< 0.012	< 0.011	< 0.012
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.015	♦ < 0.011	< 0.012	< 0.011	< 0.012
Fluoranthene	mg/kg dry wt	0.30	< 0.011	< 0.012	< 0.011	< 0.012
Fluorene	mg/kg dry wt	< 0.015	< 0.011	< 0.012	< 0.011	< 0.012
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	0.078	< 0.011	< 0.012	< 0.011	< 0.012
Naphthalene	mg/kg dry wt	< 0.08	< 0.06	< 0.06	< 0.06	< 0.06
Perylene	mg/kg dry wt	0.029	< 0.011	< 0.012	< 0.011	< 0.012
Phenanthrene	mg/kg dry wt	0.027	< 0.011	< 0.012	< 0.011	< 0.012
Pyrene	mg/kg dry wt	0.27	< 0.011	< 0.012	< 0.011	< 0.012
Total Petroleum Hydrocarbons	in Soil		,		,	,
C7 - C9	mg/kg dry wt	< 30	< 20	< 20	< 20	< 20
C10 - C14	mg/kg dry wt	< 20	< 20	< 20	< 20	< 20
C15 - C36	mg/kg dry wt	< 40	< 40	< 40	< 40	< 40
Total hydrocarbons (C7 - C36)		< 90	< 80	< 80	< 80	< 80
	Sample Name:	B74 TP06 0.1 20-Mar-2023	B74 TP06 2.5 20-Mar-2023	B74 TP07 0.1 20-Mar-2023	B74 TP04 0.1 21-Mar-2023	B74 TP04 0.7 21-Mar-2023
	Lab Number:	3211645.16	3211645.18	3211645.19	3211645.24	3211645.25
Individual Tests	Las Mailber.	52.10-0.10	02 / 10 to 10	0211040.10	02 / 10-10.2T	52 / 10 1 0.20
Dry Matter	g/100g as rcvd	62	71	67	94	64
Total Petroleum Hydrocarbons		<u> </u>	, ,		V T	<u> </u>
C7 - C9		< 30	- 20	< 30	< 20	< 30
C10 - C14	mg/kg dry wt		< 20	< 30		< 30
	mg/kg dry wt	< 20	< 20		< 20	
C15 - C36	mg/kg dry wt	54	< 40	< 40	41	< 40
Total hydrocarbons (C7 - C36)		< 90	< 80	< 90	< 80	< 90
BTEX in VOC Soils by Headsp						1
Benzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.15	-
Ethylbenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	-
Toluene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	-

Sample Type: Soil							
Sa	mple Name:	B74 TP06 0.1	B74 TP06 2.5	B74 TP07 0.1	B74 TP04 0.1	B74 TP04 0.7	
	ah Niveraham	20-Mar-2023 3211645.16	20-Mar-2023 3211645.18	20-Mar-2023 3211645.19	21-Mar-2023 3211645.24	21-Mar-2023 3211645.25	
BTEX in VOC Soils by Headspace	ab Number:	3211043.10	3211045.16	3211045.19	3211043.24	3211043.23	
m&p-Xylene	mg/kg dry wt	< 0.6	< 0.5	< 0.6	< 0.3	_	
o-Xylene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	<u> </u>	
Halogenated Aliphatics in VOC S			10.0	10.0	10.0		
Bromomethane (Methyl Bromide)	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	_	
Carbon tetrachloride	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	-	
Chloroethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	-	
Chloromethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	_	
1,2-Dibromo-3-chloropropane	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5		
1,2-Dibromoethane (ethylene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3		
dibromide, EDB)	riig/kg dry wt	10.0	1 0.0	1 0.5	1 0.0	_	
Dibromomethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	-	
1,3-Dichloropropane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3		
Dichlorodifluoromethane	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5		
1,1-Dichloroethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	-	
1,2-Dichloroethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	-	
1,1-Dichloroethene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	-	
cis-1,2-Dichloroethene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	-	
trans-1,2-Dichloroethene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	-	
Dichloromethane (methylene chloride)	mg/kg dry wt	< 6	< 5	5 < 6	< 3	-	
1,2-Dichloropropane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	-	
1,1-Dichloropropene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	-	
cis-1,3-Dichloropropene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	-	
trans-1,3-Dichloropropene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	-	
Hexachlorobutadiene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	-	
1,1,1,2-Tetrachloroethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	-	
1,1,2,2-Tetrachloroethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	-	
Tetrachloroethene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	-	
(tetrachloroethylene)		\(\(\).\'\'					
1,1,1-Trichloroethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	-	
1,1,2-Trichloroethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	-	
Trichloroethene (trichloroethylene)	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	-	
Trichlorofluoromethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	-	
1,2,3-Trichloropropane	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	-	
1,1,2-Trichlorotrifluoroethane	mg/kg dry wt	₹ 0.3	< 0.3	< 0.3	< 0.3	-	
(Freon 113) Vinyl chloride	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3		
Haloaromatics in VOC Soils by H		*	~ 0.3	\ 0.3	~ 0.3	-	
Bromobenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	_	
1,3-Dichlorobenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	<u>-</u> _	
4-Chlorotoluene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	<u>-</u>	
Chlorobenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	-	
(monochlorobenzene)					. 5.5		
1,2-Dichlorobenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	-	
1,4-Dichlorobenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	-	
2-Chlorotoluene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	-	
1,2,3-Trichlorobenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	-	
1,2,4-Trichlorobenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	-	
1,3,5-Trichlorobenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	-	
Monoaromatic Hydrocarbons in V	OC Soils by He	<u> </u>					
n-Butylbenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	-	
tert-Butylbenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	-	
Isopropylbenzene (Cumene)	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	-	
4-Isopropyltoluene (p-Cymene)	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	-	
n-Propylbenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	-	

About Company Compan	P06 0.1 B74 TP06 ar-2023 20-Mar-20 645.16 3211645. GC-MS 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.5 < 0.5 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.5 < 0.5 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3	20-Mar-2023 .18 3211645.19 < 0.3	 21-Mar-2023 3211645.24 < 0.3 < 0.3 < 0.3 < 6 < 30 < 6 < 30 < 0.3 < 0.4 < 0.5 < 0.5 < 0.5 < 0.5 < 0.3 < 0.4 < 0.5 < 0.5 < 0.3 < 0.3 < 0.4 < 0.5 < 0.5 < 0.5 < 0.3 < 0.4 < 0.5 < 0.5 < 0.5 < 0.5 < 0.3 < 0.4 < 0.5 th--><th>B74 TP04 0.7 21-Mar-2023 3211645.25 </th>	B74 TP04 0.7 21-Mar-2023 3211645.25
Lab Number: 3211	645.16 3211645. GC-MS 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 60 < 50 12 < 10 60 < 50 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.5 < 0.5 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 - 866 TP01 21-Mar-20 645.26 3211645. 61 90 - < 0.2	.18 3211645.19	3211645.24 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 6 < 30 < 6 < 30 < 0.3 < 0.5 < 0.3 < 0.5 < 0.3 < 1.3 < 0.3 < 1.4 B66 TP01 1.1 21-Mar-2023 3211645.29 - 1.4	3211645.25
Monoaromatic Hydrocarbons in VOC Soils by Headspace sec-Butylbenzene mg/kg dry wt styrene mg/kg dry wt 1,2,4-Trimethylbenzene mg/kg dry wt 1,3,5-Trimethylbenzene mg/kg dry wt 1,4-Methylpentan-2-one (MIBK) mg/kg dry wt 1,4-Methylpentan-2-one (MIBK) mg/kg dry wt 1,4-Methyl tert-butylether (MTBE) mg/kg dry wt 1,4-Methyl tert-butylether (MTBE) mg/kg dry wt 1,4-Methyl tert-butylether (MTBE) mg/kg dry wt 1,4-Methyl tert-butylether (MTBE) mg/kg dry wt 1,4-Methyl tert-butylether (MTBE) mg/kg dry wt 1,4-Methyl tert-butylether (MTBE) mg/kg dry wt 1,4-Methyl tert-butylether (MTBE) mg/kg dry wt 1,4-Methyl tert-butylether (MTBE) mg/kg dry wt 1,4-Methyl tert-butylether mg/kg dry wt 1,4-Methyl tert-butylethe	GC-MS 0.3	<0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <60 <11 <60 <0.3 <0.3 <0.5 <0.3 <0.5 <0.3 <0.3 <10.3 <10.3 <10.4 <10.3 <10.4 <10.3 <10.4 <10.3 <10.4 <10.4 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <10.5 <	<0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <6 <30 <6 <30 <0.3 <0.5 <0.3 <0.5 <0.3 <10.3 <10.4 <10.3 <10.4 <10.3 <10.4 <10.3 <10.4 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10	
sec-Butylbenzene mg/kg dry wt styrene mg/kg dry wt 1,2,4-Trimethylbenzene mg/kg dry wt 1,3,5-Trimethylbenzene mg/kg dry wt 1,4-Methylpentan-2-one (MIBK) mg/kg dry wt 1,4-Methylpentan-2-one (MIBK) mg/kg dry wt 1,4-Methyl tert-butylether (MTBE) mg/kg dry wt 1,4-Methyl tert-butylether (MTBE) mg/kg dry wt 1,4-Methyl tert-butylether (MTBE) mg/kg dry wt 1,4-Methyl tert-butylether (MTBE) mg/kg dry wt 1,4-Methyl tert-butylether (MTBE) mg/kg dry wt 1,4-Methyl tert-butylether (MTBE) mg/kg dry wt 1,4-Methyl tert-butylether (MTBE) mg/kg dry wt 1,4-Methyl tert-butylether (MTBE) mg/kg dry wt 1,4-Methyl tert-butylether mg/kg dry	0.3	< 0.3	<0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3	
Styrene mg/kg dry wt 1,2,4-Trimethylbenzene mg/kg dry wt 1,3,5-Trimethylbenzene mg/kg dry wt 1,4-Methylpentan-2-one (MIBK) mg/kg dry wt 1,4-Methylpentan-2-one (MIBK) mg/kg dry wt 1,4-Methyl tert-butylether (MTBE) mg/kg dry wt 1,4-Methyl tert-butylether (MTBE) mg/kg dry wt 1,4-Methyl tert-butylether (MTBE) mg/kg dry wt 2,4-Methyl tert-butylether (MTBE) mg/kg dry wt 2,4-Methyl tert-butylether (MTBE) mg/kg dry wt 2,4-Methyl tert-butylether (MTBE) mg/kg dry wt 3,4-Methyl tert-butylether (MTBE) mg/kg dry wt 4,4-Methyl tert-butylether (MTB	0.3	< 0.3	<0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3	
1,2,4-Trimethylbenzene mg/kg dry wt 1,3,5-Trimethylbenzene mg/kg dry wt 2. Ketones in VOC Soils by Headspace GC-MS 2-Butanone (MEK) mg/kg dry wt 4. 4-Methylpentan-2-one (MIBK) mg/kg dry wt 5. Acetone mg/kg dry wt 5. Methyl tert-butylether (MTBE) mg/kg dry wt 6. Trihalomethanes in VOC Soils by Headspace GC-MS Bromodichloromethane mg/kg dry wt 7. Bromoform (tribromomethane) mg/kg dry wt 8. Bromoform (Trichloromethane) mg/kg dry wt 9. Chloroform (Trichloromethane) mg/kg dry wt 9. Chloroform (Trichloromethane) mg/kg dry wt 9. Carbon disulphide mg/kg dry wt 9. Naphthalene mg/kg dry wt 9. Sample Name: B74 T 21-Ma 121-Ma .3	<0.3 <0.3 <0.3 <0.6 <0.1 <0.6 <0.3 <0.5 <0.3 <0.5 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3	<0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.5 <0.3 <0.3 <0.3 <0.3 <1.4 <0.3 <0.3 <1.4 <0.3 <1.4 <0.3 <1.4 <0.3 <1.4 <0.3 <1.4 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3	- - - - - - - - - - - - - - - - - - -	
1,3,5-Trimethylbenzene mg/kg dry wt Ketones in VOC Soils by Headspace GC-MS 2-Butanone (MEK) mg/kg dry wt 4-Methylpentan-2-one (MIBK) mg/kg dry wt 4-Methylpentan-2-one (MIBK) mg/kg dry wt 5-Methyl tert-butylether (MTBE) mg/kg dry wt 6-Methyl tert-butylether (MTBE) mg/kg dry wt 7-Trihalomethanes in VOC Soils by Headspace GC-MS Bromodichloromethane mg/kg dry wt 6-Moreorem (Trichloromethane) mg/kg dry wt 7-Methyl tert-butylether (MTBE) mg/kg dry wt 7-Methyl tert-butylether (MTBE) mg/kg dry wt 8-Methyl tert-butylether (MTBE) mg/kg dry wt 8-Methyl tert-butylether (MTBE) mg/kg dry wt 9-Methyl tert-butylether mg/kg dry wt 9-Methyl tert-buty	0.3 < 0.3 60 < 50 12 < 10 60 < 50 0.3 < 0.3 0.3 < 0.3 0.5 < 0.5 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 Example 10	<0.3 < 60 < 11 < 60 < 0.3 < 0.3 < 0.5 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3	<0.3 < 0.3 < 0.3 < 0.3 < 0.5 < 0.3 < 0.3 < 0.3 < 0.3 < 1.4 - 1.4	- - - - - - - - - - - - - - - - - - -
Ketones in VOC Soils by Headspace GC-MS 2-Butanone (MEK)	60 < 50 12 < 10 60 < 50 0.3 < 0.3 0.5 < 0.5 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 1.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3	< 60 < 11 < 60 < 0.3 < 0.3 < 0.5 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3	< 30 < 6 < 30 < 0.3 < 0.3 < 0.5 < 0.3 < 0.3 < 0.3 < 0.3 < 1.3 < 0.3 < 1.4 < 1.4	- - - - - - - - - - - - - - - - - - -
2-Butanone (MEK) mg/kg dry wt 4 4-Methylpentan-2-one (MIBK) mg/kg dry wt 5 Acetone mg/kg dry wt 6 Methyl tert-butylether (MTBE) mg/kg dry wt 7 Trihalomethanes in VOC Soils by Headspace GC-MS Bromodichloromethane mg/kg dry wt 8 Bromoform (tribromomethane) mg/kg dry wt 9 Chloroform (Trichloromethane) mg/kg dry wt 9 Dibromochloromethane mg/kg dry wt 9 Other VOC in Soils by Headspace GC-MS Carbon disulphide mg/kg dry wt 9 Naphthalene mg/kg dry wt 9 Sample Name: B74 T 21-Mi2 1-Mi2 12 < 10 60 < 50 0.3 < 0.3 0.5 < 0.5 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 1.3 < 0.3 1.4 = 1.	< 11 < 60 < 0.3 < 0.3 < 0.5 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.6 < 0.3 < 0.6 < 0.6 < 0.6 < 0.6	< 6 < 30 < 0.3 < 0.5 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 1.4 B66 TP01 1.1 21-Mar-2023 3211645.29	- - - - - - - - - - - - - - - - - - -	
4-Methylpentan-2-one (MIBK) mg/kg dry wt Acetone mg/kg dry wt < Methyl tert-butylether (MTBE) mg/kg dry wt < Trihalomethanes in VOC Soils by Headspace GC-MS Bromodichloromethane mg/kg dry wt < Bromoform (tribromomethane) mg/kg dry wt < Chloroform (Trichloromethane) mg/kg dry wt < Other VOC in Soils by Headspace GC-MS Carbon disulphide mg/kg dry wt < Other VOC in Soils by Headspace GC-MS Carbon disulphide mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg/kg dry wt < Naphthalene mg	12 < 10 60 < 50 0.3 < 0.3 0.5 < 0.5 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 1.3 < 0.3 1.4 = 1.	< 11 < 60 < 0.3 < 0.3 < 0.5 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.6 < 0.3 < 0.6 < 0.6 < 0.6 < 0.6	< 6 < 30 < 0.3 < 0.5 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 1.4 B66 TP01 1.1 21-Mar-2023 3211645.29	- - - - - - - - - - - - - - - - - - -
Acetone mg/kg dry wt Methyl tert-butylether (MTBE) mg/kg dry wt Trihalomethanes in VOC Soils by Headspace GC-MS Bromodichloromethane mg/kg dry wt Somodichloromethane mg/kg dry wt Solibromochloromethane mg/kg d	60 < 50 0.3 < 0.3 0.5 < 0.5 0.3 < 0.3 0.5 < 0.5 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 P04 2.1 B66 TP01 ar-2023 21-Mar-20 645.26 3211645. 61 90 - < 2	< 60 < 0.3 < 0.3 < 0.5 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3	< 30 < 0.3 < 0.5 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 B66 TP01 1.1 21-Mar-2023 3211645.29 - 1.4	- - - - - - - - - - - - - - - - - - -
Methyl tert-butylether (MTBE) mg/kg dry wt Trihalomethanes in VOC Soils by Headspace GC-MS Bromodichloromethane mg/kg dry wt Bromoform (tribromomethane) mg/kg dry wt Chloroform (Trichloromethane) mg/kg dry wt Other VOC in Soils by Headspace GC-MS Carbon disulphide mg/kg dry wt Naphthalene mg/kg dry wt Sample Name: B74 T 21-Ma Lab Number: 3211 Individual Tests Dry Matter g/100g as rcvd Total Recoverable Beryllium mg/kg dry wt Total Recoverable Arsenic mg/kg dry wt Total Recoverable Cadmium mg/kg dry wt Total Recoverable Chromium mg/kg dry wt Total Recoverable Chromium mg/kg dry wt Total Recoverable Mercury mg/kg dry wt Total Recoverable Mercury mg/kg dry wt Total Recoverable Nickel mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Sinc mg/kg dry wt Total Recoverable Sinc mg/kg dry wt Total Recoverable Sinc mg/kg dry wt Total Recoverable Sinc mg/kg dry wt Total Recoverable Sinc mg/kg dry wt Total Recoverable Sinc mg/kg dry wt Total Recoverable Sinc mg/kg dry wt Toluene mg/kg dry wt Toluene mg/kg dry wt Toluene mg/kg dry wt Toluene mg/kg dry wt Toluene mg/kg dry wt Toluene mg/kg dry wt Total of Reported PAHs in Soil mg/kg dry wt	0.3 < 0.3 0.5 < 0.5 0.3 < 0.3 0.5 < 0.5 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 P04 2.1 B66 TP01 ar-2023 21-Mar-20 645.26 3211645 61 90 - < 0.2	< 0.3	<0.3 <0.5 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 B66 TP01 1.1 21-Mar-2023 3211645.29 - 1.4	- - - - - - - - - - - - - - - - - - -
Trihalomethanes in VOC Soils by Headspace GC-MS Bromodichloromethane mg/kg dry wt Bromoform (tribromomethane) mg/kg dry wt Chloroform (Trichloromethane) mg/kg dry wt Other VOC in Soils by Headspace GC-MS Carbon disulphide mg/kg dry wt Naphthalene mg/kg dry wt Sample Name: B74 T 21-Ma Lab Number: 32111 Individual Tests Dry Matter g/100g as rcvd Total Recoverable Beryllium mg/kg dry wt Total Recoverable Arsenic mg/kg dry wt Total Recoverable Cadmium mg/kg dry wt Total Recoverable Chromium mg/kg dry wt Total Recoverable Chromium mg/kg dry wt Total Recoverable Copper mg/kg dry wt Total Recoverable Mercury mg/kg dry wt Total Recoverable Mercury mg/kg dry wt Total Recoverable Nickel mg/kg dry wt Total Recoverable Zinc mg/kg dry wt	0.3	<0.3 <0.5 <0.3 <0.3 <0.3 <0.3 <0.3 0.1 B66 TP01 0.9 023 21-Mar-2023 3211645.28 61 0.6	<0.3 <0.5 <0.3 <0.3 <0.3 <0.3 <0.3 <10.3 <0.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <10.3 <1	21-Mar-2023 3211645.30 91 0.2
Bromodichloromethane mg/kg dry wt Short (tribromomethane) mg/kg dry wt Chloroform (tribromomethane) mg/kg dry wt Chloroform (Trichloromethane) mg/kg dry wt Chloroform (Trichloromethane) mg/kg dry wt Chloromochloromethane mg/kg dry wt Cother VOC in Soils by Headspace GC-MS Carbon disulphide mg/kg dry wt Sample Name: B74 T 21-Max Lab Number: 32116 Individual Tests Dry Matter g/100g as rcvd Total Recoverable Beryllium mg/kg dry wt Sheavy metals plus Boron Total Recoverable Arsenic mg/kg dry wt Total Recoverable Cadmium mg/kg dry wt Total Recoverable Cadmium mg/kg dry wt Total Recoverable Copper mg/kg dry wt Total Recoverable Lead mg/kg dry wt Total Recoverable Mercury mg/kg dry wt Total Recoverable Mercury mg/kg dry wt Total Recoverable Nickel mg/kg dry wt Total Recoverable Nickel mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Zinch Zinch Zinch Zinch Zinch Zinch Zinch Zinch Zinc	0.5	< 0.5 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 0.1 B66 TP01 0.9 023 21-Mar-2023 3211645.28 61 0.6	<0.5 <0.3 <0.3 <0.3 <0.3 <0.3 B66 TP01 1.1 21-Mar-2023 3211645.29 - 1.4	21-Mar-2023 3211645.30 91 0.2
Bromoform (tribromomethane) mg/kg dry wt Chloroform (Trichloromethane) mg/kg dry wt Sibromochloromethane mg/kg dry wt Cother VOC in Soils by Headspace GC-MS Carbon disulphide mg/kg dry wt Sample Name: B74 T 21-Ma Lab Number: 32111 Individual Tests Dry Matter g/100g as rcvd Total Recoverable Beryllium mg/kg dry wt Sendang dry wt Total Recoverable Cadmium mg/kg dry wt Total Recoverable Cadmium mg/kg dry wt Total Recoverable Cadmium mg/kg dry wt Total Recoverable Copper mg/kg dry wt Total Recoverable Lead mg/kg dry wt Total Recoverable Mercury mg/kg dry wt Total Recoverable Mercury mg/kg dry wt Total Recoverable Nickel mg/kg dry wt Total Recoverable Dead mg/kg dry wt Total Recoverable Copper mg/kg dry wt Total Recoverable Mercury mg/kg dry wt Total Recoverable Dead mg/kg dry wt Total Recoverable Dead mg/kg dry wt Total Recoverable Dead mg/kg dry wt Total Recoverable Dead mg/kg dry wt Total Recoverable Dead mg/kg dry wt Total Recoverable Dead mg/kg dry wt Total Recoverable Dead mg/kg dry wt Total Recoverable Dead mg/kg dry wt Total Recoverable Dead mg/kg dry wt Total Recoverable Dead mg/kg dry wt Total Recoverable Dead mg/kg dry wt Total Recoverable Dead mg/kg dry wt Total Recoverable Dead mg/kg dry wt Total Recoverable Dead mg/kg dry wt Total Recoverable Dead mg/kg dry wt Total Recoverable Dead mg/kg dry wt Total Recoverable Dead mg/kg dry wt Total Recoverable Dead mg/kg dry wt Deadspace GC-MS Benzene mg/kg dry wt Deadspace GC-MS Benzene mg/kg dry wt Deadspace GC-MS Benzene mg/kg dry wt Deadspace GC-MS Benzene mg/kg dry wt Deadspace GC-MS Benzene mg/kg dry wt Deadspace GC-MS Benzene mg/kg dry wt Deadspace GC-MS Benzene mg/kg dry wt Deadspace GC-MS	0.5	< 0.5 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 0.1 B66 TP01 0.9 023 21-Mar-2023 3211645.28 61 0.6	<0.5 <0.3 <0.3 <0.3 <0.3 <0.3 B66 TP01 1.1 21-Mar-2023 3211645.29 - 1.4	21-Mar-2023 3211645.30 91 0.2
Chloroform (Trichloromethane) mg/kg dry wt Other VOC in Soils by Headspace GC-MS Carbon disulphide mg/kg dry wt Naphthalene mg/kg dry wt Sample Name: Sample Name: Sample Name: B74 T 21-Max 21-Max 32110 Individual Tests Dry Matter g/100g as rcvd Total Recoverable Beryllium mg/kg dry wt Sale Recoverable Cadmium mg/kg dry wt Total Recoverable Cadmium mg/kg dry wt Total Recoverable Cadmium mg/kg dry wt Total Recoverable Copper mg/kg dry wt Total Recoverable Lead mg/kg dry wt Total Recoverable Mercury mg/kg dry wt Total Recoverable Mercury mg/kg dry wt Total Recoverable Nickel mg/kg dry wt Total Recoverable Nickel mg/kg dry wt Total Recoverable Office mg/kg dry wt Total Recoverable Sinc mg/kg dry wt Total Recoverable Office mg/kg dry wt Total Recoverable Sinc mg/kg dry wt Total Recoverable Sinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Tot	0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 P04 2.1 B66 TP01 21-Mar-20 645.26 3211645 61 90 - < 0.2	< 0.3 < 0.3 < 0.3 < 0.3 0.1 B66 TP01 0.9 023 21-Mar-2023 3211645.28 61 0.6	< 0.3 < 0.3 < 0.3 < 0.3 < 0.3 B66 TP01 1.1 21-Mar-2023 3211645.29 - 1.4	21-Mar-2023 3211645.30 91 0.2
Dibromochloromethane mg/kg dry wt Other VOC in Soils by Headspace GC-MS Carbon disulphide mg/kg dry wt Naphthalene mg/kg dry wt Sample Name: B74 T 21-Ma Lab Number: 32111 Individual Tests Dry Matter g/100g as rcvd Total Recoverable Beryllium mg/kg dry wt Total Recoverable Arsenic mg/kg dry wt Total Recoverable Cadmium mg/kg dry wt Total Recoverable Cadmium mg/kg dry wt Total Recoverable Chromium mg/kg dry wt Total Recoverable Chromium mg/kg dry wt Total Recoverable Lead mg/kg dry wt Total Recoverable Mercury mg/kg dry wt Total Recoverable Mercury mg/kg dry wt Total Recoverable Nickel mg/kg dry wt Total Recoverable Nickel mg/kg dry wt Total Recoverable Sinc mg/kg dry wt Total Recoverable Opper mg/kg dry wt Total Recoverable Nickel mg/kg dry wt Total Recoverable Sinc mg/kg d	0.3 < 0.3 0.3 < 0.3 0.3 < 0.3 P04 2.1 B66 TP01 21-Mar-20 645.26 3211645 61 90 - < 0.2	< 0.3 < 0.3 < 0.3 0.1 0.1 023 21-Mar-2023 27 3211645.28 61 0.6	<0.3 <0.3 <0.3 <0.3 B66 TP01 1.1 21-Mar-2023 3211645.29 - 1.4	21-Mar-2023 3211645.30 91 0.2
Other VOC in Soils by Headspace GC-MS Carbon disulphide mg/kg dry wt mg/kg dry wt sample Name: Sample Name: Sample Name: Lab Number: 3211/ Individual Tests Dry Matter g/100g as rcvd Total Recoverable Beryllium mg/kg dry wt 8 Heavy metals plus Boron Total Recoverable Arsenic mg/kg dry wt Total Recoverable Cadmium mg/kg dry wt Total Recoverable Cadmium mg/kg dry wt Total Recoverable Chromium mg/kg dry wt Total Recoverable Copper mg/kg dry wt Total Recoverable Lead mg/kg dry wt Total Recoverable Mercury mg/kg dry wt Total Recoverable Nickel mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Sinc mg/kg dry wt Total	0.3 < 0.3 0.3 < 0.3 P04 2.1 B66 TP01 21-Mar-20 645.26 3211645 61 90 - < 0.2	<0.3 <0.3 0.1 B66 TP01 0.9 023 21-Mar-2023 .27 3211645.28 61 0.6	<0.3 <0.3 B66 TP01 1.1 21-Mar-2023 3211645.29	21-Mar-2023 3211645.30 91 0.2
Carbon disulphide mg/kg dry wt Naphthalene mg/kg dry wt Sample Name: Sample Name: B74 T 21-Max 3211 Lab Number: 3211 Individual Tests Dry Matter g/100g as rcvd mg/kg dry wt 8 Heavy metals plus Boron Total Recoverable Arsenic mg/kg dry wt Total Recoverable Boron mg/kg dry wt Total Recoverable Cadmium mg/kg dry wt Total Recoverable Chromium mg/kg dry wt Total Recoverable Chromium mg/kg dry wt Total Recoverable Copper mg/kg dry wt Total Recoverable Lead mg/kg dry wt Total Recoverable Mercury mg/kg dry wt Total Recoverable Nickel mg/kg dry wt Total Recoverable Nickel mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Zinc Zinc mg/kg dry wt Zinc Zinc mg/kg dry wt Zinc Zinc mg/kg dry wt Zinc Zinc Zinc Zinc Zinc Zinc Zinc Zinc	0.3 < 0.3 P04 2.1 B66 TP01 ar-2023 21-Mar-20 645.26 3211645 61 90 - < 0.2	0.1 B66 TP01 0.9 023 21-Mar-2023 .27 3211645.28 61 0.6	<0.3 B66 TP01 1.1 21-Mar-2023 3211645.29 - 1.4	21-Mar-2023 3211645.30 91 0.2
Naphthalene Sample Name: B74 T 21-Ma Lab Number: 3211 Individual Tests Dry Matter G/100g as rcvd Total Recoverable Beryllium B Heavy metals plus Boron Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Chromium Total Recoverable Chromium Total Recoverable Chromium Total Recoverable Chromium Total Recoverable Chromium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Total Recov	0.3 < 0.3 P04 2.1 B66 TP01 ar-2023 21-Mar-20 645.26 3211645 61 90 - < 0.2	0.1 B66 TP01 0.9 023 21-Mar-2023 .27 3211645.28 61 0.6	<0.3 B66 TP01 1.1 21-Mar-2023 3211645.29 - 1.4	21-Mar-2023 3211645.30 91 0.2
Sample Name: Lab Number: 32110 Individual Tests Dry Matter g/100g as rcvd Total Recoverable Beryllium mg/kg dry wt 8 Heavy metals plus Boron Total Recoverable Arsenic mg/kg dry wt Total Recoverable Cadmium mg/kg dry wt Total Recoverable Chromium mg/kg dry wt Total Recoverable Chromium mg/kg dry wt Total Recoverable Copper mg/kg dry wt Total Recoverable Head mg/kg dry wt Total Recoverable Mercury mg/kg dry wt Total Recoverable Mercury mg/kg dry wt Total Recoverable Nickel mg/kg dry wt Total Recoverable Sinc mg/kg dry wt Total Recoverable Wickel mg/kg dry wt Total Recoverable Sinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Wickel mg/kg dry wt Total Recoverable Sinc mg/kg dry wt Total Recoverable Sinc mg/kg dry wt BTEX in Soil by Headspace GC-MS Benzene mg/kg dry wt Toluene mg/kg dry wt m&p-Xylene mg/kg dry wt Polycyclic Aromatic Hydrocarbons Screening in Soil* Total of Reported PAHs in Soil mg/kg dry wt	P04 2.1 B66 TP01 21-Mar-20 3 3211645. 645.26 3211645. 61 90 < 0.2	0.1 B66 TP01 0.9 023 21-Mar-2023 .27 3211645.28 61 0.6	B66 TP01 1.1 21-Mar-2023 3211645.29	21-Mar-2023 3211645.30 91 0.2
Lab Number: 3211 Individual Tests Dry Matter g/100g as rcvd 7 otal Recoverable Beryllium mg/kg dry wt 8 Heavy metals plus Boron Total Recoverable Arsenic mg/kg dry wt 7 otal Recoverable Cadmium mg/kg dry wt 7 otal Recoverable Chromium mg/kg dry wt 7 otal Recoverable Chromium mg/kg dry wt 7 otal Recoverable Chromium mg/kg dry wt 7 otal Recoverable Copper mg/kg dry wt 7 otal Recoverable Lead mg/kg dry wt 7 otal Recoverable Mercury mg/kg dry wt 7 otal Recoverable Mercury mg/kg dry wt 7 otal Recoverable Nickel mg/kg dry wt 8 otal Recoverable Zinc mg/kg dry wt 9 otal Recoverable Zinc mg/kg dry wt 9 otal Recoverable Zinc mg/kg dry wt 9 otal Recoverable Zinc mg/kg dry wt 9 otal Recoverable Zinc mg/kg dry wt 9 otal Recoverable Zinc mg/kg dry wt 9 otal Recoverable Zinc mg/kg dry wt 9 otal Recoverable Zinc mg/kg dry wt 9 otal Recoverable Zinc mg/kg dry wt 9 otal Recoverable Zinc mg/kg dry wt 9 otal Recoverable Zinc mg/kg dry wt 9 otal Recoverable Zinc mg/kg dry wt 9 otal Recoverable Zinc mg/kg dry wt 9 otal Recoverable Zinc mg/kg dry wt 9 otal Recoverable Zinc mg/kg dry wt 9 otal Recoverable Zinc mg/kg dry wt 9 otal Zinc mg/kg dry wt 9	21-Mar-20 645.26 3211645 61 90 - < 0.2	023 21-Mar-2023 .27 3211645.28 61 0.6	21-Mar-2023 3211645.29 - 1.4	21-Mar-2023 3211645.30 91 0.2
Individual Tests Dry Matter g/100g as rcvd mg/kg dry wt 8 Heavy metals plus Boron Total Recoverable Beryllium mg/kg dry wt Total Recoverable Cadmium mg/kg dry wt Total Recoverable Chromium mg/kg dry wt Total Recoverable Chromium mg/kg dry wt Total Recoverable Chromium mg/kg dry wt Total Recoverable Chromium mg/kg dry wt Total Recoverable Copper mg/kg dry wt Total Recoverable Lead mg/kg dry wt Total Recoverable Head mg/kg dry wt Total Recoverable Mercury mg/kg dry wt Total Recoverable Nickel mg/kg dry wt Total Recoverable Nickel mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Zinch Recoverable Zinc mg/kg dry wt Zinch Recoverable Zinc mg/kg dry wt Zinch Recoverable Zinc mg/kg dry wt Zinch Recoverable Zinc mg/kg dry wt Zinch Recoverable Zinc mg/kg dry wt Zinch Recoverable Zin	645.26 3211645. 61 90 - < 0.2	27 3211645.28 61 0.6	3211645.29 - 1.4	3211645.30 91 0.2
Individual Tests Dry Matter g/100g as rcvd 6 Total Recoverable Beryllium mg/kg dry wt 8 Heavy metals plus Boron Total Recoverable Arsenic mg/kg dry wt Total Recoverable Boron mg/kg dry wt Total Recoverable Cadmium mg/kg dry wt Total Recoverable Chromium mg/kg dry wt Total Recoverable Copper mg/kg dry wt Total Recoverable Lead mg/kg dry wt Total Recoverable Mercury mg/kg dry wt Total Recoverable Nickel mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Toluene mg/kg dry wt Toluene mg/kg dry wt Toluene mg/kg dry wt Polycyclic Aromatic Hydrocarbons Screening in Soil* Total of Reported PAHs in Soil mg/kg dry wt	61 90 - <02	61	1.4	91 0.2
Dry Matter g/100g as rcvd Total Recoverable Beryllium mg/kg dry wt 8 Heavy metals plus Boron Total Recoverable Arsenic mg/kg dry wt Total Recoverable Boron mg/kg dry wt Total Recoverable Cadmium mg/kg dry wt Total Recoverable Chromium mg/kg dry wt Total Recoverable Copper mg/kg dry wt Total Recoverable Lead mg/kg dry wt Total Recoverable Mercury mg/kg dry wt Total Recoverable Nickel mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Opper mg/kg dry wt Total Recoverable Nickel mg/kg dry wt Total Recoverable Nickel mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Sereening in Soil* Total of Reported PAHs in Soil mg/kg dry wt	- <02	0.6		0.2
Total Recoverable Beryllium mg/kg dry wt 8 Heavy metals plus Boron Total Recoverable Arsenic mg/kg dry wt Total Recoverable Boron mg/kg dry wt Total Recoverable Cadmium mg/kg dry wt Total Recoverable Chromium mg/kg dry wt Total Recoverable Copper mg/kg dry wt Total Recoverable Lead mg/kg dry wt Total Recoverable Head mg/kg dry wt Total Recoverable Mercury mg/kg dry wt Total Recoverable Nickel mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt ETEX in Soil by Headspace GC-MS Benzene mg/kg dry wt Toluene mg/kg dry wt Ethylbenzene mg/kg dry wt m&p-Xylene mg/kg dry wt O-Xylene mg/kg dry wt Polycyclic Aromatic Hydrocarbons Screening in Soil* Total of Reported PAHs in Soil mg/kg dry wt	- <02	0.6		0.2
8 Heavy metals plus Boron Total Recoverable Arsenic mg/kg dry wt Total Recoverable Boron mg/kg dry wt Total Recoverable Cadmium mg/kg dry wt Total Recoverable Chromium mg/kg dry wt Total Recoverable Copper mg/kg dry wt Total Recoverable Lead mg/kg dry wt Total Recoverable Mercury mg/kg dry wt Total Recoverable Nickel mg/kg dry wt Total Recoverable Zinc mg/kg dry wt BTEX in Soil by Headspace GC-MS Benzene mg/kg dry wt Toluene mg/kg dry wt Ethylbenzene mg/kg dry wt m&p-Xylene mg/kg dry wt Polycyclic Aromatic Hydrocarbons Screening in Soil* Total of Reported PAHs in Soil mg/kg dry wt	- <2	N		
Total Recoverable Arsenic mg/kg dry wt Total Recoverable Boron mg/kg dry wt Total Recoverable Cadmium mg/kg dry wt Total Recoverable Chromium mg/kg dry wt Total Recoverable Copper mg/kg dry wt Total Recoverable Lead mg/kg dry wt Total Recoverable Mercury mg/kg dry wt Total Recoverable Mercury mg/kg dry wt Total Recoverable Nickel mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt Total Recoverable Zinc mg/kg dry wt BTEX in Soil by Headspace GC-MS Benzene mg/kg dry wt Toluene mg/kg dry wt Ethylbenzene mg/kg dry wt msp-Xylene mg/kg dry wt O-Xylene mg/kg dry wt Polycyclic Aromatic Hydrocarbons Screening in Soil* Total of Reported PAHs in Soil mg/kg dry wt		< 2	6	2
Total Recoverable Boron mg/kg dry wt Total Recoverable Cadmium mg/kg dry wt Total Recoverable Chromium mg/kg dry wt Total Recoverable Copper mg/kg dry wt Total Recoverable Lead mg/kg dry wt Total Recoverable Mercury mg/kg dry wt Total Recoverable Nickel mg/kg dry wt Total Recoverable Zinc mg/kg dry wt BTEX in Soil by Headspace GC-MS Benzene mg/kg dry wt Toluene mg/kg dry wt Ethylbenzene mg/kg dry wt m&p-Xylene mg/kg dry wt Polycyclic Aromatic Hydrocarbons Screening in Soil* Total of Reported PAHs in Soil mg/kg dry wt		< 2	б	,
Total Recoverable Cadmium mg/kg dry wt Total Recoverable Chromium mg/kg dry wt Total Recoverable Copper mg/kg dry wt Total Recoverable Lead mg/kg dry wt Total Recoverable Mercury mg/kg dry wt Total Recoverable Nickel mg/kg dry wt Total Recoverable Zinc mg/kg dry wt BTEX in Soil by Headspace GC-MS Benzene mg/kg dry wt Toluene mg/kg dry wt Ethylbenzene mg/kg dry wt m&p-Xylene mg/kg dry wt O-Xylene mg/kg dry wt Polycyclic Aromatic Hydrocarbons Screening in Soil* Total of Reported PAHs in Soil mg/kg dry wt	- < 20	< 20	< 20	< 20
Total Recoverable Chromium mg/kg dry wt Total Recoverable Copper mg/kg dry wt Total Recoverable Lead mg/kg dry wt Total Recoverable Mercury mg/kg dry wt Total Recoverable Nickel mg/kg dry wt Total Recoverable Zinc mg/kg dry wt BTEX in Soil by Headspace GC-MS Benzene mg/kg dry wt Toluene mg/kg dry wt Ethylbenzene mg/kg dry wt m&p-Xylene mg/kg dry wt O-Xylene mg/kg dry wt Polycyclic Aromatic Hydrocarbons Screening in Soil* Total of Reported PAHs in Soil mg/kg dry wt	<0.10		< 0.10	< 0.10
Total Recoverable Copper mg/kg dry wt Total Recoverable Lead mg/kg dry wt Total Recoverable Mercury mg/kg dry wt Total Recoverable Nickel mg/kg dry wt Total Recoverable Zinc mg/kg dry wt BTEX in Soil by Headspace GC-MS Benzene mg/kg dry wt Toluene mg/kg dry wt Ethylbenzene mg/kg dry wt m&p-Xylene mg/kg dry wt o-Xylene mg/kg dry wt Polycyclic Aromatic Hydrocarbons Screening in Soil* Total of Reported PAHs in Soil mg/kg dry wt	- < 0.10		12	
Total Recoverable Lead mg/kg dry wt Total Recoverable Mercury mg/kg dry wt Total Recoverable Nickel mg/kg dry wt Total Recoverable Zinc mg/kg dry wt BTEX in Soil by Headspace GC-MS Benzene mg/kg dry wt Toluene mg/kg dry wt Ethylbenzene mg/kg dry wt m&p-Xylene mg/kg dry wt o-Xylene mg/kg dry wt Polycyclic Aromatic Hydrocarbons Screening in Soil* Total of Reported PAHs in Soil mg/kg dry wt	- 6 - 870	6 13	44	4
Total Recoverable Mercury mg/kg dry wt Total Recoverable Nickel mg/kg dry wt Total Recoverable Zinc mg/kg dry wt BTEX in Soil by Headspace GC-MS Benzene mg/kg dry wt Toluene mg/kg dry wt Ethylbenzene mg/kg dry wt m&p-Xylene mg/kg dry wt o-Xylene mg/kg dry wt Polycyclic Aromatic Hydrocarbons Screening in Soil* Total of Reported PAHs in Soil mg/kg dry wt	- 12.1	16.9	15.5	4.3
Total Recoverable Nickel mg/kg dry wt Total Recoverable Zinc mg/kg dry wt BTEX in Soil by Headspace GC-MS Benzene mg/kg dry wt Toluene mg/kg dry wt Ethylbenzene mg/kg dry wt m&p-Xylene mg/kg dry wt o-Xylene mg/kg dry wt Polycyclic Aromatic Hydrocarbons Screening in Soil* Total of Reported PAHs in Soil mg/kg dry wt	- < 0.10		< 0.10	< 0.10
Total Recoverable Zinc mg/kg dry wt BTEX in Soil by Headspace GC-MS Benzene mg/kg dry wt Toluene mg/kg dry wt Ethylbenzene mg/kg dry wt m&p-Xylene mg/kg dry wt o-Xylene mg/kg dry wt Polycyclic Aromatic Hydrocarbons Screening in Soil* Total of Reported PAHs in Soil mg/kg dry wt	2	3	7	3
BTEX in Soil by Headspace GC-MS Benzene mg/kg dry wt Toluene mg/kg dry wt Ethylbenzene mg/kg dry wt m&p-Xylene mg/kg dry wt o-Xylene mg/kg dry wt Polycyclic Aromatic Hydrocarbons Screening in Soil* Total of Reported PAHs in Soil mg/kg dry wt	- 40	32	61	22
Benzene mg/kg dry wt Toluene mg/kg dry wt Ethylbenzene mg/kg dry wt m&p-Xylene mg/kg dry wt o-Xylene mg/kg dry wt Polycyclic Aromatic Hydrocarbons Screening in Soil* Total of Reported PAHs in Soil mg/kg dry wt	- 40	32	01	22
Toluene mg/kg dry wt Ethylbenzene mg/kg dry wt m&p-Xylene mg/kg dry wt o-Xylene mg/kg dry wt Polycyclic Aromatic Hydrocarbons Screening in Soil* Total of Reported PAHs in Soil mg/kg dry wt	4 O OE			
Ethylbenzene mg/kg dry wt m&p-Xylene mg/kg dry wt o-Xylene mg/kg dry wt Polycyclic Aromatic Hydrocarbons Screening in Soil* Total of Reported PAHs in Soil mg/kg dry wt	- < 0.05		-	-
m&p-Xylene mg/kg dry wt o-Xylene mg/kg dry wt Polycyclic Aromatic Hydrocarbons Screening in Soil* Total of Reported PAHs in Soil mg/kg dry wt	- < 0.05		-	-
o-Xylene mg/kg dry wt Polycyclic Aromatic Hydrocarbons Screening in Soil* Total of Reported PAHs in Soil mg/kg dry wt	- < 0.05 - < 0.10		-	-
Polycyclic Aromatic Hydrocarbons Screening in Soil* Total of Reported PAHs in Soil			-	-
Total of Reported PAHs in Soil mg/kg dry wt	- < 0.05	-	-	-
				-00
	- 2.9	< 0.4	-	< 0.3
1-Methylnophthalene mg/kg dry wt	- < 0.011		-	< 0.011
2-Methylnaphthalene mg/kg dry wt	- < 0.011		-	< 0.011
Acenaphthylene mg/kg dry wt	- < 0.011		-	< 0.011
Acenaphthene mg/kg dry wt	- < 0.011		-	< 0.011
Anthracene mg/kg dry wt	-0.044		-	< 0.011 < 0.011
Benzo[a]anthracene mg/kg dry wt	- < 0.011	1 < 0.017		 COLUMN
Benzo[a]pyrene (BAP) mg/kg dry wt	- 0.22	1 < 0.017 < 0.017	-	
Benzo[a]pyrene Potency mg/kg dry wt Equivalency Factor (PEF) NES*	- 0.22 - 0.35	1 < 0.017 < 0.017 < 0.017	-	< 0.011
Benzo[a]pyrene Toxic mg/kg dry wt Equivalence (TEF)*	- 0.22 - 0.35 - 0.51	1 < 0.017 < 0.017 < 0.017 < 0.039	-	< 0.011 < 0.026
Benzo[b]fluoranthene + Benzo[j] mg/kg dry wt fluoranthene	- 0.22 - 0.35 - 0.51 - 0.51	1 < 0.017 < 0.017 < 0.017	-	< 0.011
Benzo[e]pyrene mg/kg dry wt	- 0.22 - 0.35 - 0.51	1 < 0.017 < 0.017 < 0.017 < 0.039	-	< 0.011 < 0.026


Sample Type: Soil						
Sa	mple Name:	B74 TP04 2.1 21-Mar-2023	B66 TP01 0.1 21-Mar-2023	B66 TP01 0.9 21-Mar-2023	B66 TP01 1.1 21-Mar-2023	B63 TP03 0.1 21-Mar-2023
L	ab Number:	3211645.26	3211645.27	3211645.28	3211645.29	3211645.30
Polycyclic Aromatic Hydrocarbon	s Screening in S	Soil*				
Benzo[g,h,i]perylene	mg/kg dry wt	-	0.25	< 0.017	-	< 0.011
Benzo[k]fluoranthene	mg/kg dry wt	-	0.177	< 0.017	-	< 0.011
Chrysene	mg/kg dry wt	-	0.27	< 0.017	-	< 0.011
Dibenzo[a,h]anthracene	mg/kg dry wt	-	0.053	< 0.017	-	< 0.011
Fluoranthene	mg/kg dry wt	-	0.29	< 0.017	-	< 0.011
Fluorene	mg/kg dry wt	-	< 0.011	< 0.017	-	< 0.011
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	-	0.26	< 0.017	-	< 0.011
Naphthalene	mg/kg dry wt	-	< 0.06	< 0.09	-	< 0.06
Perylene	mg/kg dry wt	-	0.085	< 0.017	-	< 0.011
Phenanthrene	mg/kg dry wt	-	0.015	< 0.017	-	< 0.011
Pyrene	mg/kg dry wt	-	0.29	< 0.017	-	< 0.011
Total Petroleum Hydrocarbons in	Soil				•	
C7 - C9	mg/kg dry wt	< 30	< 20	< 30	-	< 20
C10 - C14	mg/kg dry wt	< 20	< 20	< 20	7	< 20
C15 - C36	mg/kg dry wt	< 40	78	< 40	7	< 40
Total hydrocarbons (C7 - C36)	mg/kg dry wt	< 90	< 80	< 90	-	< 80
BTEX in VOC Soils by Headspace	ce GC-MS					
Benzene	mg/kg dry wt	< 0.3	_	7	1 01	< 0.16
Ethylbenzene	mg/kg dry wt	< 0.3	-	9.	1 9	< 0.3
Toluene	mg/kg dry wt	< 0.3	_ 7		/ -	< 0.3
m&p-Xylene	mg/kg dry wt	< 0.6	A- ()		-	< 0.4
o-Xylene	mg/kg dry wt	< 0.3			-	< 0.3
Halogenated Aliphatics in VOC S	0 0 7	ice GC-MS	- (71)	1 (71)		
Bromomethane (Methyl Bromide)		< 0.3			_	< 0.3
Carbon tetrachloride	mg/kg dry wt	< 0.3	_	-	-	< 0.3
Chloroethane	mg/kg dry wt	< 0.3	- ^	-	-	< 0.3
Chloromethane	mg/kg dry wt	< 0.3		_	-	< 0.3
1,2-Dibromo-3-chloropropane	mg/kg dry wt	< 0.5	•. (-)	_	-	< 0.5
1,2-Dibromoethane (ethylene	mg/kg dry wt	< 0.3	X	_	-	< 0.3
dibromide, EDB)		7	Yr,			
Dibromomethane	mg/kg dry wt	< 0.3	<u> </u>	-	-	< 0.3
1,3-Dichloropropane	mg/kg dry wt	< 0.3	-	-	-	< 0.3
Dichlorodifluoromethane	mg/kg dry wt	< 0.5	-	-	-	< 0.5
1,1-Dichloroethane	mg/kg dry wt	< 0.3	-	-	-	< 0.3
1,2-Dichloroethane	mg/kg dry wt	< 0.3	-	-	-	< 0.3
1,1-Dichloroethene	mg/kg dry wt	< 0.3	-	-	-	< 0.3
cis-1,2-Dichloroethene	mg/kg dry wt	< 0.3	-	-	-	< 0.3
trans-1,2-Dichloroethene	mg/kg dry wt	< 0.3	-	-	-	< 0.3
Dichloromethane (methylene chloride)	mg/kg dry wt	< 6	-	-	-	< 4
1,2-Dichloropropane	mg/kg dry wt	< 0.3	-	-	-	< 0.3
1,1-Dichloropropene	mg/kg dry wt	< 0.3	-	-	-	< 0.3
cis-1,3-Dichloropropene	mg/kg dry wt	< 0.3	-	-	-	< 0.3
trans-1,3-Dichloropropene	mg/kg dry wt	< 0.3	-	-	-	< 0.3
Hexachlorobutadiene	mg/kg dry wt	< 0.3	-	-	-	< 0.3
1,1,1,2-Tetrachloroethane	mg/kg dry wt	< 0.3	-	-	-	< 0.3
1,1,2,2-Tetrachloroethane	mg/kg dry wt	< 0.3	-	-	-	< 0.3
Tetrachloroethene (tetrachloroethylene)	mg/kg dry wt	< 0.3	-	-	-	< 0.3
1,1,1-Trichloroethane	mg/kg dry wt	< 0.3	-	-	-	< 0.3
1,1,2-Trichloroethane	mg/kg dry wt	< 0.3	-	-	-	< 0.3
Trichloroethene (trichloroethylene)	mg/kg dry wt	< 0.3	-	-	-	< 0.3
Trichlorofluoromethane	mg/kg dry wt	< 0.3	-	-	-	< 0.3
1,2,3-Trichloropropane	mg/kg dry wt	< 0.5	-	_	-	< 0.5
			-	-	-	

Sample Type: Soil						
	Sample Name:	B74 TP04 2.1 21-Mar-2023	B66 TP01 0.1 21-Mar-2023	B66 TP01 0.9 21-Mar-2023	B66 TP01 1.1 21-Mar-2023	B63 TP03 0.1 21-Mar-2023
	Lab Number:	3211645.26	3211645.27	3211645.28	3211645.29	3211645.30
Halogenated Aliphatics in VO	C Soils by Headspa	ice GC-MS				
1,1,2-Trichlorotrifluoroethane (Freon 113)	mg/kg dry wt	< 0.3	-	-	-	< 0.3
Vinyl chloride	mg/kg dry wt	< 0.3	-	-	-	< 0.3
Haloaromatics in VOC Soils b	y Headspace GC-N	1S				
Bromobenzene	mg/kg dry wt	< 0.3	-	-	_	< 0.3
1,3-Dichlorobenzene	mg/kg dry wt	< 0.3	-	-	-	< 0.3
4-Chlorotoluene	mg/kg dry wt	< 0.3	-	-	-	< 0.3
Chlorobenzene (monochlorobenzene)	mg/kg dry wt	< 0.3	-	-	-	< 0.3
1,2-Dichlorobenzene	mg/kg dry wt	< 0.3	-	-	-	< 0.3
1,4-Dichlorobenzene	mg/kg dry wt	< 0.3	-	-	-	< 0.3
2-Chlorotoluene	mg/kg dry wt	< 0.3	-	-	-	< 0.3
1,2,3-Trichlorobenzene	mg/kg dry wt	< 0.3	-	-	-	< 0.3
1,2,4-Trichlorobenzene	mg/kg dry wt	< 0.3	-	-	N -	< 0.3
1,3,5-Trichlorobenzene	mg/kg dry wt	< 0.3	-) . 6	< 0.3
Monoaromatic Hydrocarbons	in VOC Soils by He	adspace GC-MS			\	•
n-Butylbenzene	mg/kg dry wt	< 0.3	_	()		< 0.3
tert-Butylbenzene	mg/kg dry wt	< 0.3	_	01	~0	< 0.3
Isopropylbenzene (Cumene)	mg/kg dry wt	< 0.3	_		1 ()	< 0.3
4-Isopropyltoluene (p-Cymene		< 0.3	-	9 .		< 0.3
n-Propylbenzene	mg/kg dry wt	< 0.3	(- 1	_	< 0.3
sec-Butylbenzene	mg/kg dry wt	< 0.3	(2)	- 1	_	< 0.3
Styrene	mg/kg dry wt	< 0.3			_	< 0.3
1,2,4-Trimethylbenzene	mg/kg dry wt	< 0.3		(/)	_	< 0.3
1,3,5-Trimethylbenzene	mg/kg dry wt	< 0.3	A . \$	3.	-	< 0.3
Ketones in VOC Soils by Hea	0 0 ,	0.0				0.0
2-Butanone (MEK)	mg/kg dry wt	< 60		_	_	< 40
4-Methylpentan-2-one (MIBK)	0 0 ,	< 12		_	_	< 7
Acetone (WIBIT)	mg/kg dry wt	< 60	. • . () •	_	_	< 40
Methyl tert-butylether (MTBE)		< 0.3	XI	_	_	< 0.3
Trihalomethanes in VOC Soils			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 	_	_	10.0
			<u>O'</u>			< 0.3
Bromodichloromethane	mg/kg dry wt	< 0.3	-	-	-	
Bromoform (tribromomethane)		< 0.5	-	-	-	< 0.5 < 0.3
Chloroform (Trichloromethane Dibromochloromethane		< 0.3	-	-	-	
	mg/kg dry wt	< 0.3	-	-	-	< 0.3
Other VOC in Soils by Heads	•	100				.00
Carbon disulphide	mg/kg dry wt	< 0.3	-	-	-	< 0.3 < 0.3
Naphthalene	mg/kg dry wt	< 0.3	-	-	-	< 0.3
	Sample Name:		B63	3 TP04 0.2 21-Mar-2	2023	
•	Lab Number:			3211645.32		
Individual Tests						
Dry Matter	g/100g as rcvd			72		
Total Recoverable Beryllium	mg/kg dry wt			0.7		
8 Heavy metals plus Boron						
Total Recoverable Arsenic	mg/kg dry wt			3		
Total Recoverable Boron	mg/kg dry wt			< 20		
Total Recoverable Cadmium	mg/kg dry wt			< 0.10		
Total Recoverable Chromium	mg/kg dry wt			8		
Total Recoverable Copper	mg/kg dry wt			10		
Total Recoverable Lead	mg/kg dry wt			16.5		
Total Recoverable Mercury	mg/kg dry wt			< 0.10		
Total Recoverable Nickel	mg/kg dry wt			4		
Total Recoverable Zinc	mg/kg dry wt			37		

Sample Type: Soil		
Sar	mple Name:	B63 TP04 0.2 21-Mar-2023
L	ab Number:	3211645.32
Polycyclic Aromatic Hydrocarbons	Screening in S	Soil*
Total of Reported PAHs in Soil	mg/kg dry wt	< 0.4
1-Methylnaphthalene	mg/kg dry wt	< 0.014
2-Methylnaphthalene	mg/kg dry wt	< 0.014
Acenaphthylene	mg/kg dry wt	< 0.014
Acenaphthene	mg/kg dry wt	< 0.014
Anthracene	mg/kg dry wt	< 0.014
Benzo[a]anthracene	mg/kg dry wt	< 0.014
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.014
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES*	mg/kg dry wt	< 0.033
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	< 0.033
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	< 0.014
Benzo[e]pyrene	mg/kg dry wt	< 0.014
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.014
Benzo[k]fluoranthene	mg/kg dry wt	< 0.014
Chrysene	mg/kg dry wt	< 0.014
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.014
Fluoranthene	mg/kg dry wt	< 0.014
Fluorene	mg/kg dry wt	< 0.014
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.014
Naphthalene	mg/kg dry wt	< 0.07
Perylene	mg/kg dry wt	< 0.014
Phenanthrene	mg/kg dry wt	< 0.014
Pyrene	mg/kg dry wt	< 0.014
Total Petroleum Hydrocarbons in	Soil	
C7 - C9	mg/kg dry wt	< 20
C10 - C14	mg/kg dry wt	< 20
C15 - C36	mg/kg dry wt	< 40
Total hydrocarbons (C7 - C36)	mg/kg dry wt	< 80
BTEX in VOC Soils by Headspace	e GC-MS	
Benzene	mg/kg dry wt	< 0.3
Ethylbenzene	mg/kg dry wt	< 0.3
Toluene	mg/kg dry wt	< 0.3
m&p-Xylene	mg/kg dry wt	< 0.5
o-Xylene	mg/kg dry wt	< 0.3
Halogenated Aliphatics in VOC So	oils by Headspa	ce GC-MS
Bromomethane (Methyl Bromide)	mg/kg dry wt	< 0.3
Carbon tetrachloride	mg/kg dry wt	< 0.3
Chloroethane	mg/kg dry wt	< 0.3
Chloromethane	mg/kg dry wt	< 0.3
1,2-Dibromo-3-chloropropane	mg/kg dry wt	< 0.5
1,2-Dibromoethane (ethylene dibromide, EDB)	mg/kg dry wt	< 0.3
Dibromomethane	mg/kg dry wt	< 0.3
1,3-Dichloropropane	mg/kg dry wt	< 0.3
Dichlorodifluoromethane	mg/kg dry wt	< 0.5
1,1-Dichloroethane	mg/kg dry wt	< 0.3
1,2-Dichloroethane	mg/kg dry wt	< 0.3
1,1-Dichloroethene	mg/kg dry wt	< 0.3
cis-1,2-Dichloroethene	mg/kg dry wt	< 0.3
trans-1,2-Dichloroethene	mg/kg dry wt	< 0.3
Dichloromethane (methylene chloride)	mg/kg dry wt	< 5
1,2-Dichloropropane	mg/kg dry wt	< 0.3
1,1-Dichloropropene	mg/kg dry wt	< 0.3

Sample Type: Soil		
Sa	mple Name:	B63 TP04 0.2 21-Mar-2023
L	ab Number:	3211645.32
Halogenated Aliphatics in VOC S	oils by Headspa	ce GC-MS
cis-1,3-Dichloropropene	mg/kg dry wt	< 0.3
trans-1,3-Dichloropropene	mg/kg dry wt	< 0.3
Hexachlorobutadiene	mg/kg dry wt	< 0.3
1,1,1,2-Tetrachloroethane	mg/kg dry wt	< 0.3
1,1,2,2-Tetrachloroethane	mg/kg dry wt	< 0.3
Tetrachloroethene (tetrachloroethylene)	mg/kg dry wt	< 0.3
1,1,1-Trichloroethane	mg/kg dry wt	< 0.3
1,1,2-Trichloroethane	mg/kg dry wt	< 0.3
Trichloroethene (trichloroethylene)	mg/kg dry wt	< 0.3
Trichlorofluoromethane	mg/kg dry wt	< 0.3
1,2,3-Trichloropropane	mg/kg dry wt	< 0.5
1,1,2-Trichlorotrifluoroethane (Freon 113)	mg/kg dry wt	< 0.3
Vinyl chloride	mg/kg dry wt	< 0.3
Haloaromatics in VOC Soils by H	eadspace GC-N	ns A
Bromobenzene	mg/kg dry wt	< 0.3
1,3-Dichlorobenzene	mg/kg dry wt	603
4-Chlorotoluene	mg/kg dry wt	C < 0.3
Chlorobenzene (monochlorobenzene)	mg/kg dry wt	< 0.3
1,2-Dichlorobenzene	mg/kg dry wt	< 0.3
1,4-Dichlorobenzene	mg/kg dry wt	< 0.3
2-Chlorotoluene	mg/kg dry wt	> 0/3
1,2,3-Trichlorobenzene	mg/kg dry wt	< 0.3
1,2,4-Trichlorobenzene	mg/kg dry wt	< 0.3
1,3,5-Trichlorobenzene	mg/kg dry wt	< 0.3
Monoaromatic Hydrocarbons in V	OC Soils by He	adspace GC-MS
n-Butylbenzene	mg/kg dry wt	< 0.3
tert-Butylbenzene	mg/kg dry wt	< 0.3
Isopropylbenzene (Cumene)	mg/kg dry wt	< 0.3
4-Isopropyltoluene (p-Cymene)	mg/kg dry wt	< 0.3
n-Propylbenzene	mg/kg dry wt	< 0.3
sec-Butylbenzene	mg/kg dry wt	< 0.3
Styrene	mg/kg dry wt	< 0.3
1,2,4-Trimethylbenzene	mg/kg dry wt	< 0.3
1,3,5-Trimethylbenzene	mg/kg dry wt	< 0.3
Ketones in VOC Soils by Headsp	ace GC-MS	
2-Butanone (MEK)	mg/kg dry wt	< 50
4-Methylpentan-2-one (MIBK)	mg/kg dry wt	< 9
Acetone	mg/kg dry wt	< 50
Methyl tert-butylether (MTBE)	mg/kg dry wt	< 0.3
Trihalomethanes in VOC Soils by	Headspace GC	:-MS
Bromodichloromethane	mg/kg dry wt	< 0.3
Bromoform (tribromomethane)	mg/kg dry wt	< 0.5
Chloroform (Trichloromethane)	mg/kg dry wt	< 0.3
Dibromochloromethane	mg/kg dry wt	< 0.3
Other VOC in Soils by Headspac	e GC-MS	
Carbon disulphide	mg/kg dry wt	< 0.3
Naphthalene	mg/kg dry wt	< 0.3

Analyst's Comments

Amended Report: This certificate of analysis replaces report '3211645-SPv2' issued on 06-Apr-2023 at 2:22 pm. Reason for amendment: Metals testing added.

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Labs, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Individual Tests			
Environmental Solids Sample Drying*	Air dried at 35°C Used for sample preparation. May contain a residual moisture content of 2-5%.	-	1, 3-5, 7, 13, 27-30, 32
Total of Reported PAHs in Soil	Sonication extraction, GC-MS analysis. In-house based on US EPA 8270.	0.03 mg/kg dry wt	1-8, 10, 13, 27-28, 30, 32
Dry Matter	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. (Free water removed before analysis, non-soil objects such as sticks, leaves, grass and stones also removed). US EPA 3550.	0.10 g/100g as rcvd	1-8, 10, 13, 16, 18-19, 24-28, 30, 32

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Total Recoverable Beryllium	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.2 mg/kg dry wt	1, 3-5, 7, 13, 27-30, 32
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES*	BaP Potency Equivalence calculated from; Benzo(a)anthracene x 0.1 + Benzo(b)fluoranthene x 0.1 + Benzo(j)fluoranthene x 0.1 + Benzo(k)fluoranthene x 0.1 + Benzo(a)pyrene x 1.0 + Chrysene x 0.01 + Dibenzo(a,h)anthracene x 1.0 + Fluoranthene x 0.01 + Indeno(1,2,3-c,d)pyrene x 0.1. Ministry for the Environment. 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health. Wellington: Ministry for the Environment.	0.024 mg/kg dry wt	1-8, 10, 13, 27-28, 30, 32
Benzo[a]pyrene Toxic Equivalence (TEF)*	Benzo[a]pyrene Toxic Equivalence (TEF) calculated from; Benzo[a]pyrene x 1.0 + Benzo(a)anthracene x 0.1 + Benzo(b) fluoranthene x 0.1 + Benzo(k)fluoranthene x 0.1 + Chrysene x 0.01 + Dibenzo(a,h)anthracene x 1.0 + Indeno(1,2,3-c,d)pyrene x 0.1. Guidelines for assessing and managing contaminated gasworks sites in New Zealand (GMG) (MfE, 1997).	0.024 mg/kg dry wt	1-8, 10, 13, 27-28, 30, 32
TPH Oil Industry Profile + PAHscreen	Sonication extraction, GC-FID and GC-MS analysis. Tested on as received sample. In-house based on US EPA 8015 and US EPA 8270.	0.010 - 70 mg/kg dry wt	1-8, 10, 13, 28, 30, 32
8 Heavy metals plus Boron	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP-MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 20 mg/kg dry wt	1, 3-5, 7, 13, 27-30, 32
BTEX in Soil by Headspace GC-MS	Solvent extraction, Headspace GC-MS analysis. Tested on as received sample. In-house based on US EPA 8260 and 5021.	0.05 - 0.10 mg/kg dry wt	27
Polycyclic Aromatic Hydrocarbons Screening in Soil*	Sonication extraction, GC-MS analysis. Tested on as received sample. In-house based on US EPA 8270.	0.010 - 0.05 mg/kg dry wt	27
Polychlorinated Biphenyls Screening in Soil*	Sonication extraction, GC-MS analysis. Tested on dried sample. In-house based on US EPA 8270.	0.00000020 - 0.2 mg/kg dry wt	1, 3, 5
Volatile Organic Compounds Screening in Soil by Headspace GC-MS	Sonication extraction, Headspace GC-MS analysis. Tested on as received sample. In-house based on US EPA 8260 and 5021.	0.13 - 30 mg/kg dry wt	16, 18-19, 24, 26, 30, 32
Total Petroleum Hydrocarbons in Soil	V 13		
Client Chromatogram for TPH by FID	Small peaks associated with QC compounds may be visible in chromatograms with low TPH concentrations. QC peaks are as follows: one peak in the C12 - 14 band, the C21 - 25 band and the C30 - 36 band. All QC peaks are corrected for in the reported TPH concentrations.	-	3, 5, 16, 24, 27
C7 - C9	Solvent extraction, GC-FID analysis. In-house based on US EPA 8015.	20 mg/kg dry wt	1-8, 10, 13, 16, 18-19, 24-28, 30, 32
C10 - C14	Solvent extraction, GC-FID analysis. Tested on as received sample. In-house based on US EPA 8015.	20 mg/kg dry wt	1-8, 10, 13, 16, 18-19, 24-28, 30, 32
C15 - C36	Solvent extraction, GC-FID analysis. Tested on as received sample. In-house based on US EPA 8015.	40 mg/kg dry wt	1-8, 10, 13, 16, 18-19, 24-28, 30, 32
Total hydrocarbons (C7 - C36)	Calculation: Sum of carbon bands from C7 to C36. In-house based on US EPA 8015.	70 mg/kg dry wt	1-8, 10, 13, 16, 18-19, 24-28, 30, 32

Testing was completed between 24-Mar-2023 and 16-Jun-2023. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

 $This \ certificate \ of \ analysis \ must \ not \ be \ reproduced, \ except \ in \ full, \ without \ the \ written \ consent \ of \ the \ signatory.$

Kim Harrison MSc

Client Services Manager - Environmental

6 0508 HILL LAB (44 555 22) **%** +64 7 858 2000 mail@hill-labs.co.nz www.hill-labs.co.nz

Certificate of Analysis

Page 1 of 10

Client: Contact:

GHD Limited David Jackson C/- GHD Limited PO Box 660

Waikato Mail Centre Hamilton 3240

Lab No: **Date Received: Date Reported: Quote No:**

Order No: 12559090 **Client Reference:** Submitted By:

24-Mar-2023 16-Jun-2023 124299

(Amended)

SPv3

12559090 David Jackson

3214115

			Ou	onnitied by.	David Jackso	11
Sample Type: Soil						
	Sample Name:	WD2 TP09 0.1 22-Mar-2023	WD2 TP08 0.2 22-Mar-2023	WD2 TP06 0.1 22-Mar-2023	WD2 TP05 0.1 22-Mar-2023	WD2 TP04 0.1 22-Mar-2023
	Lab Number:	3214115.1	3214115.4	3214115.6	3214115.8	3214115.10
Individual Tests						
Total Recoverable Beryllium	mg/kg dry wt	0.8	0.9	0.9	0.8	0.7
8 Heavy metals plus Boron						
Total Recoverable Arsenic	mg/kg dry wt	16	16	16	4	4
Total Recoverable Boron	mg/kg dry wt	< 20	< 20	< 20	< 20	< 20
Total Recoverable Cadmium	mg/kg dry wt	0.26	0.30	0.30	0.14	0.15
Total Recoverable Chromium	mg/kg dry wt	9	9	10	8	8
Total Recoverable Copper	mg/kg dry wt	23	24	28	18	22
Total Recoverable Lead	mg/kg dry wt	39	-44	43	42	89
Total Recoverable Mercury	mg/kg dry wt	0.14	0.14	0.17	< 0.10	0.10
Total Recoverable Nickel	mg/kg dry wt	5	5	5	4	4
Total Recoverable Zinc	mg/kg dry wt	93	81	79	78	79
	Sample Name:	WD2 TP03 0.1	WD2 TP02 0.1	WD2 TP01 0.1	B59 TP01 0.1	B59 TP01 0.6
		22-Mar-2023	22-Mar-2023	22-Mar-2023	23-Mar-2023	23-Mar-2023
	Lab Number:	3214115.14	3214115.16	3214115.18	3214115.22	3214115.23
Individual Tests	•					
Dry Matter	g/100g as rcvd	-	-	-	91	71
Total Recoverable Beryllium	mg/kg dry wt	0.9	0.7	0.7	-	-
8 Heavy metals plus Boron						
Total Recoverable Arsenic	mg/kg dry wt	8	4	5	-	-
Total Recoverable Boron	mg/kg dry wt	< 20	< 20	< 20	-	-
Total Recoverable Cadmium	mg/kg dry wt	0.29	0.20	0.14	-	-
Total Recoverable Chromium	mg/kg dry wt	9	8	9	-	-
Total Recoverable Copper	mg/kg dry wt	23	15	16	-	-
Total Recoverable Lead	mg/kg dry wt	45	35	41	-	-
Total Recoverable Mercury	mg/kg dry wt	0.15	0.12	0.12	-	-
Total Recoverable Nickel	mg/kg dry wt	5	4	4	-	-
Total Recoverable Zinc	mg/kg dry wt	94	60	62	-	-
Organochlorine Pesticides S	creening in Soil					
Aldrin	mg/kg dry wt	-	-	-	< 0.011	< 0.014
alpha-BHC	mg/kg dry wt	-	-	-	< 0.011	< 0.014
beta-BHC	mg/kg dry wt	-	-	-	< 0.011	< 0.014
delta-BHC	mg/kg dry wt	-	-	-	< 0.011	< 0.014
gamma-BHC (Lindane)	mg/kg dry wt	-	-	-	< 0.011	< 0.014
cis-Chlordane	mg/kg dry wt	-	-	-	< 0.011	< 0.014
trans-Chlordane	mg/kg dry wt	-	-	-	< 0.011	< 0.014
2,4'-DDD	mg/kg dry wt	-	-	-	0.015	< 0.014
4,4'-DDD	mg/kg dry wt	-	-	-	0.055	< 0.014

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked * or any comments and interpretations, which are not accredited.

Organochlorine Pesticides Screen 2,4'-DDE 4,4'-DDE	mple Name: ab Number:	WD2 TP03 0.1 22-Mar-2023 3214115.14	WD2 TP02 0.1 22-Mar-2023	WD2 TP01 0.1 22-Mar-2023	B59 TP01 0.1 23-Mar-2023	B59 TP01 0.6
Organochlorine Pesticides Screen 2,4'-DDE 4,4'-DDE		3214115 14				23-Mar-2023
2,4'-DDE 4,4'-DDE	ning in Soil	02 17 1 1J. 17	3214115.16	3214115.18	3214115.22	3214115.23
4,4'-DDE				'	1	
	mg/kg dry wt	-	-	-	< 0.011	< 0.014
	mg/kg dry wt	-	-	-	0.114	< 0.014
2,4'-DDT	mg/kg dry wt	-	-	-	0.043	< 0.014
4,4'-DDT	mg/kg dry wt	-	_	-	0.24	< 0.014
Total DDT Isomers	mg/kg dry wt	-	_	-	0.46	< 0.09
Dieldrin	mg/kg dry wt	-	_	-	< 0.011	< 0.014
Endosulfan I	mg/kg dry wt	-	_	-	< 0.011	< 0.014
Endosulfan II	mg/kg dry wt	_	_	_	< 0.011	< 0.014
Endosulfan sulphate	mg/kg dry wt	_	_	_	< 0.011	< 0.014
Endrin	mg/kg dry wt	_	_	_	< 0.011	< 0.014
Endrin aldehyde	mg/kg dry wt	_	_	_	< 0.011	≤ 0.014
Endrin ketone	mg/kg dry wt	_	_	_	< 0.011	< 0.014
Heptachlor	mg/kg dry wt		_	_	0.011	< 0.014
Heptachlor epoxide	mg/kg dry wt		_	-	< 0.011	< 0.014
Hexachlorobenzene	mg/kg dry wt	<u>-</u>	<u>-</u>	-	< 0.011	< 0.014
Methoxychlor		-	-	-	< 0.011	< 0.014
-	mg/kg dry wt	-	-	-		
San	mple Name:	B59 TP07 0.1 23-Mar-2023	B74 TP01 0.1 23-Mar-2023	B74 TP02 0.1 23-Mar-2023	B74 TP02 0.5 23-Mar-2023	B74 TP02 1.9 23-Mar-2023
Lá	ab Number:	3214115.24	3214115.26	3214115.28	3214115.29	3214115.31
Individual Tests				^		
Dry Matter g	g/100g as rcvd	90	62	70	59	64
Organochlorine Pesticides Screen	ning in Soil		10	1/4		
Aldrin	mg/kg dry wt	< 0.011	- (7-1)	1 (2-1)	-	-
alpha-BHC	mg/kg dry wt	< 0.011			-	-
beta-BHC	mg/kg dry wt	< 0.011	-	_	-	-
delta-BHC	mg/kg dry wt	< 0.011	- 0	-	-	-
gamma-BHC (Lindane)	mg/kg dry wt	< 0.011	_	-	-	-
cis-Chlordane	mg/kg dry wt	< 0.011	+ (-)	-	-	-
trans-Chlordane	mg/kg dry wt	< 0.011		-	-	-
2,4'-DDD	mg/kg dry wt	< 0.011	_	_	-	-
4,4'-DDD	mg/kg dry wt		-	_	_	_
2,4'-DDE	mg/kg dry wt	< 0.011	_	_	_	_
4,4'-DDE	mg/kg dry wt	< 0.011	_	_	_	_
2,4'-DDT	mg/kg dry wt	< 0.011	_	_	_	_
4,4'-DDT	mg/kg dry wt	< 0.011	_	_	-	_
Total DDT Isomers	mg/kg dry wt	< 0.07	_	-	-	-
Dieldrin	mg/kg dry wt	< 0.011	-		-	-
Endosulfan I	mg/kg dry wt	< 0.011	<u>-</u> _	-	<u>-</u>	<u>-</u>
Endosulfan II	mg/kg dry wt	< 0.011	-	<u>-</u>	-	-
Endosulfan sulphate	mg/kg dry wt	< 0.011	<u>-</u>	-	-	-
· · · · · · · · · · · · · · · · · · ·			-			-
Endrin eldebyde	mg/kg dry wt	< 0.011	-	-	-	-
Endrin aldehyde	mg/kg dry wt	< 0.011	-	-	-	-
Endrin ketone	mg/kg dry wt	< 0.011	-	-	-	-
Heptachlor analysida	mg/kg dry wt	< 0.011	-	-	-	-
Heptachlor epoxide	mg/kg dry wt	< 0.011	-	-	-	-
Hexachlorobenzene	mg/kg dry wt	< 0.011	-	-	-	-
Methoxychlor	mg/kg dry wt	< 0.011	-	-	-	-
Total Petroleum Hydrocarbons in S						
C7 - C9	mg/kg dry wt	-	< 30	< 20	< 30	< 30
C10 - C14	mg/kg dry wt	-	< 20	< 20	< 20	< 20
C15 - C36	mg/kg dry wt	-	< 40	49	< 40	< 40
Total hydrocarbons (C7 - C36)	mg/kg dry wt	-	< 90	< 80	< 90	< 90
BTEX in VOC Soils by Headspace	e GC-MS					
Benzene	mg/kg dry wt	-	< 0.3	< 0.3	-	< 0.3

Sample Type: Soil						
5	Sample Name:	B59 TP07 0.1	B74 TP01 0.1	B74 TP02 0.1	B74 TP02 0.5	B74 TP02 1.9
		23-Mar-2023	23-Mar-2023	23-Mar-2023	23-Mar-2023	23-Mar-2023
	Lab Number:	3214115.24	3214115.26	3214115.28	3214115.29	3214115.31
BTEX in VOC Soils by Headsp						
Ethylbenzene	mg/kg dry wt	-	< 0.3	< 0.3	-	< 0.3
Toluene	mg/kg dry wt	-	< 0.3	< 0.3	-	< 0.3
m&p-Xylene	mg/kg dry wt	-	< 0.6	< 0.5	-	< 0.6
o-Xylene	mg/kg dry wt	-	< 0.3	< 0.3	-	< 0.3
Halogenated Aliphatics in VOC	Soils by Headspa	ice GC-MS				
Bromomethane (Methyl Bromid	e) mg/kg dry wt	-	< 0.3	< 0.3	-	< 0.3
Carbon tetrachloride	mg/kg dry wt	-	< 0.3	< 0.3	-	< 0.3
Chloroethane	mg/kg dry wt	-	< 0.3	< 0.3	-	< 0.3
Chloromethane	mg/kg dry wt	-	< 0.3	< 0.3	-	< 0.3
1,2-Dibromo-3-chloropropane	mg/kg dry wt	-	< 0.5	< 0.5	-	< 0.5
1,2-Dibromoethane (ethylene	mg/kg dry wt	-	< 0.3	< 0.3	-	< 0.3
dibromide, EDB)						
Dibromomethane	mg/kg dry wt	-	< 0.3	< 0.3		< 0.3
1,3-Dichloropropane	mg/kg dry wt	-	< 0.3	< 0.3) ·	≤ 0.3
Dichlorodifluoromethane	mg/kg dry wt	-	< 0.5	< 0.5	Y - ()	< 0.5
1,1-Dichloroethane	mg/kg dry wt	-	< 0.3	< 0.3		< 0.3
1,2-Dichloroethane	mg/kg dry wt	-	< 0.3	< 0.3	()	< 0.3
1,1-Dichloroethene	mg/kg dry wt	-	< 0.3	< 0.3	101	< 0.3
cis-1,2-Dichloroethene	mg/kg dry wt	-	< 0.3	< 0.3	1	< 0.3
trans-1,2-Dichloroethene	mg/kg dry wt	-	< 0.3	< 0.3	-	< 0.3
Dichloromethane (methylene chloride)	mg/kg dry wt	-	< 6	< 5	_	< 6
1,2-Dichloropropane	mg/kg dry wt	-	< 0.3	< 0.3	-	< 0.3
1,1-Dichloropropene	mg/kg dry wt	-	< 0.3	< 0.3	-	< 0.3
cis-1,3-Dichloropropene	mg/kg dry wt	-	< 0.3	< 0.3	-	< 0.3
trans-1,3-Dichloropropene	mg/kg dry wt	-	< 0.3	< 0.3	-	< 0.3
Hexachlorobutadiene	mg/kg dry wt	1-	< 0.3	< 0.3	-	< 0.3
1,1,1,2-Tetrachloroethane	mg/kg dry wt		< 0.3	< 0.3	-	< 0.3
1,1,2,2-Tetrachloroethane	mg/kg dry wt		< 0.3	< 0.3	-	< 0.3
Tetrachloroethene (tetrachloroethylene)	mg/kg dry wt	7	< 0.3	< 0.3	-	< 0.3
1,1,1-Trichloroethane	mg/kg dry wt	- ~	< 0.3	< 0.3	-	< 0.3
1,1,2-Trichloroethane	mg/kg dry wt	-	< 0.3	< 0.3	-	< 0.3
Trichloroethene (trichloroethylene)	mg/kg dry wt	-	< 0.3	< 0.3	-	< 0.3
Trichlorofluoromethane	mg/kg dry wt	ر 🔾 -	< 0.3	< 0.3	-	< 0.3
1,2,3-Trichloropropane	mg/kg dry wt	-	< 0.5	< 0.5	-	< 0.5
1,1,2-Trichlorotrifluoroethane (Freon 113)	mg/kg dry wt	_	< 0.3	< 0.3	-	< 0.3
Vinyl chloride	mg/kg dry wt	-	< 0.3	< 0.3	-	< 0.3
Haloaromatics in VOC Soils by	Headspace GC-N	ns				
Bromobenzene	mg/kg dry wt	-	< 0.3	< 0.3	-	< 0.3
1,3-Dichlorobenzene	mg/kg dry wt	-	< 0.3	< 0.3	-	< 0.3
4-Chlorotoluene	mg/kg dry wt	-	< 0.3	< 0.3	-	< 0.3
Chlorobenzene (monochlorobenzene)	mg/kg dry wt	-	< 0.3	< 0.3	-	< 0.3
1,2-Dichlorobenzene	mg/kg dry wt	-	< 0.3	< 0.3	-	< 0.3
1,4-Dichlorobenzene	mg/kg dry wt	-	< 0.3	< 0.3	-	< 0.3
2-Chlorotoluene	mg/kg dry wt	-	< 0.3	< 0.3	-	< 0.3
1,2,3-Trichlorobenzene	mg/kg dry wt	-	< 0.3	< 0.3	-	< 0.3
1,2,4-Trichlorobenzene	mg/kg dry wt	-	< 0.3	< 0.3	-	< 0.3
1,3,5-Trichlorobenzene	mg/kg dry wt	-	< 0.3	< 0.3	-	< 0.3
Monoaromatic Hydrocarbons in	VOC Soils by He	adspace GC-MS				
n-Butylbenzene	mg/kg dry wt	-	< 0.3	< 0.3	-	< 0.3
tert-Butylbenzene	mg/kg dry wt	-	< 0.3	< 0.3	-	< 0.3
Isopropylbenzene (Cumene)	mg/kg dry wt	-	< 0.3	< 0.3	-	< 0.3
· '						1

Sample Type: Soil						
San	nple Name:	B59 TP07 0.1 23-Mar-2023	B74 TP01 0.1 23-Mar-2023	B74 TP02 0.1 23-Mar-2023	B74 TP02 0.5 23-Mar-2023	B74 TP02 1.9 23-Mar-2023
La	ab Number:	3214115.24	3214115.26	3214115.28	3214115.29	3214115.31
Monoaromatic Hydrocarbons in VC						
4-Isopropyltoluene (p-Cymene)	mg/kg dry wt	<u> </u>	< 0.3	< 0.3	-	< 0.3
n-Propylbenzene	mg/kg dry wt	-	< 0.3	< 0.3	-	< 0.3
sec-Butylbenzene	mg/kg dry wt	_	< 0.3	< 0.3	_	< 0.3
Styrene	mg/kg dry wt		< 0.3	< 0.3		< 0.3
1,2,4-Trimethylbenzene	mg/kg dry wt		< 0.3	< 0.3	_	< 0.3
1,3,5-Trimethylbenzene	mg/kg dry wt		< 0.3	< 0.3	<u> </u>	< 0.3
Ketones in VOC Soils by Headspa	<u> </u>		10.0	10.0		- 0.0
•			1.00	. 50		1.00
2-Butanone (MEK)	mg/kg dry wt	-	< 60	< 50	-	< 60
4-Methylpentan-2-one (MIBK)	mg/kg dry wt	-	< 12	< 10	-	< 11
Acetone	mg/kg dry wt	-	< 30	< 30	-	< 30
Methyl tert-butylether (MTBE)	mg/kg dry wt	-	< 0.3	< 0.3	-	< 0.3
Trihalomethanes in VOC Soils by I		C-MS				
Bromodichloromethane	mg/kg dry wt	-	< 0.3	< 0.3	<i>A</i> -	< 0.3
Bromoform (tribromomethane)	mg/kg dry wt	-	< 0.5	< 0.5))	< 0.5
Chloroform (Trichloromethane)	mg/kg dry wt	-	< 0.3	< 0.3	- 7	< 0.3
Dibromochloromethane	mg/kg dry wt	-	< 0.3	< 0.3		< 0.3
Other VOC in Soils by Headspace	GC-MS			0,	~'0	
Carbon disulphide	mg/kg dry wt	-	< 0.3	< 0.3	1 (/)	< 0.3
Naphthalene	mg/kg dry wt	-	< 0.3	< 0.3	<u>~</u>	< 0.3
0.55	anda Manaa	B74 TP02 2.1	B74 TP03 0.1	B74 TP03 2.2	B68 TP01 0.2	B68 TP01 0.6
San	nple Name:	23-Mar-2023	23-Mar-2023	23-Mar-2023	23-Mar-2023	23-Mar-2023
La	ab Number:	3214115.32	3214115.33	3214115.35	3214115.37	3214115.38
Individual Tests				101		
Dry Matter g	/100g as rcvd	62	67	64	91	68
Polycyclic Aromatic Hydrocarbons						
Total of Reported PAHs in Soil	mg/kg dry wt	A		_	4.6	< 0.4
1-Methylnaphthalene	mg/kg dry wt			_	< 0.011	< 0.015
2-Methylnaphthalene	mg/kg dry wt	10-1	. * . (-)	_	< 0.011	< 0.015
Acenaphthylene	mg/kg dry wt		X \ .	-	0.021	< 0.015
Acenaphthene	mg/kg dry wt	-	-	_	< 0.011	< 0.015
Anthracene	mg/kg dry wt	- 0	<u> </u>	_	0.030	< 0.015
Benzo[a]anthracene	mg/kg dry wt		_	_	0.41	< 0.015
Benzo[a]pyrene (BAP)	mg/kg dry wt		_	_	0.54	< 0.015
Benzo[a]pyrene Potency	mg/kg dry wt	· O-	-	-	0.80	< 0.036
Equivalency Factor (PEF) NES*						
Benzo[a]pyrene Toxic Equivalence (TEF)*	ma/ka dana	_	_	_	0.70	< 0.035
. , ,	mg/kg dry wt	-	-	-	0.79	< 0.035
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	-	-	-	0.79	< 0.035 < 0.015
fluoranthene	mg/kg dry wt	-	-		0.64	
fluoranthene Benzo[e]pyrene	mg/kg dry wt		-	-		< 0.015
fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene	mg/kg dry wt mg/kg dry wt mg/kg dry wt	-	-	-	0.64 0.31 0.33	< 0.015 < 0.015 < 0.015
fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	- -	-		0.64 0.31 0.33 0.25	< 0.015 < 0.015 < 0.015 < 0.015
fluoranthene Benzo[e]pyrene Benzo[y,h,i]perylene Benzo[k]fluoranthene Chrysene	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	- - - -	-	- - -	0.64 0.31 0.33 0.25 0.37	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015
fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Chrysene Dibenzo[a,h]anthracene	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	- - -	-	- - - -	0.64 0.31 0.33 0.25 0.37 0.083	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015
fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Chrysene Dibenzo[a,h]anthracene Fluoranthene	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	- - - - -	-	- - - - -	0.64 0.31 0.33 0.25 0.37 0.083 0.56	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015
fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Chrysene Dibenzo[a,h]anthracene Fluoranthene Fluorene	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	- - - - - -	-	- - - - - - -	0.64 0.31 0.33 0.25 0.37 0.083 0.56 < 0.011	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015
fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Chrysene Dibenzo[a,h]anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	- - - - - -	-	- - - - - -	0.64 0.31 0.33 0.25 0.37 0.083 0.56 < 0.011 0.36	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015
fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Chrysene Dibenzo[a,h]anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Naphthalene	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	- - - - - - -	- - - - - - - -	- - - - - - - - -	0.64 0.31 0.33 0.25 0.37 0.083 0.56 < 0.011 0.36 < 0.06	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015
fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Chrysene Dibenzo[a,h]anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Naphthalene Perylene	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	- - - - - - -	- - - - - - - - -	- - - - - - - - - -	0.64 0.31 0.33 0.25 0.37 0.083 0.56 < 0.011 0.36 < 0.06 0.129	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015
fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Chrysene Dibenzo[a,h]anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Naphthalene Perylene Phenanthrene	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	- - - - - - - -	- - - - - - - -	- - - - - - - - - -	0.64 0.31 0.33 0.25 0.37 0.083 0.56 < 0.011 0.36 < 0.06 0.129 0.054	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015
fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Chrysene Dibenzo[a,h]anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Naphthalene Perylene Phenanthrene Pyrene	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	- - - - - - -	- - - - - - - - -	- - - - - - - - - -	0.64 0.31 0.33 0.25 0.37 0.083 0.56 < 0.011 0.36 < 0.06 0.129	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015
fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Chrysene Dibenzo[a,h]anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Naphthalene Perylene Phenanthrene Pyrene Total Petroleum Hydrocarbons in S	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	- - - - - - - - - -	- - - - - - - - - - - -		0.64 0.31 0.33 0.25 0.37 0.083 0.56 < 0.011 0.36 < 0.06 0.129 0.054 0.47	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015
fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Chrysene Dibenzo[a,h]anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Naphthalene Perylene Phenanthrene Pyrene Total Petroleum Hydrocarbons in S C7 - C9	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	- - - - - - - - - - - - -	- - - - - - - - - - - - - - -		0.64 0.31 0.33 0.25 0.37 0.083 0.56 < 0.011 0.36 < 0.06 0.129 0.054 0.47	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015
fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Chrysene Dibenzo[a,h]anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Naphthalene Perylene Phenanthrene Pyrene Total Petroleum Hydrocarbons in S	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	- - - - - - - - - -	- - - - - - - - - - - -		0.64 0.31 0.33 0.25 0.37 0.083 0.56 < 0.011 0.36 < 0.06 0.129 0.054 0.47	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015

Sample Type: Soil						
Sar	mple Name:	B74 TP02 2.1 23-Mar-2023	B74 TP03 0.1 23-Mar-2023	B74 TP03 2.2 23-Mar-2023	B68 TP01 0.2 23-Mar-2023	B68 TP01 0.6 23-Mar-2023
L	ab Number:	3214115.32	3214115.33	3214115.35	3214115.37	3214115.38
Total Petroleum Hydrocarbons in	Soil					
Total hydrocarbons (C7 - C36)	mg/kg dry wt	< 90	< 90	< 90	83	< 90
BTEX in VOC Soils by Headspace	e GC-MS					
Benzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
Ethylbenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
Toluene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
m&p-Xylene	mg/kg dry wt	< 0.6	< 0.6	< 0.6	-	-
o-Xylene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
Halogenated Aliphatics in VOC So	oils by Headspa	ice GC-MS				
Bromomethane (Methyl Bromide)	mg/kg dry wt	< 0.3	< 0.3	< 0.3	_	_
Carbon tetrachloride	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
Chloroethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
Chloromethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	
1,2-Dibromo-3-chloropropane	mg/kg dry wt	< 0.5	< 0.5	< 0.5	<u> </u>	70,
1,2-Dibromoethane (ethylene dibromide, EDB)	mg/kg dry wt	< 0.3	< 0.3	< 0.3), 0	-
Dibromomethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3		-
1,3-Dichloropropane	mg/kg dry wt	< 0.3	< 0.3	< 0.3		_
Dichlorodifluoromethane	mg/kg dry wt	< 0.5	< 0.5	< 0.5	. 0	-
1,1-Dichloroethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	10	-
1,2-Dichloroethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
1,1-Dichloroethene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
cis-1,2-Dichloroethene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
trans-1,2-Dichloroethene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
Dichloromethane (methylene chloride)	mg/kg dry wt	< 6	7 6	<6	-	-
1,2-Dichloropropane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
1,1-Dichloropropene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
cis-1,3-Dichloropropene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
trans-1,3-Dichloropropene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
Hexachlorobutadiene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
1,1,1,2-Tetrachloroethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
1,1,2,2-Tetrachloroethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
Tetrachloroethene (tetrachloroethylene)	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
1,1,1-Trichloroethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
1,1,2-Trichloroethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
Trichloroethene (trichloroethylene)	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
Trichlorofluoromethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
1,2,3-Trichloropropane	mg/kg dry wt	< 0.5	< 0.5	< 0.5	-	-
1,1,2-Trichlorotrifluoroethane (Freon 113)	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
Vinyl chloride	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
Haloaromatics in VOC Soils by He	eadspace GC-N	/IS				
Bromobenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
1,3-Dichlorobenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
4-Chlorotoluene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
Chlorobenzene (monochlorobenzene)	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
1,2-Dichlorobenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
1,4-Dichlorobenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
2-Chlorotoluene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
1,2,3-Trichlorobenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
1,2,4-Trichlorobenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
1,3,5-Trichlorobenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-

	Sample Name:	B74 TP02 2.1 23-Mar-2023	B74 TP03 0.1 23-Mar-2023	B74 TP03 2.2 23-Mar-2023	B68 TP01 0.2 23-Mar-2023	B68 TP01 0.6 23-Mar-2023
	Lab Number:	3214115.32	3214115.33	3214115.35	3214115.37	3214115.38
Monoaromatic Hydrocarbons in	VOC Soils by He	adspace GC-MS				
n-Butylbenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
tert-Butylbenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
Isopropylbenzene (Cumene)	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
4-Isopropyltoluene (p-Cymene)	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
n-Propylbenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
sec-Butylbenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
Styrene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
1,2,4-Trimethylbenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
1,3,5-Trimethylbenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
Ketones in VOC Soils by Head	space GC-MS					
2-Butanone (MEK)	mg/kg dry wt	< 60	< 60	< 60	-	-
4-Methylpentan-2-one (MIBK)	mg/kg dry wt	< 12	< 11	< 11	-	
Acetone	mg/kg dry wt	< 30	< 30	< 30	-	70
Methyl tert-butylether (MTBE)	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
Trihalomethanes in VOC Soils	0 0 ,	:-MS	1		Y 10	
Bromodichloromethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3		-
Bromoform (tribromomethane)	mg/kg dry wt	< 0.5	< 0.5	< 0.5		-
Chloroform (Trichloromethane)	mg/kg dry wt	< 0.3	< 0.3	< 0.3	1 01	_
Dibromochloromethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	1 9	-
Other VOC in Soils by Headsp		3.0	5.5	>		
Carbon disulphide	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
Naphthalene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	<u>-</u>	<u>-</u>
•	0 0 7				_	_
	Sample Name:	B68 TP02 0.2 23-Mar-2023	B68 TP03 0.2 23-Mar-2023	B68 TP03 0.5 23-Mar-2023	B68 TP04 0.1 23-Mar-2023	B68 TP04 0.5 23-Mar-2023
	Lab Number:	3214115.39	3214115.40	3214115.41	3214115.42	3214115.43
Individual Tests			\sim			T
Dry Matter	g/100g as rcvd	82	72	65	91	65
Polycyclic Aromatic Hydrocarbo						
Total of Reported PAHs in Soil	mg/kg dry wt	22	1.0	< 0.4	3.7	< 0.4
1-Methylnaphthalene	mg/kg dry wt	< 0.012	< 0.014	< 0.015	< 0.011	< 0.015
2-Methylnaphthalene						
z-ivietriyiriapritrialerie	mg/kg dry wt		< 0.014	< 0.015	< 0.011	< 0.015
	mg/kg dry wt mg/kg dry wt	0.092	< 0.014 < 0.014	< 0.015 < 0.015	< 0.011 0.017	< 0.015 < 0.015
Acenaphthylene	mg/kg dry wt mg/kg dry wt mg/kg dry wt	0.092 0.040				
Acenaphthylene Acenaphthene Anthracene	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	0.092 0.040 0.22	< 0.014 < 0.014 0.018	< 0.015 < 0.015 < 0.015	0.017 < 0.011 0.037	< 0.015 < 0.015 < 0.015
Acenaphthylene Acenaphthene Anthracene Benzo[a]anthracene	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	0.092 0.040 0.22 2.1	< 0.014 < 0.014 0.018 0.085	< 0.015 < 0.015 < 0.015 < 0.015	0.017 < 0.011 0.037 0.33	< 0.015 < 0.015 < 0.015 < 0.015
Acenaphthylene Acenaphthene Anthracene Benzo[a]anthracene Benzo[a]pyrene (BAP)	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	0.092 0.040 0.22 2.1 2.2	< 0.014 < 0.014 0.018 0.085 0.084	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015	0.017 < 0.011 0.037 0.33 0.38	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015
Acenaphthylene Acenaphthene Anthracene Benzo[a]anthracene Benzo[a]pyrene (BAP) Benzo[a]pyrene Potency Equivalency Factor (PEF) NES	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	0.092 0.040 0.22 2.1 2.2 3.3	< 0.014 < 0.014 0.018 0.085 0.084 0.126	< 0.015 < 0.015 < 0.015 < 0.015	0.017 < 0.011 0.037 0.33	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.037
Acenaphthylene Acenaphthene Anthracene Benzo[a]anthracene Benzo[a]pyrene (BAP) Benzo[a]pyrene Potency Equivalency Factor (PEF) NES Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt the mg/kg dry wt	0.092 0.040 0.22 2.1 2.2	< 0.014 < 0.014 0.018 0.085 0.084	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015	0.017 < 0.011 0.037 0.33 0.38	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015
Acenaphthylene Acenaphthene Anthracene Benzo[a]anthracene Benzo[a]pyrene (BAP) Benzo[a]pyrene Potency Equivalency Factor (PEF) NES Benzo[a]pyrene Toxic Equivalence (TEF)* Benzo[b]fluoranthene + Benzo[mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	0.092 0.040 0.22 2.1 2.2 3.3 3.3	< 0.014 < 0.014 0.018 0.085 0.084 0.126 0.124	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.036 < 0.036 < 0.036	0.017 < 0.011 0.037 0.33 0.38 0.56 0.56	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.037 < 0.036 < 0.015
Acenaphthylene Acenaphthene Anthracene Benzo[a]anthracene Benzo[a]pyrene (BAP) Benzo[a]pyrene Potency Equivalency Factor (PEF) NES Benzo[a]pyrene Toxic Equivalence (TEF)* Benzo[b]fluoranthene + Benzo[fluoranthene	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt the mg/kg dry wt	0.092 0.040 0.22 2.1 2.2 3.3 3.3 2.6	< 0.014 < 0.014 0.018 0.085 0.084 0.126 0.124 0.103	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.036 < 0.036 < 0.036 < 0.015	0.017 < 0.011 0.037 0.33 0.38 0.56 0.56 0.45	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.037 < 0.036 < 0.015 < 0.015
Acenaphthylene Acenaphthene Anthracene Benzo[a]anthracene Benzo[a]pyrene (BAP) Benzo[a]pyrene Potency Equivalency Factor (PEF) NES Benzo[a]pyrene Toxic Equivalence (TEF)* Benzo[b]fluoranthene + Benzo[fluoranthene Benzo[e]pyrene	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	0.092 0.040 0.22 2.1 2.2 3.3 3.3 2.6	< 0.014 < 0.014 0.018 0.085 0.084 0.126 0.124 0.103 0.049 0.044	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.036 < 0.036 < 0.036	0.017 < 0.011 0.037 0.33 0.38 0.56 0.56	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.037 < 0.036 < 0.015
Acenaphthylene Acenaphthene Anthracene Benzo[a]anthracene Benzo[a]pyrene (BAP) Benzo[a]pyrene Potency Equivalency Factor (PEF) NES Benzo[a]pyrene Toxic Equivalence (TEF)* Benzo[b]fluoranthene + Benzo[fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	0.092 0.040 0.22 2.1 2.2 3.3 3.3 2.6	< 0.014 < 0.014 0.018 0.085 0.084 0.126 0.124 0.103	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.036 < 0.036 < 0.036 < 0.015	0.017 < 0.011 0.037 0.33 0.38 0.56 0.56 0.45	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.037 < 0.036 < 0.015 < 0.015
Acenaphthylene Acenaphthene Anthracene Benzo[a]anthracene Benzo[a]pyrene (BAP) Benzo[a]pyrene Potency Equivalency Factor (PEF) NES Benzo[a]pyrene Toxic Equivalence (TEF)* Benzo[b]fluoranthene + Benzo[fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	0.092 0.040 0.22 2.1 2.2 3.3 3.3 2.6	< 0.014 < 0.014 0.018 0.085 0.084 0.126 0.124 0.103 0.049 0.044	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.036 < 0.036 < 0.015 < 0.015 < 0.015	0.017 < 0.011 0.037 0.33 0.38 0.56 0.56 0.45 0.22 0.23	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.037 < 0.036 < 0.015 < 0.015 < 0.015
Acenaphthylene Acenaphthene Anthracene Benzo[a]anthracene Benzo[a]pyrene (BAP) Benzo[a]pyrene Potency Equivalency Factor (PEF) NES Benzo[a]pyrene Toxic Equivalence (TEF)* Benzo[b]fluoranthene + Benzo[fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Chrysene	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	0.092 0.040 0.22 2.1 2.2 3.3 3.3 2.6 1.27 1.26 1.01	< 0.014 < 0.014 0.018 0.085 0.084 0.126 0.124 0.103 0.049 0.044 0.041	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.036 < 0.036 < 0.015 < 0.015 < 0.015 < 0.015	0.017 < 0.011 0.037 0.33 0.38 0.56 0.56 0.45 0.22 0.23 0.177	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.037 < 0.036 < 0.015 < 0.015 < 0.015 < 0.015
Acenaphthylene Acenaphthene Anthracene Benzo[a]anthracene Benzo[a]pyrene (BAP) Benzo[a]pyrene Potency Equivalency Factor (PEF) NES Benzo[a]pyrene Toxic Equivalence (TEF)* Benzo[b]fluoranthene + Benzo[fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Chrysene Dibenzo[a,h]anthracene	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	0.092 0.040 0.22 2.1 2.2 3.3 3.3 2.6 1.27 1.26 1.01 1.92	< 0.014 < 0.014 0.018 0.085 0.084 0.126 0.124 0.103 0.049 0.044 0.041 0.080	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.036 < 0.036 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015	0.017 < 0.011 0.037 0.33 0.38 0.56 0.56 0.45 0.22 0.23 0.177 0.31	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.037 < 0.036 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015
Acenaphthylene Acenaphthene Anthracene Benzo[a]anthracene Benzo[a]pyrene (BAP) Benzo[a]pyrene Potency Equivalency Factor (PEF) NES Benzo[a]pyrene Toxic Equivalence (TEF)* Benzo[b]fluoranthene + Benzo[fluoranthene Benzo[e]pyrene Benzo[g,h,i]perylene Benzo[k]fluoranthene Chrysene Dibenzo[a,h]anthracene Fluoranthene	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	0.092 0.040 0.22 2.1 2.2 3.3 3.3 2.6 1.27 1.26 1.01 1.92 0.33	< 0.014 < 0.014 0.018 0.085 0.084 0.126 0.124 0.103 0.049 0.044 0.041 0.080 < 0.014	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.036 < 0.036 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015	0.017 < 0.011 0.037 0.33 0.38 0.56 0.56 0.45 0.22 0.23 0.177 0.31 0.058	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.037 < 0.036 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015
Acenaphthylene Acenaphthene Anthracene Benzo[a]anthracene Benzo[a]pyrene (BAP) Benzo[a]pyrene Potency Equivalency Factor (PEF) NES Benzo[a]pyrene Toxic Equivalence (TEF)* Benzo[b]fluoranthene + Benzo[fluoranthene Benzo[e]pyrene Benzo[e]pyrene Benzo[k]fluoranthene Chrysene Dibenzo[a,h]anthracene Fluoranthene Fluorene	mg/kg dry wt mg/kg dry wt	0.092 0.040 0.22 2.1 2.2 3.3 3.3 2.6 1.27 1.26 1.01 1.92 0.33 3.9	< 0.014 < 0.014 0.018 0.085 0.084 0.126 0.124 0.103 0.049 0.044 0.041 0.080 < 0.014 0.22	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.036 < 0.036 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015	0.017 < 0.011 0.037 0.33 0.38 0.56 0.56 0.45 0.22 0.23 0.177 0.31 0.058 0.61	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.037 < 0.036 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015
Acenaphthylene Acenaphthene Anthracene Benzo[a]anthracene Benzo[a]pyrene (BAP) Benzo[a]pyrene Potency Equivalency Factor (PEF) NES Benzo[a]pyrene Toxic Equivalence (TEF)* Benzo[b]fluoranthene + Benzo[fluoranthene Benzo[e]pyrene Benzo[e]pyrene Benzo[k]fluoranthene Chrysene Dibenzo[a,h]anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene	mg/kg dry wt mg/kg dry wt	0.092 0.040 0.22 2.1 2.2 3.3 3.3 2.6 1.27 1.26 1.01 1.92 0.33 3.9 0.017	< 0.014 < 0.014 0.018 0.085 0.084 0.126 0.124 0.103 0.049 0.044 0.041 0.080 < 0.014 0.22 < 0.014	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.036 < 0.036 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015	0.017 < 0.011 0.037 0.33 0.38 0.56 0.56 0.45 0.22 0.23 0.177 0.31 0.058 0.61 < 0.011	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.037 < 0.036 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015
Acenaphthylene Acenaphthene Anthracene Benzo[a]anthracene Benzo[a]pyrene (BAP) Benzo[a]pyrene Potency Equivalency Factor (PEF) NES Benzo[a]pyrene Toxic Equivalence (TEF)* Benzo[b]fluoranthene + Benzo[fluoranthene Benzo[e]pyrene Benzo[e]pyrene Benzo[k]fluoranthene Chrysene Dibenzo[a,h]anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Naphthalene	mg/kg dry wt mg/kg dry wt	0.092 0.040 0.22 2.1 2.2 3.3 3.3 2.6 1.27 1.26 1.01 1.92 0.33 3.9 0.017 1.41	< 0.014 < 0.014 0.018 0.085 0.084 0.126 0.124 0.103 0.049 0.044 0.041 0.080 < 0.014 0.22 < 0.014 0.048	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.036 < 0.036 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015	0.017 < 0.011 0.037 0.33 0.38 0.56 0.56 0.45 0.22 0.23 0.177 0.31 0.058 0.61 < 0.011 0.24	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.037 < 0.036 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015
Acenaphthylene Acenaphthene Anthracene Benzo[a]anthracene Benzo[a]pyrene (BAP) Benzo[a]pyrene Potency Equivalency Factor (PEF) NES Benzo[a]pyrene Toxic Equivalence (TEF)* Benzo[b]fluoranthene + Benzo[fluoranthene Benzo[e]pyrene Benzo[e]pyrene Benzo[k]fluoranthene Chrysene Dibenzo[a,h]anthracene Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene Naphthalene Perylene Phenanthrene	mg/kg dry wt mg/kg dry wt	0.092 0.040 0.22 2.1 2.2 3.3 3.3 2.6 1.27 1.26 1.01 1.92 0.33 3.9 0.017 1.41 < 0.06	< 0.014 < 0.014 0.018 0.085 0.084 0.126 0.124 0.103 0.049 0.044 0.041 0.080 < 0.014 0.22 < 0.014 0.048 < 0.07	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.036 < 0.036 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015	0.017 < 0.011 0.037 0.33 0.38 0.56 0.56 0.45 0.22 0.23 0.177 0.31 0.058 0.61 < 0.011 0.24 < 0.06	< 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.037 < 0.036 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015 < 0.015

Sample Type: Soil

Sample Type: Soil						
S	ample Name:	B68 TP02 0.2 23-Mar-2023	B68 TP03 0.2 23-Mar-2023	B68 TP03 0.5 23-Mar-2023	B68 TP04 0.1 23-Mar-2023	B68 TP04 0.5 23-Mar-2023
	Lab Number:	3214115.39	3214115.40	3214115.41	3214115.42	3214115.43
Total Petroleum Hydrocarbons i	in Soil					
C7 - C9	mg/kg dry wt	< 20	< 20	< 30	< 20	< 30
C10 - C14	mg/kg dry wt	< 20	< 20	< 20	< 20	< 20
C15 - C36	mg/kg dry wt	124	< 40	< 40	83	< 40
Total hydrocarbons (C7 - C36)	mg/kg dry wt	127	< 80	< 90	84	< 90

	Sample Name:	WD2 TP07 0.1 22-Mar-2023
	Lab Number:	3214115.47
Individual Tests		
Total Recoverable Beryllium	mg/kg dry wt	0.8
8 Heavy metals plus Boron		
Total Recoverable Arsenic	mg/kg dry wt	4
Total Recoverable Boron	mg/kg dry wt	< 20
Total Recoverable Cadmium	mg/kg dry wt	0.13
Total Recoverable Chromium	mg/kg dry wt	9
Total Recoverable Copper	mg/kg dry wt	20
Total Recoverable Lead	mg/kg dry wt	29
Total Recoverable Mercury	mg/kg dry wt	0.11
Total Recoverable Nickel	mg/kg dry wt	(4)
Total Recoverable Zinc	mg/kg dry wt	51

3214115.28 B74 TP02 0.1 23-Mar-2023 Client Chromatogram for TPH by FID

Analyst's Comments

Amended Report: This certificate of analysis replaces report '3214115-SPv2' issued on 06-Apr-2023 at 3:43 pm. Reason for amendment: Metals testing added.

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Labs, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Individual Tests			1
Environmental Solids Sample Drying*	Air dried at 35°C Used for sample preparation. May contain a residual moisture content of 2-5%.	-	1, 4, 6, 8, 10, 14, 16, 18, 47
Total of Reported PAHs in Soil	Sonication extraction, GC-MS analysis. In-house based on US EPA 8270.	0.03 mg/kg dry wt	37-43
Dry Matter	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. (Free water removed before analysis, non-soil objects such as sticks, leaves, grass and stones also removed). US EPA 3550.	0.10 g/100g as rcvd	22-24, 26, 28-29, 31-33, 35, 37-43
Total Recoverable Beryllium	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.2 mg/kg dry wt	1, 4, 6, 8, 10, 14, 16, 18, 47
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES*	BaP Potency Equivalence calculated from; Benzo(a)anthracene x 0.1 + Benzo(b)fluoranthene x 0.1 + Benzo(j)fluoranthene x 0.1 + Benzo(k)fluoranthene x 0.1 + Benzo(a)pyrene x 1.0 + Chrysene x 0.01 + Dibenzo(a,h)anthracene x 1.0 + Fluoranthene x 0.01 + Indeno(1,2,3-c,d)pyrene x 0.1. Ministry for the Environment. 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health. Wellington: Ministry for the Environment.	0.024 mg/kg dry wt	37-43
Benzo[a]pyrene Toxic Equivalence (TEF)*	Benzo[a]pyrene Toxic Equivalence (TEF) calculated from; Benzo[a]pyrene x 1.0 + Benzo(a)anthracene x 0.1 + Benzo(b) fluoranthene x 0.1 + Benzo(k)fluoranthene x 0.1 + Chrysene x 0.01 + Dibenzo(a,h)anthracene x 1.0 + Indeno(1,2,3-c,d)pyrene x 0.1. Guidelines for assessing and managing contaminated gasworks sites in New Zealand (GMG) (MfE, 1997).	0.024 mg/kg dry wt	37-43
TPH Oil Industry Profile + PAHscreen	Sonication extraction, GC-FID and GC-MS analysis. Tested on as received sample. In-house based on US EPA 8015 and US EPA 8270.	0.010 - 70 mg/kg dry wt	37-43
8 Heavy metals plus Boron	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP-MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 20 mg/kg dry wt	1, 4, 6, 8, 10, 14, 16, 18, 47
Organochlorine Pesticides Screening in Soil	Sonication extraction, GC-ECD analysis. Tested on as received sample. In-house based on US EPA 8081.	0.010 - 0.06 mg/kg dry wt	22-24
Volatile Organic Compounds Screening in Soil by Headspace GC-MS	Sonication extraction, Headspace GC-MS analysis. Tested on as received sample. In-house based on US EPA 8260 and 5021.	0.13 - 30 mg/kg dry wt	26, 28, 31-33, 35
Total Petroleum Hydrocarbons in Soil			
Client Chromatogram for TPH by FID	Small peaks associated with QC compounds may be visible in chromatograms with low TPH concentrations. QC peaks are as follows: one peak in the C12 - 14 band, the C21 - 25 band and the C30 - 36 band. All QC peaks are corrected for in the reported TPH concentrations.	-	28, 37, 39, 42
C7 - C9	Solvent extraction, GC-FID analysis. In-house based on US EPA 8015.	20 mg/kg dry wt	26, 28-29, 31-33, 35, 37-43
C10 - C14	Solvent extraction, GC-FID analysis. Tested on as received sample. In-house based on US EPA 8015.	20 mg/kg dry wt	26, 28-29, 31-33, 35, 37-43
C15 - C36	Solvent extraction, GC-FID analysis. Tested on as received sample. In-house based on US EPA 8015.	40 mg/kg dry wt	26, 28-29, 31-33, 35, 37-43
Total hydrocarbons (C7 - C36)	Calculation: Sum of carbon bands from C7 to C36. In-house based on US EPA 8015.	70 mg/kg dry wt	26, 28-29, 31-33, 35, 37-43

Testing was completed between 28-Mar-2023 and 16-Jun-2023. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Kim Harrison MSc

Proactively Released Lealan and Information Revenue an Client Services Manager - Environmental

3214115-SPv3 Hill Labs Page 10 of 10 Lab No:

6 0508 HILL LAB (44 555 22) **%** +64 7 858 2000 www.hill-labs.co.nz

Certificate of Analysis

Page 1 of 3

Client: **GHD Limited** Contact: Alex Lucas

Sample Type: Soil

C/- GHD Limited PO Box 1746 Wellington 6140

Lab No: 3219033 **Date Received: Date Reported:**

28-Mar-2023 13-Dec-2023

(Amended)

SPv2

Quote No: 124299 Order No: 12559090 **Client Reference:** 12559090 Submitted By: David Jackson

Sample Type: Soil						
S	Sample Name:	B8 HA01 0.1	B7 TP03 0.1	B7 TP04 0.1	SCH TP01 0.1	SCH TP01 0.3
	I - I - NI I	28-Mar-2023	28-Mar-2023	28-Mar-2023	28-Mar-2023	28-Mar-2023
Individual Tests	Lab Number:	3219033.1	3219033.3	3219033.5	3219033.7	3219033.8
Individual Tests				0.7		
Total Recoverable Beryllium	mg/kg dry wt	0.6	0.9	0.7	1.0	0.9
8 Heavy metals plus Boron						
Total Recoverable Arsenic	mg/kg dry wt	8	5	5	5	4
Total Recoverable Boron	mg/kg dry wt	< 20	< 20	< 20	< 20	< 20
Total Recoverable Cadmium	mg/kg dry wt	0.92	0.19	0.16	< 0.10	< 0.10
Total Recoverable Chromium	mg/kg dry wt	12	8	7	11	12
Total Recoverable Copper	mg/kg dry wt	130	185	20	33	56
Total Recoverable Lead	mg/kg dry wt	750	80	51	22	21
Total Recoverable Mercury	mg/kg dry wt	1.17	0.10	< 0.10	0.16	0.35
Total Recoverable Nickel	mg/kg dry wt	9	6	5	6	7
Total Recoverable Zinc	mg/kg dry wt	440	116	130	36	36
Asbestos in Soil				-		
As Received Weight Presence Testing	/ Absence g	240.0		-	-	-
Dry Weight Presence / Absence	e Testing g	171.6	X	-	-	-
<2mm Subsample Weight Pres Absence Testing	ence / g dry wt	52.4	> -	-	-	-
Asbestos Presence / Absence Absence Testing	from Presence1	Asbestos NOT detected.	-	-	-	-
Description of Asbestos Form F Absence Testing	Presence /		-	-	-	-
Asbestos in Soil Presence / Ab	sence Testing ES	dat Electronic Trans	sfer			
Amosite Presence / Absence T	esting Detect	0	-	-	-	-
Chrysotile Presence / Absence	Testing Detect	0	-	-	-	-
Crocidolite Presence / Absence	Testing Detect	0	-	-	-	-
S	ample Name:	SCH TP02 0.1 28-Mar-2023	SCH TP0 28-Mar-2		H TP03 0.7 Mar-2023	SCH TP04 0.1 28-Mar-2023
	Lab Number:	3219033.9	3219033		19033.12	3219033.13
Individual Tests			1	'	1	
Total Recoverable Beryllium	mg/kg dry wt	1.0	1.2		1.3	0.9
8 Heavy metals plus Boron			1	I	I	
Total Recoverable Arsenic	mg/kg dry wt	7	6		5	6
Total Recoverable Boron	mg/kg dry wt	< 20	< 20)	< 20	< 20
Total Recoverable Cadmium	mg/kg dry wt	0.19	0.24		0.13	0.18
Total Recoverable Chromium	mg/kg dry wt	11	10		12	10
Total Recoverable Copper	mg/kg dry wt	39	30		29	32
Total Recoverable Lead	mg/kg dry wt	75	43		18.4	56
. Stall 1 (SOCTOLADIO LOGG	mg/ng dry Wt	10	70			

0.19

mg/kg dry wt

Total Recoverable Mercury

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked * or any comments and interpretations, which are not accredited.

0.18

0.17

0.17

Sample Type: Soil					
	Sample Name:	SCH TP02 0.1 28-Mar-2023	SCH TP03 0.1 28-Mar-2023	SCH TP03 0.7 28-Mar-2023	SCH TP04 0.1 28-Mar-2023
	Lab Number:	3219033.9	3219033.11	3219033.12	3219033.13
8 Heavy metals plus Boron					
Total Recoverable Nickel	mg/kg dry wt	6	6	6	6
Total Recoverable Zinc	mg/kg dry wt	100	75	45	97

Analyst's Comments

Amended Report: This certificate of analysis replaces report '3219033-SPv1' issued on 19-Sep-2023 at 1:56 pm. Reason for amendment: 10 heavy metals added to 6 samples as requested.

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Labs, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil		•	
Test	Method Description	Default Detection Limit	Sample No
Individual Tests		\sim	
Environmental Solids Sample Drying*	Air dried at 35°C Used for sample preparation. May contain a residual moisture content of 2-5%.	A	1, 3, 5, 7-9, 11-13
Total Recoverable Beryllium	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.2 mg/kg dry wt	1, 3, 5, 7-9, 11-13
8 Heavy metals plus Boron	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP-MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 20 mg/kg dry wt	1, 3, 5, 7-9, 11-13
Asbestos in Soil			
As Received Weight Presence / Absence Testing	Measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g	1
Dry Weight Presence / Absence Testing	Sample dried at 100 to 105 °C, measurement on balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g	1
<2mm Subsample Weight Presence / Absence Testing	Sample dried at 100 to 105°C, weight of <2mm sample fraction taken for asbestos identification if less than entire fraction. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	-	1
Asbestos Presence / Absence from Presence / Absence Testing	Examination using Low Powered Stereomicroscopy followed by 'Polarised Light Microscopy' including 'Dispersion Staining Techniques'. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. AS 4964 (2004) - Method for the Qualitative Identification of Asbestos in Bulk Samples.	0.01%	1
Description of Asbestos Form Presence / Absence Testing	Description of asbestos form and/or shape if present.	-	1
Asbestos in Soil Presence / Absence Te	sting ESdat Electronic Transfer		
Amosite Presence / Absence Testing	Examination using Low Powered Stereomicroscopy followed by 'Polarised Light Microscopy' including 'Dispersion Staining Techniques'. Presence / Absence testing.	0 Detect	1
Chrysotile Presence / Absence Testing	Examination using Low Powered Stereomicroscopy followed by 'Polarised Light Microscopy' including 'Dispersion Staining Techniques'. Presence / Absence testing.	0 Detect	1
Crocidolite Presence / Absence Testing	Examination using Low Powered Stereomicroscopy followed by 'Polarised Light Microscopy' including 'Dispersion Staining Techniques'. Presence / Absence testing.	0 Detect	1

Testing was completed between 09-Sep-2023 and 13-Dec-2023. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Graham Corban MSc Tech (Hons) Client Services Manager - Environmental

Proactively Released Lealant and Information Lealant and Information

♦ 0508 HILL LAB (44 555 22)
 ♦ +64 7 858 2000
 ☑ mail@hill-labs.co.nz
 ⊕ www.hill-labs.co.nz

Certificate of Analysis

Page 1 of 136

Client: GHD Limited
Contact: Adam Gray
C/- GHD Limited

C/- GHD Limited PO Box 1746 Wellington 6140 Lab No: 3299078
Date Received: 09-Jun-2023
Date Reported: 24-Jul-2023
Quote No: 124299
Order No: 12559090
Client Reference: 12559090
Submitted By: David Jackson

Sample Name Ba4 FP 01 0.10 07-Jun-2020	Sample Type: Soil						
Individual Tests	Sa	ample Name:					
Individual Tests Dry Matter g/100g as rovd 53 75 82 64 66 66 66 70 64 66 67 75 68 64 66 66 75 75 68 64 66 66 75 75 75 75 75 75							
Dry Matter		Lab Number:	3299078.1	3299078.2	3299078.4	3299078.5	3299078.7
Total Recoverable Earlillum mg/kg dry wt plus 6.9 c c c c c c c c c c c c c c c c c c c			ı				
B Heavy metals plus Boron Total Recoverable Boron mg/kg dry wt				_	82		
8 Heavy metals plus Boron Total Recoverable Arsenic mg/kg dry wt 111 6 21 4 7 Total Recoverable Cadmium mg/kg dry wt 0.23 0.21 0.35 0.11 0.33 Total Recoverable Chromium mg/kg dry wt 0.23 0.21 0.35 0.11 0.33 Total Recoverable Chromium mg/kg dry wt 0.23 0.21 0.35 0.11 0.33 Total Recoverable Chromium mg/kg dry wt 0.23 0.21 0.35 0.11 0.33 Total Recoverable Chromium mg/kg dry wt 0.23 0.21 0.35 0.11 0.33 Total Recoverable Chromium mg/kg dry wt 0.26 0.26 0.00 0.14 0.13 0.17 0.14 Total Recoverable Lead mg/kg dry wt 0.01 0.14 0.13 0.17 0.14 Total Recoverable Mercury mg/kg dry wt 0.01 0.14 0.13 0.17 0.14 Total Recoverable Nickel mg/kg dry wt 0.18 8 8 0.3 0.4 0.17 0.14 Total Recoverable Nickel mg/kg dry wt 0.18 8 8 0.33 0.48 0.92 Acid Herbicides Screen in Soil by LCMSMS Acifluorfen mg/kg dry wt 0.02 0.02 0.02 0.02 0.02 0.02 Rentazone mg/kg dry wt 0.02 0.02 0.02 0.02 0.02 Clopyralid mg/kg dry wt 0.02 0.02 0.02 0.02 0.02 Clopyralid mg/kg dry wt 0.02 0.02 0.02 0.02 0.02 Clopyralid mg/kg dry wt 0.02 0.02 0.02 0.02 0.02 2,4-Dichlorophenoxyacetic acid mg/kg dry wt 0.02 0.02 0.02 0.02 2,4-Dichlorophenoxyacetic acid mg/kg dry wt 0.02 0.02 0.02 0.02 0.02 2,4-Dichlorophenoxyacetic acid mg/kg dry wt 0.02 0.02 0.02 0.02 0.02 2,4-Dichlorophenoxyacetic acid mg/kg dry wt 0.02 0.02 0.02 0.02 0.02 2,4-Dichlorophenoxyacetic acid mg/kg dry wt 0.02 0.02 0.02 0.02 0.02 2,4-Dichlorophenoxyacetic acid mg/kg dry wt 0.02 0.02 0.02 0.02 0.02 0.02 2,4-Dichlorophenoxyacetic acid mg/kg dry wt 0.02 0.02 0.02 0.02 0.02 0.02 2,4-Dichlorophenoxyacetic acid mg/kg dry wt 0.02 0.02 0.02 0.02 0.02 0.02 2,4-Dichlorophenoxyacetic acid mg/kg dry wt 0.02 0.02 0.02 0.02 0.02 0.02 2,4-Dichlorophenoxyacetic acid mg/kg dry wt 0.02 0.02 0.02 0.02 0.02 0.02 0.02 2,4-Dichlorophenoxyacetic acid mg/kg dry wt 0.02 0.02 0.02 0.02 0.02 0.02 0.02 2,4-Dichlorophenoxyacetic acid mg/kg dry wt 0.02 0.02 0.02 0.02 0.02 0.02 0.02 2,4-Dichlorophenoxyacetic acid mg/kg dry wt 0.02 0.02 0.02 0.02 0.02 0.02 0.02 2,4-Dichlorophenoxyacetic acid mg/kg dry wt 0.02 0.02 0.02 0.02 0.02 0.02	· ·			1.3	1.1	1.3	1.1
Total Recoverable Arsenic mg/kg dry wt 11 6 21 4 7 Total Recoverable Boron mg/kg dry wt < 20 < 20 < 20 < 20 < 20 < 20 < 20 Total Recoverable Cadmium mg/kg dry wt 0.23 0.21 0.35 0.11 0.33 Total Recoverable Chromium mg/kg dry wt 11 9 12 11 11 Total Recoverable Copper mg/kg dry wt 26 26 60 18 34 Total Recoverable Lead mg/kg dry wt 38 40 121 21 39 Total Recoverable Mercury mg/kg dry wt 7 4 9 5 9 Total Recoverable Nickel mg/kg dry wt 138 88 133 48 92 Acid Herbicides Screen in Soil by LCMSMS	pH*	pH Units	6.9	-		~'0'	-
Total Recoverable Boron mg/kg dry wt 0.23	8 Heavy metals plus Boron					1 ()	
Total Recoverable Cadmium mg/kg dry wt 11 9 12 11 11 11 11 11	Total Recoverable Arsenic	mg/kg dry wt	11	6	21	4	7
Total Recoverable Chromium mg/kg dry wt 111 9 12 131 131 131 134 134 134 134 134 134 134	Total Recoverable Boron	mg/kg dry wt	< 20	< 20	< 20	< 20	< 20
Total Recoverable Load mg/kg dry wt 38 40 121 21 39 37 Total Recoverable Lead mg/kg dry wt 38 40 121 21 39 37 Total Recoverable Mercury mg/kg dry wt 40.0 0.14 0.13 0.17 0.14 39 37 Total Recoverable Nickel mg/kg dry wt 7 4 9 9 5 9 9 Total Recoverable Zinc mg/kg dry wt 138 88 133 48 92 38 39 39 39 39 39 39 39 39 39 39 39 39 39	Total Recoverable Cadmium	mg/kg dry wt	0.23	0.21	0.35	0.11	0.33
Total Recoverable Lead mg/kg dry wt 38 40 121 21 39 Total Recoverable Mercury mg/kg dry wt < 0.10 0.14 0.13 0.17 0.14 Total Recoverable Nickel mg/kg dry wt 7 4 9 5 9 Total Recoverable Nickel mg/kg dry wt 138 88 133 48 92 Acid Herbicides Screen in Soil by LCMSMS Acid	Total Recoverable Chromium	mg/kg dry wt	11	9	12	11	11
Total Recoverable Mercury mg/kg dry wt	Total Recoverable Copper	mg/kg dry wt	26	26	60	18	34
Total Recoverable Nickel mg/kg dry wt Total Recoverable Zinc mg/kg dry wt 138 88 133 48 92	Total Recoverable Lead	mg/kg dry wt	38	40	121	21	39
Total Recoverable Zinc mg/kg dry wt 138 88 133 48 92	Total Recoverable Mercury	mg/kg dry wt	< 0.10	0.14	0.13	0.17	0.14
Total Recoverable Zinc mg/kg dry wt 138 88 133 48 92	Total Recoverable Nickel	mg/kg dry wt	7	4	9	5	9
Actifluorfen mg/kg dry wt < 0.2	Total Recoverable Zinc	mg/kg dry wt		88	133	48	92
Bentazone mg/kg dry wt	Acid Herbicides Screen in Soil b	y LCMSMS	(7)	AAO)	,		,
Bromoxynil mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	Acifluorfen	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Clopyralid mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	Bentazone	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Dicamba mg/kg dry wt (24D) < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 </td <td>Bromoxynil</td> <td>mg/kg dry wt</td> <td>< 0.2</td> <td>< 0.2</td> <td>< 0.2</td> <td>< 0.2</td> <td>< 0.2</td>	Bromoxynil	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,4-Dichlorophenoxyacetic acid mg/kg dry wt (24D) < 0.2	Clopyralid	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
(24D) 2,4-Dichlorophenoxybutyric acid (24DB) mg/kg dry wt (20.2) < 0.2	Dicamba	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorprop mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2		mg/kg dry wt	0.2	< 0.2	< 0.2	< 0.2	< 0.2
Fluazifop mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 Fluroxypyr mg/kg dry wt < 0.2		mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Fluroxypyr mg/kg dry wt	Dichlorprop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Haloxyfop mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 2-methyl-4-chlorophenoxyacetic acid (MCPA)	Fluazifop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2-methyl-4-chlorophenoxyacetic acid (MCPA) mg/kg dry wt acid (MCPA) < 0.2	Fluroxypyr	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
acid (MCPA) mg/kg dry wt < 0.2	Haloxyfop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chlorophenoxybutanoic acid (MCPB) Wecoprop (MCPP; 2-methyl-4-chlorophenoxypropionic acid) Mg/kg dry wt co.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 <		mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chlorophenoxypropionic acid) Mg/kg dry wt < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	chlorophenoxybutanoic acid	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Pentachlorophenol (PCP) mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 <		mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Picloram mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	Oryzalin	mg/kg dry wt	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Quizalofop mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	Pentachlorophenol (PCP)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	Picloram	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,3,4,6-Tetrachlorophenol (TCP) mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	Quizalofop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	2,3,4,6-Tetrachlorophenol (TCP)) mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked * or any comments and interpretations, which are not accredited.

Sample Type: Soil	Sample Type: Soil							
s	Sample Name:	B34 TP 01 0.10 07-Jun-2023	B34 TP 01 0.50 07-Jun-2023	B34 TP 02 0.10 07-Jun-2023	B34 TP 02 0.50 07-Jun-2023	B34 TP 03 0.10 07-Jun-2023		
	Lab Number:	3299078.1	3299078.2	3299078.4	3299078.5	3299078.7		
Acid Herbicides Screen in Soil	by LCMSMS							
2,4,5-trichlorophenoxypropionic acid (245TP,Fenoprop, Silvex)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2		
2,4,5-Trichlorophenoxyacetic acid (245T)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2		
Triclopyr	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2		
Organochlorine Pesticides Scre	eening in Soil							
Aldrin	mg/kg dry wt	< 0.018	< 0.013	< 0.012	< 0.016	< 0.015		
alpha-BHC	mg/kg dry wt	< 0.018	< 0.013	< 0.012	< 0.016	< 0.015		
beta-BHC	mg/kg dry wt	< 0.018	< 0.013	< 0.012	< 0.016	< 0.015		
delta-BHC	mg/kg dry wt	< 0.018	< 0.013	< 0.012	< 0.016	< 0.015		
gamma-BHC (Lindane)	mg/kg dry wt	< 0.018	< 0.013	< 0.012	< 0.016	< 0.015		
cis-Chlordane	mg/kg dry wt	< 0.018	< 0.013	< 0.012	< 0.016	< 0.015		
trans-Chlordane	mg/kg dry wt	< 0.018	< 0.013	< 0.012	< 0.016	< 0.015		
2,4'-DDD	mg/kg dry wt	< 0.018	< 0.013	< 0.012	< 0.016	< 0.015		
4,4'-DDD	mg/kg dry wt	< 0.018	< 0.013	< 0.012	< 0.016	< 0.015		
2,4'-DDE	mg/kg dry wt	< 0.018	< 0.013	< 0.012	< 0.016	< 0.015		
4,4'-DDE	mg/kg dry wt	< 0.018	< 0.013	0.105	< 0.016	0.025		
2,4'-DDT	mg/kg dry wt	< 0.018	< 0.013	0.025	< 0.016	< 0.015		
4,4'-DDT	mg/kg dry wt	< 0.018	< 0.013	0.071	< 0.016	< 0.015		
Total DDT Isomers	mg/kg dry wt	< 0.11	< 0.08	0.20	< 0.10	< 0.09		
Dieldrin	mg/kg dry wt	< 0.018	< 0.013	< 0.012	< 0.016	< 0.015		
Endosulfan I	mg/kg dry wt	< 0.018	< 0.013	< 0.012	< 0.016	< 0.015		
Endosulfan II	mg/kg dry wt	< 0.018	< 0.013	< 0.012	< 0.016	< 0.015		
Endosulfan sulphate	mg/kg dry wt	< 0.018	< 0.013	< 0.012	< 0.016	< 0.015		
Endrin	mg/kg dry wt	< 0.018	< 0.013	< 0.012	< 0.016	< 0.015		
Endrin aldehyde	mg/kg dry wt	< 0.018	< 0.013	< 0.012	< 0.016	< 0.015		
Endrin ketone	mg/kg dry wt	< 0.018	< 0.013	< 0.012	< 0.016	< 0.015		
Heptachlor	mg/kg dry wt	< 0.018	< 0.013	< 0.012	< 0.016	< 0.015		
Heptachlor epoxide	mg/kg dry wt	< 0.018	< 0.013	< 0.012	< 0.016	< 0.015		
Hexachlorobenzene	mg/kg dry wt	< 0.018	< 0.013	< 0.012	< 0.016	< 0.015		
Methoxychlor	mg/kg dry wt	< 0.018	< 0.013	< 0.012	< 0.016	< 0.015		
Organonitro&phosphorus Pesti	cides Screen in S	oil by GCMS	O	1				
Acetochlor	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08		
Alachlor	mg/kg dry wt	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		
Atrazine	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08		
Atrazine-desethyl	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08		
Atrazine-desisopropyl	mg/kg dry wt		< 0.13	< 0.12	< 0.15	< 0.15		
Azaconazole	mg/kg dry wt	< 0.05	< 0.04	< 0.03	< 0.04	< 0.04		
Azinphos-methyl	mg/kg dry wt	< 0.18	< 0.13	< 0.12	< 0.15	< 0.15		
Benalaxyl	mg/kg dry wt	< 0.05	< 0.04	< 0.03	< 0.04	< 0.04		
Bitertanol	mg/kg dry wt	< 0.18	< 0.13	< 0.12	< 0.15	< 0.15		
Bromacil	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08		
Bromopropylate	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08		
Butachlor	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08		
Captan	mg/kg dry wt	< 0.18	< 0.13	< 0.12	< 0.15	< 0.15		
Carbaryl	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08		
Carbofuran	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08		
Chlorfluazuron	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08		
Chlorothalonil	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08		
Chlorpyrifos	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08		
Chlorpyrifos-methyl	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08		
Chlortoluron	mg/kg dry wt	< 0.18	< 0.13	< 0.12	< 0.15	< 0.15		
Cyanazine	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08		
Cyfluthrin	mg/kg dry wt	< 0.11	< 0.08	< 0.08	< 0.09	< 0.09		
Cyhalothrin	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08		
· -	3 3 , 11		I.	-				

Sample Type: Soil								
Sa	ample Name:	B34 TP 01 0.10 07-Jun-2023	B34 TP 01 0.50 07-Jun-2023	B34 TP 02 0.10 07-Jun-2023	B34 TP 02 0.50 07-Jun-2023	B34 TP 03 0.10 07-Jun-2023		
	Lab Number:	3299078.1	3299078.2	3299078.4	3299078.5	3299078.7		
Organonitro&phosphorus Pestic	ides Screen in S	oil by GCMS	1					
Cypermethrin	mg/kg dry wt	< 0.3	< 0.16	< 0.15	< 0.18	< 0.18		
Deltamethrin (including Tralomethrin)	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08		
Diazinon	mg/kg dry wt	< 0.05	< 0.04	< 0.03	< 0.04	< 0.04		
Dichlofluanid	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08		
Dichloran	mg/kg dry wt	< 0.3	< 0.2	< 0.2	< 0.2	< 0.2		
Dichlorvos	mg/kg dry wt	< 0.09	< 0.09	< 0.09	< 0.09	< 0.09		
Difenoconazole	mg/kg dry wt	< 0.13	< 0.09	< 0.09	< 0.11	< 0.10		
Dimethoate	mg/kg dry wt	< 0.18	< 0.13	< 0.12	< 0.15	< 0.15		
Diphenylamine	mg/kg dry wt	< 0.18	< 0.13	< 0.12	< 0.15	< 0.15		
Diuron	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08		
Fenpropimorph	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08		
Fluazifop-butyl	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08		
Fluometuron	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08		
Flusilazole	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08		
Fluvalinate	mg/kg dry wt	< 0.07	< 0.05	< 0.05	< 0.06	< 0.05		
Furalaxyl	mg/kg dry wt	< 0.05	< 0.04	< 0.03	< 0.04	< 0.04		
Haloxyfop-methyl	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08		
Hexaconazole	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08		
Hexazinone	mg/kg dry wt	< 0.05	< 0.04	< 0.03	< 0.04	< 0.04		
IPBC (3-lodo-2-propynyl-n- butylcarbamate)	mg/kg dry wt	< 0.5	< 0.4	< 0.3	< 0.4	< 0.4		
Kresoxim-methyl	mg/kg dry wt	< 0.05	< 0.04	< 0.03	< 0.04	< 0.04		
Linuron	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08		
Malathion	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08		
Metalaxyl	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08		
Methamidophos	mg/kg dry wt	< 0.5	< 0.4	< 0.3	< 0.4	< 0.4		
Metolachlor	mg/kg dry wt	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		
Metribuzin	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08		
Molinate	mg/kg dry wt	< 0.18	< 0.13	< 0.12	< 0.15	< 0.15		
Myclobutanil	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08		
Naled	mg/kg dry wt		< 0.4	< 0.3	< 0.4	< 0.4		
Norflurazon	mg/kg dry wt	< 0.18	< 0.13	< 0.12	< 0.15	< 0.15		
Oxadiazon	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08		
Oxyfluorfen	mg/kg dry wt	< 0.05	< 0.04	< 0.03	< 0.04	< 0.04		
Paclobutrazol	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08		
Parathion-ethyl	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08		
Parathion-methyl Pandimethalia	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08		
Pendimethalin Permethrin	mg/kg dry wt	< 0.09	< 0.07 < 0.03	< 0.06	< 0.08	< 0.08		
Permethrin Pirimicarh	mg/kg dry wt mg/kg dry wt	< 0.03		< 0.03	< 0.03	< 0.03		
Pirimicarb Pirimiphos-methyl	mg/kg dry wt	< 0.09 < 0.09	< 0.07 < 0.07	< 0.06 < 0.06	< 0.08 < 0.08	< 0.08 < 0.08		
Prochloraz	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08		
Procymidone Procymidone	mg/kg dry wt	< 0.09	< 0.4	< 0.06	< 0.4	< 0.4		
Prometryn	mg/kg dry wt	< 0.05	< 0.07	< 0.03	< 0.04	< 0.04		
Propachlor	mg/kg dry wt	< 0.09	< 0.04	< 0.06	< 0.04	< 0.04		
Propanil	mg/kg dry wt	< 0.2	< 0.07	< 0.00	< 0.08	< 0.2		
Propazine	mg/kg dry wt	< 0.05	< 0.04	< 0.03	< 0.04	< 0.04		
Propiconazole	mg/kg dry wt	< 0.07	< 0.05	< 0.05	< 0.04	< 0.05		
Pyriproxyfen	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08		
Quizalofop-ethyl	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08		
Simazine	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08		
Simetryn	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08		
Sulfentrazone	mg/kg dry wt	< 0.5	< 0.4	< 0.3	< 0.4	< 0.4		
TCMTB [2-(thiocyanomethylthio)		< 0.18	< 0.13	< 0.12	< 0.15	< 0.15		
benzothiazole,Busan]		. 0.10	. 5.15	. 0.12	. 0.10	. 5.15		

Sample Type: Soil						
s	ample Name:	B34 TP 01 0.10 07-Jun-2023	B34 TP 01 0.50 07-Jun-2023	B34 TP 02 0.10 07-Jun-2023	B34 TP 02 0.50 07-Jun-2023	B34 TP 03 0.10 07-Jun-2023
	Lab Number:	3299078.1	3299078.2	3299078.4	3299078.5	3299078.7
Organonitro&phosphorus Pestio	cides Screen in S	oil by GCMS				
Tebuconazole	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08
Terbacil	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08
Terbumeton	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08
Terbuthylazine	mg/kg dry wt	< 0.05	< 0.04	< 0.03	< 0.04	< 0.04
Terbuthylazine-desethyl	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08
Terbutryn	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08
Thiabendazole	mg/kg dry wt	< 0.5	< 0.4	< 0.3	< 0.4	< 0.4
Thiobencarb	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08
Tolylfluanid	mg/kg dry wt	< 0.05	< 0.04	< 0.03	< 0.04	< 0.04
Triazophos	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08
Trifluralin	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08
Vinclozolin	mg/kg dry wt	< 0.09	< 0.07	< 0.06	< 0.08	< 0.08
S	ample Name:	B34 TP 03 0.50 07-Jun-2023	B34 TP 04 0.10 07-Jun-2023	B34 TP 04 0.50 07-Jun-2023	B34 TP 05 0.10 07-Jun-2023	B34 TP 05 0.50 07-Jun-2023
	Lab Number:	3299078.8	3299078.10	3299078.11	3299078.13	3299078.14
Individual Tests						
Dry Matter	g/100g as rcvd	67	75	70	77	70
Total Recoverable Beryllium	mg/kg dry wt	1.1	0.5	0.7	1.2	0.6
pH*	pH Units	-	-	9- /	6.2	-
8 Heavy metals plus Boron				>		
Total Recoverable Arsenic	mg/kg dry wt	4	3	5	41	4
Total Recoverable Boron	mg/kg dry wt	< 20	< 20	< 20	< 20	< 20
Total Recoverable Cadmium	mg/kg dry wt	0.26	< 0.10	< 0.10	0.43	< 0.10
Total Recoverable Chromium	mg/kg dry wt	8	5	9	26	10
Total Recoverable Copper	mg/kg dry wt	26	12	17	56	11
Total Recoverable Lead	mg/kg dry wt	22	20	24	105	23
Total Recoverable Mercury	mg/kg dry wt	0.12	< 0.10	0.10	0.15	< 0.10
Total Recoverable Nickel	mg/kg dry wt	5	• 3	4	38	4
Total Recoverable Zinc	mg/kg dry wt	72	38	39	220	32
Acid Herbicides Screen in Soil b	by LCMSMS		y C.			
Acifluorfen	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Bentazone	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Bromoxynil	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Clopyralid	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Dicamba	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,4-Dichlorophenoxyacetic acid (24D)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,4-Dichlorophenoxybutyric acid (24DB)		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorprop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Fluazifop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Fluroxypyr	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Haloxyfop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2-methyl-4-chlorophenoxyacetic acid (MCPA)		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2-methyl-4- chlorophenoxybutanoic acid (MCPB)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Mecoprop (MCPP; 2-methyl-4-chlorophenoxypropionic acid)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Oryzalin	mg/kg dry wt	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Pentachlorophenol (PCP)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Picloram	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Quizalofop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,3,4,6-Tetrachlorophenol (TCP		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,4,5-trichlorophenoxypropionic acid (245TP,Fenoprop, Silvex)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Lab No: 3299078-SPv6			Hill Labs			Page 4 of 136

Sample Type: Soil						
	Sample Name:	B34 TP 03 0.50 07-Jun-2023	B34 TP 04 0.10 07-Jun-2023	B34 TP 04 0.50 07-Jun-2023	B34 TP 05 0.10 07-Jun-2023	B34 TP 05 0.50 07-Jun-2023
	Lab Number:	3299078.8	3299078.10	3299078.11	3299078.13	3299078.14
Acid Herbicides Screen in S	oil by LCMSMS					
2,4,5-Trichlorophenoxyacetic acid (245T)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Triclopyr	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Organochlorine Pesticides S	Screening in Soil					
Aldrin	mg/kg dry wt	< 0.015	< 0.013	< 0.015	< 0.013	< 0.014
alpha-BHC	mg/kg dry wt	< 0.015	< 0.013	< 0.015	< 0.013	< 0.014
beta-BHC	mg/kg dry wt	< 0.015	< 0.013	< 0.015	< 0.013	< 0.014
delta-BHC	mg/kg dry wt	< 0.015	< 0.013	< 0.015	< 0.013	< 0.014
gamma-BHC (Lindane)	mg/kg dry wt	< 0.015	< 0.013	< 0.015	< 0.013	< 0.014
cis-Chlordane	mg/kg dry wt	< 0.015	< 0.013	< 0.015	< 0.013	< 0.014
trans-Chlordane	mg/kg dry wt	< 0.015	< 0.013	< 0.015	< 0.013	< 0.014
2,4'-DDD	mg/kg dry wt	< 0.015	< 0.013	< 0.015	< 0.013	< 0.014
4,4'-DDD	mg/kg dry wt	< 0.015	< 0.013	< 0.015	0.013	< 0.014
2,4'-DDE	mg/kg dry wt	< 0.015	< 0.013	< 0.015	< 0.013	0.014
4,4'-DDE	mg/kg dry wt	< 0.015	< 0.013	< 0.015	0.017	< 0.014
2,4'-DDT	mg/kg dry wt	< 0.015	< 0.013	< 0.015	< 0.013	< 0.014
4.4'-DDT	mg/kg dry wt	< 0.015	< 0.013	< 0.015	0.017	< 0.014
Total DDT Isomers	mg/kg dry wt	< 0.09	< 0.08	< 0.09	< 0.08	< 0.09
Dieldrin	mg/kg dry wt	< 0.015	< 0.013	< 0.015	< 0.013	< 0.014
Endosulfan I	mg/kg dry wt	< 0.015	< 0.013	< 0.015	< 0.013	< 0.014
Endosulfan II	mg/kg dry wt	< 0.015	< 0.013	< 0.015	< 0.013	< 0.014
Endosulfan sulphate	mg/kg dry wt	< 0.015	< 0.013	< 0.015	< 0.013	< 0.014
Endrin	mg/kg dry wt	< 0.015	< 0.013	< 0.015	< 0.013	< 0.014
Endrin aldehyde	mg/kg dry wt	< 0.015	< 0.013	< 0.015	< 0.013	< 0.014
Endrin ketone		< 0.015	< 0.013	< 0.015	< 0.013	< 0.014
Heptachlor	mg/kg dry wt	< 0.015	< 0.013	< 0.015	< 0.013	< 0.014
Heptachlor epoxide	mg/kg dry wt mg/kg dry wt	< 0.015	< 0.013	< 0.015	< 0.013	< 0.014
Hexachlorobenzene	mg/kg dry wt	< 0.015	< 0.013	< 0.015	< 0.013	< 0.014
Methoxychlor	mg/kg dry wt	< 0.015	< 0.013	< 0.015	< 0.013	< 0.014
Organonitro&phosphorus Pe			0.013	< 0.013	< 0.013	V 0.014
						0.07
Acetochlor	mg/kg dry wt		< 0.07	< 0.07	< 0.07	< 0.07
Alachlor	mg/kg dry wt	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Atrazine	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Atrazine-desethyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Atrazine-desisopropyl	mg/kg dry wt		< 0.13	< 0.14	< 0.13	< 0.14
Azaconazole	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Azinphos-methyl	mg/kg dry wt	< 0.14	< 0.13	< 0.14	< 0.13	< 0.14
Benalaxyl	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Bitertanol	mg/kg dry wt	< 0.14	< 0.13	< 0.14	< 0.13	< 0.14
Bromacil	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Bromopropylate	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Butachlor	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Captan	mg/kg dry wt	< 0.14	< 0.13	< 0.14	< 0.13	< 0.14
Carbaryl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Carbofuran	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Chlorfluazuron	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Chlorothalonil	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Chlorpyrifos	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Chlorpyrifos-methyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Chlortoluron	mg/kg dry wt	< 0.14	< 0.13	< 0.14	< 0.13	< 0.14
Cyanazine	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Cyfluthrin	mg/kg dry wt	< 0.09	< 0.08	< 0.09	< 0.08	< 0.09
Cyhalothrin	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Cypermethrin	mg/kg dry wt	< 0.18	< 0.16	< 0.17	< 0.16	< 0.17

Sample Type: Soil						
Sa	ample Name:	B34 TP 03 0.50	B34 TP 04 0.10	B34 TP 04 0.50	B34 TP 05 0.10	B34 TP 05 0.50
	l ala Nassala ass	07-Jun-2023	07-Jun-2023	07-Jun-2023	07-Jun-2023	07-Jun-2023
Organonitro&phosphorus Pestic	Lab Number:	3299078.8	3299078.10	3299078.11	3299078.13	3299078.14
Deltamethrin (including	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Tralomethrin)	ilig/kg diy wt	< 0.01	< 0.07	< 0.07	< 0.01	< 0.07
Diazinon	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Dichlofluanid	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Dichloran	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorvos	mg/kg dry wt	< 0.09	< 0.09	< 0.09	< 0.09	< 0.09
Difenoconazole	mg/kg dry wt	< 0.10	< 0.09	< 0.10	< 0.09	< 0.10
Dimethoate	mg/kg dry wt	< 0.14	< 0.13	< 0.14	< 0.13	< 0.14
Diphenylamine	mg/kg dry wt	< 0.14	< 0.13	< 0.14	< 0.13	< 0.14
Diuron	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Fenpropimorph	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Fluazifop-butyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Fluometuron	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Flusilazole	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Fluvalinate	mg/kg dry wt	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Furalaxyl	mg/kg dry wt	< 0.04 < 0.07	< 0.04 < 0.07	< 0.04 < 0.07	< 0.04 < 0.07	< 0.04 < 0.07
Haloxyfop-methyl Hexaconazole	mg/kg dry wt mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Hexazinone	mg/kg dry wt	< 0.07	< 0.07	< 0.04	< 0.07	< 0.07
IPBC (3-lodo-2-propynyl-n- butylcarbamate)	mg/kg dry wt	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Kresoxim-methyl	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Linuron	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Malathion	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Metalaxyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Methamidophos	mg/kg dry wt	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Metolachlor	mg/kg dry wt	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Metribuzin	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Molinate	mg/kg dry wt	< 0.14	< 0.13	< 0.14	< 0.13	< 0.14
Myclobutanil	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Naled	mg/kg dry wt	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Norflurazon	mg/kg dry wt	< 0.14	< 0.13	< 0.14	< 0.13	< 0.14
Oxadiazon	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Oxyfluorfen	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Paclobutrazol	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Parathion-ethyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Parathion-methyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Pendimethalin	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Permethrin	mg/kg dry wt	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Pirimicarb	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Pirimiphos-methyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Prochloraz	mg/kg dry wt	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Procymidone Promotrum	mg/kg dry wt	< 0.07 < 0.04	< 0.07 < 0.04	< 0.07 < 0.04	< 0.07	< 0.07
Prometryn Propachlor	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04 < 0.07	< 0.04 < 0.07
Propanil	mg/kg dry wt mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Propazine	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Propiconazole	mg/kg dry wt	< 0.05	< 0.04	< 0.04	< 0.04	< 0.04
Pyriproxyfen	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Quizalofop-ethyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Simazine	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Simetryn	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Sulfentrazone	mg/kg dry wt	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
TCMTB [2-(thiocyanomethylthio) benzothiazole,Busan]		< 0.14	< 0.13	< 0.14	< 0.13	< 0.14
Tebuconazole	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
	·					

Sa	ample Name:	B34 TP 03 0.50	B34 TP 04 0.10	B34 TP 04 0.50	B34 TP 05 0.10	B34 TP 05 0.50
		07-Jun-2023	07-Jun-2023	07-Jun-2023	07-Jun-2023	07-Jun-2023
	Lab Number:	3299078.8	3299078.10	3299078.11	3299078.13	3299078.14
Organonitro&phosphorus Pestic		-				
Terbacil	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Terbumeton	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Terbuthylazine	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Terbuthylazine-desethyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Terbutryn	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Thiabendazole	mg/kg dry wt	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Thiobencarb	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Tolylfluanid	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Triazophos	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Trifluralin	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Vinclozolin	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Sa	ample Name:	B34 TP 06 0.10	B34 TP 06 0.50	B34 TP 07 0.10	B34 TP 07 0.50	B35 TP 01 0.10
	l ab Niveabaw	07-Jun-2023	07-Jun-2023	07-Jun-2023	07-Jun-2023	07-Jun-2023
Individual Tests	Lab Number:	3299078.16	3299078.17	3299078.19	3299078.20	3299078.22
	a/100= as	74	70	90	74	76
Dry Matter	g/100g as rcvd	71	70	80	71	76
Total Recoverable Beryllium	mg/kg dry wt	1.5	0.6	1.1	0.5	0.6
pH*	pH Units	-	-		1 ()	7.6
8 Heavy metals plus Boron						7
Total Recoverable Arsenic	mg/kg dry wt	8	3	8	4	3
Total Recoverable Boron	mg/kg dry wt	< 20	< 20	23	< 20	< 20
Total Recoverable Cadmium	mg/kg dry wt	0.35	< 0.10	0.34	< 0.10	< 0.10
Total Recoverable Chromium	mg/kg dry wt	10	9)	24	9	8
Total Recoverable Copper	mg/kg dry wt	41	19	37	13	14
Total Recoverable Lead	mg/kg dry wt	187	22	49	21	29
Total Recoverable Mercury	mg/kg dry wt	0.12	0.10	< 0.10	< 0.10	< 0.10
Total Recoverable Nickel	mg/kg dry wt	10	5	40	4	5
Total Recoverable Zinc	mg/kg dry wt	210	5 2	110	33	30
Acid Herbicides Screen in Soil b	y LCMSMS		X			
Acifluorfen	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Bentazone	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Bromoxynil	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Clopyralid	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Dicamba	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,4-Dichlorophenoxyacetic acid	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
(24D) 2,4-Dichlorophenoxybutyric acid	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
(24DB)						
Dichlorprop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Fluazifop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Fluroxypyr	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Haloxyfop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2-methyl-4-chlorophenoxyacetic acid (MCPA)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2-methyl-4- chlorophenoxybutanoic acid (MCPB)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Mecoprop (MCPP; 2-methyl-4-chlorophenoxypropionic acid)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Oryzalin	mg/kg dry wt	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Pentachlorophenol (PCP)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Picloram	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Quizalofop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,3,4,6-Tetrachlorophenol (TCP)		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,4,5-trichlorophenoxypropionic acid (245TP,Fenoprop, Silvex)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2

Sample Type: Soil

Sample Type: Soil						
	Sample Name:	B34 TP 06 0.10 07-Jun-2023	B34 TP 06 0.50 07-Jun-2023	B34 TP 07 0.10 07-Jun-2023	B34 TP 07 0.50 07-Jun-2023	B35 TP 01 0.10 07-Jun-2023
	Lab Number:	3299078.16	3299078.17	3299078.19	3299078.20	3299078.22
Acid Herbicides Screen in So	oil by LCMSMS					
2,4,5-Trichlorophenoxyacetic acid (245T)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Triclopyr	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Organochlorine Pesticides S	creening in Soil			1		
Aldrin	mg/kg dry wt	< 0.014	< 0.015	< 0.013	< 0.014	< 0.014
alpha-BHC	mg/kg dry wt	< 0.014	< 0.015	< 0.013	< 0.014	< 0.014
beta-BHC	mg/kg dry wt	< 0.014	< 0.015	< 0.013	< 0.014	< 0.014
delta-BHC	mg/kg dry wt	< 0.014	< 0.015	< 0.013	< 0.014	< 0.014
gamma-BHC (Lindane)	mg/kg dry wt	< 0.014	< 0.015	< 0.013	< 0.014	< 0.014
cis-Chlordane	mg/kg dry wt	< 0.014	< 0.015	< 0.013	< 0.014	< 0.014
trans-Chlordane	mg/kg dry wt	< 0.014	< 0.015	< 0.013	< 0.014	≤ 0.014
2,4'-DDD	mg/kg dry wt	< 0.014	< 0.015	< 0.013	< 0.014	< 0.014
4,4'-DDD	mg/kg dry wt	< 0.014	< 0.015	< 0.013	< 0.014	< 0.014
2,4'-DDE	mg/kg dry wt	< 0.014	< 0.015	< 0.013	< 0.014	< 0.014
4,4'-DDE	mg/kg dry wt	0.22	< 0.015	0.012	< 0.014	< 0.014
2,4'-DDT	mg/kg dry wt	0.023	< 0.015	< 0.013	< 0.014	< 0.014
4,4'-DDT	mg/kg dry wt	0.087	< 0.015	< 0.013	< 0.014	< 0.014
Total DDT Isomers	mg/kg dry wt	0.34	< 0.09	< 0.08	< 0.09	< 0.08
Dieldrin	mg/kg dry wt	< 0.014	< 0.015	< 0.013	< 0.014	< 0.014
Endosulfan I	mg/kg dry wt	< 0.014	< 0.015	< 0.013	< 0.014	< 0.014
Endosulfan II	mg/kg dry wt	< 0.014	< 0.015	< 0.013	< 0.014	< 0.014
Endosulfan sulphate	mg/kg dry wt	< 0.014	< 0.015	< 0.013	< 0.014	< 0.014
Endrin	mg/kg dry wt	< 0.014	< 0.015	< 0.013	< 0.014	< 0.014
Endrin aldehyde	mg/kg dry wt	< 0.014	< 0.015	< 0.013	< 0.014	< 0.014
Endrin ketone	mg/kg dry wt	< 0.014	< 0.015	< 0.013	< 0.014	< 0.014
Heptachlor	mg/kg dry wt	< 0.014	< 0.015	< 0.013	< 0.014	< 0.014
Heptachlor epoxide	mg/kg dry wt	< 0.014	< 0.015	< 0.013	< 0.014	< 0.014
Hexachlorobenzene	mg/kg dry wt	< 0.014	< 0.015	< 0.013	< 0.014	< 0.014
Methoxychlor	mg/kg dry wt	< 0.014	< 0.015	< 0.013	< 0.014	< 0.014
Organonitro&phosphorus Pe	esticides Screen in S	oil by GCMS				
Acetochlor	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Alachlor	mg/kg dry wt	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Atrazine	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Atrazine-desethyl	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Atrazine-desisopropyl	mg/kg dry wt	< 0.14	< 0.14	< 0.12	< 0.14	< 0.13
Azaconazole	mg/kg dry wt	< 0.04	< 0.04	< 0.03	< 0.04	< 0.04
Azinphos-methyl	mg/kg dry wt	< 0.14	< 0.14	< 0.12	< 0.14	< 0.13
Benalaxyl	mg/kg dry wt	< 0.04	< 0.04	< 0.03	< 0.04	< 0.04
Bitertanol	mg/kg dry wt	< 0.14	< 0.14	< 0.12	< 0.14	< 0.13
Bromacil	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Bromopropylate	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Butachlor	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Captan	mg/kg dry wt	< 0.14	< 0.14	< 0.12	< 0.14	< 0.13
Carbaryl	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Carbofuran	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Chlorfluazuron	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Chlorothalonil	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Chlorpyrifos	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Chlorpyrifos-methyl	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Chlortoluron	mg/kg dry wt	< 0.14	< 0.14	< 0.12	< 0.14	< 0.13
Cyanazine	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Cyfluthrin	mg/kg dry wt	< 0.09	< 0.09	< 0.08	< 0.09	< 0.08
Cyhalothrin	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Cypermethrin	mg/kg dry wt	< 0.17	< 0.17	< 0.15	< 0.17	< 0.16

Sample Type: Soil						
Sa	ample Name:	B34 TP 06 0.10	B34 TP 06 0.50	B34 TP 07 0.10	B34 TP 07 0.50	B35 TP 01 0.10
	l ab Namaban	07-Jun-2023	07-Jun-2023	07-Jun-2023	07-Jun-2023	07-Jun-2023
Organonitro&phosphorus Pestic	Lab Number:	3299078.16	3299078.17	3299078.19	3299078.20	3299078.22
	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Deltamethrin (including Tralomethrin)	nig/kg dry wt	< 0.07	< 0.07	< 0.00	< 0.07	< 0.07
Diazinon	mg/kg dry wt	< 0.04	< 0.04	< 0.03	< 0.04	< 0.04
Dichlofluanid	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Dichloran	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorvos	mg/kg dry wt	< 0.09	< 0.09	< 0.09	< 0.09	< 0.09
Difenoconazole	mg/kg dry wt	< 0.10	< 0.10	< 0.09	< 0.10	< 0.09
Dimethoate	mg/kg dry wt	< 0.14	< 0.14	< 0.12	< 0.14	< 0.13
Diphenylamine	mg/kg dry wt	< 0.14	< 0.14	< 0.12	< 0.14	< 0.13
Diuron	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Fenpropimorph	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Fluazifop-butyl	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Fluometuron	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Flusilazole	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Fluvalinate	mg/kg dry wt	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Furalaxyl	mg/kg dry wt	< 0.04	< 0.04	< 0.03	< 0.04	< 0.04
Haloxyfop-methyl	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Hexaconazole	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Hexazinone	mg/kg dry wt	< 0.04	< 0.04	< 0.03	< 0.04	< 0.04
IPBC (3-lodo-2-propynyl-n- butylcarbamate)	mg/kg dry wt	< 0.4	< 0.4	< 0.3	< 0.4	< 0.4
Kresoxim-methyl	mg/kg dry wt	< 0.04	< 0.04	< 0.03	< 0.04	< 0.04
Linuron	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Malathion	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Metalaxyl	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Methamidophos	mg/kg dry wt	< 0.4	< 0.4	< 0.3	< 0.4	< 0.4
Metolachlor	mg/kg dry wt	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Metribuzin	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Molinate	mg/kg dry wt	< 0.14	< 0.14	< 0.12	< 0.14	< 0.13
Myclobutanil	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Naled	mg/kg dry wt	< 0.4	< 0.4	< 0.3	< 0.4	< 0.4
Norflurazon	mg/kg dry wt		< 0.14	< 0.12	< 0.14	< 0.13
Oxadiazon	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Oxyfluorfen	mg/kg dry wt	< 0.04	< 0.04	< 0.03	< 0.04	< 0.04
Paclobutrazol	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Parathion-ethyl	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Parathion-methyl	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Pendimethalin	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Permethrin	mg/kg dry wt	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Pirimicarb	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Pirimiphos-methyl	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Prochloraz	mg/kg dry wt	< 0.4	< 0.4	< 0.3	< 0.4	< 0.4
Procymidone Promotrum	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Prometryn	mg/kg dry wt	< 0.04	< 0.04 < 0.07	< 0.03 < 0.06	< 0.04	< 0.04
Propacil	mg/kg dry wt	< 0.07 < 0.2	< 0.07	< 0.06 < 0.2	< 0.07 < 0.2	< 0.07
Propanil Propazine	mg/kg dry wt mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2 < 0.04
Propiconazole	mg/kg dry wt	< 0.04	< 0.04	< 0.05	< 0.04	< 0.04
Pyriproxyfen	mg/kg dry wt	< 0.05	< 0.05	< 0.06	< 0.05	< 0.05
Quizalofop-ethyl	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Simazine	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Simetryn	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Sulfentrazone	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
TCMTB [2-(thiocyanomethylthio)		< 0.4	< 0.14	< 0.3	< 0.4	< 0.4
benzothiazole,Busan]						
Tebuconazole	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07

S	ample Name:	B34 TP 06 0.10	B34 TP 06 0.50	B34 TP 07 0.10	B34 TP 07 0.50	B35 TP 01 0.10
	I ala Niverala ave	07-Jun-2023	07-Jun-2023	07-Jun-2023	07-Jun-2023	07-Jun-2023
0 " 0 0 0	Lab Number:	3299078.16	3299078.17	3299078.19	3299078.20	3299078.22
Organonitro&phosphorus Pesti			.0.07	. 0.00	. 0.07	. 0.07
Terbacil	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Terbumeton	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Terbuthylazine	mg/kg dry wt	< 0.04	< 0.04	< 0.03	< 0.04	< 0.04
Terbuthylazine-desethyl	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Terbutryn	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Thiabendazole	mg/kg dry wt	< 0.4	< 0.4	< 0.3	< 0.4	< 0.4
Thiobencarb	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Tolylfluanid	mg/kg dry wt	< 0.04	< 0.04	< 0.03	< 0.04	< 0.04
Triazophos	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Trifluralin	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
Vinclozolin	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
S	ample Name:	B35 TP 01 0.50 07-Jun-2023	B35 TP 02 0.10 07-Jun-2023	B35 TP 02 0.50 07-Jun-2023	B35 TP 03 0.10 07-Jun-2023	B35 TP 03 0.50 07-Jun-2023
	Lab Number:	3299078.23	3299078.25	3299078.26	3299078.28	3299078.29
Individual Tests					Y . 7	
Dry Matter	g/100g as rcvd	70	87	64	78	72
Total Recoverable Beryllium	mg/kg dry wt	0.5	1.4	2.2	0.5	0.9
8 Heavy metals plus Boron				60	1 (7)	
Total Recoverable Arsenic	mg/kg dry wt	6	2	10	29	5
Total Recoverable Boron	mg/kg dry wt	< 20	< 20	< 20	185	< 20
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	0.16	0.13	0.38	< 0.10
Total Recoverable Chromium	mg/kg dry wt	8	82	13	12	8
Total Recoverable Copper	mg/kg dry wt	9	70	22)	59	9
Total Recoverable Lead	mg/kg dry wt	21	28	21	260	18.4
Total Recoverable Mercury	mg/kg dry wt	< 0.10	0.19	0.14	< 0.10	< 0.10
Total Recoverable Nickel	mg/kg dry wt	4	250	13	13	3
Total Recoverable Zinc	mg/kg dry wt	29	103	65	270	29
Acid Herbicides Screen in Soil	by LCMSMS	.01	• ()			
Acifluorfen	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Bentazone	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Bromoxynil	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Clopyralid	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Dicamba	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,4-Dichlorophenoxyacetic acid (24D)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,4-Dichlorophenoxybutyric acid (24DB)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorprop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Fluazifop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Fluroxypyr	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Haloxyfop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2-methyl-4-chlorophenoxyacetic acid (MCPA)		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2-methyl-4- chlorophenoxybutanoic acid (MCPB)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Mecoprop (MCPP; 2-methyl-4-chlorophenoxypropionic acid)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Oryzalin	mg/kg dry wt	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Pentachlorophenol (PCP)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Picloram	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Quizalofop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,3,4,6-Tetrachlorophenol (TCP		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,4,5-trichlorophenoxypropionic acid (245TP,Fenoprop, Silvex)		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,4,5-Trichlorophenoxyacetic acid (245T)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Lab No: 3299078-SPv6			Hill Labs			Page 10 of 136

Sample Type: Soil

Sample Type: Soil								
	Sample Name:	B35 TP 01 0.50 07-Jun-2023	B35 TP 02 0.10 07-Jun-2023	B35 TP 02 0.50 07-Jun-2023	B35 TP 03 0.10 07-Jun-2023	B35 TP 03 0.50 07-Jun-2023		
	Lab Number:	3299078.23	3299078.25	3299078.26	3299078.28	3299078.29		
Acid Herbicides Screen in S								
Triclopyr	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2		
Organochlorine Pesticides S	Screening in Soil					I		
Aldrin	mg/kg dry wt	< 0.015	< 0.012	< 0.016	< 0.013	< 0.014		
alpha-BHC	mg/kg dry wt	< 0.015	< 0.012	< 0.016	< 0.013	< 0.014		
beta-BHC	mg/kg dry wt	< 0.015	< 0.012	< 0.016	< 0.013	< 0.014		
delta-BHC	mg/kg dry wt	< 0.015	< 0.012	< 0.016	< 0.013	< 0.014		
gamma-BHC (Lindane)	mg/kg dry wt	< 0.015	< 0.012	< 0.016	< 0.013	< 0.014		
cis-Chlordane	mg/kg dry wt	< 0.015	< 0.012	< 0.016	< 0.013	< 0.014		
trans-Chlordane	mg/kg dry wt	< 0.015	< 0.012	< 0.016	< 0.013	< 0.014		
2,4'-DDD	mg/kg dry wt	< 0.015	< 0.012	< 0.016	< 0.013	< 0.014		
4,4'-DDD	mg/kg dry wt	< 0.015	< 0.012	< 0.016	< 0.013	≤0.014		
2.4'-DDE	mg/kg dry wt	< 0.015	< 0.012	< 0.016	< 0.013	< 0.014		
4,4'-DDE	mg/kg dry wt	< 0.015	< 0.012	< 0.016	0.23	< 0.014		
2,4'-DDT	mg/kg dry wt	< 0.015	< 0.012	< 0.016	0.063	< 0.014		
4,4'-DDT	mg/kg dry wt	< 0.015	< 0.012	< 0.016	0.176	< 0.014		
Total DDT Isomers	mg/kg dry wt	< 0.09	< 0.07	< 0.10	0.49	< 0.09		
Dieldrin	mg/kg dry wt	< 0.015	< 0.012	< 0.016	0.106	< 0.014		
Endosulfan I	mg/kg dry wt	< 0.015	< 0.012	< 0.016	< 0.013	< 0.014		
Endosulfan II	mg/kg dry wt	< 0.015	< 0.012	0.016	< 0.013	< 0.014		
Endosulfan sulphate	mg/kg dry wt	< 0.015	< 0.012	< 0.016	< 0.013	< 0.014		
Endrin	mg/kg dry wt	< 0.015	< 0.012	< 0.016	< 0.013	< 0.014		
Endrin aldehyde	mg/kg dry wt	< 0.015	< 0.012	< 0.016	< 0.013	< 0.014		
Endrin ketone	mg/kg dry wt	< 0.015	< 0.012	< 0.016	< 0.013	< 0.014		
Heptachlor	mg/kg dry wt	< 0.015	< 0.012	< 0.016	< 0.013	< 0.014		
Heptachlor epoxide	mg/kg dry wt	< 0.015	< 0.012	< 0.016	< 0.013	< 0.014		
Hexachlorobenzene	mg/kg dry wt	< 0.015	< 0.012	< 0.016	< 0.013	< 0.014		
Methoxychlor	mg/kg dry wt	< 0.015	< 0.012	< 0.016	< 0.013	< 0.014		
Organonitro&phosphorus Pe	esticides Screen in S	oil by GCMS	+. ()					
Acetochlor	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07		
Alachlor	mg/kg dry wt	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		
Atrazine	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07		
Atrazine-desethyl	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07		
Atrazine-desisopropyl	mg/kg dry wt	< 0.14	< 0.11	< 0.15	< 0.12	< 0.14		
Azaconazole	mg/kg dry wt	< 0.04	< 0.03	< 0.04	< 0.03	< 0.04		
Azinphos-methyl	mg/kg dry wt	< 0.14	< 0.11	< 0.15	< 0.12	< 0.14		
Benalaxyl	mg/kg dry wt	< 0.04	< 0.03	< 0.04	< 0.03	< 0.04		
Bitertanol	mg/kg dry wt	< 0.14	< 0.11	< 0.15	< 0.12	< 0.14		
Bromacil	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07		
Bromopropylate	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07		
Butachlor	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07		
Captan	mg/kg dry wt	< 0.14	< 0.11	< 0.15	< 0.12	< 0.14		
Carbaryl	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07		
Carbofuran	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07		
Chlorfluazuron	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07		
Chlorothalonil	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07		
Chlorpyrifos	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07		
Chlorpyrifos-methyl	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07		
Chlortoluron	mg/kg dry wt	< 0.14	< 0.11	< 0.15	< 0.12	< 0.14		
Cyanazine	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07		
Cyfluthrin	mg/kg dry wt	< 0.09	< 0.07	< 0.09	< 0.08	< 0.08		
Cyhalothrin	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07		
Cypermethrin	mg/kg dry wt	< 0.17	< 0.14	< 0.18	< 0.15	< 0.16		
Deltamethrin (including Tralomethrin)	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07		
Diazinon	mg/kg dry wt	< 0.04	< 0.03	< 0.04	< 0.03	< 0.04		

Sample Type: Soil						
Sa	ample Name:	B35 TP 01 0.50 07-Jun-2023	B35 TP 02 0.10 07-Jun-2023	B35 TP 02 0.50 07-Jun-2023	B35 TP 03 0.10 07-Jun-2023	B35 TP 03 0.50 07-Jun-2023
I	Lab Number:	3299078.23	3299078.25	3299078.26	3299078.28	3299078.29
Organonitro&phosphorus Pestic	ides Screen in S	oil by GCMS				,
Dichlofluanid	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07
Dichloran	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorvos	mg/kg dry wt	< 0.09	< 0.09	< 0.09	< 0.09	< 0.09
Difenoconazole	mg/kg dry wt	< 0.10	< 0.09	< 0.11	< 0.09	< 0.10
Dimethoate	mg/kg dry wt	< 0.14	< 0.11	< 0.15	< 0.12	< 0.14
Diphenylamine	mg/kg dry wt	< 0.14	< 0.11	< 0.15	< 0.12	< 0.14
Diuron	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07
Fenpropimorph	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07
Fluazifop-butyl	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07
Fluometuron	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07
Flusilazole	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07
Fluvalinate	- ,	< 0.07	< 0.05	< 0.06	< 0.05	< 0.05
	mg/kg dry wt					< 0.04
Furalaxyl	mg/kg dry wt	< 0.04	< 0.03	< 0.04	< 0.03	
Haloxyfop-methyl	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07
Hexaconazole	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07
Hexazinone IPBC (3-lodo-2-propynyl-n-	mg/kg dry wt mg/kg dry wt	< 0.04 < 0.4	< 0.03 < 0.3	< 0.04 < 0.4	< 0.03 < 0.3	< 0.04 < 0.4
butylcarbamate) Kresoxim-methyl	mg/kg dry wt	< 0.04	< 0.03	< 0.04	< 0.03	< 0.04
Linuron	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07
Malathion	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07
Metalaxyl	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07
Methamidophos	mg/kg dry wt	< 0.4	< 0,3	< 0.4	< 0.3	< 0.4
Metolachlor	mg/kg dry wt	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Metribuzin	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07
Molinate	mg/kg dry wt	< 0.14	< 0.11	< 0.15	< 0.12	< 0.14
Myclobutanil	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07
Naled	mg/kg dry wt	< 0.4	< 0.3	< 0.4	< 0.3	< 0.4
Norflurazon	mg/kg dry wt	< 0.14	< 0.11	< 0.15	< 0.12	< 0.14
Oxadiazon	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07
Oxyfluorfen	mg/kg dry wt	< 0.04	< 0.03	< 0.04	< 0.03	< 0.04
Paclobutrazol	mg/kg dry wt		< 0.06	< 0.08	< 0.06	< 0.07
Parathion-ethyl	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07
Parathion-methyl	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07
Pendimethalin	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07
Permethrin	mg/kg dry wt	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Pirimicarb	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07
Pirimicarb Pirimiphos-methyl	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07
Prochloraz	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07
Procymidone Procymidone	mg/kg dry wt	< 0.4	< 0.06	< 0.4	< 0.06	< 0.4
		< 0.07	< 0.06	< 0.08		
Prometryn	mg/kg dry wt				< 0.03	< 0.04
Propachlor	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07
Propanil	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Propazine	mg/kg dry wt	< 0.04	< 0.03	< 0.04	< 0.03	< 0.04
Propiconazole	mg/kg dry wt	< 0.05	< 0.05	< 0.06	< 0.05	< 0.05
Pyriproxyfen	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07
Quizalofop-ethyl	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07
Simazine	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07
Simetryn	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07
Sulfentrazone	mg/kg dry wt	< 0.4	< 0.3	< 0.4	< 0.3	< 0.4
TCMTB [2-(thiocyanomethylthio) benzothiazole,Busan]	mg/kg dry wt	< 0.14	< 0.11	< 0.15	< 0.12	< 0.14
Tebuconazole	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07
Terbacil	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07
Terbumeton	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07

Sample Type: Soil						
Sa	mple Name:	B35 TP 01 0.50	B35 TP 02 0.10	B35 TP 02 0.50	B35 TP 03 0.10	B35 TP 03 0.50
		07-Jun-2023	07-Jun-2023	07-Jun-2023	07-Jun-2023	07-Jun-2023
	_ab Number:	3299078.23	3299078.25	3299078.26	3299078.28	3299078.29
Organonitro&phosphorus Pestici		-				
Terbuthylazine	mg/kg dry wt	< 0.04	< 0.03	< 0.04	< 0.03	< 0.04
Terbuthylazine-desethyl	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07
Terbutryn	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07
Thiabendazole	mg/kg dry wt	< 0.4	< 0.3	< 0.4	< 0.3	< 0.4
Thiobencarb	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07
Tolylfluanid	mg/kg dry wt	< 0.04	< 0.03	< 0.04	< 0.03	< 0.04
Triazophos	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07
Trifluralin	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07
Vinclozolin	mg/kg dry wt	< 0.07	< 0.06	< 0.08	< 0.06	< 0.07
Sa	mple Name:	B35 TP 04 0.10	B35 TP 04 0.50	B35 TP 05 0.10	B35 TP 05 0.50	BWL TP 01 0.10
	- I. N I	07-Jun-2023	07-Jun-2023	07-Jun-2023	07-Jun-2023	08-Jun-2023
	_ab Number:	3299078.31	3299078.32	3299078.34	3299078.35	3299078.37
Individual Tests						
•	g/100g as rcvd	73	72	89	71	65
Total Recoverable Beryllium	mg/kg dry wt	0.8	0.9	0.3	1.1	1.0
pH*	pH Units	-	-	-		5.6
8 Heavy metals plus Boron					-0	
Total Recoverable Arsenic	mg/kg dry wt	5	5	19	1 (7)	4
Total Recoverable Boron	mg/kg dry wt	< 20	< 20	< 20	< 20	< 20
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	0.17	< 0.10	< 0.10	0.14
Total Recoverable Chromium	mg/kg dry wt	7	9	5	11	8
Total Recoverable Copper	mg/kg dry wt	13	19	9	10	17
Total Recoverable Lead	mg/kg dry wt	30	35	69)	23	34
Total Recoverable Mercury	mg/kg dry wt	< 0.10	0.18	< 0.10	< 0.10	< 0.10
Total Recoverable Nickel	mg/kg dry wt	5	4	2	4	4
Total Recoverable Zinc	mg/kg dry wt	66	59	53	37	74
Acid Herbicides Screen in Soil by	y LCMSMS	14				
Acifluorfen	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Bentazone	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Bromoxynil	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Clopyralid	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Dicamba	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,4-Dichlorophenoxyacetic acid (24D)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,4-Dichlorophenoxybutyric acid (24DB)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorprop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Fluazifop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Fluroxypyr	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Haloxyfop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2-methyl-4-chlorophenoxyacetic acid (MCPA)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2-methyl-4- chlorophenoxybutanoic acid (MCPB)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Mecoprop (MCPP; 2-methyl-4- chlorophenoxypropionic acid)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Oryzalin	mg/kg dry wt	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Pentachlorophenol (PCP)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Picloram	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Quizalofop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,3,4,6-Tetrachlorophenol (TCP)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,4,5-trichlorophenoxypropionic acid (245TP,Fenoprop, Silvex)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,4,5-Trichlorophenoxyacetic acid (245T)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Triclopyr	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2

Sample Type: Soil						
	Sample Name:	B35 TP 04 0.10 07-Jun-2023	B35 TP 04 0.50 07-Jun-2023	B35 TP 05 0.10 07-Jun-2023	B35 TP 05 0.50 07-Jun-2023	BWL TP 01 0.10 08-Jun-2023
	Lab Number:	3299078.31	3299078.32	3299078.34	3299078.35	3299078.37
Organochlorine Pesticides S		02000.0.0.	02000.0.02	32000.0.0.	3233.3.33	32000:0:0:
Aldrin	mg/kg dry wt	< 0.014	< 0.014	< 0.011	< 0.014	< 0.015
alpha-BHC	mg/kg dry wt	< 0.014	< 0.014	< 0.011	< 0.014	< 0.015
beta-BHC	mg/kg dry wt	< 0.014	< 0.014	< 0.011	< 0.014	< 0.015
delta-BHC	mg/kg dry wt	< 0.014	< 0.014	< 0.011	< 0.014	< 0.015
gamma-BHC (Lindane)	mg/kg dry wt	< 0.014	< 0.014	< 0.011	< 0.014	< 0.015
cis-Chlordane	mg/kg dry wt	< 0.014	< 0.014	< 0.011	< 0.014	< 0.015
trans-Chlordane	mg/kg dry wt	< 0.014	< 0.014	< 0.011	< 0.014	< 0.015
2,4'-DDD	mg/kg dry wt	< 0.014	< 0.014	< 0.011	< 0.014	< 0.015
4,4'-DDD	mg/kg dry wt	< 0.014	< 0.014	< 0.011	< 0.014	< 0.015
2,4'-DDE	mg/kg dry wt	< 0.014	< 0.014	< 0.011	< 0.014	< 0.015
4,4'-DDE	mg/kg dry wt	< 0.014	< 0.014	< 0.011	< 0.014	≤ 0.015
2,4'-DDT	mg/kg dry wt	< 0.014	< 0.014	< 0.011	< 0.014	< 0.015
4,4'-DDT	mg/kg dry wt	< 0.014	< 0.014	< 0.011	< 0.014	< 0.015
Total DDT Isomers	mg/kg dry wt	< 0.08	< 0.09	< 0.07	< 0.09	< 0.09
Dieldrin	mg/kg dry wt	< 0.014	< 0.014	< 0.011	< 0.014	< 0.015
Endosulfan I	mg/kg dry wt	< 0.014	< 0.014	< 0.011	< 0.014	< 0.015
Endosulfan II	mg/kg dry wt	< 0.014	< 0.014	< 0.011 ≤ 0.011	< 0.014	< 0.015
Endosulfan sulphate	mg/kg dry wt	< 0.014	< 0.014	< 0.011	< 0.014	< 0.015
Endrin	mg/kg dry wt	< 0.014	< 0.014	≥ 0.011	< 0.014	< 0.015
Endrin aldehyde	mg/kg dry wt	< 0.014	< 0.014	< 0.011	< 0.014	< 0.015
Endrin ketone	mg/kg dry wt	< 0.014	< 0.014	< 0.011	< 0.014	< 0.015
Heptachlor	mg/kg dry wt	< 0.014	< 0.014	< 0.011	< 0.014	< 0.015
Heptachlor epoxide	mg/kg dry wt	< 0.014	< 0.014	< 0.011	< 0.014	< 0.015
Hexachlorobenzene	mg/kg dry wt	< 0.014	< 0.014	< 0.011	< 0.014	< 0.015
Methoxychlor	mg/kg dry wt	< 0.014	< 0.014	< 0.011	< 0.014	< 0.015
Organonitro&phosphorus Pe	esticides Screen in S	oil by GCMS				
Acetochlor	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Alachlor	mg/kg dry wt	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Atrazine	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Atrazine-desethyl	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Atrazine-desisopropyl	mg/kg dry wt		< 0.13	< 0.11	< 0.14	< 0.15
Azaconazole	mg/kg dry wt	< 0.04	< 0.04	< 0.03	< 0.04	< 0.04
Azinphos-methyl	mg/kg dry wt	< 0.13	< 0.13	< 0.11	< 0.14	< 0.15
Benalaxyl	mg/kg dry wt	< 0.04	< 0.04	< 0.03	< 0.04	< 0.04
Bitertanol	mg/kg dry wt		< 0.13	< 0.11	< 0.14	< 0.15
Bromacil	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Bromopropylate	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Butachlor	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Captan	mg/kg dry wt	< 0.13	< 0.13	< 0.11	< 0.14	< 0.15
Carbaryl	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Carbofuran	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Chlorfluazuron	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Chlorothalonil	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Chlorpyrifos	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Chlorpyrifos-methyl	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Chlortoluron	mg/kg dry wt	< 0.13	< 0.13	< 0.11	< 0.14	< 0.15
Cyanazine	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Cyfluthrin	mg/kg dry wt	< 0.08	< 0.08	< 0.07	< 0.09	< 0.09
Cyhalothrin	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Cypermethrin	mg/kg dry wt	< 0.16	< 0.16	< 0.13	< 0.17	< 0.18
Deltamethrin (including Tralomethrin)	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Diazinon	mg/kg dry wt	< 0.04	< 0.04	< 0.03	< 0.04	< 0.04
Dichlofluanid	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Dichloran	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2

Sample Type: Soil						
Sa	mple Name:	B35 TP 04 0.10 07-Jun-2023	B35 TP 04 0.50 07-Jun-2023	B35 TP 05 0.10 07-Jun-2023	B35 TP 05 0.50 07-Jun-2023	BWL TP 01 0.10 08-Jun-2023
L	_ab Number:	3299078.31	3299078.32	3299078.34	3299078.35	3299078.37
Organonitro&phosphorus Pestici	des Screen in S	oil by GCMS				,
Dichlorvos	mg/kg dry wt	< 0.09	< 0.09	< 0.09	< 0.09	< 0.09
Difenoconazole	mg/kg dry wt	< 0.09	< 0.10	< 0.09	< 0.10	< 0.11
Dimethoate	mg/kg dry wt	< 0.13	< 0.13	< 0.11	< 0.14	< 0.15
Diphenylamine	mg/kg dry wt	< 0.13	< 0.13	< 0.11	< 0.14	< 0.15
Diuron	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Fenpropimorph	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Fluazifop-butyl	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Fluometuron	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Flusilazole	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Fluvalinate	mg/kg dry wt	< 0.05	< 0.05	< 0.05	< 0.05	< 0.06
Furalaxyl	mg/kg dry wt	< 0.04	< 0.04	< 0.03	< 0.04	≤ 0.04
Haloxyfop-methyl	mg/kg dry wt	< 0.07	< 0.07	< 0.06	▲ < 0.07	< 0.08
Hexaconazole	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Hexazinone	mg/kg dry wt	< 0.04	< 0.04	< 0.03	< 0.04	≥ 0.04
IPBC (3-lodo-2-propynyl-n-	mg/kg dry wt	< 0.4	< 0.4	< 0.3	< 0.4	< 0.4
butylcarbamate)	J. 1.3 21.7 11.					
Kresoxim-methyl	mg/kg dry wt	< 0.04	< 0.04	< 0.03	< 0.04	< 0.04
Linuron	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Malathion	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Metalaxyl	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Methamidophos	mg/kg dry wt	< 0.4	< 0.4	< 0.3	< 0.4	< 0.4
Metolachlor	mg/kg dry wt	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Metribuzin	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Molinate	mg/kg dry wt	< 0.13	< 0.13	< 0.11	< 0.14	< 0.15
Myclobutanil	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Naled	mg/kg dry wt	< 0.4	< 0.4	< 0.3	< 0.4	< 0.4
Norflurazon	mg/kg dry wt	< 0.13	< 0.13	< 0.11	< 0.14	< 0.15
Oxadiazon	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Oxyfluorfen	mg/kg dry wt	< 0.04	< 0.04	< 0.03	< 0.04	< 0.04
Paclobutrazol	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Parathion-ethyl	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Parathion-methyl	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Pendimethalin	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Permethrin	mg/kg dry wt	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Pirimicarb	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Pirimiphos-methyl	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Prochloraz	mg/kg dry wt	< 0.4	< 0.4	< 0.3	< 0.4	< 0.4
Procymidone	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Prometryn	mg/kg dry wt	< 0.04	< 0.04	< 0.03	< 0.04	< 0.04
Propachlor	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Propanil	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Propazine	mg/kg dry wt	< 0.04	< 0.04	< 0.03	< 0.04	< 0.04
Propiconazole	mg/kg dry wt	< 0.05	< 0.05	< 0.05	< 0.05	< 0.06
Pyriproxyfen	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Quizalofop-ethyl	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Simazine	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Simetryn	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Sulfentrazone	mg/kg dry wt	< 0.4	< 0.4	< 0.3	< 0.4	< 0.4
TCMTB [2-(thiocyanomethylthio) benzothiazole,Busan]	mg/kg dry wt	< 0.13	< 0.13	< 0.11	< 0.14	< 0.15
Tebuconazole	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Terbacil	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Terbumeton	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Terbuthylazine	mg/kg dry wt	< 0.04	< 0.04	< 0.03	< 0.04	< 0.04
Terbuthylazine-desethyl	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08

Sample Type: Soil	mple Name:	B35 TP 04 0.10	B35 TP 04 0.50	B35 TP 05 0.10	B35 TP 05 0.50	BWL TP 01 0.10
		07-Jun-2023	07-Jun-2023	07-Jun-2023	07-Jun-2023	08-Jun-2023
L	_ab Number:	3299078.31	3299078.32	3299078.34	3299078.35	3299078.37
Organonitro&phosphorus Pesticio	des Screen in S	oil by GCMS				
Terbutryn	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Thiabendazole	mg/kg dry wt	< 0.4	< 0.4	< 0.3	< 0.4	< 0.4
Thiobencarb	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Tolylfluanid	mg/kg dry wt	< 0.04	< 0.04	< 0.03	< 0.04	< 0.04
Triazophos	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Trifluralin	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Vinclozolin	mg/kg dry wt	< 0.07	< 0.07	< 0.06	< 0.07	< 0.08
Sa	mple Name:	BWL TP 01 0.50 08-Jun-2023	BWL TP 02 0.10 08-Jun-2023	BWL TP 02 0.50 08-Jun-2023	BWL TP 03 0.10 08-Jun-2023	BWL TP 03 0.50 08-Jun-2023
L	_ab Number:	3299078.38	3299078.39	3299078.40	3299078.42	3299078.43
Individual Tests						
Dry Matter	g/100g as rcvd	65	71	-	65	66
Total Recoverable Beryllium	mg/kg dry wt	1.1	0.7	0.3	0.8	0.6
pH*	pH Units	5.7	-	-)	-
8 Heavy metals plus Boron					Y 10	*
Total Recoverable Arsenic	mg/kg dry wt	2	4	2	4	3
Total Recoverable Boron	mg/kg dry wt	< 20	< 20	< 20	< 20	< 20
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	0.17	< 0.10	0.20	< 0.10
Total Recoverable Chromium	mg/kg dry wt	6	8	5	9	7
Total Recoverable Copper	mg/kg dry wt	10	16	5	21	13
Total Recoverable Lead	mg/kg dry wt	15.0	33	17.1	30	18.2
Total Recoverable Mercury	mg/kg dry wt	< 0.10	0.12	< 0.10	0.15	< 0.10
Total Recoverable Nickel	mg/kg dry wt	3	5	3	5	4
Total Recoverable Zinc	mg/kg dry wt	51	77	21	72	39
Acid Herbicides Screen in Soil by		<u>.</u>				
Acifluorfen	mg/kg dry wt	< 0.2	< 0.2	_	< 0.2	< 0.2
Bentazone	mg/kg dry wt	< 0.2	< 0.2	-	< 0.2	< 0.2
		< 0.2	< 0.2	-	< 0.2	< 0.2
Bromoxynil	mg/kg dry wt	< 0.2				
Clopyralid Dicamba	mg/kg dry wt		< 0.2 < 0.2	-	< 0.2 < 0.2	< 0.2 < 0.2
2,4-Dichlorophenoxyacetic acid	mg/kg dry wt mg/kg dry wt	< 0.2 < 0.2	< 0.2	-	< 0.2	< 0.2
(24D) 2,4-Dichlorophenoxybutyric acid	mg/kg dry wt	< 0.2	< 0.2	<u>-</u>	< 0.2	< 0.2
(24DB)	ingling ally inc	0.2	0.2		0.2	0.2
Dichlorprop	mg/kg dry wt	< 0.2	< 0.2	-	< 0.2	< 0.2
Fluazifop	mg/kg dry wt	< 0.2	< 0.2	-	< 0.2	< 0.2
Fluroxypyr	mg/kg dry wt	< 0.2	< 0.2	-	< 0.2	< 0.2
Haloxyfop	mg/kg dry wt	< 0.2	< 0.2	-	< 0.2	< 0.2
2-methyl-4-chlorophenoxyacetic acid (MCPA)	mg/kg dry wt	< 0.2	< 0.2	-	< 0.2	< 0.2
2-methyl-4- chlorophenoxybutanoic acid (MCPB)	mg/kg dry wt	< 0.2	< 0.2	-	< 0.2	< 0.2
Mecoprop (MCPP; 2-methyl-4- chlorophenoxypropionic acid)	mg/kg dry wt	< 0.2	< 0.2	-	< 0.2	< 0.2
Oryzalin	mg/kg dry wt	< 0.4	< 0.4	-	< 0.4	< 0.4
Pentachlorophenol (PCP)	mg/kg dry wt	< 0.2	< 0.2	-	< 0.2	< 0.2
Picloram	mg/kg dry wt	< 0.2	< 0.2	-	< 0.2	< 0.2
Quizalofop	mg/kg dry wt	< 0.2	< 0.2	-	< 0.2	< 0.2
2,3,4,6-Tetrachlorophenol (TCP)	mg/kg dry wt	< 0.2	< 0.2	-	< 0.2	< 0.2
2,4,5-trichlorophenoxypropionic acid (245TP,Fenoprop, Silvex)	mg/kg dry wt	< 0.2	< 0.2	-	< 0.2	< 0.2
2,4,5-Trichlorophenoxyacetic acid (245T)	mg/kg dry wt	< 0.2	< 0.2	-	< 0.2	< 0.2
Triclopyr	mg/kg dry wt	< 0.2	< 0.2		< 0.2	< 0.2

Sample Type: Soil

Sample Type: Soil						
	Sample Name:	BWL TP 01 0.50 08-Jun-2023	BWL TP 02 0.10 08-Jun-2023	BWL TP 02 0.50 08-Jun-2023	BWL TP 03 0.10 08-Jun-2023	BWL TP 03 0.50 08-Jun-2023
	Lab Number:	3299078.38	3299078.39	3299078.40	3299078.42	3299078.43
Organochlorine Pesticides						
Aldrin	mg/kg dry wt	< 0.015	< 0.014	-	< 0.015	< 0.015
alpha-BHC	mg/kg dry wt	< 0.015	< 0.014	-	< 0.015	< 0.015
beta-BHC	mg/kg dry wt	< 0.015	< 0.014	-	< 0.015	< 0.015
delta-BHC	mg/kg dry wt	< 0.015	< 0.014	-	< 0.015	< 0.015
gamma-BHC (Lindane)	mg/kg dry wt	< 0.015	< 0.014	-	< 0.015	< 0.015
cis-Chlordane	mg/kg dry wt	< 0.015	< 0.014	-	< 0.015	< 0.015
trans-Chlordane	mg/kg dry wt	< 0.015	< 0.014	-	< 0.015	< 0.015
2,4'-DDD	mg/kg dry wt	< 0.015	< 0.014	-	< 0.015	< 0.015
4,4'-DDD	mg/kg dry wt	< 0.015	< 0.014	-	< 0.015	< 0.015
2,4'-DDE	mg/kg dry wt	< 0.015	< 0.014	-	< 0.015	< 0.015
4,4'-DDE	mg/kg dry wt	< 0.015	< 0.014	-	< 0.015	≤ 0.015
2,4'-DDT	mg/kg dry wt	< 0.015	< 0.014	-	< 0.015	< 0.015
4,4'-DDT	mg/kg dry wt	< 0.015	< 0.014	-	< 0.015	< 0.015
Total DDT Isomers	mg/kg dry wt	< 0.09	< 0.09	-	< 0.09	< 0.09
Dieldrin	mg/kg dry wt	< 0.015	< 0.014	-	< 0.015	< 0.015
Endosulfan I	mg/kg dry wt	< 0.015	< 0.014	-	< 0.015	< 0.015
Endosulfan II	mg/kg dry wt	< 0.015	< 0.014		< 0.015	< 0.015
Endosulfan sulphate	mg/kg dry wt	< 0.015	< 0.014	70	< 0.015	< 0.015
Endrin	mg/kg dry wt	< 0.015	< 0.014	9. /	< 0.015	< 0.015
Endrin aldehyde	mg/kg dry wt	< 0.015	< 0.014	-	< 0.015	< 0.015
Endrin ketone	mg/kg dry wt	< 0.015	< 0.014	\	< 0.015	< 0.015
Heptachlor	mg/kg dry wt	< 0.015	< 0.014	11	< 0.015	< 0.015
Heptachlor epoxide	mg/kg dry wt	< 0.015	< 0.014	. 0	< 0.015	< 0.015
Hexachlorobenzene	mg/kg dry wt	< 0.015	< 0.014	10	< 0.015	< 0.015
Methoxychlor	mg/kg dry wt	< 0.015	< 0.014	-	< 0.015	< 0.015
Organonitro&phosphorus P	esticides Screen in S	oil by GCMS				
Acetochlor	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Alachlor	mg/kg dry wt	< 0.05	< 0.05	-	< 0.05	< 0.05
Atrazine	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Atrazine-desethyl	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Atrazine-desisopropyl	mg/kg dry wt	< 0.14	< 0.14	-	< 0.15	< 0.14
Azaconazole	mg/kg dry wt	< 0.04	< 0.04	-	< 0.04	< 0.04
Azinphos-methyl	mg/kg dry wt	< 0.14	< 0.14	-	< 0.15	< 0.14
Benalaxyl	mg/kg dry wt	< 0.04	< 0.04	-	< 0.04	< 0.04
Bitertanol	mg/kg dry wt	< 0.14	< 0.14	-	< 0.15	< 0.14
Bromacil	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Bromopropylate	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Butachlor	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Captan	mg/kg dry wt	< 0.14	< 0.14	-	< 0.15	< 0.14
Carbaryl	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Carbofuran	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Chlorfluazuron	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Chlorothalonil	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Chlorpyrifos	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Chlorpyrifos-methyl	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Chlortoluron	mg/kg dry wt	< 0.14	< 0.14	-	< 0.15	< 0.14
Cyanazine	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Cyfluthrin	mg/kg dry wt	< 0.09	< 0.09	-	< 0.09	< 0.09
Cyhalothrin	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Cypermethrin	mg/kg dry wt	< 0.18	< 0.17	-	< 0.18	< 0.18
Deltamethrin (including Tralomethrin)	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Diazinon	mg/kg dry wt	< 0.04	< 0.04	-	< 0.04	< 0.04
Dichlofluanid	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Dichloran	mg/kg dry wt	< 0.2	< 0.2	-	< 0.2	< 0.2

Sample Type: Soil						
Sa	mple Name:	BWL TP 01 0.50 08-Jun-2023	BWL TP 02 0.10 08-Jun-2023	BWL TP 02 0.50 08-Jun-2023	BWL TP 03 0.10 08-Jun-2023	BWL TP 03 0.50 08-Jun-2023
L	ab Number:	3299078.38	3299078.39	3299078.40	3299078.42	3299078.43
Organonitro&phosphorus Pesticio	des Screen in S	oil by GCMS				
Dichlorvos	mg/kg dry wt	< 0.09	< 0.09	-	< 0.09	< 0.09
Difenoconazole	mg/kg dry wt	< 0.10	< 0.10	-	< 0.10	< 0.10
Dimethoate	mg/kg dry wt	< 0.14	< 0.14	-	< 0.15	< 0.14
Diphenylamine	mg/kg dry wt	< 0.14	< 0.14	-	< 0.15	< 0.14
Diuron	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Fenpropimorph	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Fluazifop-butyl	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Fluometuron	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Flusilazole	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Fluvalinate	mg/kg dry wt	< 0.05	< 0.05	_	< 0.05	< 0.05
Furalaxyl	mg/kg dry wt	< 0.04	< 0.04	-	< 0.04	≤ 0.04
Haloxyfop-methyl	mg/kg dry wt	< 0.07	< 0.07	_	▲ < 0.08	< 0.07
Hexaconazole	mg/kg dry wt	< 0.07	< 0.07	_	< 0.08	< 0.07
Hexazinone	mg/kg dry wt	< 0.04	< 0.04	- \	< 0.04	< 0.04
IPBC (3-lodo-2-propynyl-n-	mg/kg dry wt	< 0.4	< 0.4	-	< 0.4	< 0.4
butylcarbamate)	J. 1.3 31 J. 110					
Kresoxim-methyl	mg/kg dry wt	< 0.04	< 0.04	~ U	< 0.04	< 0.04
Linuron	mg/kg dry wt	< 0.07	< 0.07	(-)	< 0.08	< 0.07
Malathion	mg/kg dry wt	< 0.07	< 0.07	5- /	< 0.08	< 0.07
Metalaxyl	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Methamidophos	mg/kg dry wt	< 0.4	< 0.4	- \	< 0.4	< 0.4
Metolachlor	mg/kg dry wt	< 0.05	< 0.05	N.	< 0.05	< 0.05
Metribuzin	mg/kg dry wt	< 0.07	< 0.07		< 0.08	< 0.07
Molinate	mg/kg dry wt	< 0.14	< 0.14	10	< 0.15	< 0.14
Myclobutanil	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Naled	mg/kg dry wt	< 0.4	< 0.4	-	< 0.4	< 0.4
Norflurazon	mg/kg dry wt	< 0.14	< 0.14	-	< 0.15	< 0.14
Oxadiazon	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Oxyfluorfen	mg/kg dry wt	< 0.04	< 0.04	-	< 0.04	< 0.04
Paclobutrazol	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Parathion-ethyl	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Parathion-methyl	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Pendimethalin	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Permethrin	mg/kg dry wt	< 0.03	< 0.03	-	< 0.03	< 0.03
Pirimicarb	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Pirimiphos-methyl	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Prochloraz	mg/kg dry wt	< 0.4	< 0.4	-	< 0.4	< 0.4
Procymidone	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Prometryn	mg/kg dry wt	< 0.04	< 0.04	-	< 0.04	< 0.04
Propachlor	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Propanil	mg/kg dry wt	< 0.2	< 0.2	-	< 0.2	< 0.2
Propazine	mg/kg dry wt	< 0.04	< 0.04	-	< 0.04	< 0.04
Propiconazole	mg/kg dry wt	< 0.05	< 0.05	-	< 0.05	< 0.05
Pyriproxyfen	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Quizalofop-ethyl	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Simazine	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Simetryn	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Sulfentrazone	mg/kg dry wt	< 0.4	< 0.4	-	< 0.4	< 0.4
TCMTB [2-(thiocyanomethylthio) benzothiazole,Busan]	mg/kg dry wt	< 0.14	< 0.14	-	< 0.15	< 0.14
Tebuconazole	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Terbacil	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Terbumeton	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
Terbuthylazine	mg/kg dry wt	< 0.04	< 0.04	-	< 0.04	< 0.04
Terbuthylazine-desethyl	mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07

nple Name:	BWL TP 01 0.50 08-Jun-2023	BWL TP 02 0.10 08-Jun-2023	BWL TP 02 0.50 08-Jun-2023		BWL TP 03 0.50 08-Jun-2023
ab Number:	3299078.38	3299078.39	3299078.40	3299078.42	3299078.43
es Screen in S	oil by GCMS				
mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
mg/kg dry wt	< 0.4	< 0.4	-	< 0.4	< 0.4
mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
mg/kg dry wt	< 0.04	< 0.04	-	< 0.04	< 0.04
mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
mg/kg dry wt	< 0.07	< 0.07	-	< 0.08	< 0.07
nple Name:	BWL TP 04 0.10 08-Jun-2023	BWL TP 04 0.50 08-Jun-2023	BWL TP 05 0.10 08-Jun-2023	BWL TP 05 0.50 08-Jun-2023	BWL TP 06 0.10 08-Jun-2023
ab Number:	3299078.45	3299078.46	3299078.48	3299078.49	3299078.50
					•
g/100g as rcvd	63	-	77	77	65
mg/kg dry wt	1.0	0.3	0.5	0.5	0.9
mg/kg dry wt	5	3	3	3	6
mg/kg dry wt	< 20	< 20	< 20	< 20	< 20
mg/kg dry wt	0.33	< 0.10	< 0.10	< 0.10	0.20
mg/kg dry wt	9	6	5	6	9
mg/kg dry wt	36	6	9	10	19
mg/kg dry wt	82	21	15.6	17.2	18.6
mg/kg dry wt	0.18	< 0.10	< 0.10	< 0.10	0.15
mg/kg dry wt	5	3	2	3	5
mg/kg dry wt	103	28	36	45	74
LCMSMS		2			
mg/kg dry wt	< 0.2	-	< 0.2	< 0.2	< 0.2
mg/kg dry wt	< 0.2	- ^	< 0.2	< 0.2	< 0.2
	< 0.2		< 0.2	< 0.2	< 0.2
	< 0.2	* , (-)	< 0.2	< 0.2	< 0.2
mg/kg dry wt	< 0.2	X	< 0.2	< 0.2	< 0.2
mg/kg dry wt	< 0.2	-	< 0.2	< 0.2	< 0.2
mg/kg dry wt	< 0.2	-	< 0.2	< 0.2	< 0.2
mg/kg dry wt	< 0.2	-	< 0.2	< 0.2	< 0.2
	< 0.2	-	< 0.2	< 0.2	< 0.2
	< 0.2	-	< 0.2	< 0.2	< 0.2
	< 0.2	-	< 0.2	< 0.2	< 0.2
A	< 0.2	-	< 0.2	< 0.2	< 0.2
mg/kg dry wt	< 0.2	-	< 0.2	< 0.2	< 0.2
mg/kg dry wt	< 0.2	-	< 0.2	< 0.2	< 0.2
mg/kg dry wt	< 0.4	-	< 0.4	< 0.4	< 0.4
mg/kg dry wt	< 0.2	-	< 0.2	< 0.2	< 0.2
mg/kg dry wt	< 0.2	-	< 0.2	< 0.2	< 0.2
mg/kg dry wt	< 0.2	-	< 0.2	< 0.2	< 0.2
mg/kg dry wt	< 0.2	-	< 0.2	< 0.2	< 0.2
mg/kg dry wt	< 0.2	-	< 0.2	< 0.2	< 0.2
mg/kg dry wt	< 0.2	-	< 0.2	< 0.2	< 0.2
mg/kg dry wt	< 0.2	-	< 0.2	< 0.2	< 0.2
ing in Soil					
ning in Soil mg/kg dry wt	< 0.016	-	< 0.013	< 0.013	< 0.015
	ab Number: es Screen in S mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mple Name: /100g as rcvd mg/kg dry wt	## Number: 3299078.38 ## Number: 3299078.38 ## Screen in Soil by GCMS ## mg/kg dry wt	08-Jun-2023 08-Jun-2023 3299078.38 3299078.39 3299078.39 3299078.39 3299078.39 3299078.39 3299078.39 3299078.39 3299078.39 3299078.39 3299078.39 3299078.39 3299078.45 3299078.45 3299078.46 3299078.45 3299078.46 3299078.45 3299078.46 3	Description Description	December December

Campain Camp	Sample Type: Soil						
Lab Number 3299078.45 3299078.46 3299078.48 3299078.49 3299078.59 3299078.49 3299078.69 3299078.49 3299078.49 3299078.69 3299078.49 32990788.49 329907888.49 32990788.49 32990788.49 32990788.49 32990788.49		Sample Name:					
Department Perellutides Screening in Soil		Lab Number:					
delta BHC	Organochlorine Pesticides						
gamma-RHC (Lindane) mg/kg dry w	beta-BHC	mg/kg dry wt	< 0.016	-	< 0.013	< 0.013	< 0.015
Bin-Chlordame mg/kg dry wt < 0.016 - < 0.013 < 0.018 < 0.015	delta-BHC	mg/kg dry wt	< 0.016	-	< 0.013	< 0.013	< 0.015
Bin-Chlordame mg/kg dry wt < 0.016 - < 0.013 < 0.018 < 0.015	gamma-BHC (Lindane)	0 0 1	< 0.016	_	< 0.013	< 0.013	< 0.015
Irans-Chickdane	,			-			
2.4-IDDD mg/kg dyw k				_			
4.4-DDD mg/kg dry wt				_			
2,4-1-DDE mg/kg drywl < 0.016				_			
4.4-IDDE mg/kg dry wt				_			
2,41DDT mg/kg dry wt < 0.016		0 0 1		_			
4.4-1DDT mg/kg dry wt	*			_			
Total DDT Isomers		0 0 ,		_			
Deldrin mg/kg dry wt < 0.016 - < 0.013 < 0.015	,	0 0 ,		_			
Endosulfan I mg/kg dry wt Endosulfan I mg/kg dry wt Endosulfan I mg/kg dry wt Endosulfan I mg/kg dry wt Endosulfan sulphate mg/kg dry wt 4				-			
Endosulfan II mg/kg dry wt Endosulfan Sulphate mg/kg dry wt Endosulfan Sulphate mg/kg dry wt Endosulfan Sulphate mg/kg dry wt Endrin mg/kg dry wt Endrin mg/kg dry wt Endrin mg/kg dry wt Endrin mg/kg dry wt Endrin mg/kg dry wt Endrin mg/kg dry wt Endrin ketone mg/k				-			
Endoulfan sulphate mg/kg dry wt C 0.016 - C 0.013 C 0.013 C 0.015 C 0.016 C 0.016 C 0.016 C 0.013 C 0.015 C 0.015 C 0.016 C 0.013 C 0.015 C 0.015 C 0.016 C 0.013 C 0.015 C 0.015 C 0.016 C 0.013 C 0.015 C 0.015 C 0.016 C 0.013 C 0.013 C 0.015 C 0.016 C 0.013 C 0.013 C 0.015 C 0.016 C 0.013 C 0.013 C 0.015 C 0.016 C 0.013 C 0.013 C 0.015 C 0.016 C 0.013 C 0.013 C 0.015 C 0.016 C 0.013 C 0.013 C 0.015 C 0.016 C 0.013 C 0.013 C 0.015 C 0.016 C 0.013 C 0.013 C 0.015 C 0.016 C 0.013 C 0.013 C 0.015 C 0.016 C 0.013 C 0.013 C 0.015 C 0.016 C 0.013 C 0.013 C 0.015 C 0.016 C 0.013 C 0.013 C 0.015 C 0.016 C 0.016 C 0.013 C 0.013 C 0.015 C 0.016 C 0.013 C 0.013 C 0.015 C 0.016 C 0.016 C 0.013 C 0.013 C 0.015 C 0.016 C 0.016 C 0.013 C 0.013 C 0.015 C 0.016 C 0.016 C 0.013 C 0.013 C 0.015 C 0.016 C 0.016 C 0.013 C 0.013 C 0.015 C 0.015 C 0.016 C 0.016 C 0.013 C 0.015 C 0.				-			
Endrin in mg/kg dry wt				-		· · · · · · · · · · · · · · · · · · ·	
Endrin aldehyde mg/kg dry wt	•	0 0 ,		-			
Endrin ketone mg/kg dry wt < 0.016 - 0.013 < 0.015 < 0.015				-			
Heptachlor	•			-			
Heptachlor epoxide		0 0 ,		-			
Hexachlorobenzene mg/kg dry wt < 0.016 < 0.013 < 0.013 < 0.015	•	0 0 ,		-	_		
Methoxychlor mg/kg dry wt < 0.016 - 0.013 < 0.013 < 0.015 Organonitro&phosphorus Pesticides Screen in Solity GCMS Acetochlor mg/kg dry wt < 0.08	•			- (2)			
Acetochlor							
Actochlor mg/kg dry wt < 0.08 < 0.06 < 0.07 < 0.08 Alachlor mg/kg dry wt < 0.05	Methoxychlor	mg/kg dry wt	< 0.016		< 0.013	< 0.013	< 0.015
Alachlor mg/kg dry wt	Organonitro&phosphorus F	Pesticides Screen in S	oil by GCMS				
Atrazine mg/kg dry wt	Acetochlor	mg/kg dry wt	< 0.08	-	< 0.06	< 0.07	< 0.08
Atrazine-desethyl mg/kg dry wt	Alachlor	mg/kg dry wt		-	< 0.05	< 0.05	< 0.05
Atrazine-desisopropyl mg/kg dry wt	Atrazine	mg/kg dry wt	< 0.08	- (< 0.06	< 0.07	< 0.08
Azaconazole mg/kg dry wt	Atrazine-desethyl	mg/kg dry wt	< 0.08	* , (-) *	< 0.06	< 0.07	< 0.08
Azinphos-methyl mg/kg dry wt	Atrazine-desisopropyl	mg/kg dry wt	< 0.15	X	< 0.12	< 0.13	< 0.15
Benalaxyl mg/kg dry wt < 0.04 - < 0.03 < 0.04 < 0.04 Bitertanol mg/kg dry wt < 0.15	Azaconazole	mg/kg dry wt	< 0.04	7 6.	< 0.03	< 0.04	< 0.04
Bitertanol mg/kg dry wt	Azinphos-methyl	mg/kg dry wt	< 0.15	O -	< 0.12	< 0.13	< 0.15
Bromacil mg/kg dry wt	Benalaxyl	mg/kg dry wt	< 0.04	-	< 0.03	< 0.04	< 0.04
Bromopropylate mg/kg dry wt < 0.08 - < 0.06 < 0.07 < 0.08 Butachlor mg/kg dry wt < 0.08	Bitertanol	mg/kg dry wt	< 0.15	-	< 0.12	< 0.13	< 0.15
Butachlor mg/kg dry wt < 0.08 - < 0.06 < 0.07 < 0.08 Captan mg/kg dry wt < 0.15	Bromacil	mg/kg dry wt	< 0.08	-	< 0.06	< 0.07	< 0.08
Captan mg/kg dry wt < 0.15 - < 0.12 < 0.13 < 0.15 Carbaryl mg/kg dry wt < 0.08	Bromopropylate	mg/kg dry wt	< 0.08	-	< 0.06	< 0.07	< 0.08
Carbaryl mg/kg dry wt < 0.08 - < 0.06 < 0.07 < 0.08 Carbofuran mg/kg dry wt < 0.08	Butachlor	mg/kg dry wt	< 0.08	-	< 0.06	< 0.07	< 0.08
Carbaryl mg/kg dry wt < 0.08 - < 0.06 < 0.07 < 0.08 Carbofuran mg/kg dry wt < 0.08	Captan		< 0.15	-	< 0.12	< 0.13	< 0.15
Carbofuran mg/kg dry wt < 0.08 - < 0.06 < 0.07 < 0.08 Chlorfluazuron mg/kg dry wt < 0.08	Carbaryl		< 0.08	-	< 0.06	< 0.07	< 0.08
Chlorfluazuron mg/kg dry wt < 0.08 - < 0.06 < 0.07 < 0.08 Chlorothalonil mg/kg dry wt < 0.08	-		< 0.08	-	< 0.06	< 0.07	< 0.08
Chlorothalonil mg/kg dry wt < 0.08 - < 0.06 < 0.07 < 0.08 Chlorpyrifos mg/kg dry wt < 0.08	Chlorfluazuron			-		< 0.07	
Chlorpyrifos mg/kg dry wt < 0.08 - < 0.06 < 0.07 < 0.08 Chlorpyrifos-methyl mg/kg dry wt < 0.08	Chlorothalonil		< 0.08	-	< 0.06	< 0.07	< 0.08
Chlorpyrifos-methyl mg/kg dry wt < 0.08	Chlorpyrifos	A		-	< 0.06	< 0.07	
Chlortoluron mg/kg dry wt < 0.15 - < 0.12 < 0.13 < 0.15 Cyanazine mg/kg dry wt < 0.08				_			
Cyanazine mg/kg dry wt < 0.08 - < 0.06 < 0.07 < 0.08 Cyfluthrin mg/kg dry wt < 0.10							
Cyfluthrin mg/kg dry wt < 0.10 - < 0.08 < 0.09 Cyhalothrin mg/kg dry wt < 0.08				_			
Cyhalothrin mg/kg dry wt < 0.08 - < 0.06 < 0.07 < 0.08 Cypermethrin mg/kg dry wt < 0.19	•			_			
Cypermethrin mg/kg dry wt < 0.19 - < 0.15 < 0.15 < 0.18 Deltamethrin (including Tralomethrin) mg/kg dry wt < 0.08	•			_			
Deltamethrin (including Tralomethrin) mg/kg dry wt Tralomethrin) < 0.08 - < 0.06 < 0.07 < 0.08 Diazinon mg/kg dry wt Diazinon - < 0.03	•						
Tralomethrin) Diazinon mg/kg dry wt < 0.04 - < 0.03 < 0.04 < 0.04 Dichlofluanid mg/kg dry wt < 0.08	· ·			_			
Dichlofluanid mg/kg dry wt < 0.08 - < 0.06 < 0.07 < 0.08 Dichloran mg/kg dry wt < 0.2	Tralomethrin)			-			
Dichloran mg/kg dry wt < 0.2 - < 0.2 < 0.2 < 0.2 Dichlorvos mg/kg dry wt < 0.09	Diazinon	mg/kg dry wt	< 0.04	-	< 0.03	< 0.04	< 0.04
Dichlorvos mg/kg dry wt < 0.09 - < 0.09 < 0.09	Dichlofluanid	mg/kg dry wt	< 0.08	-	< 0.06	< 0.07	< 0.08
	Dichloran	mg/kg dry wt	< 0.2	-	< 0.2	< 0.2	< 0.2
Difenoconazole mg/kg dry wt < 0.11 - < 0.09 < 0.09 < 0.11	Dichlorvos	mg/kg dry wt	< 0.09		< 0.09	< 0.09	< 0.09
	Difenoconazole	mg/kg dry wt	< 0.11	-	< 0.09	< 0.09	< 0.11

Sample Type: Soil									
Sa	mple Name:	BWL TP 04 0.10 08-Jun-2023	BWL TP 04 0.50 08-Jun-2023	BWL TP 05 0.10 08-Jun-2023	BWL TP 05 0.50 08-Jun-2023	BWL TP 06 0.10 08-Jun-2023			
L	.ab Number:	3299078.45	3299078.46	3299078.48	3299078.49	3299078.50			
Organonitro&phosphorus Pesticio	Organonitro&phosphorus Pesticides Screen in Soil by GCMS								
Dimethoate	mg/kg dry wt	< 0.15	-	< 0.12	< 0.13	< 0.15			
Diphenylamine	mg/kg dry wt	< 0.15	-	< 0.12	< 0.13	< 0.15			
Diuron	mg/kg dry wt	< 0.08	-	< 0.06	< 0.07	< 0.08			
Fenpropimorph	mg/kg dry wt	< 0.08	-	< 0.06	< 0.07	< 0.08			
Fluazifop-butyl	mg/kg dry wt	< 0.08	-	< 0.06	< 0.07	< 0.08			
Fluometuron	mg/kg dry wt	< 0.08	-	< 0.06	< 0.07	< 0.08			
Flusilazole	mg/kg dry wt	< 0.08	-	< 0.06	< 0.07	< 0.08			
Fluvalinate	mg/kg dry wt	< 0.06	-	< 0.05	< 0.05	< 0.06			
Furalaxyl	mg/kg dry wt	< 0.04	-	< 0.03	< 0.04	< 0.04			
Haloxyfop-methyl	mg/kg dry wt	< 0.08	_	< 0.06	< 0.07	< 0.08			
Hexaconazole	mg/kg dry wt	< 0.08	_	< 0.06	< 0.07	≤ 0.08			
Hexazinone	mg/kg dry wt	< 0.04	_	< 0.03	▲ < 0.04	< 0.04			
IPBC (3-lodo-2-propynyl-n- butylcarbamate)	mg/kg dry wt	< 0.4	-	< 0.3	< 0.4	< 0.4			
Kresoxim-methyl	mg/kg dry wt	< 0.04	-	< 0.03	< 0.04	< 0.04			
Linuron	mg/kg dry wt	< 0.08	-	< 0.06	< 0.07	< 0.08			
Malathion	mg/kg dry wt	< 0.08	-	< 0.06	< 0.07	< 0.08			
Metalaxyl	mg/kg dry wt	< 0.08	-	< 0.06	< 0.07	< 0.08			
Methamidophos	mg/kg dry wt	< 0.4	-	< 0.3	< 0.4	< 0.4			
Metolachlor	mg/kg dry wt	< 0.05	- (< 0.05	< 0.05	< 0.05			
Metribuzin	mg/kg dry wt	< 0.08	- 0	< 0.06	< 0.07	< 0.08			
Molinate	mg/kg dry wt	< 0.15	10	< 0.12	< 0.13	< 0.15			
Myclobutanil	mg/kg dry wt	< 0.08		< 0.06	< 0.07	< 0.08			
Naled	mg/kg dry wt	< 0.4	70	< 0.3	< 0.4	< 0.4			
Norflurazon	mg/kg dry wt	< 0.15	- 5	< 0.12	< 0.13	< 0.15			
Oxadiazon	mg/kg dry wt	< 0.08	-	< 0.06	< 0.07	< 0.08			
Oxyfluorfen	mg/kg dry wt	< 0.04		< 0.03	< 0.04	< 0.04			
Paclobutrazol	mg/kg dry wt	< 0.08		< 0.06	< 0.07	< 0.08			
Parathion-ethyl	mg/kg dry wt	< 0.08		< 0.06	< 0.07	< 0.08			
Parathion-methyl	mg/kg dry wt	< 0.08	-	< 0.06	< 0.07	< 0.08			
Pendimethalin	mg/kg dry wt	< 0.08	-	< 0.06	< 0.07	< 0.08			
Permethrin	mg/kg dry wt		_	< 0.03	< 0.03	< 0.03			
Pirimicarb	mg/kg dry wt	< 0.08	-	< 0.06	< 0.07	< 0.08			
Pirimiphos-methyl	mg/kg dry wt	< 0.08	-	< 0.06	< 0.07	< 0.08			
Prochloraz	mg/kg dry wt	< 0.4	-	< 0.3	< 0.4	< 0.4			
Procymidone	mg/kg dry wt	< 0.08	-	< 0.06	< 0.07	< 0.08			
Prometryn	mg/kg dry wt	< 0.04	-	< 0.03	< 0.04	< 0.04			
Propachlor	mg/kg dry wt	< 0.08	-	< 0.06	< 0.07	< 0.08			
Propanil	mg/kg dry wt	< 0.2	-	< 0.2	< 0.2	< 0.2			
Propazine	mg/kg dry wt	< 0.04	-	< 0.03	< 0.04	< 0.04			
Propiconazole	mg/kg dry wt	< 0.06	-	< 0.05	< 0.05	< 0.06			
Pyriproxyfen	mg/kg dry wt	< 0.08	-	< 0.06	< 0.07	< 0.08			
Quizalofop-ethyl	mg/kg dry wt	< 0.08	-	< 0.06	< 0.07	< 0.08			
Simazine	mg/kg dry wt	< 0.08	-	< 0.06	< 0.07	< 0.08			
Simetryn	mg/kg dry wt	< 0.08	-	< 0.06	< 0.07	< 0.08			
Sulfentrazone	mg/kg dry wt	< 0.4	-	< 0.3	< 0.4	< 0.4			
TCMTB [2-(thiocyanomethylthio) benzothiazole,Busan]	mg/kg dry wt	< 0.15	-	< 0.12	< 0.13	< 0.15			
Tebuconazole	mg/kg dry wt	< 0.08	-	< 0.06	< 0.07	< 0.08			
Terbacil	mg/kg dry wt	< 0.08	-	< 0.06	< 0.07	< 0.08			
Terbumeton	mg/kg dry wt	< 0.08	-	< 0.06	< 0.07	< 0.08			
Terbuthylazine	mg/kg dry wt	< 0.04	-	< 0.03	< 0.04	< 0.04			
Terbuthylazine-desethyl	mg/kg dry wt	< 0.08	-	< 0.06	< 0.07	< 0.08			
Terbutryn	mg/kg dry wt	< 0.08	-	< 0.06	< 0.07	< 0.08			
Thiabendazole	mg/kg dry wt	< 0.4	-	< 0.3	< 0.4	< 0.4			

Sample Type: Soil						
Sar	nple Name:	BWL TP 04 0.10		BWL TP 05 0.10	BWL TP 05 0.50	BWL TP 06 0.10
	. I. M I	08-Jun-2023	08-Jun-2023	08-Jun-2023	08-Jun-2023	08-Jun-2023
	ab Number:	3299078.45	3299078.46	3299078.48	3299078.49	3299078.50
Organonitro&phosphorus Pesticid			T.	. 0.00	. 0.07	. 0. 00
Thiobencarb	mg/kg dry wt	< 0.08	-	< 0.06	< 0.07	< 0.08
Tolylfluanid	mg/kg dry wt	< 0.04	-	< 0.03	< 0.04	< 0.04
Triazophos	mg/kg dry wt	< 0.08	-	< 0.06	< 0.07	< 0.08
Trifluralin	mg/kg dry wt	< 0.08	-	< 0.06	< 0.07	< 0.08
Vinclozolin	mg/kg dry wt	< 0.08	-	< 0.06	< 0.07	< 0.08
Sar	nple Name:	BWL TP 06 0.50 08-Jun-2023	HT COMPC3 0.10 09-Jun-2023	HT COMPE2 0.10 09-Jun-2023	HT COMPE4 0.10 09-Jun-2023	HT TP 29 0.10 08-Jun-2023
La	ab Number:	3299078.51	3299078.82	3299078.103	3299078.109	3299078.133
Individual Tests			1			
Dry Matter g	g/100g as rcvd	-	66	73	89	77
Total Recoverable Beryllium	mg/kg dry wt	0.3	0.7	0.8	0.9	0.9
pH*	pH Units	_	_	_	<u>.</u> -	6.0
8 Heavy metals plus Boron		<u> </u>	1			~
Total Recoverable Arsenic	mg/kg dry wt	3	5	9	5	7
Total Recoverable Boron	mg/kg dry wt	< 20	< 20	23	47	< 20
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	0.30	0.36	0.13	0.34
Total Recoverable Carmium Total Recoverable Chromium	mg/kg dry wt	6	8	10	11	9
			30	42		32
Total Recoverable Copper Total Recoverable Lead	mg/kg dry wt	6 16.3	30	36	29	159
	mg/kg dry wt					
Total Recoverable Mercury	mg/kg dry wt	< 0.10	0.43	0.21	< 0.10	0.14
Total Recoverable Nickel	mg/kg dry wt	3	4	5	27	7
Total Recoverable Zinc	mg/kg dry wt	23	119	175	72	148
Acid Herbicides Screen in Soil by				V		
Acifluorfen	mg/kg dry wt	-	< 0.2	< 0.2	< 0.2	-
Bentazone	mg/kg dry wt	-	< 0.2	< 0.2	< 0.2	-
Bromoxynil	mg/kg dry wt	-	< 0.2	< 0.2	< 0.2	-
Clopyralid	mg/kg dry wt		< 0.2	< 0.2	< 0.2	-
Dicamba	mg/kg dry wt	(0-1)	◆ < 0.2	< 0.2	< 0.2	-
2,4-Dichlorophenoxyacetic acid (24D)	mg/kg dry wt		< 0.2	< 0.2	< 0.2	-
2,4-Dichlorophenoxybutyric acid (24DB)	mg/kg dry wt		< 0.2	< 0.2	< 0.2	-
Dichlorprop	mg/kg dry wt		< 0.2	< 0.2	< 0.2	-
Fluazifop	mg/kg dry wt		< 0.2	< 0.2	< 0.2	-
Fluroxypyr	mg/kg dry wt	. ()-	< 0.2	< 0.2	< 0.2	-
Haloxyfop	mg/kg dry wt		< 0.2	< 0.2	< 0.2	-
2-methyl-4-chlorophenoxyacetic acid (MCPA)	mg/kg dry wt	-	< 0.2	< 0.2	< 0.2	-
2-methyl-4- chlorophenoxybutanoic acid (MCPB)	mg/kg dry wt	-	< 0.2	< 0.2	< 0.2	-
Mecoprop (MCPP; 2-methyl-4-chlorophenoxypropionic acid)	mg/kg dry wt	-	< 0.2	< 0.2	< 0.2	-
Oryzalin	mg/kg dry wt	-	< 0.4	< 0.4	< 0.4	-
Pentachlorophenol (PCP)	mg/kg dry wt	-	< 0.2	< 0.2	< 0.2	-
Picloram	mg/kg dry wt	-	< 0.2	< 0.2	< 0.2	-
Quizalofop	mg/kg dry wt	-	< 0.2	< 0.2	< 0.2	-
2,3,4,6-Tetrachlorophenol (TCP)	mg/kg dry wt	-	< 0.4	< 0.4	< 0.2	-
2,4,5-trichlorophenoxypropionic acid (245TP,Fenoprop, Silvex)	mg/kg dry wt	-	< 0.2	< 0.2	< 0.2	-
2,4,5-Trichlorophenoxyacetic acid (245T)	mg/kg dry wt	-	< 0.2	< 0.2	< 0.2	-
Triclopyr	mg/kg dry wt	-	< 0.2	< 0.2	< 0.2	-
Organochlorine Pesticides Screen	ning in Soil		1			
Aldrin	mg/kg dry wt	_	< 0.015	< 0.014	< 0.011	-
alpha-BHC	mg/kg dry wt	-	< 0.015	< 0.014	< 0.011	-
beta-BHC	mg/kg dry wt	-	< 0.015	< 0.014	< 0.011	-
Lab No. 2200079 SDv6	5 5 .7		Hill Lobo			Dago 22 of 126

Sample Type: Soil						
	Sample Name:		HT COMPC3 0.10			HT TP 29 0.10
	I all All actions	08-Jun-2023	09-Jun-2023	09-Jun-2023	09-Jun-2023	08-Jun-2023
Organochlorine Pesticides	Lab Number:	3299078.51	3299078.82	3299078.103	3299078.109	3299078.133
			< 0.01E	< 0.014	< 0.011	
delta-BHC	mg/kg dry wt	-	< 0.015	< 0.014	< 0.011	-
gamma-BHC (Lindane)	mg/kg dry wt	-	< 0.015	< 0.014	< 0.011	-
cis-Chlordane	mg/kg dry wt	-	< 0.015	< 0.014	< 0.011	-
trans-Chlordane	mg/kg dry wt	-	< 0.015	< 0.014	< 0.011	-
2,4'-DDD	mg/kg dry wt	-	< 0.015	< 0.014	< 0.011	-
4,4'-DDD	mg/kg dry wt	-	< 0.015	< 0.014	< 0.011	-
2,4'-DDE	mg/kg dry wt	-	< 0.015	< 0.014	< 0.011	-
4,4'-DDE 2,4'-DDT	mg/kg dry wt mg/kg dry wt	-	< 0.015 < 0.015	< 0.014 < 0.014	< 0.011 < 0.011	-
		-				-
4,4'-DDT	mg/kg dry wt	-	< 0.015	< 0.014	< 0.011	-
Total DDT Isomers	mg/kg dry wt	-	< 0.09	< 0.08	< 0.07	-
Dieldrin	mg/kg dry wt	-	< 0.015	< 0.014	< 0.011	
Endosulfan I	mg/kg dry wt	-	< 0.015	< 0.014	< 0.011	
Endosulfan II	mg/kg dry wt	-	< 0.015	< 0.014	< 0.011	<u> </u>
Endosulfan sulphate	mg/kg dry wt	-	< 0.015	< 0.014	< 0.011	· ·
Endrin	mg/kg dry wt	-	< 0.015	< 0.014	< 0.011	-
Endrin aldehyde	mg/kg dry wt	-	< 0.015	< 0.014	< 0.011	-
Endrin ketone	mg/kg dry wt	-	< 0.015	< 0.014	< 0.011	-
Heptachlor	mg/kg dry wt	-	< 0.015	3 0.014	< 0.011	-
Heptachlor epoxide	mg/kg dry wt	-	< 0.015	< 0.014	< 0.011	-
Hexachlorobenzene	mg/kg dry wt	-	< 0.015	< 0.014	< 0.011	-
Methoxychlor	mg/kg dry wt	-	< 0.015	< 0.014	< 0.011	-
Organonitro&phosphorus P		oil by GCMS				
Acetochlor	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Alachlor	mg/kg dry wt	-	< 0.05	< 0.05	< 0.05	-
Atrazine	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Atrazine-desethyl	mg/kg dry wt		< 0.08	< 0.07	< 0.06	-
Atrazine-desisopropyl	mg/kg dry wt	(7)	< 0.15	< 0.13	< 0.11	-
Azaconazole	mg/kg dry wt		< 0.04	< 0.04	< 0.03	-
Azinphos-methyl	mg/kg dry wt	-	< 0.15	< 0.13	< 0.11	-
Benalaxyl	mg/kg dry wt	-	< 0.04	< 0.04	< 0.03	-
Bitertanol	mg/kg dry wt	-()	< 0.15	< 0.13	< 0.11	-
Bromacil	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Bromopropylate	mg/kg dry wt		< 0.08	< 0.07	< 0.06	-
Butachlor	mg/kg dry wt	()-	< 0.08	< 0.07	< 0.06	-
Captan	mg/kg dry wt	-	< 0.15	< 0.13	< 0.11	-
Carbafyran	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Carbofuran	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Chlorethalanil	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Chlorothalonil	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Chlorpyrifos	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Chlortelurer	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Chlortoluron	mg/kg dry wt	-	< 0.15	< 0.13	< 0.11	-
Cyanazine	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Cyfluthrin	mg/kg dry wt	-	< 0.09	< 0.08	< 0.07	-
Cyhalothrin	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Cypermethrin Deltamethrin (including Tralomethrin)	mg/kg dry wt mg/kg dry wt	-	< 0.18 < 0.08	< 0.16 < 0.07	< 0.13 < 0.06	-
Diazinon	mg/kg dry wt	-	< 0.04	< 0.04	< 0.03	_
Dichlofluanid	mg/kg dry wt	<u> </u>	< 0.04	< 0.07	< 0.06	
Dichloran	mg/kg dry wt	<u>-</u>	< 0.2	< 0.2	< 0.2	
Dichlorvos	mg/kg dry wt	<u>-</u>	< 0.09	< 0.09	< 0.09	<u> </u>
Difenoconazole	mg/kg dry wt	<u> </u>	< 0.10	< 0.09	< 0.09	<u>-</u>
Dimethoate	mg/kg dry wt	<u> </u>	< 0.15	< 0.13	< 0.11	<u> </u>
Difficultate	mg/kg ury Wt	-	* 0.13	٠ ٥. ای	~ U. I I	-

Sample Type: Soil						
Sa	mple Name:		HT COMPC3 0.10	HT COMPE2 0.10	HT COMPE4 0.10	HT TP 29 0.10
		08-Jun-2023	09-Jun-2023	09-Jun-2023	09-Jun-2023	08-Jun-2023
	ab Number:	3299078.51	3299078.82	3299078.103	3299078.109	3299078.133
Organonitro&phosphorus Pesticio		oil by GCMS				
Diphenylamine	mg/kg dry wt	-	< 0.15	< 0.13	< 0.11	-
Diuron	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Fenpropimorph	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Fluazifop-butyl	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Fluometuron	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Flusilazole	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Fluvalinate	mg/kg dry wt	-	< 0.05	< 0.05	< 0.05	-
Furalaxyl	mg/kg dry wt	-	< 0.04	< 0.04	< 0.03	-
Haloxyfop-methyl	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Hexaconazole	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Hexazinone	mg/kg dry wt	-	< 0.04	< 0.04	< 0.03	-
IPBC (3-lodo-2-propynyl-n- butylcarbamate)	mg/kg dry wt	-	< 0.4	< 0.4	< 0.3	~Q
Kresoxim-methyl	mg/kg dry wt	-	< 0.04	< 0.04	< 0.03	() -
Linuron	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Malathion	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Metalaxyl	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Methamidophos	mg/kg dry wt	-	< 0.4	< 0.4	< 0.3	-
Metolachlor	mg/kg dry wt	-	< 0.05	< 0.05	< 0.05	-
Metribuzin	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Molinate	mg/kg dry wt	-	< 0.15	< 0.13	< 0.11	-
Myclobutanil	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Naled	mg/kg dry wt	-	< 0.4	< 0.4	< 0.3	-
Norflurazon	mg/kg dry wt	-	< 0.15	< 0.13	< 0.11	-
Oxadiazon	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Oxyfluorfen	mg/kg dry wt	-	< 0.04	< 0.04	< 0.03	-
Paclobutrazol	mg/kg dry wt	1:7	< 0.08	< 0.07	< 0.06	-
Parathion-ethyl	mg/kg dry wt	0))	< 0.08	< 0.07	< 0.06	-
Parathion-methyl	mg/kg dry wt	10	< 0.08	< 0.07	< 0.06	-
Pendimethalin	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Permethrin	mg/kg dry wt	-	< 0.03	< 0.03	< 0.03	-
Pirimicarb	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Pirimiphos-methyl	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Prochloraz	mg/kg dry wt		< 0.4	< 0.4	< 0.3	-
Procymidone	mg/kg dry wt		< 0.08	< 0.07	< 0.06	-
Prometryn	mg/kg dry wt	-	< 0.04	< 0.04	< 0.03	-
Propachlor	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Propanil	mg/kg dry wt	-	< 0.2	< 0.2	< 0.2	-
Propazine	mg/kg dry wt	-	< 0.04	< 0.04	< 0.03	-
Propiconazole	mg/kg dry wt	-	< 0.05	< 0.05	< 0.05	-
Pyriproxyfen	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Quizalofop-ethyl	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Simazine	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Simetryn	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Sulfentrazone	mg/kg dry wt	-	< 0.4	< 0.4	< 0.3	-
TCMTB [2-(thiocyanomethylthio) benzothiazole,Busan]	mg/kg dry wt	-	< 0.15	< 0.13	< 0.11	-
Tebuconazole	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Terbacil	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Terbumeton	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Terbuthylazine	mg/kg dry wt	-	< 0.04	< 0.04	< 0.03	-
Terbuthylazine-desethyl	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Terbutryn	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Thiabendazole	mg/kg dry wt	-	< 0.4	< 0.4	< 0.3	-
Thiobencarb	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-

Sample Type: Soil						
Sa	mple Name:			HT COMPE2 0.10		HT TP 29 0.10
		08-Jun-2023	09-Jun-2023	09-Jun-2023	09-Jun-2023	08-Jun-2023
	ab Number:	3299078.51	3299078.82	3299078.103	3299078.109	3299078.133
Organonitro&phosphorus Pesticio		· · · · · · · · · · · · · · · · · · ·				
Tolylfluanid	mg/kg dry wt	-	< 0.04	< 0.04	< 0.03	-
Triazophos	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Trifluralin	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Vinclozolin	mg/kg dry wt	-	< 0.08	< 0.07	< 0.06	-
Polycyclic Aromatic Hydrocarbons		Soil*				
Total of Reported PAHs in Soil	mg/kg dry wt	-	< 0.4	-	-	-
1-Methylnaphthalene	mg/kg dry wt	-	< 0.015	-	-	-
2-Methylnaphthalene	mg/kg dry wt	-	< 0.015	-	-	-
Acenaphthylene	mg/kg dry wt	-	< 0.015	-	-	-
Acenaphthene	mg/kg dry wt	-	< 0.015	-	-	-
Anthracene	mg/kg dry wt	-	< 0.015	-	-	-
Benzo[a]anthracene	mg/kg dry wt	-	< 0.015	-	-	
Benzo[a]pyrene (BAP)	mg/kg dry wt	-	< 0.015	-	3 -	
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES*	mg/kg dry wt	-	< 0.036	-), (U	-
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	-	< 0.036	20		-
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	-	< 0.015	60	10	-
Benzo[e]pyrene	mg/kg dry wt	-	< 0.015	J - 1	-	-
Benzo[g,h,i]perylene	mg/kg dry wt	-	< 0.015	-	-	-
Benzo[k]fluoranthene	mg/kg dry wt	-	< 0.015	- 1	-	-
Chrysene	mg/kg dry wt	-	< 0.015		-	-
Dibenzo[a,h]anthracene	mg/kg dry wt	-	< 0.015	(-)	-	-
Fluoranthene	mg/kg dry wt	-	< 0.015	-	-	-
Fluorene	mg/kg dry wt	-	< 0.015	-	-	-
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	-	< 0.015	-	-	-
Naphthalene	mg/kg dry wt		< 0.08	-	-	-
Perylene	mg/kg dry wt	(/-)	< 0.015	-	-	-
Phenanthrene	mg/kg dry wt		< 0.015	-	-	-
Pyrene	mg/kg dry wt	-	< 0.015	-	-	-
Haloethers in SVOC Soil Sample		,	<u> </u>			
Bis(2-chloroethoxy) methane	mg/kg dry wt		-	-	-	< 0.5
Bis(2-chloroethyl)ether	mg/kg dry wt	-	-	-	-	< 0.5
Bis(2-chloroisopropyl)ether	mg/kg dry wt	-	-	-	-	< 0.5
4-Bromophenyl phenyl ether	mg/kg dry wt	<u> </u>	-	-	-	< 0.4
4-Chlorophenyl phenyl ether	mg/kg dry wt	-	-	-	-	< 0.5
Nitrogen containing compounds	in SVOC Soil S	amples by GC-MS				
2,4-Dinitrotoluene	mg/kg dry wt	-	-	-	-	< 1.0
2,6-Dinitrotoluene	mg/kg dry wt	-	-	-	-	< 1.0
Nitrobenzene	mg/kg dry wt	-	-	-	-	< 0.5
N-Nitrosodi-n-propylamine	mg/kg dry wt	-	-	-	-	< 0.8
N-Nitrosodiphenylamine + Diphenylamine	mg/kg dry wt	-	-	-	-	< 0.8
Organochlorine Pesticides in SVO	OC Soil Sample	s by GC-MS				
Aldrin	mg/kg dry wt	-	-	-	-	< 0.5
alpha-BHC	mg/kg dry wt	-	-	-	-	< 0.5
beta-BHC	mg/kg dry wt	-	-	-	-	< 0.5
delta-BHC	mg/kg dry wt	-	-	-	-	< 0.5
gamma-BHC (Lindane)	mg/kg dry wt	-	-	-	-	< 0.5
4,4'-DDD	mg/kg dry wt	-	-	-	-	< 0.5
4,4'-DDE	mg/kg dry wt	-	-	-	-	< 0.5
4,4'-DDT	mg/kg dry wt	-	-	-	-	< 1.0
Dieldrin	mg/kg dry wt	-	-	-	-	< 0.5
Endosulfan I	mg/kg dry wt	-	-	-	-	< 1.0
Endosulfan II	mg/kg dry wt	-	-	-	-	< 2

	Sample Name:	BWL TP 06 0.50	HT COMPC3 0.10		HT COMPE4 0.10	HT TP 29 0.10
		08-Jun-2023	09-Jun-2023	09-Jun-2023	09-Jun-2023	08-Jun-2023
	Lab Number:	3299078.51	3299078.82	3299078.103	3299078.109	3299078.133
Organochlorine Pesticides in	SVOC Soil Sample	s by GC-MS				
Endosulfan sulphate	mg/kg dry wt	-	-	-	-	< 1.0
Endrin	mg/kg dry wt	-	-	-	-	< 0.8
Endrin ketone	mg/kg dry wt	-	-	-	-	< 1.0
Heptachlor	mg/kg dry wt	-	-	-	-	< 0.5
Heptachlor epoxide	mg/kg dry wt	-	-	-	-	< 0.5
Hexachlorobenzene	mg/kg dry wt	-	-	-	-	< 0.5
Polycyclic Aromatic Hydroca	rbons in SVOC Soil	Samples by GC-MS	 S*			
Acenaphthene	mg/kg dry wt		_	_	_	< 0.5
Acenaphthylene	mg/kg dry wt	_	_	_	_	< 0.5
Anthracene	mg/kg dry wt	_	_	_	_	< 0.5
Benzo[a]anthracene	mg/kg dry wt	_	_	_	_	4 < 0.5
Benzo[a]pyrene (BAP)	mg/kg dry wt	_	_	_	A -	< 0.5
Benzo[b]fluoranthene + Benz			_	_	-	< 0.5
luoranthene	ojj nig/kg dry wt	-	-			0.5
Benzo[g,h,i]perylene	mg/kg dry wt	-	-	-	2 - 0	< 0.5
Benzo[k]fluoranthene	mg/kg dry wt	-	-	-	\(< 0.5
&2-Chloronaphthalene	mg/kg dry wt	-	-			< 0.5
Chrysene	mg/kg dry wt	-	-		. 0.0	< 0.5
Dibenzo[a,h]anthracene	mg/kg dry wt	-	-	60.	10	< 0.5
	mg/kg dry wt	-	-	-	-	0.6
Fluorene	mg/kg dry wt	_	- 0	- \	_	< 0.5
ndeno(1,2,3-c,d)pyrene	mg/kg dry wt	_	10	N	_	0.5
?-Methylnaphthalene	mg/kg dry wt	_			_	< 0.5
laphthalene	mg/kg dry wt	_	70		_	< 0.5
Phenanthrene	mg/kg dry wt	_			_	< 0.5
Pyrene	mg/kg dry wt	-	-		_	< 0.5
Benzo[a]pyrene Potency		-	· -	-	-	< 1.3
enzolajpyrene Potency Equivalency Factor (PEF) NE	mg/kg dry wt ES*			-	-	< 1.5
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	10	XIO.	-	-	< 1.3
Phenols in SVOC Soil Samp	les by GC-MS		y			
I-Chloro-3-methylphenol	mg/kg dry wt	-	. .	-	-	< 5
2-Chlorophenol	mg/kg dry wt		-	-	-	< 1.0
2,4-Dichlorophenol	mg/kg dry wt	-	-	_	-	< 1.0
2,4-Dimethylphenol	mg/kg dry wt		-	-	-	< 3
3 & 4-Methylphenol (m-+p-			-	-	_	< 3
cresol)	gg ay ita					· ·
2-Methylphenol (o-cresol)	mg/kg dry wt	-	-	-	-	< 1.0
2-Nitrophenol	mg/kg dry wt	-	-	-	-	< 5
Pentachlorophenol (PCP)	mg/kg dry wt	-	-	-	-	< 30
Phenol	mg/kg dry wt	_	-	-	-	< 1.0
2,4,5-Trichlorophenol	mg/kg dry wt	_	-	-	-	< 1.0
2,4,6-Trichlorophenol	mg/kg dry wt	_	_	-	-	< 1.0
Plasticisers in SVOC Soil Sa		<u> </u>	1	1		
Bis(2-ethylhexyl)phthalate	mg/kg dry wt	_	_	_	_	< 5
	- ,	-	-			< 1.0
Butylbenzylphthalate	mg/kg dry wt	-	-	-	-	
0i(2-ethylhexyl)adipate	mg/kg dry wt	-	-	-	-	< 1.0
Diethylphthalate	mg/kg dry wt	-	-	-	-	< 1.0
Dimethylphthalate	mg/kg dry wt	-	-	-	-	< 1.0
	mg/kg dry wt	-	-	-	-	< 1.0
		-	-	-	-	< 1.0
Di-n-octylphthalate	mg/kg dry wt					
Di-n-octylphthalate		mples by GC-MS				
Di-n-octylphthalate Other Halogenated compoun		mples by GC-MS	-	-	-	< 0.8
Di-n-octylphthalate Other Halogenated compoun ,2-Dichlorobenzene	nds in SVOC Soil Sa	mples by GC-MS	-	-	-	< 0.8 < 0.8
Di-n-butylphthalate Di-n-octylphthalate Other Halogenated compoun 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	nds in SVOC Soil Sa mg/kg dry wt	-			- - -	

Sample Type: Soil						
	Sample Name:	BWL TP 06 0.50 08-Jun-2023	HT COMPC3 0.10 09-Jun-2023	HT COMPE2 0.10 09-Jun-2023	HT COMPE4 0.10 09-Jun-2023	HT TP 29 0.10 08-Jun-2023
	Lab Number:	3299078.51	3299078.82	3299078.103	3299078.109	3299078.133
Other Halogenated compound			020007 0.02	020007 0.100	0200070.100	0200010.100
Hexachloroethane	mg/kg dry wt	-	_	_	_	< 0.8
1,2,4-Trichlorobenzene	mg/kg dry wt	_	_	_	_	< 0.5
Other compounds in SVOC S		-MS				
Benzyl alcohol	mg/kg dry wt	-	_	_	_	< 10
Carbazole	mg/kg dry wt		_	_	_	< 0.5
Dibenzofuran	mg/kg dry wt		_	_	_	< 0.5
Isophorone	mg/kg dry wt	<u>-</u>	-	-	-	< 0.5
<u>'</u>		HT TP 29 0.50	HT TP 30 0.10	HT TP 30 0.50	HT TP 31 0.10	HT TP 31 0.50
	Sample Name:	08-Jun-2023	08-Jun-2023	08-Jun-2023	08-Jun-2023	08-Jun-2023
	Lab Number:	3299078.134	3299078.136	3299078.137	3299078.139	3299078.140
Individual Tests						
Dry Matter	g/100g as rcvd	75	76	70	8 6	74
Total Recoverable Beryllium	mg/kg dry wt	0.4	2.2	0.7	0.8	1.3
8 Heavy metals plus Boron			,			
Total Recoverable Arsenic	mg/kg dry wt	3	18	4	7	5
Total Recoverable Boron	mg/kg dry wt	< 20	79	< 20	25	< 20
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	0.39	< 0.10	0.19	0.22
Total Recoverable Chromium	mg/kg dry wt	9	9	9	11	8
Total Recoverable Copper	mg/kg dry wt	8	39	13	26	26
Total Recoverable Lead	mg/kg dry wt	19.8	145	21	83	38
Total Recoverable Mercury	mg/kg dry wt	< 0.10	0.12	< 0.10	< 0.10	< 0.10
Total Recoverable Nickel	mg/kg dry wt	4	16	4	11	6
Total Recoverable Zinc	mg/kg dry wt	33	121	38)	123	88
Haloethers in SVOC Soil Sar	mples by GC-MS		7			
Bis(2-chloroethoxy) methane	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Bis(2-chloroethyl)ether	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Bis(2-chloroisopropyl)ether	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4-Bromophenyl phenyl ether	mg/kg dry wt	< 0.4	< 0.4	< 0.5	< 0.4	< 0.4
4-Chlorophenyl phenyl ether	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Nitrogen containing compoun	nds in SVOC Soil Sa	amples by GC-MS	X	1	1	
2,4-Dinitrotoluene	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,6-Dinitrotoluene	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Nitrobenzene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-Nitrosodi-n-propylamine	mg/kg dry wt	< 0.8	< 0.8	< 0.9	< 0.7	< 0.8
N-Nitrosodiphenylamine + Diphenylamine	mg/kg dry wt	< 0.8	< 0.8	< 0.9	< 0.7	< 0.8
Organochlorine Pesticides in	SVOC Soil Samples	s by GC-MS	1	1		
Aldrin	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
alpha-BHC	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
beta-BHC	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
delta-BHC	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
gamma-BHC (Lindane)	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4,4'-DDD	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4,4'-DDE	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4,4'-DDT	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dieldrin	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Endosulfan I	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Endosulfan II	mg/kg dry wt	< 2	< 2	< 2	< 2	< 2
Endosulfan sulphate	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Endrin	mg/kg dry wt	< 0.8	< 0.8	< 0.9	< 0.7	< 0.8
Endrin ketone	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Heptachlor	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Heptachlor epoxide	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Hexachlorobenzene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

Sample Type: Soil						
Sa	mple Name:	HT TP 29 0.50	HT TP 30 0.10	HT TP 30 0.50	HT TP 31 0.10	HT TP 31 0.50
		08-Jun-2023	08-Jun-2023	08-Jun-2023	08-Jun-2023	08-Jun-2023
	ab Number:	3299078.134	3299078.136	3299078.137	3299078.139	3299078.140
Polycyclic Aromatic Hydrocarbon						.0.5
Acenaphthene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo[a]anthracene	mg/kg dry wt	< 0.5	1.0	< 0.5	< 0.5	< 0.5
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.5	1.1	< 0.5	< 0.5	< 0.5
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	< 0.5	1.3	< 0.5	< 0.5	< 0.5
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.5	1.0	< 0.5	< 0.5	< 0.5
Benzo[k]fluoranthene	mg/kg dry wt	< 0.5	0.6	< 0.5	< 0.5	< 0.5
1&2-Chloronaphthalene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	mg/kg dry wt	< 0.5	1.2	< 0.5	< 0.5	< 0.5
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.5	0.6	< 0.5	< 0.5	< 0.5
Fluoranthene	mg/kg dry wt	< 0.5	2.6	< 0.5	< 0.5	< 0.5
Fluorene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.5	1.2	< 0.5	< 0.5	< 0.5
2-Methylnaphthalene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	mg/kg dry wt	< 0.5	1.1	< 0.5	< 0.5	< 0.5
Pyrene	mg/kg dry wt	< 0.5	2.3	< 0.5	< 0.5	< 0.5
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES*	mg/kg dry wt	< 1.3	2.1	< 1.3	< 1.3	< 1.3
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	< 1.3	2.1	< 1.3	< 1.3	< 1.3
Phenols in SVOC Soil Samples b	by GC-MS		~ (7)	101		
4-Chloro-3-methylphenol	mg/kg dry wt	< 5	< 5	< 5	< 5	< 5
2-Chlorophenol	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,4-Dichlorophenol	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,4-Dimethylphenol	mg/kg dry wt	<3	< 3	< 3	< 3	< 3
3 & 4-Methylphenol (m- + p- cresol)	mg/kg dry wt	3	< 3	< 3	< 3	< 3
2-Methylphenol (o-cresol)	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Nitrophenol	mg/kg dry wt	< 5	< 5	< 5	< 5	< 5
Pentachlorophenol (PCP)	mg/kg dry wt	< 30	< 30	< 30	< 30	< 30
Phenol	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,4,5-Trichlorophenol	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,4,6-Trichlorophenol	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Plasticisers in SVOC Soil Sample			1	I		I
Bis(2-ethylhexyl)phthalate	mg/kg dry wt	< 5	< 5	< 5	< 5	< 5
Butylbenzylphthalate	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Di(2-ethylhexyl)adipate	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Diethylphthalate	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dimethylphthalate	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Di-n-butylphthalate	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Di-n-octylphthalate	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Other Halogenated compounds in				-		-
1,2-Dichlorobenzene	mg/kg dry wt	< 0.8	< 0.8	< 0.9	< 0.7	< 0.8
1,3-Dichlorobenzene	mg/kg dry wt	< 0.8	< 0.8	< 0.9	< 0.7	< 0.8
1,4-Dichlorobenzene	mg/kg dry wt	< 0.8	< 0.8	< 0.9	< 0.7	< 0.8
Hexachlorobutadiene	mg/kg dry wt	< 0.8	< 0.8	< 0.9	< 0.7	< 0.8
Hexachloroethane	mg/kg dry wt	< 0.8	< 0.8	< 0.9	< 0.7	< 0.8
1,2,4-Trichlorobenzene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.7	< 0.5
Other compounds in SVOC Soil			- 0.0	- 0.0	- 0.0	\ \ 0.0
•			- 10	- 10	- 10	- 10
Benzyl alcohol	mg/kg dry wt	< 10	< 10	< 10	< 10	< 10
Carbazole	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Dibenzofuran	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Isophorone	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

Sample Type: Soil						
5	Sample Name:	DUP A1	DUP B1	WWTP TP01	WWTP TP01	WWTP TP02
		08-Jun-2023	08-Jun-2023			0.10 13-Jun-2023
	Lab Number:	3299078.142	3299078.143	3299078.165	3299078.166	3299078.168
Individual Tests	// 00				0.7	7-
Dry Matter	g/100g as rcvd	-	-	71	67	75
Total Recoverable Beryllium	mg/kg dry wt	0.5	1.0	0.9	1.3	0.8
8 Heavy metals plus Boron						Í
Total Recoverable Arsenic	mg/kg dry wt	4	5	3	< 2	3
Total Recoverable Boron	mg/kg dry wt	< 20	< 20	< 20	< 20	< 20
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	0.31	0.12	< 0.10	0.13
Total Recoverable Chromium	mg/kg dry wt	9	9	7	5	8
Total Recoverable Copper	mg/kg dry wt	13	28	14	14	15
Total Recoverable Lead	mg/kg dry wt	20	111	17.5	16.2	19.8
Total Recoverable Mercury	mg/kg dry wt	< 0.10	0.17	< 0.10	< 0.10	0.11
Total Recoverable Nickel	mg/kg dry wt	4	6	4	4	5
Total Recoverable Zinc	mg/kg dry wt	32	102	59	38	57
Haloethers in SVOC Soil Samp	,		1		N	
Bis(2-chloroethoxy) methane	mg/kg dry wt	-	-	< 0.5	≤ 0.5	< 0.5
Bis(2-chloroethyl)ether	mg/kg dry wt	-	-	< 0.5	< 0.5	< 0.5
Bis(2-chloroisopropyl)ether	mg/kg dry wt	-	-	< 0.5	< 0.5	< 0.5
4-Bromophenyl phenyl ether	mg/kg dry wt	-	-	< 0.5	< 0.5	< 0.4
4-Chlorophenyl phenyl ether	mg/kg dry wt	-	-	< 0.5	< 0.5	< 0.5
Nitrogen containing compound		amples by GC-MS		X		
2,4-Dinitrotoluene	mg/kg dry wt	-	- 0'	< 1.0	< 1.0	< 1.0
2,6-Dinitrotoluene	mg/kg dry wt	-	1-0	< 1.0	< 1.0	< 1.0
Nitrobenzene	mg/kg dry wt	-	0:	< 0.5	< 0.5	< 0.5
N-Nitrosodi-n-propylamine	mg/kg dry wt	-		< 0.9	< 0.9	< 0.8
N-Nitrosodiphenylamine + Diphenylamine	mg/kg dry wt	-	. 4	< 0.9	< 0.9	< 0.8
Organochlorine Pesticides in S	SVOC Soil Samples	by GC-MS	·			
Aldrin	mg/kg dry wt	- 14	-1	< 0.5	< 0.5	< 0.5
alpha-BHC	mg/kg dry wt		• (-) [*]	< 0.5	< 0.5	< 0.5
beta-BHC	mg/kg dry wt		XI	< 0.5	< 0.5	< 0.5
delta-BHC	mg/kg dry wt	-	X -	< 0.5	< 0.5	< 0.5
gamma-BHC (Lindane)	mg/kg dry wt	-	<u> </u>	< 0.5	< 0.5	< 0.5
4,4'-DDD	mg/kg dry wt		-	< 0.5	< 0.5	< 0.5
4,4'-DDE	mg/kg dry wt	-	-	< 0.5	< 0.5	< 0.5
4,4'-DDT	mg/kg dry wt	0,	-	< 1.0	< 1.0	< 1.0
Dieldrin	mg/kg dry wt	(U -	-	< 0.5	< 0.5	< 0.5
Endosulfan I	mg/kg dry wt	-	-	< 1.7	< 1.0	< 1.6
Endosulfan II	mg/kg dry wt	· -	-	< 2	< 2	< 2
Endosulfan sulphate	mg/kg dry wt	-	-	< 1.0	< 1.0	< 1.0
Endrin	mg/kg dry wt	-	-	< 0.9	< 0.9	< 0.8
Endrin ketone	mg/kg dry wt	-	-	< 1.0	< 1.0	< 1.0
Heptachlor	mg/kg dry wt	-	-	< 0.5	< 0.5	< 0.5
Heptachlor epoxide	mg/kg dry wt	-	-	< 0.5	< 0.5	< 0.5
Hexachlorobenzene	mg/kg dry wt	-	-	< 0.5	< 0.5	< 0.5
Polycyclic Aromatic Hydrocarbo		samples by GC-MS				
Acenaphthene	mg/kg dry wt	-	-	< 0.5	< 0.5	< 0.5
Acenaphthylene	mg/kg dry wt	-	-	< 0.5	< 0.5	< 0.5
Anthracene	mg/kg dry wt	-	-	< 0.5	< 0.5	< 0.5
Benzo[a]anthracene	mg/kg dry wt	-	-	< 0.5	< 0.5	< 0.5
1 D [-] (D A D)	mg/kg dry wt	-	-	< 0.5	< 0.5	< 0.5
Benzo[a]pyrene (BAP)			_ _	< 0.5	< 0.5	< 0.5
Benzo[a]pyrene (BAP) Benzo[b]fluoranthene + Benzo[jfluoranthene	j] mg/kg dry wt	-				
Benzo[b]fluoranthene + Benzo[jj mg/kg dry wt mg/kg dry wt	-	-	< 0.5	< 0.5	< 0.5
Benzo[b]fluoranthene + Benzo[jfluoranthene			-	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5
Benzo[b]fluoranthene + Benzo[fluoranthene Benzo[g,h,i]perylene	mg/kg dry wt	-	- - -			

Sample Type: Soil						
	Sample Name:	DUP A1	DUP B1	WWTP TP01	WWTP TP01	WWTP TP02
	l ob Nemeler	08-Jun-2023	08-Jun-2023		0.50 13-Jun-2023	
Deliverialia Avenantia I Ividua anda	Lab Number:	3299078.142	3299078.143	3299078.165	3299078.166	3299078.168
Polycyclic Aromatic Hydrocarb		oampies by GC-MS	•	-0.5	-05	-05
Dibenzo[a,h]anthracene	mg/kg dry wt	-	-	< 0.5	< 0.5	< 0.5
Fluoranthene	mg/kg dry wt	-	-	< 0.5	< 0.5	< 0.5
Fluorene	mg/kg dry wt	-	-	< 0.5	< 0.5	< 0.5
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	-	-	< 0.5	< 0.5	< 0.5
2-Methylnaphthalene	mg/kg dry wt	-	-	< 0.5	< 0.5	< 0.5
Naphthalene	mg/kg dry wt	-	-	< 0.5	< 0.5	< 0.5
Phenanthrene	mg/kg dry wt	-	-	< 0.5	< 0.5	< 0.5
Pyrene Peter vi	mg/kg dry wt	-	-	< 0.5	< 0.5	< 0.5
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES		-	-	< 1.3	< 1.3	< 1.3
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	-	-	< 1.3	< 1.3	< 1.3
Phenols in SVOC Soil Sample	s by GC-MS					
4-Chloro-3-methylphenol	mg/kg dry wt	-	-	< 5	< 5	< 5
2-Chlorophenol	mg/kg dry wt	-	-	< 1.0	<1.0	< 1.0
2,4-Dichlorophenol	mg/kg dry wt	-	-	< 1.0	< 1.0	< 1.0
2,4-Dimethylphenol	mg/kg dry wt	-	-	< 3	<3	< 3
3 & 4-Methylphenol (m- + p-cresol)	mg/kg dry wt	-	-	< 3	3	< 3
2-Methylphenol (o-cresol)	mg/kg dry wt	-	-	< 1.0	< 1.0	< 1.0
2-Nitrophenol	mg/kg dry wt	-	7	< 5	< 5	< 5
Pentachlorophenol (PCP)	mg/kg dry wt	-	· 01	< 30	< 30	< 30
Phenol	mg/kg dry wt	-	0.1	< 1.0	< 1.0	< 1.0
2,4,5-Trichlorophenol	mg/kg dry wt	-		< 1.0	< 1.0	< 1.0
2,4,6-Trichlorophenol	mg/kg dry wt	-		< 1.0	< 1.0	< 1.0
Plasticisers in SVOC Soil Sam	ples by GC-MS	<u> </u>				
Bis(2-ethylhexyl)phthalate	mg/kg dry wt	4-4		< 5	< 5	< 5
Butylbenzylphthalate	mg/kg dry wt	17		< 1.0	< 1.0	< 1.0
Di(2-ethylhexyl)adipate	mg/kg dry wt	. (-1	(-)	< 1.0	< 1.0	< 1.0
Diethylphthalate	mg/kg dry wt		X 1 -	< 1.0	< 1.0	< 1.0
Dimethylphthalate	mg/kg dry wt	7 -	X	< 1.0	< 1.0	< 1.0
Di-n-butylphthalate	mg/kg dry wt	7 - 1	O -	< 1.0	< 1.0	< 1.0
Di-n-octylphthalate	mg/kg dry wt		-	< 1.0	< 1.0	< 1.0
Other Halogenated compounds	s in SVOC Soil Sai	mples by GC-MS				
1,2-Dichlorobenzene	mg/kg dry wt	-	-	< 0.9	< 0.9	< 0.8
1,3-Dichlorobenzene	mg/kg dry wt	<u> </u>	-	< 0.9	< 0.9	< 0.8
1,4-Dichlorobenzene	mg/kg dry wt	-	-	< 0.9	< 0.9	< 0.8
Hexachlorobutadiene	mg/kg dry wt	-	-	< 0.9	< 0.9	< 0.8
Hexachloroethane	mg/kg dry wt	-	-	< 0.9	< 0.9	< 0.8
1,2,4-Trichlorobenzene	mg/kg dry wt	-	-	< 0.5	< 0.5	< 0.5
Other compounds in SVOC Sc	oil Samples by GC-	MS				
Benzyl alcohol	mg/kg dry wt	-	-	< 10	< 10	< 10
Carbazole	mg/kg dry wt	-	-	< 0.5	< 0.5	< 0.5
Dibenzofuran	mg/kg dry wt	-	-	< 0.5	< 0.5	< 0.5
Isophorone	mg/kg dry wt	-	-	< 0.5	< 0.5	< 0.5
BTEX in VOC Soils by Headsp	pace GC-MS					
Benzene	mg/kg dry wt	-	-	< 0.3	-	< 0.3
Ethylbenzene	mg/kg dry wt	-	-	< 0.3	-	< 0.3
Toluene	mg/kg dry wt	-	-	< 0.3	-	< 0.3
m&p-Xylene	mg/kg dry wt	-	-	< 0.5	-	< 0.5
o-Xylene	mg/kg dry wt	-	-	< 0.3	-	< 0.3
Halogenated Aliphatics in VOC	Soils by Headspa	ce GC-MS				
Bromomethane (Methyl Bromid	le) mg/kg dry wt	-	-	< 0.3	-	< 0.3
Carbon tetrachloride	mg/kg dry wt	-	-	< 0.3	-	< 0.3
Chloroethane	mg/kg dry wt	-	-	< 0.3	-	< 0.3
1						

Sample Type: Soil						
	Sample Name:	DUP A1 08-Jun-2023	DUP B1 08-Jun-2023	WWTP TP01 0.10 13-Jun-2023	WWTP TP01 0.50 13-Jun-2023	WWTP TP02 0.10 13-Jun-2023
	Lab Number:	3299078.142	3299078.143	3299078.165	3299078.166	3299078.168
Halogenated Aliphatics in VO	C Soils by Headspa	ce GC-MS				
Chloromethane	mg/kg dry wt	-	-	< 0.3	-	< 0.3
1,2-Dibromo-3-chloropropane	mg/kg dry wt	-	-	< 0.5	-	< 0.5
1,2-Dibromoethane (ethylene dibromide, EDB)	mg/kg dry wt	-	-	< 0.3	-	< 0.3
Dibromomethane	mg/kg dry wt	-	-	< 0.3	-	< 0.3
1,3-Dichloropropane	mg/kg dry wt	-	-	< 0.3	-	< 0.3
Dichlorodifluoromethane	mg/kg dry wt	-	-	< 0.5	-	< 0.5
1,1-Dichloroethane	mg/kg dry wt	-	-	< 0.3	-	< 0.3
1,2-Dichloroethane	mg/kg dry wt	-	-	< 0.3	-	< 0.3
1,1-Dichloroethene	mg/kg dry wt	-	-	< 0.3	-	< 0.3
cis-1,2-Dichloroethene	mg/kg dry wt	-	_	< 0.3	-	< 0.3
trans-1,2-Dichloroethene	mg/kg dry wt	-	_	< 0.3	-	< 0.3
Dichloromethane (methylene chloride)	mg/kg dry wt	-	-	< 5	1-	< 5
1,2-Dichloropropane	mg/kg dry wt	-	_	< 0.3)-	< 0.3
1,1-Dichloropropene	mg/kg dry wt	-	-	< 0.3	- 7	< 0.3
cis-1,3-Dichloropropene	mg/kg dry wt	_	_	< 0.3		< 0.3
trans-1,3-Dichloropropene	mg/kg dry wt		_	< 0.3		< 0.3
Hexachlorobutadiene	mg/kg dry wt		_	< 0.3	101	< 0.3
1,1,1,2-Tetrachloroethane	mg/kg dry wt			< 0.3		< 0.3
1,1,2,2-Tetrachloroethane	mg/kg dry wt		_	< 0.3		< 0.3
Tetrachloroethene	mg/kg dry wt		101	< 0.3	_	< 0.3
(tetrachloroethylene)	riig/kg dry wt	-		10.3	-	< 0.5
1,1,1-Trichloroethane	mg/kg dry wt	-	- 01	< 0.3	-	< 0.3
1,1,2-Trichloroethane	mg/kg dry wt	-		< 0.3	-	< 0.3
Trichloroethene (trichloroethylene)	mg/kg dry wt	-	-	< 0.3	-	< 0.3
Trichlorofluoromethane	mg/kg dry wt	1-51		< 0.3	-	< 0.3
1,2,3-Trichloropropane	mg/kg dry wt		-	< 0.5	-	< 0.5
1,1,2-Trichlorotrifluoroethane (Freon 113)	mg/kg dry wt	10	XIO	< 0.3	-	< 0.3
Vinyl chloride	mg/kg dry wt	-	-	< 0.3	-	< 0.3
Haloaromatics in VOC Soils b	y Headspace GC-M	ns .	U			
Bromobenzene	mg/kg dry wt	-4	_	< 0.3	-	< 0.3
1,3-Dichlorobenzene	mg/kg dry wt		_	< 0.3	-	< 0.3
4-Chlorotoluene	mg/kg dry wt	-	_	< 0.3	-	< 0.3
Chlorobenzene (monochlorobenzene)	mg/kg dry wt	() -	-	< 0.3	-	< 0.3
1,2-Dichlorobenzene	mg/kg dry wt	-	-	< 0.3	-	< 0.3
1,4-Dichlorobenzene	mg/kg dry wt	-	_	< 0.3	-	< 0.3
2-Chlorotoluene	mg/kg dry wt	-	_	< 0.3	_	< 0.3
1,2,3-Trichlorobenzene	mg/kg dry wt		_	< 0.3	<u> </u>	< 0.3
1,2,4-Trichlorobenzene	mg/kg dry wt	<u> </u>	_	< 0.3	-	< 0.3
1,3,5-Trichlorobenzene	mg/kg dry wt	<u> </u>	<u>-</u>	< 0.3	-	< 0.3
Monoaromatic Hydrocarbons	, , ,			10.0	-	1 0.0
n-Butylbenzene	mg/kg dry wt	-	-	< 0.3	-	< 0.3
tert-Butylbenzene	mg/kg dry wt	-	-	< 0.3	-	< 0.3
Isopropylbenzene (Cumene)	mg/kg dry wt	-	-	< 0.3	-	< 0.3
4-Isopropyltoluene (p-Cymene	e) mg/kg dry wt	-	-	< 0.3	-	< 0.3
n-Propylbenzene	mg/kg dry wt	-	-	< 0.3	-	< 0.3
sec-Butylbenzene	mg/kg dry wt	-	-	< 0.3	-	< 0.3
Styrene	mg/kg dry wt	-	-	< 0.3	-	< 0.3
1,2,4-Trimethylbenzene	mg/kg dry wt	-	-	< 0.3	-	< 0.3
1,3,5-Trimethylbenzene	mg/kg dry wt	-	-	< 0.3	-	< 0.3
	- 1					

S	Sample Name:	DUP A1 08-Jun-2023	DUP B1 08-Jun-2023	WWTP TP01 0 10 13-Jun-2023	WWTP TP01 0.50 13-Jun-2023	WWTP TP02 0 10 13-Jun-2023
	Lab Number:	3299078.142	3299078.143	3299078.165	3299078.166	3299078.168
Ketones in VOC Soils by Head						
2-Butanone (MEK)	mg/kg dry wt	-	-	< 50	-	< 50
4-Methylpentan-2-one (MIBK)	mg/kg dry wt	_	_	< 10	_	< 9
Acetone	mg/kg dry wt	_	_	< 50	-	< 50
Methyl tert-butylether (MTBE)	mg/kg dry wt	_	-	< 0.3	_	< 0.3
Trihalomethanes in VOC Soils		L C-MS				
Bromodichloromethane	mg/kg dry wt	-	_	< 0.3	_	< 0.3
Bromoform (tribromomethane)	mg/kg dry wt	_	_	< 0.5	_	< 0.5
Chloroform (Trichloromethane)	mg/kg dry wt	_	_	< 0.3	_	< 0.3
Dibromochloromethane	mg/kg dry wt	_	_	< 0.3	_	< 0.3
Other VOC in Soils by Headspa		_	_	10.0	_	10.0
Carbon disulphide			_	< 0.3	_	≪ 0.3
•	mg/kg dry wt	-	-	< 0.3	-	
Naphthalene	mg/kg dry wt	-	-	< 0.3	-	< 0.3
S	Sample Name:	WWTP TP02 0.50 13-Jun-2023	WWTP TP03 0.10 13-Jun-2023	WWTP TP03 0.50 13-Jun-2023	WWTP TP04 0.10 13-Jun-2023	WWTP TP04 0.50 13-Jun-2023
	Lab Number:	3299078.169	3299078.171	3299078.172	3299078.174	3299078.175
Individual Tests		•				
Dry Matter	g/100g as rcvd	64	66	73	87	86
Total Recoverable Beryllium	mg/kg dry wt	1.5	0.9	1.0	0.4	0.4
8 Heavy metals plus Boron				9		
Total Recoverable Arsenic	mg/kg dry wt	< 2	5	2	7	6
Total Recoverable Boron	mg/kg dry wt	< 20	< 20	< 20	< 20	< 20
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	0.22	< 0.10	0.10	0.13
Total Recoverable Chromium	mg/kg dry wt	5	8	7	11	11
Total Recoverable Copper	mg/kg dry wt	14	26	14	14	14
Total Recoverable Lead	mg/kg dry wt	15.1	114	17.6	15.6	15.4
Total Recoverable Mercury	mg/kg dry wt	< 0.10	0.10	< 0.10	< 0.10	< 0.10
Total Recoverable Nickel	mg/kg dry wt	4	5	4	9	8
Total Recoverable Zinc	mg/kg dry wt	44	103	39	78	81
Haloethers in SVOC Soil Samp		10	X			<u> </u>
Bis(2-chloroethoxy) methane	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Bis(2-chloroethyl)ether	mg/kg dry wt		< 0.5	< 0.5	< 0.5	< 0.5
		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Bis(2-chloroisopropyl)ether 4-Bromophenyl phenyl ether	mg/kg dry wt mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.4	< 0.4
4-Chlorophenyl phenyl ether	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.4	< 0.5
			< 0.5	< 0.5	< 0.5	< 0.5
Nitrogen containing compounds						
2,4-Dinitrotoluene	mg/kg dry wt		< 1.0	< 1.0	< 1.0	< 1.0
2,6-Dinitrotoluene	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Nitrobenzene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-Nitrosodi-n-propylamine	mg/kg dry wt	< 1.0	< 0.9	< 0.9	< 0.7	< 0.7
N-Nitrosodiphenylamine + Diphenylamine	mg/kg dry wt	< 1.0	< 0.9	< 0.9	< 0.7	< 0.7
Organochlorine Pesticides in S	VOC Soil Sample	s by GC-MS				
Aldrin	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
alpha-BHC	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
beta-BHC	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
delta-BHC	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
gamma-BHC (Lindane)	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4,4'-DDD	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4,4'-DDE	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4,4'-DDT	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dieldrin	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Endosulfan I	mg/kg dry wt	< 1.9	< 1.8	< 1.0	< 1.4	< 1.4
Endosulfan II	mg/kg dry wt	< 2	< 2	< 2	< 2	< 2
Endosulfan sulphate	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Sample Type: Soil

0-	la Massas	WWTP TP02	WWTP TP03	WWTP TP03	WWTP TP04	WWTP TP04
Sa	mple Name:				0.10 13-Jun-2023	
	.ab Number:	3299078.169	3299078.171	3299078.172	3299078.174	3299078.175
Organochlorine Pesticides in SV0			020007 0.17 1	0200070.172	0200070.174	0200070.170
Endrin	mg/kg dry wt	< 1.0	< 0.9	< 0.9	< 0.7	< 0.7
Endrin ketone	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Heptachlor	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
•	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Heptachlor epoxide	0 0 ,					
Hexachlorobenzene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Polycyclic Aromatic Hydrocarbon						
Acenaphthene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo[a]anthracene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo[k]fluoranthene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1&2-Chloronaphthalene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-Methylnaphthalene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES*	mg/kg dry wt	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	< 1.3	<1.3	< 1.3	< 1.3	< 1.3
Phenols in SVOC Soil Samples b	by GC-MS	10	X		1	
4-Chloro-3-methylphenol	mg/kg dry wt	< 5	< 5	< 5	< 5	< 5
2-Chlorophenol	mg/kg dry wt		< 1.0	< 1.0	< 1.0	< 1.0
2,4-Dichlorophenol	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,4-Dimethylphenol	mg/kg dry wt	< 3	< 3	< 3	< 3	< 3
3 & 4-Methylphenol (m- + p-cresol)	mg/kg dry wt	< 3	< 3	< 3	< 3	< 3
2-Methylphenol (o-cresol)	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Nitrophenol	mg/kg dry wt	< 5	< 5	< 5	< 5	< 5
Pentachlorophenol (PCP)	mg/kg dry wt	< 30	< 30	< 30	< 30	< 30
Phenol	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,4,5-Trichlorophenol	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,4,6-Trichlorophenol	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Plasticisers in SVOC Soil Sample						
Bis(2-ethylhexyl)phthalate	mg/kg dry wt	< 5	< 5	< 5	< 5	< 5
Butylbenzylphthalate	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
• • • • • • • • • • • • • • • • • • • •	0 0 ,	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Di(2-ethylhexyl)adipate	mg/kg dry wt		< 1.0	< 1.0		
Diethylphthalate Dimothylphthalate	mg/kg dry wt	< 1.0		< 1.0 < 1.0	< 1.0	< 1.0
Dimethylphthalate	mg/kg dry wt	< 1.0	< 1.0		< 1.0	< 1.0
Di-n-butylphthalate	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Di-n-octylphthalate	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Other Halogenated compounds in						
1,2-Dichlorobenzene	mg/kg dry wt	< 1.0	< 0.9	< 0.9	< 0.7	< 0.7
1,3-Dichlorobenzene	mg/kg dry wt	< 1.0	< 0.9	< 0.9	< 0.7	< 0.7
1,4-Dichlorobenzene	mg/kg dry wt	< 1.0	< 0.9	< 0.9	< 0.7	< 0.7
Hexachlorobutadiene	mg/kg dry wt	< 1.0	< 0.9	< 0.9	< 0.7	< 0.7
Hexachloroethane	mg/kg dry wt	< 1.0	< 0.9	< 0.9	< 0.7	< 0.7

Sample Type: Soil						
Sa	mple Name:	WWTP TP02	WWTP TP03	WWTP TP03	WWTP TP04	WWTP TP04
	ab Number:	0.50 13-Jun-2023 3299078.169	0.10 13-Jun-2023 3299078.171	0.50 13-Jun-2023 3299078.172	0.10 13-Jun-2023 3299078.174	0.50 13-Jun-2023 3299078.175
Other Halogenated compounds in			3299076.171	3299076.172	3299076.174	3299076.173
1,2,4-Trichlorobenzene	mg/kg dry wt		< 0.5	< 0.5	< 0.5	< 0.5
Other compounds in SVOC Soil			10.0	10.0	10.0	10.0
Benzyl alcohol	mg/kg dry wt	< 10	< 10	< 10	< 10	< 10
Carbazole	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Dibenzofuran	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Isophorone	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
BTEX in VOC Soils by Headspace		10.0	10.0	10.0	10.0	1 0.0
Benzene		_	< 0.3		< 0.16	_
Ethylbenzene	mg/kg dry wt	-	< 0.3	-	< 0.16	-
Toluene	mg/kg dry wt	<u>-</u>	< 0.3	_	< 0.3	<u>-</u>
m&p-Xylene	mg/kg dry wt	_	< 0.6	_	< 0.4	-
o-Xylene	mg/kg dry wt	_	< 0.3	_	♦ < 0.3	
Halogenated Aliphatics in VOC S			10.0	_	10.5	-
Bromomethane (Methyl Bromide)		-	< 0.3		< 0.3	-
Carbon tetrachloride	mg/kg dry wt	-	< 0.3	-	< 0.3	-
Chloroethane	mg/kg dry wt	-	< 0.3		< 0.3	<u>-</u>
Chloromethane	mg/kg dry wt	-	< 0.3		< 0.3	<u>-</u>
1,2-Dibromo-3-chloropropane	mg/kg dry wt	-	< 0.5	70	< 0.5	-
1,2-Dibromoethane (ethylene dibromide, EDB)	mg/kg dry wt	-	< 0.3	9.	< 0.3	-
Dibromomethane	mg/kg dry wt	-	< 0.3	\	< 0.3	-
1,3-Dichloropropane	mg/kg dry wt	-	< 0.3	1/1	< 0.3	-
Dichlorodifluoromethane	mg/kg dry wt	-	< 0.5	. 0.	< 0.5	-
1,1-Dichloroethane	mg/kg dry wt	-	< 0.3	10	< 0.3	-
1,2-Dichloroethane	mg/kg dry wt	-	< 0.3	-	< 0.3	-
1,1-Dichloroethene	mg/kg dry wt	-	< 0.3	-	< 0.3	-
cis-1,2-Dichloroethene	mg/kg dry wt	17	< 0.3	-	< 0.3	-
trans-1,2-Dichloroethene	mg/kg dry wt		< 0.3	-	< 0.3	-
Dichloromethane (methylene chloride)	mg/kg dry wt		< 6	-	< 4	-
1,2-Dichloropropane	mg/kg dry wt	-	< 0.3	-	< 0.3	-
1,1-Dichloropropene	mg/kg dry wt	-	< 0.3	-	< 0.3	-
cis-1,3-Dichloropropene	mg/kg dry wt	-	< 0.3	-	< 0.3	-
trans-1,3-Dichloropropene	mg/kg dry wt		< 0.3	-	< 0.3	-
Hexachlorobutadiene	mg/kg dry wt	(O-'	< 0.3	-	< 0.3	-
1,1,1,2-Tetrachloroethane	mg/kg dry wt	-	< 0.3	-	< 0.3	-
1,1,2,2-Tetrachloroethane	mg/kg dry wt		< 0.3	-	< 0.3	-
Tetrachloroethene (tetrachloroethylene)	mg/kg dry wt	-	< 0.3	-	< 0.3	-
1,1,1-Trichloroethane	mg/kg dry wt	-	< 0.3	-	< 0.3	-
1,1,2-Trichloroethane	mg/kg dry wt	-	< 0.3	-	< 0.3	-
Trichloroethene (trichloroethylene)	mg/kg dry wt	-	< 0.3	-	< 0.3	-
Trichlorofluoromethane	mg/kg dry wt	-	< 0.3	-	< 0.3	-
1,2,3-Trichloropropane	mg/kg dry wt	-	< 0.5	-	< 0.5	-
1,1,2-Trichlorotrifluoroethane (Freon 113)	mg/kg dry wt	-	< 0.3	-	< 0.3	-
Vinyl chloride	mg/kg dry wt	-	< 0.3	-	< 0.3	-
Haloaromatics in VOC Soils by H	•		200			
Bromobenzene	mg/kg dry wt	-	< 0.3	-	< 0.3	-
1,3-Dichlorobenzene	mg/kg dry wt	-	< 0.3	-	< 0.3	-
4-Chlorotoluene	mg/kg dry wt	-	< 0.3	-	< 0.3	-
Chlorobenzene (monochlorobenzene)	mg/kg dry wt	-	< 0.3	-	< 0.3	-
1,2-Dichlorobenzene	mg/kg dry wt	-	< 0.3	-	< 0.3	-
1,4-Dichlorobenzene	mg/kg dry wt	-	< 0.3	-	< 0.3	-

Sample Type: Soil						
S	ample Name:	WWTP TP02	WWTP TP03	WWTP TP03	WWTP TP04	WWTP TP04
			0.10 13-Jun-2023			
Halagramatics in VOC Sails by	Lab Number:	3299078.169	3299078.171	3299078.172	3299078.174	3299078.175
Haloaromatics in VOC Soils by 2-Chlorotoluene	· .	/15	< 0.3		< 0.3	
	mg/kg dry wt	-		-		-
1,2,3-Trichlorobenzene	mg/kg dry wt	-	< 0.3 < 0.3	-	< 0.3 < 0.3	-
1,2,4-Trichlorobenzene 1,3,5-Trichlorobenzene	mg/kg dry wt	-	< 0.3	-	< 0.3	-
Monoaromatic Hydrocarbons in	mg/kg dry wt	- adapase CC MS	< 0.3	-	< 0.3	-
•		auspace GC-IVIS	< 0.3		< 0.3	_
n-Butylbenzene	mg/kg dry wt	-	< 0.3	-	< 0.3	-
tert-Butylbenzene Isopropylbenzene (Cumene)	mg/kg dry wt	-	< 0.3	-	< 0.3	-
4-Isopropyltoluene (p-Cymene)	mg/kg dry wt mg/kg dry wt	-	< 0.3	-	< 0.3	-
n-Propylbenzene	mg/kg dry wt	<u>-</u>	< 0.3	_	< 0.3	-
sec-Butylbenzene	mg/kg dry wt	<u>-</u>	< 0.3	_	< 0.3	-
Styrene	mg/kg dry wt		< 0.3		< 0.3	
1,2,4-Trimethylbenzene	mg/kg dry wt	_	< 0.3	_	< 0.3	
1,3,5-Trimethylbenzene	mg/kg dry wt	_	< 0.3	-	< 0.3	<u>.</u>
Ketones in VOC Soils by Heads		<u> </u>	3.0		V	
2-Butanone (MEK)	mg/kg dry wt	_	< 60		< 40	
4-Methylpentan-2-one (MIBK)	mg/kg dry wt	-	< 11	60	<7	
Acetone	mg/kg dry wt	<u>-</u>	< 60	~W	40	
Methyl tert-butylether (MTBE)	mg/kg dry wt	-	< 0.3	5	< 0.3	
Trihalomethanes in VOC Soils I			- 0.0		10.0	_
Bromodichloromethane	mg/kg dry wt	-	< 0.3	<i>J</i>	< 0.3	
Bromoform (tribromomethane)	mg/kg dry wt	- _	< 0.5	- 17	< 0.5	-
Chloroform (Trichloromethane)	mg/kg dry wt	-	< 0.3	. 0	< 0.3	<u>-</u>
Dibromochloromethane	mg/kg dry wt	_	< 0.3		< 0.3	_
Other VOC in Soils by Headspa		-	V 0.5		\ 0.5	-
			10.0		100	
Carbon disulphide	mg/kg dry wt	1-7	< 0.3	-	< 0.3	-
Naphthalene	mg/kg dry wt		< 0.3	-	< 0.3	-
S	ample Name:	B35 HA01 0.10 12-Jun-2023	B35 HA01 0.50 12-Jun-2023	B35 HA04 0.10 12-Jun-2023	B35 HA04 0.50 12-Jun-2023	DS01 TP01 0.10 12-Jun-2023
	Lab Number:	3299078.179	3299078.180	3299078.182	3299078.183	3299078.185
Individual Tests			0			
Dry Matter	g/100g as rcvd	74	76	75	_	-
Total Recoverable Beryllium	mg/kg dry wt	1.0	0.6	1.0	0.7	1.0
8 Heavy metals plus Boron						
Total Recoverable Arsenic	mg/kg dry wt	11	3	10	5	6
Total Recoverable Boron	mg/kg dry wt	< 20	< 20	< 20	< 20	< 20
Total Recoverable Cadmium	mg/kg dry wt	0.50	< 0.10	0.41	0.10	< 0.10
Total Recoverable Chromium	mg/kg dry wt	14	7	11	9	8
Total Recoverable Copper	mg/kg dry wt	57	12	43	14	30
Total Recoverable Lead	mg/kg dry wt	630	54	360	87	44
Total Recoverable Mercury	mg/kg dry wt	0.54	< 0.10	0.23	< 0.10	0.13
Total Recoverable Nickel	mg/kg dry wt	7	3	6	3	4
Total Recoverable Zinc	mg/kg dry wt	260	43	210	74	41
Acid Herbicides Screen in Soil I		<u> </u>	1	1	ı	1
Acifluorfen	mg/kg dry wt	< 0.2	< 0.2	< 0.2	_	-
Bentazone	mg/kg dry wt	< 0.2	< 0.2	< 0.2	-	-
Bromoxynil	mg/kg dry wt	< 0.2	< 0.2	< 0.2	-	-
Clopyralid	mg/kg dry wt	< 0.2	< 0.2	< 0.2	-	-
Dicamba	mg/kg dry wt	< 0.2	< 0.2	< 0.2	-	-
2,4-Dichlorophenoxyacetic acid (24D)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	-	-
2,4-Dichlorophenoxybutyric acid (24DB)	l mg/kg dry wt	< 0.2	< 0.2	< 0.2	-	-
Dichlorprop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	-	-
Fluazifop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	-	-
1 ab No. 2200079 SDv6			Hill Lobo		1	Dogo 25 of 126

Sample Type: Soil						
Sar	mple Name:	B35 HA01 0.10 12-Jun-2023	B35 HA01 0.50 12-Jun-2023	B35 HA04 0.10 12-Jun-2023	B35 HA04 0.50 12-Jun-2023	DS01 TP01 0.10 12-Jun-2023
Li	ab Number:	3299078.179	3299078.180	3299078.182	3299078.183	3299078.185
Acid Herbicides Screen in Soil by	LCMSMS					
Fluroxypyr	mg/kg dry wt	< 0.2	< 0.2	< 0.2	-	-
Haloxyfop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	-	-
2-methyl-4-chlorophenoxyacetic acid (MCPA)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	-	-
2-methyl-4- chlorophenoxybutanoic acid (MCPB)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	-	-
Mecoprop (MCPP; 2-methyl-4- chlorophenoxypropionic acid)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	-	-
Oryzalin	mg/kg dry wt	< 0.4	< 0.4	< 0.4	-	-
Pentachlorophenol (PCP)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	-	-
Picloram	mg/kg dry wt	< 0.2	< 0.2	< 0.2	-	-
Quizalofop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	-	
2,3,4,6-Tetrachlorophenol (TCP)	mg/kg dry wt	< 0.4	< 0.4	< 0.4	_\-	_(-)
2,4,5-trichlorophenoxypropionic acid (245TP,Fenoprop, Silvex)	mg/kg dry wt	< 0.2	< 0.2	< 0.2		(-
2,4,5-Trichlorophenoxyacetic acid (245T)	mg/kg dry wt	< 0.2	< 0.2	< 0.2		-
Triclopyr	mg/kg dry wt	< 0.2	< 0.2	< 0.2	-0	-
Organochlorine Pesticides Screen	ning in Soil			6	1 (/)	
Aldrin	mg/kg dry wt	< 0.013	< 0.013	0.014	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-
alpha-BHC	mg/kg dry wt	< 0.013	< 0.013	< 0.014	-	-
beta-BHC	mg/kg dry wt	< 0.013	< 0.013	< 0.014	-	-
delta-BHC	mg/kg dry wt	< 0.013	< 0.013	< 0.014	_	_
gamma-BHC (Lindane)	mg/kg dry wt	< 0.013	< 0.013	< 0.014	_	_
cis-Chlordane	mg/kg dry wt	< 0.013	< 0.013	< 0.014	_	_
trans-Chlordane	mg/kg dry wt	< 0.013	< 0.013	< 0.014	-	_
2,4'-DDD	mg/kg dry wt	< 0.013	< 0.013	< 0.014	_	-
4,4'-DDD	mg/kg dry wt	< 0.013	< 0.013	< 0.014	-	-
2,4'-DDE	mg/kg dry wt	< 0.013	< 0.013	< 0.014	-	_
4,4'-DDE	mg/kg dry wt	0.24	0.044	0.41	_	_
2.4'-DDT	mg/kg dry wt	0.015	< 0.013	0.044	-	-
4,4'-DDT	mg/kg dry wt		0.043	0.28	_	-
Total DDT Isomers	mg/kg dry wt	0.43	0.09	0.74	_	_
Dieldrin	mg/kg dry wt	< 0.013	< 0.013	< 0.014	_	_
Endosulfan I	mg/kg dry wt	< 0.013	< 0.013	< 0.014	_	-
Endosulfan II	mg/kg dry wt	< 0.013	< 0.013	< 0.014	_	-
Endosulfan sulphate	mg/kg dry wt	< 0.013	< 0.013	< 0.014	_	_
Endrin	mg/kg dry wt	< 0.013	< 0.013	< 0.014	-	_
Endrin aldehyde	mg/kg dry wt	< 0.013	< 0.013	< 0.014	-	
Endrin ketone	mg/kg dry wt	< 0.013	< 0.013	< 0.014	-	-
Heptachlor	mg/kg dry wt	< 0.013	< 0.013	< 0.014	-	
Heptachlor epoxide	mg/kg dry wt	< 0.013	< 0.013	< 0.014	-	
Hexachlorobenzene	mg/kg dry wt	< 0.013	< 0.013	< 0.014	-	<u>-</u>
		< 0.013	< 0.013	< 0.014		-
Methoxychlor	mg/kg dry wt		~ 0.013	~ U.U14	-	_
Organonitro&phosphorus Pesticid			.007	- 0.07		Ī
Acetochlor	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-
Alachlor	mg/kg dry wt	< 0.05	< 0.05	< 0.05	-	-
Atrazine	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-
Atrazine-desethyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-
Atrazine-desisopropyl	mg/kg dry wt	< 0.13	< 0.13	< 0.13	-	-
Azaconazole	mg/kg dry wt	< 0.04	< 0.04	< 0.04	-	-
Azinphos-methyl	mg/kg dry wt	< 0.13	< 0.13	< 0.13	-	-
Benalaxyl	mg/kg dry wt	< 0.04	< 0.04	< 0.04	-	-
Bitertanol	mg/kg dry wt	< 0.13	< 0.13	< 0.13	-	-
Bromacil	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-

Sample Type: Soil						
	Sample Name:	B35 HA01 0.10	B35 HA01 0.50	B35 HA04 0.10	B35 HA04 0.50	DS01 TP01 0.10
		12-Jun-2023	12-Jun-2023	12-Jun-2023	12-Jun-2023	12-Jun-2023
	Lab Number:	3299078.179	3299078.180	3299078.182	3299078.183	3299078.185
Organonitro&phosphorus Pes		<u> </u>	1	ı		ı
Bromopropylate	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-
Butachlor	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-
Captan	mg/kg dry wt	< 0.13	< 0.13	< 0.13	-	-
Carbaryl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-
Carbofuran	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-
Chlorfluazuron	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-
Chlorothalonil	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-
Chlorpyrifos	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-
Chlorpyrifos-methyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-
Chlortoluron	mg/kg dry wt	< 0.13	< 0.13	< 0.13	-	-
Cyanazine	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-
Cyfluthrin	mg/kg dry wt	< 0.08	< 0.08	< 0.08	-	
Cyhalothrin	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	
Cypermethrin	mg/kg dry wt	< 0.16	< 0.15	< 0.16)-	-
Deltamethrin (including Tralomethrin)	mg/kg dry wt	< 0.07	< 0.07	< 0.07	- /)· ·
Diazinon	mg/kg dry wt	< 0.04	< 0.04	< 0.04		-
Dichlofluanid	mg/kg dry wt	< 0.07	< 0.07	< 0.07	0	-
Dichloran	mg/kg dry wt	< 0.2	< 0.2	< 0.2	10	-
Dichlorvos	mg/kg dry wt	< 0.09	< 0.09	< 0.09	-	-
Difenoconazole	mg/kg dry wt	< 0.09	< 0.09	< 0.09	-	-
Dimethoate	mg/kg dry wt	< 0.13	< 0.13	< 0.13	-	-
Diphenylamine	mg/kg dry wt	< 0.13	< 0.13	< 0.13	-	-
Diuron	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-
Fenpropimorph	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-
Fluazifop-butyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-
Fluometuron	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-
Flusilazole	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-
Fluvalinate	mg/kg dry wt	< 0.05	< 0.05	< 0.05	-	-
Furalaxyl	mg/kg dry wt	< 0.04	< 0.04	< 0.04	-	-
Haloxyfop-methyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-
Hexaconazole	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-
Hexazinone	mg/kg dry wt	< 0.04	< 0.04	< 0.04	-	-
IPBC (3-lodo-2-propynyl-n- butylcarbamate)	mg/kg dry wt	< 0.4	< 0.4	< 0.4	-	-
Kresoxim-methyl	mg/kg dry wt	< 0.04	< 0.04	< 0.04	-	-
Linuron	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-
Malathion	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-
Metalaxyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-
Methamidophos	mg/kg dry wt	< 0.4	< 0.4	< 0.4	-	-
Metolachlor	mg/kg dry wt	< 0.05	< 0.05	< 0.05	-	_
Metribuzin	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-
Molinate	mg/kg dry wt	< 0.13	< 0.13	< 0.13	-	-
Myclobutanil	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	_
Naled	mg/kg dry wt	< 0.4	< 0.4	< 0.4	-	-
Norflurazon	mg/kg dry wt	< 0.13	< 0.13	< 0.13	-	-
Oxadiazon	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-
Oxyfluorfen	mg/kg dry wt	< 0.04	< 0.04	< 0.04	-	-
Paclobutrazol	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-
Parathion-ethyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-
Parathion-methyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-
Pendimethalin	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-
Permethrin	mg/kg dry wt	< 0.03	< 0.03	< 0.03	-	-
Pirimicarb	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-
Pirimiphos-methyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-
. ,	5 5 , 1		I.	l .		

Sample Type: Soil						
S	Sample Name:	B35 HA01 0.10	B35 HA01 0.50	B35 HA04 0.10	B35 HA04 0.50	DS01 TP01 0.10
		12-Jun-2023	12-Jun-2023	12-Jun-2023	12-Jun-2023	12-Jun-2023
	Lab Number:	3299078.179	3299078.180	3299078.182	3299078.183	3299078.185
Organonitro&phosphorus Pestion						
Prochloraz	mg/kg dry wt	< 0.4	< 0.4	< 0.4	-	-
Procymidone	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-
Prometryn	mg/kg dry wt	< 0.04	< 0.04	< 0.04	-	-
Propachlor	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-
Propanil	mg/kg dry wt	< 0.2	< 0.2	< 0.2	-	-
Propazine	mg/kg dry wt	< 0.04	< 0.04	< 0.04	-	-
Propiconazole	mg/kg dry wt	< 0.05	< 0.05	< 0.05	-	-
Pyriproxyfen	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-
Quizalofop-ethyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-
Simazine	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-
Simetryn	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-
Sulfentrazone	mg/kg dry wt	< 0.4	< 0.4	< 0.4	-	
TCMTB [2-(thiocyanomethylthiobenzothiazole,Busan]	o) mg/kg dry wt	< 0.13	< 0.13	< 0.13	11.	70,
Tebuconazole	mg/kg dry wt	< 0.07	< 0.07	< 0.07	J '- , C	-
Terbacil	mg/kg dry wt	< 0.07	< 0.07	< 0.07	- \	J -
Terbumeton	mg/kg dry wt	< 0.07	< 0.07	< 0.07		-
Terbuthylazine	mg/kg dry wt	< 0.04	< 0.04	< 0.04	60	-
Terbuthylazine-desethyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	1 W	-
Terbutryn	mg/kg dry wt	< 0.07	< 0.07	< 0.07	1/-	-
Thiabendazole	mg/kg dry wt	< 0.4	< 0.4	< 0.4	<i>V</i> .	_
Thiobencarb	mg/kg dry wt	< 0.07	< 0.07	< 0.07	-	-
Tolylfluanid	mg/kg dry wt	< 0.04	< 0.04	< 0.04	-	-
Triazophos	mg/kg dry wt	< 0.07	< 0.07	< 0.07	_	_
Trifluralin	mg/kg dry wt	< 0.07	< 0.07	< 0.07	_	_
Vinclozolin	mg/kg dry wt	< 0.07	< 0.07	< 0.07	_	_
				<u> </u>		
S	Sample Name:	DS01 TP01 0.50 12-Jun-2023	DS01 TP02 0.10 12-Jun-2023	DS01 TP03 0.10 12-Jun-2023	DS01 TP03 0.50 12-Jun-2023	DS01 TP04 0.10 12-Jun-2023
1 2 1 1 7 1	Lab Number:	3299078.186	3299078.187	3299078.190	3299078.191	3299078.193
Individual Tests						
Total Recoverable Beryllium	mg/kg dry wt	0.7	0.8	1.1	0.4	0.6
8 Heavy metals plus Boron						
Total Recoverable Arsenic	mg/kg dry wt	6	5	7	3	6
Total Recoverable Boron	mg/kg dry wt	< 20				
Total Recoverable Cadmium			< 20	< 20	< 20	< 20
Total Recoverable Chromium	mg/kg dry wt		0.17	0.13	< 20 < 0.10	< 20 < 0.10
T-4-I D III C	mg/kg dry wt mg/kg dry wt					
Total Recoverable Copper		< 0.10	0.17	0.13	< 0.10	< 0.10
Total Recoverable Copper Total Recoverable Lead	mg/kg dry wt	< 0.10 7	0.17 9	0.13 9	< 0.10	< 0.10 6
	mg/kg dry wt mg/kg dry wt	< 0.10 7 24	0.17 9 16	0.13 9 25	< 0.10 3 4	< 0.10 6 13
Total Recoverable Lead	mg/kg dry wt mg/kg dry wt mg/kg dry wt	< 0.10 7 24 38	0.17 9 16 24	0.13 9 25 34	< 0.10 3 4 32	< 0.10 6 13 29
Total Recoverable Lead Total Recoverable Mercury	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	< 0.10 7 24 38 < 0.10	0.17 9 16 24 < 0.10	0.13 9 25 34 < 0.10	< 0.10 3 4 32 < 0.10	< 0.10 6 13 29 < 0.10
Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	 0.10 7 24 38 0.10 4 35 DS01 TP05 0.10 	0.17 9 16 24 < 0.10 5 63 DS01 TP05 0.50	0.13 9 25 34 < 0.10 4 49 NUR TP01 0.10	< 0.10 3 4 32 < 0.10 < 2 20 NUR TP01 0.50	< 0.10 6 13 29 < 0.10 3 30 NUR TP02 0.10
Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	 0.10 7 24 38 < 0.10 4 35 DS01 TP05 0.10 12-Jun-2023 	0.17 9 16 24 < 0.10 5 63 DS01 TP05 0.50 12-Jun-2023	0.13 9 25 34 < 0.10 4 49 NUR TP01 0.10 13-Jun-2023	< 0.10 3 4 32 < 0.10 < 2 20 NUR TP01 0.50 13-Jun-2023	< 0.10 6 13 29 < 0.10 3 30 NUR TP02 0.10 13-Jun-2023
Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	 0.10 7 24 38 0.10 4 35 DS01 TP05 0.10 	0.17 9 16 24 < 0.10 5 63 DS01 TP05 0.50	0.13 9 25 34 < 0.10 4 49 NUR TP01 0.10	< 0.10 3 4 32 < 0.10 < 2 20 NUR TP01 0.50	< 0.10 6 13 29 < 0.10 3 30 NUR TP02 0.10
Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg hy wt sample Name: Lab Number:	 < 0.10 7 24 38 < 0.10 4 35 DS01 TP05 0.10 12-Jun-2023 3299078.196 	0.17 9 16 24 < 0.10 5 63 DS01 TP05 0.50 12-Jun-2023 3299078.197	0.13 9 25 34 < 0.10 4 49 NUR TP01 0.10 13-Jun-2023 3299078.199	< 0.10 3 4 32 < 0.10 < 2 20 NUR TP01 0.50 13-Jun-2023 3299078.200	< 0.10 6 13 29 < 0.10 3 30 NUR TP02 0.10 13-Jun-2023 3299078.202
Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Individual Tests Total Recoverable Beryllium	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt Mample Name: Lab Number:	 0.10 7 24 38 < 0.10 4 35 DS01 TP05 0.10 12-Jun-2023 3299078.196 0.9 	0.17 9 16 24 < 0.10 5 63 DS01 TP05 0.50 12-Jun-2023	0.13 9 25 34 < 0.10 4 49 NUR TP01 0.10 13-Jun-2023 3299078.199	< 0.10 3 4 32 < 0.10 < 2 20 NUR TP01 0.50 13-Jun-2023 3299078.200	< 0.10 6 13 29 < 0.10 3 30 NUR TP02 0.10 13-Jun-2023 3299078.202
Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Individual Tests Total Recoverable Beryllium pH*	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg hy wt sample Name: Lab Number:	 < 0.10 7 24 38 < 0.10 4 35 DS01 TP05 0.10 12-Jun-2023 3299078.196 	0.17 9 16 24 < 0.10 5 63 DS01 TP05 0.50 12-Jun-2023 3299078.197	0.13 9 25 34 < 0.10 4 49 NUR TP01 0.10 13-Jun-2023 3299078.199	< 0.10 3 4 32 < 0.10 < 2 20 NUR TP01 0.50 13-Jun-2023 3299078.200	< 0.10 6 13 29 < 0.10 3 30 NUR TP02 0.10 13-Jun-2023 3299078.202
Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Individual Tests Total Recoverable Beryllium pH* 8 Heavy metals plus Boron	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt Mample Name: Lab Number: mg/kg dry wt pH Units	 0.10 7 24 38 0.10 4 35 DS01 TP05 0.10 12-Jun-2023 3299078.196 0.9 - 	0.17 9 16 24 < 0.10 5 63 DS01 TP05 0.50 12-Jun-2023 3299078.197 0.4	0.13 9 25 34 < 0.10 4 49 NUR TP01 0.10 13-Jun-2023 3299078.199 1.2 6.2	< 0.10 3 4 32 < 0.10 < 2 20 NUR TP01 0.50 13-Jun-2023 3299078.200	< 0.10 6 13 29 < 0.10 3 30 NUR TP02 0.10 13-Jun-2023 3299078.202
Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Individual Tests Total Recoverable Beryllium pH* 8 Heavy metals plus Boron Total Recoverable Arsenic	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt sample Name: Lab Number: mg/kg dry wt pH Units	 < 0.10 7 24 38 < 0.10 4 35 DS01 TP05 0.10 12-Jun-2023 3299078.196 0.9 - 6 	0.17 9 16 24 < 0.10 5 63 DS01 TP05 0.50 12-Jun-2023 3299078.197 0.4 -	0.13 9 25 34 < 0.10 4 49 NUR TP01 0.10 13-Jun-2023 3299078.199 1.2 6.2	< 0.10 3 4 32 < 0.10 < 2 20 NUR TP01 0.50 13-Jun-2023 3299078.200 1.1 -	< 0.10 6 13 29 < 0.10 3 30 NUR TP02 0.10 13-Jun-2023 3299078.202 0.9 -
Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Individual Tests Total Recoverable Beryllium pH* 8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt pH Units mg/kg dry wt mg/kg dry wt	<pre></pre>	0.17 9 16 24 < 0.10 5 63 DS01 TP05 0.50 12-Jun-2023 3299078.197 0.4 - 3 < 20	0.13 9 25 34 < 0.10 4 49 NUR TP01 0.10 13-Jun-2023 3299078.199 1.2 6.2 5 < 20	< 0.10 3 4 32 < 0.10 < 2 20 NUR TP01 0.50 13-Jun-2023 3299078.200 1.1 - 6 < 20	< 0.10 6 13 29 < 0.10 3 30 NUR TP02 0.10 13-Jun-2023 3299078.202 0.9 - 6 < 20
Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Individual Tests Total Recoverable Beryllium pH* 8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Cadmium	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt Sample Name: Lab Number: mg/kg dry wt pH Units mg/kg dry wt mg/kg dry wt mg/kg dry wt	0.10 7 24 38 <0.10 4 35 DS01 TP05 0.10 12-Jun-2023 3299078.196 0.9 - 6 <20 0.18	0.17 9 16 24 < 0.10 5 63 DS01 TP05 0.50 12-Jun-2023 3299078.197 0.4 - 3 < 20 < 0.10	0.13 9 25 34 < 0.10 4 49 NUR TP01 0.10 13-Jun-2023 3299078.199 1.2 6.2 5 < 20 0.15	< 0.10 3 4 32 < 0.10 < 2 20 NUR TP01 0.50 13-Jun-2023 3299078.200 1.1 - 6 < 20 < 0.10	< 0.10 6 13 29 < 0.10 3 30 NUR TP02 0.10 13-Jun-2023 3299078.202 0.9 - 6 < 20 0.25
Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Individual Tests Total Recoverable Beryllium pH* 8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt Sample Name: Lab Number: mg/kg dry wt pH Units mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	0.10 7 24 38 <0.10 4 35 DS01 TP05 0.10 12-Jun-2023 3299078.196 0.9 - 6 <20 0.18 10	0.17 9 16 24 < 0.10 5 63 DS01 TP05 0.50 12-Jun-2023 3299078.197 0.4 - 3 < 20 < 0.10 6	0.13 9 25 34 < 0.10 4 49 NUR TP01 0.10 13-Jun-2023 3299078.199 1.2 6.2 5 < 20 0.15 21	< 0.10 3 4 32 < 0.10 < 2 20 NUR TP01 0.50 13-Jun-2023 3299078.200 1.1 - 6 < 20 < 0.10 18	< 0.10 6 13 29 < 0.10 3 30 NUR TP02 0.10 13-Jun-2023 3299078.202 0.9 - 6 < 20 0.25 19
Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Individual Tests Total Recoverable Beryllium pH* 8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt sample Name: Lab Number: mg/kg dry wt pH Units mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	0.10 7 24 38 <0.10 4 35 DS01 TP05 0.10 12-Jun-2023 3299078.196 0.9 - 6 <20 0.18 10 20	0.17 9 16 24 < 0.10 5 63 DS01 TP05 0.50 12-Jun-2023 3299078.197 0.4 - 3 < 20 < 0.10 6 5	0.13 9 25 34 < 0.10 4 49 NUR TP01 0.10 13-Jun-2023 3299078.199 1.2 6.2 5 < 20 0.15 21 48	< 0.10 3 4 32 < 0.10 < 2 20 NUR TP01 0.50 13-Jun-2023 3299078.200 1.1 - 6 < 20 < 0.10 18 44	< 0.10 6 13 29 < 0.10 3 30 NUR TP02 0.10 13-Jun-2023 3299078.202 0.9 - 6 < 20 0.25 19 33
Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Individual Tests Total Recoverable Beryllium pH* 8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt Sample Name: Lab Number: mg/kg dry wt pH Units mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	0.10 7 24 38 <0.10 4 35 DS01 TP05 0.10 12-Jun-2023 3299078.196 0.9 - 6 <20 0.18 10	0.17 9 16 24 < 0.10 5 63 DS01 TP05 0.50 12-Jun-2023 3299078.197 0.4 - 3 < 20 < 0.10 6	0.13 9 25 34 < 0.10 4 49 NUR TP01 0.10 13-Jun-2023 3299078.199 1.2 6.2 5 < 20 0.15 21	< 0.10 3 4 32 < 0.10 < 2 20 NUR TP01 0.50 13-Jun-2023 3299078.200 1.1 - 6 < 20 < 0.10 18	< 0.10 6 13 29 < 0.10 3 30 NUR TP02 0.10 13-Jun-2023 3299078.202 0.9 - 6 < 20 0.25 19

Sample Type: Soil						
	Sample Name:	DS01 TP05 0.10	DS01 TP05 0.50	NUR TP01 0.10	NUR TP01 0.50	NUR TP02 0.10
		12-Jun-2023	12-Jun-2023	13-Jun-2023	13-Jun-2023	13-Jun-2023
	Lab Number:	3299078.196	3299078.197	3299078.199	3299078.200	3299078.202
8 Heavy metals plus Boron						
Total Recoverable Nickel	mg/kg dry wt	5	< 2	9	8	10
Total Recoverable Zinc	mg/kg dry wt	50	24	93	70	129
	Sample Name:	NUR TP02 0.50 13-Jun-2023	NUR TP03 0.10 13-Jun-2023	NUR TP03 0.50 13-Jun-2023	NUR TP04 0.10 13-Jun-2023	PAV TP01 0.10 12-Jun-2023
	Lab Number:	3299078.203	3299078.205	3299078.206	3299078.208	3299078.211
Individual Tests						
Total Recoverable Beryllium	mg/kg dry wt	1.0	1.1	1.2	1.2	0.7
8 Heavy metals plus Boron						
Total Recoverable Arsenic	mg/kg dry wt	6	5	4	6	4
Total Recoverable Boron	mg/kg dry wt	< 20	< 20	< 20	< 20	< 20
Total Recoverable Cadmium	mg/kg dry wt	0.16	0.15	0.10	0.27	0.19
Total Recoverable Chromium	mg/kg dry wt	14	18	15	17	16
Total Recoverable Copper	mg/kg dry wt	40	39	40	40	33
Total Recoverable Lead	mg/kg dry wt	47	27	23	34	41
Total Recoverable Mercury	mg/kg dry wt	0.17	0.14	0.16	0.13	0.13
Total Recoverable Nickel	mg/kg dry wt	9	10	10	9	5
Total Recoverable Zinc	mg/kg dry wt	93	73	51	84	143
	Sample Name:	PAV TP01 0.50 12-Jun-2023	PAV TP02 0.10 12-Jun-2023	DUP C1	B59 TP04 0.10 14-Jun-2023	B59 TP04 0.50 14-Jun-2023
	Lab Number:	3299078.212	3299078.214	3299078.217	3299078.219	3299078.220
Individual Tests	'		101			
Dry Matter	g/100g as rcvd	-	-		86	70
Total Recoverable Beryllium	mg/kg dry wt	0.7	0.9	0.9	1.5	1.3
8 Heavy metals plus Boron				70		
Total Recoverable Arsenic	mg/kg dry wt	4	3	8	8	11
Total Recoverable Boron	mg/kg dry wt	< 20	< 20	< 20	175	< 20
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	0.12	0.13	0.40	0.22
Total Recoverable Chromium	mg/kg dry wt	7	6	10	25	9
Total Recoverable Copper	mg/kg dry wt	21	41	26	28	14
Total Recoverable Lead	mg/kg dry wt	23	45	34	61	23
Total Recoverable Mercury	mg/kg dry wt	0.15	0.12	< 0.10	0.12	0.10
Total Recoverable Nickel	mg/kg dry wt	5	3	5	25	3
Total Recoverable Zinc	mg/kg dry wt	46	76	54	135	56
Acid Herbicides Screen in Soil	by LCMSMS					
Acifluorfen	mg/kg dry wt	() .	-	-	< 0.2	< 0.2
Bentazone	mg/kg dry wt	-	-	-	< 0.2	< 0.2
Bromoxynil	mg/kg dry wt	-	-	-	< 0.2	< 0.2
Clopyralid	mg/kg dry wt	-	-	-	< 0.2	< 0.2
Dicamba	mg/kg dry wt	-	-	-	< 0.2	< 0.2
2,4-Dichlorophenoxyacetic acid (24D)	mg/kg dry wt	-	-	-	< 0.2	< 0.2
2,4-Dichlorophenoxybutyric act (24DB)	d mg/kg dry wt	-	-	-	< 0.2	< 0.2
Dichlorprop	mg/kg dry wt	-	-	-	< 0.2	< 0.2
Fluazifop	mg/kg dry wt	-	-	-	< 0.2	< 0.2
Fluroxypyr	mg/kg dry wt	-	-	-	< 0.2	< 0.2
Haloxyfop	mg/kg dry wt	-	-	-	< 0.2	< 0.2
2-methyl-4-chlorophenoxyaceti acid (MCPA)		-	-	-	< 0.2	< 0.2
2-methyl-4- chlorophenoxybutanoic acid (MCPB)	mg/kg dry wt	-	-	-	< 0.2	< 0.2
Mecoprop (MCPP; 2-methyl-4- chlorophenoxypropionic acid)	mg/kg dry wt	-	-	-	< 0.2	< 0.2
Oryzalin	mg/kg dry wt	-	-	-	< 0.4	< 0.4
Pentachlorophenol (PCP)	mg/kg dry wt	-	-	-	< 0.2	< 0.2

acid (245T) Fénoprop, Silves) 2.4.5-Trichirophenosyseatic and (245T) Trichopy mg/kg dry wt	Sample Type: Soil							
Lab Number 3299078-212 3299078-214 3299078-217 3299078-219 3299078-229 A2000 A	Sar	mple Name:			DUP C1			
Accid Horbitoides Screen in Soil by LCNSNSS Quaziatriag mg/kg dy wl < < 0.2 < < 0.2 Quaziatriag mg/kg dy wl < < 0.2 < < 0.2 2.3.4.6 Telorischiorophomol (TCP) mg/kg dy wl < < < 0.2 < < 0.2 2.3.4.6 Telorischiorophomol (TCP) mg/kg dy wl < < < 0.2 < < 0.2 2.3.4.6 Telorischiorophomol (TCP) mg/kg dy wl < < < 0.2 < < 0.2 2.4.6 Telorischiorophomol (TCP) mg/kg dy wl < < < < < < 0.2 < < 0.2 4.6 Telorischiorophomol (TCP) mg/kg dy wl < < < < < < < < < < < < < < < < <	L	ab Number:			3299078.217			
Pictoram					0_000000	0_00000		
Cluzacidop			-	-	_	< 0.2	< 0.2	
2.3.4.6 Telarabinophand (TCP) mylkg dry wt	Quizalofop		-	-	-	< 0.2	< 0.2	
2.4.5-bitchiocophenoxypociobic mg/kg dry wt acid (246TF). Finchiocophenoxypocible acid (246TF). Finchiocophenoxypocible acid (246TF). Thichiocophenoxypocible acid (246TF). Thichiocophe	2,3,4,6-Tetrachlorophenol (TCP)		-	-	-	< 0.2	< 0.2	
2.4.5-Thichbrophenoxyacetic and (245T) mg/kg dry w - - <0.2	2,4,5-trichlorophenoxypropionic		-	-	-	< 0.2	< 0.2	
Triclepy mg/kg dyw - - - - - - - - -	2,4,5-Trichlorophenoxyacetic	mg/kg dry wt	-	-	-	< 0.2	< 0.2	
Addin mg/kg dry wt		mg/kg dry wt	-	-	-	< 0.2	< 0.2	
alpha-BHC mg/kg dry w - - < 0.012	Organochlorine Pesticides Screen	ning in Soil						
alpha-BHC mg/kg dry w - - < 0.012	Aldrin	mg/kg dry wt	-	-	-	< 0.012	< 0.014	
beta-BHC mg/kg dry wt - - - 0.012 2.014 delta-BHC mg/kg dry wt - - - 0.012 0.0014 dis-Chiodrane mg/kg dry wt - - 0.012 < 0.014			-	_	_	< 0.012	< 0.014	
delta-BHC mg/kg dry vit	·		-	_	_			
gamma-BHC (Lindane) mg/kg dry wt	-		-	_	_			
cis-Chlordane				_				
trans-Chlordane mg/kg dry wt 2,4-DDD mg/kg dry wt	,			_	_			
2,41-DDD mg/kg dry wt					_			
4,4*DDD mg/kg dry wt				-				
2,4'-DDE mg/kg dry wt	*			-				
4,4*DDE mg/kg dry wt	*	0 0 ,		-	70			
2,4*-DDT mg/kg dry w	· ·			-	5 /			
4.4-DDT mg/kg dry wt Total DDT Isomers mg/kg dry wt Dieldrin mg/kg dry wt Pieldrin aldehyde mg/kg dry wt Pie	•		-	-	-			
Total DDT Isomers			-		-	<u> </u>		
Dieldrin mg/kg dry wt	, , , , , , , , , , , , , , , , , , ,		-	10	10:			
Endosulfan I mg/kg dry wt	Total DDT Isomers		-					
Endosulfan II mg/kg dry wt	Dieldrin		-	70	10			
Endosulfan sulphate mg/kg dry wt	Endosulfan I		-	- 5	-	< 0.012	< 0.014	
Endrin mg/kg dry wt	Endosulfan II	mg/kg dry wt	-	-	-	< 0.012	< 0.014	
Endrin aldehyde mg/kg dry wt	Endosulfan sulphate	mg/kg dry wt	1-	-	-	< 0.012	< 0.014	
Endrin ketone mg/kg dry wt < 0.012 < 0.014 Heptachlor mg/kg dry wt < 0.012 < 0.014 Heptachlor mg/kg dry wt < 0.012 < 0.014 Heptachlor epoxide mg/kg dry wt < 0.012 < 0.014 Hexachlorobenzene mg/kg dry wt < 0.012 < 0.014 Hexachlorobenzene mg/kg dry wt < 0.012 < 0.014 Hexachlorobenzene mg/kg dry wt < 0.012 < 0.014 Methoxychlor mg/kg dry wt < 0.012 < 0.014 Organonitro&phosphorus Pesticides Screen in Soil by GCMS Acetochlor mg/kg dry wt 0.06 < 0.07 Alachlor mg/kg dry wt 0.06 < 0.07 Alachlor mg/kg dry wt 0.05 Atrazine mg/kg dry wt 0.06 < 0.07 Atrazine-desethyl mg/kg dry wt 0.06 Atrazine-desisopropyl mg/kg dry wt 0.011 Azaconazole mg/kg dry wt 0.011 Azaconazole mg/kg dry wt 0.03 Azinphos-methyl mg/kg dry wt 0.03 Bitertanol mg/kg dry wt 0.03 Bitertanol mg/kg dry wt 0.06 Bromacil mg/kg dry wt 0.06 Bromacil mg/kg dry wt 0.06 Bromacil mg/kg dry wt 0.06 Bromacil mg/kg dry wt 0.06 Bromacil mg/kg dry wt 0.06 Captan mg/kg dry wt 0.06 Captan mg/kg dry wt 0.06 Captan mg/kg dry wt 0.06 Captan mg/kg dry wt 0.06 Carborluran mg/kg dry wt 0.06 Carborluran mg/kg dry wt 0.06 Carborluran mg/kg dry wt 0.06 Carborluran mg/kg dry wt 0.06 Carborluran mg/kg dry wt	Endrin	mg/kg dry wt	-		-	< 0.012	< 0.014	
Heptachlor mg/kg dry wt	Endrin aldehyde	mg/kg dry wt	· (-)		-	< 0.012	< 0.014	
Heptachlor epoxide	Endrin ketone	mg/kg drywt	-	-	-	< 0.012	< 0.014	
Hexachlorobenzene mg/kg dry wt - < 0.012 < 0.014	Heptachlor	mg/kg dry wt	-	· -	-	< 0.012	< 0.014	
Methoxychlor mg/kg dry wt - - < 0.012 < 0.014 Organonitro&phosphorus Pesticides Screen in Soil by GCMS Acetochlor mg/kg dry wt - - < 0.06	Heptachlor epoxide	mg/kg dry wt		_	-	< 0.012	< 0.014	
Organonitro&phorsphorus Pesticides Screen in Soil by GCMS Acetochlor mg/kg dry wf - - - <0.06	Hexachlorobenzene	mg/kg dry wt		-	-	< 0.012	< 0.014	
Acetochlor mg/kg dry wt < 0.06 < 0.07 Alachlor mg/kg dry wt < 0.05 < 0.05 Atrazine mg/kg dry wt < 0.06 < 0.07 Atrazine mg/kg dry wt < 0.06 < 0.07 Atrazine-desethyl mg/kg dry wt < 0.06 < 0.07 Atrazine-desisopropyl mg/kg dry wt < 0.06 < 0.07 Atrazine-desisopropyl mg/kg dry wt < 0.011 < 0.14 Azaconazole mg/kg dry wt < 0.03 < 0.04 Azinphos-methyl mg/kg dry wt < 0.03 < 0.04 Azinphos-methyl mg/kg dry wt < 0.03 < 0.04 Bitertanol mg/kg dry wt < 0.03 < 0.04 Bitertanol mg/kg dry wt < 0.011 < 0.14 Bromacil mg/kg dry wt < 0.06 < 0.07 Bromopropylate mg/kg dry wt < 0.06 < 0.07 Bromopropylate mg/kg dry wt < 0.06 < 0.07 Captan mg/kg dry wt < 0.06 < 0.07 Carbaryl mg/kg dry wt < 0.06 < 0.07 Carbofuran mg/kg dry wt < 0.06 < 0.07 Chlorothalonil mg/kg dry wt < 0.06 < 0.07 Chlorothalonil mg/kg dry wt < 0.06 < 0.07 Chlorotyrifos mg/kg dry wt < 0.06 < 0.07 Chloropyrifos mg/kg dry wt < 0.06 < 0.07	Methoxychlor	mg/kg dry wt	-	-	-	< 0.012	< 0.014	
Acetochlor mg/kg dry wt < 0.06 < 0.07 Alachlor mg/kg dry wt < 0.05 < 0.05 Atrazine mg/kg dry wt < 0.06 < 0.07 Atrazine mg/kg dry wt < 0.06 < 0.07 Atrazine-desethyl mg/kg dry wt < 0.06 < 0.07 Atrazine-desisopropyl mg/kg dry wt < 0.06 < 0.07 Atrazine-desisopropyl mg/kg dry wt < 0.011 < 0.14 Azaconazole mg/kg dry wt < 0.03 < 0.04 Azinphos-methyl mg/kg dry wt < 0.03 < 0.04 Azinphos-methyl mg/kg dry wt < 0.03 < 0.04 Bitertanol mg/kg dry wt < 0.03 < 0.04 Bitertanol mg/kg dry wt < 0.011 < 0.14 Bromacil mg/kg dry wt < 0.06 < 0.07 Bromopropylate mg/kg dry wt < 0.06 < 0.07 Bromopropylate mg/kg dry wt < 0.06 < 0.07 Captan mg/kg dry wt < 0.06 < 0.07 Carbaryl mg/kg dry wt < 0.06 < 0.07 Carbofuran mg/kg dry wt < 0.06 < 0.07 Chlorothalonil mg/kg dry wt < 0.06 < 0.07 Chlorothalonil mg/kg dry wt < 0.06 < 0.07 Chlorotyrifos mg/kg dry wt < 0.06 < 0.07 Chloropyrifos mg/kg dry wt < 0.06 < 0.07	Organonitro&phosphorus Pesticid	les Screen in S	oil by GCMS			I		
Alachlor mg/kg dry wt			()	_	_	< 0.06	< 0.07	
Atrazine mg/kg dry wt			-	-	_	< 0.05		
Atrazine-desethyl mg/kg dry wt - - < 0.06 < 0.07 Atrazine-desisopropyl mg/kg dry wt - - - < 0.11			V	-	_			
Atrazine-desisopropyl mg/kg dry wt - - < 0.11								
Azaconazole mg/kg dry wt - - < 0.03	·							
Azinphos-methyl mg/kg dry wt - - < 0.11				_				
Benalaxyl mg/kg dry wt - - < 0.03				_				
Bitertanol mg/kg dry wt - - < 0.14 Bromacil mg/kg dry wt - - - < 0.06			-	-				
Bromacil mg/kg dry wt - - < 0.06 < 0.07 Bromopropylate mg/kg dry wt - - - < 0.06			-	<u>-</u>				
Bromopropylate mg/kg dry wt - - < 0.06 < 0.07 Butachlor mg/kg dry wt - - - < 0.06				-				
Butachlor mg/kg dry wt - - - < 0.06 < 0.07 Captan mg/kg dry wt - - - < 0.11				-				
Captan mg/kg dry wt - - - < 0.11 < 0.14 Carbaryl mg/kg dry wt - - - < 0.06				-	-			
Carbaryl mg/kg dry wt < 0.06 < 0.07 Carbofuran mg/kg dry wt < 0.06 < 0.07 Chlorfluazuron mg/kg dry wt < 0.06 < 0.07 Chlorothalonil mg/kg dry wt < 0.06 < 0.07 Chlorothyrifos mg/kg dry wt < 0.06 < 0.07 Chlorpyrifos mg/kg dry wt < 0.06 < 0.07 Chlorpyrifos mg/kg dry wt < 0.06 < 0.07				-	-			
Carbofuran mg/kg dry wt - - - < 0.06 < 0.07 Chlorofluazuron mg/kg dry wt - - - < 0.06				-	-			
Chlorfluazuron mg/kg dry wt - - - < 0.06 < 0.07 Chlorothalonil mg/kg dry wt - - - < 0.06	•							
Chlorothalonil mg/kg dry wt - - - < 0.06 < 0.07 Chlorpyrifos mg/kg dry wt - - - < 0.06			-	-	-			
Chlorpyrifos mg/kg dry wt - - - < 0.06 < 0.07 Chlorpyrifos-methyl mg/kg dry wt - - - < 0.06	Chlorfluazuron		-	-	-	< 0.06		
Chlorpyrifos-methyl mg/kg dry wt < 0.06 < 0.07		mg/kg dry wt	-	-	-	< 0.06	< 0.07	
	Chlorpyrifos	mg/kg dry wt	-	-	-	< 0.06	< 0.07	
Chlortoluron mg/kg dry wt < 0.11 < 0.14	Chlorpyrifos-methyl	mg/kg dry wt	-	-	-	< 0.06	< 0.07	
- 10.11 10g/ng siry in:	Chlortoluron	mg/kg dry wt	-	-	-	< 0.11	< 0.14	

Sample Type: Soil						
	Sample Name:	PAV TP01 0.50 12-Jun-2023	PAV TP02 0.10 12-Jun-2023	DUP C1	B59 TP04 0.10 14-Jun-2023	B59 TP04 0.50 14-Jun-2023
	Lab Number:	3299078.212	3299078.214	3299078.217	3299078.219	3299078.220
Organonitro&phosphor	us Pesticides Screen in S	oil by GCMS				,
Cyanazine	mg/kg dry wt	-	-	-	< 0.06	< 0.07
Cyfluthrin	mg/kg dry wt	-	-	-	< 0.07	< 0.09
Cyhalothrin	mg/kg dry wt	-	-	-	< 0.06	< 0.07
Cypermethrin	mg/kg dry wt	-	-	_	< 0.14	< 0.17
Deltamethrin (including Tralomethrin)	mg/kg dry wt	-	-	-	< 0.06	< 0.07
Diazinon	mg/kg dry wt	-	-	_	< 0.03	< 0.04
Dichlofluanid	mg/kg dry wt	_	_	-	< 0.06	< 0.07
Dichloran	mg/kg dry wt	-	_	-	< 0.2	< 0.2
Dichlorvos	mg/kg dry wt		_	-	< 0.09	< 0.09
Difenoconazole	mg/kg dry wt		_	_	< 0.09	< 0.10
Dimethoate	mg/kg dry wt		_	_	< 0.11	< 0.14
Diphenylamine	mg/kg dry wt		_	_	< 0.11	< 0.14
Diuron	mg/kg dry wt		_	_	0.06	< 0.07
Fenpropimorph			-	-	< 0.06	< 0.07
· · · · · · · · · · · · · · · · · · ·	mg/kg dry wt	-	-	-		
Fluazifop-butyl	mg/kg dry wt	-	-		< 0.06	< 0.07
Fluometuron	mg/kg dry wt	-	-	O.	< 0.06	< 0.07
Flusilazole	mg/kg dry wt	-	-		< 0.06	< 0.07
Fluvalinate	mg/kg dry wt	-	-	5. 1	< 0.05	< 0.05
Furalaxyl	mg/kg dry wt	-	-	-	< 0.03	< 0.04
Haloxyfop-methyl	mg/kg dry wt	-	-0	-	< 0.06	< 0.07
Hexaconazole	mg/kg dry wt	-	10	N;	< 0.06	< 0.07
Hexazinone	mg/kg dry wt	-		. 0.	< 0.03	< 0.04
IPBC (3-lodo-2-propyny butylcarbamate)	yl-n- mg/kg dry wt	-	20 ,	70	< 0.3	< 0.4
Kresoxim-methyl	mg/kg dry wt	-	-	-	< 0.03	< 0.04
Linuron	mg/kg dry wt	4		-	< 0.06	< 0.07
Malathion	mg/kg dry wt			-	< 0.06	< 0.07
Metalaxyl	mg/kg dry wt	10-1	(-)	-	< 0.06	< 0.07
Methamidophos	mg/kg dry wt	70	X \ -	-	< 0.3	< 0.4
Metolachlor	mg/kg dry wt	-	X -	-	< 0.05	< 0.05
Metribuzin	mg/kg dry wt	- 0	<u> </u>	-	< 0.06	< 0.07
Molinate	mg/kg dry wt		-	-	< 0.11	< 0.14
Myclobutanil	mg/kg dry wt	-	-	-	< 0.06	< 0.07
Naled	mg/kg dry wt		-	_	< 0.3	< 0.4
Norflurazon	mg/kg dry wt	(U .	_	_	< 0.11	< 0.14
Oxadiazon	mg/kg dry wt	_	_	-	0.61	< 0.07
Oxyfluorfen	mg/kg dry wt	-	-	-	< 0.03	< 0.04
Paclobutrazol	mg/kg dry wt	-	_	_	< 0.06	< 0.07
Parathion-ethyl	mg/kg dry wt	-	_	-	< 0.06	< 0.07
Parathion-methyl	mg/kg dry wt		_	_	< 0.06	< 0.07
Pendimethalin	mg/kg dry wt	<u> </u>	_	_	< 0.06	< 0.07
Permethrin	mg/kg dry wt	<u>-</u>	_	-	< 0.03	< 0.07
Pirimicarb	mg/kg dry wt	<u> </u>	<u>-</u>	_	< 0.06	< 0.07
Pirimicarb Pirimiphos-methyl	mg/kg dry wt	-		-	< 0.06	< 0.07
Prochloraz	mg/kg dry wt		-	-	< 0.3	< 0.07
Procymidone Procymidone	mg/kg dry wt	-	-	-	< 0.06	< 0.4
-						
Prometryn	mg/kg dry wt	-	-	-	< 0.03	< 0.04
Propachlor	mg/kg dry wt	-	-	-	< 0.06	< 0.07
Propanil	mg/kg dry wt	-	-	-	< 0.2	< 0.2
Propazine	mg/kg dry wt	-	-	-	< 0.03	< 0.04
Propiconazole	mg/kg dry wt	-	-	-	< 0.05	< 0.05
Pyriproxyfen	mg/kg dry wt	-	-	-	< 0.06	< 0.07
Quizalofop-ethyl	mg/kg dry wt	-	-	-	< 0.06	< 0.07
Simazine	mg/kg dry wt	-	-	-	< 0.06	< 0.07

Sample Type: Soil						
Samp	ole Name:	PAV TP01 0.50 12-Jun-2023	PAV TP02 0.10 12-Jun-2023	DUP C1	B59 TP04 0.10 14-Jun-2023	B59 TP04 0.50 14-Jun-2023
Lab	Number:	3299078.212	3299078.214	3299078.217	3299078.219	3299078.220
Organonitro&phosphorus Pesticides	Screen in S	oil by GCMS				
Simetryn	ng/kg dry wt	-	-	-	< 0.06	< 0.07
Sulfentrazone m	ng/kg dry wt	-	-	-	< 0.3	< 0.4
	ng/kg dry wt	-	-	-	< 0.11	< 0.14
Tebuconazole m	ng/kg dry wt	-	-	-	< 0.06	< 0.07
Terbacil m	ng/kg dry wt	-	-	-	< 0.06	< 0.07
Terbumeton m	ng/kg dry wt	-	-	-	< 0.06	< 0.07
	ng/kg dry wt	-	-	-	< 0.03	< 0.04
·	ng/kg dry wt	-	-	-	< 0.06	< 0.07
<u> </u>	ng/kg dry wt	-	-	-	< 0.06	< 0.07
·	ng/kg dry wt	-	_	-	< 0.3	< 0.4
	ng/kg dry wt	-	_	-	< 0.06	< 0.07
	ng/kg dry wt	-	-	-	< 0.03	< 0.04
•	ng/kg dry wt	-	-	-	< 0.06	< 0.07
	ng/kg dry wt	-	-		< 0.06	< 0.07
	ng/kg dry wt	-	-	-	< 0.06	< 0.07
	0 0 ,			()		
-	ole Name:	B63 TP01 0.10 14-Jun-2023	B66 HA01 14-Jun-2023	B66 HA02 14-Jun-2023	B67 HA01 0.10 14-Jun-2023	B67 HA01 0.50 14-Jun-2023
	Number:	3299078.222	3299078.225	3299078.226	3299078.227	3299078.228
Individual Tests				•		
	00g as rcvd	93	87	79	94	84
Total Recoverable Beryllium m	ng/kg dry wt	0.4	4.5	0.9	0.4	0.3
8 Heavy metals plus Boron				. 0.		
Total Recoverable Arsenic m	ng/kg dry wt	5	30	28	4	3
Total Recoverable Boron m	ng/kg dry wt	< 20	2,700	360	< 20	< 20
Total Recoverable Cadmium m	ng/kg dry wt	< 0.10	1.93	2.6	< 0.10	< 0.10
Total Recoverable Chromium m	ng/kg dry wt	9	47	31	9	5
Total Recoverable Copper m	ng/kg dry wt	11	220	154	12	4
Total Recoverable Lead m	ng/kg dry wt	8.2	1,470	780	6.3	4.5
Total Recoverable Mercury m	ng/kg dry wt	< 0.10	0.77	< 0.3	< 0.10	< 0.10
Total Recoverable Nickel m	ng/kg dry wt	11	140	38	7	3
	ng/kg dry wt	54	1,910	1,190	33	24
Haloethers in SVOC Soil Samples by	y GC-MS					
	ng/kg dry wt	< 0.5	< 0.7	< 0.8	< 0.5	< 0.5
• • • • • • • • • • • • • • • • • • • •	ng/kg dry wt	< 0.5	< 0.7	< 0.8	< 0.5	< 0.5
	ng/kg dry wt	< 0.5	< 0.7	< 0.8	< 0.5	< 0.5
	ng/kg dry wt	< 0.4	< 0.7	< 0.8	< 0.4	< 0.4
	ng/kg dry wt	< 0.5	< 0.7	< 0.8	< 0.5	< 0.5
Nitrogen containing compounds in S	-		ı			
	ng/kg dry wt	< 1.0	< 1.4	< 1.6	< 1.0	< 1.0
		< 1.0	< 1.4	< 1.6	< 1.0	< 1.0
	ng/ka arv wr					< 0.5
	ng/kg dry wt na/ka dry wt		< 0.7	< 0.8	< 0.5	
	ng/kg dry wt	< 0.5	< 0.7 < 1.4	< 0.8 < 1.6	< 0.5	
			< 0.7 < 1.4 < 1.4	< 0.8 < 1.6 < 1.6	< 0.5 < 0.7 < 0.7	< 0.8 < 0.8
N-Nitrosodiphenylamine + m Diphenylamine	ng/kg dry wt ng/kg dry wt ng/kg dry wt	< 0.5 < 0.7 < 0.7	< 1.4	< 1.6	< 0.7	< 0.8
N-Nitrosodiphenylamine + m Diphenylamine Organochlorine Pesticides in SVOC	ng/kg dry wt ng/kg dry wt ng/kg dry wt Soil Sample	< 0.5 < 0.7 < 0.7	< 1.4 < 1.4	< 1.6 < 1.6	< 0.7 < 0.7	< 0.8 < 0.8
N-Nitrosodiphenylamine + m Diphenylamine Organochlorine Pesticides in SVOC Aldrin m	ng/kg dry wt ng/kg dry wt ng/kg dry wt Soil Sample ng/kg dry wt	< 0.5 < 0.7 < 0.7 s by GC-MS < 0.5	< 1.4 < 1.4 < 0.7	< 1.6 < 1.6 < 0.8	< 0.7 < 0.7 < 0.5	< 0.8 < 0.8
N-Nitrosodiphenylamine + m Diphenylamine Organochlorine Pesticides in SVOC Aldrin malpha-BHC m	ng/kg dry wt ng/kg dry wt ng/kg dry wt Soil Sample ng/kg dry wt ng/kg dry wt	< 0.5 < 0.7 < 0.7 s by GC-MS < 0.5	< 1.4 < 1.4 < 0.7 < 0.7	< 1.6 < 1.6 < 0.8 < 0.8	< 0.7 < 0.7 < 0.5 < 0.5	< 0.8 < 0.8 < 0.5 < 0.5
N-Nitrosodiphenylamine + moliphenylamine Organochlorine Pesticides in SVOC Aldrin molipha-BHC moliphen-BHC mo	ng/kg dry wt ng/kg dry wt ng/kg dry wt Soil Sample ng/kg dry wt ng/kg dry wt	< 0.5 < 0.7 < 0.7 s by GC-MS < 0.5 < 0.5 < 0.5	< 1.4 < 1.4 < 0.7 < 0.7 < 0.7	< 1.6 < 1.6 < 0.8 < 0.8 < 0.8	< 0.7 < 0.7 < 0.5 < 0.5 < 0.5	< 0.8 < 0.8 < 0.5 < 0.5 < 0.5
N-Nitrosodiphenylamine + moliphenylamine Organochlorine Pesticides in SVOC Aldrin molipha-BHC moliphea-BHC mo	ng/kg dry wt ng/kg dry wt ng/kg dry wt Soil Sample ng/kg dry wt ng/kg dry wt ng/kg dry wt	< 0.5 < 0.7 < 0.7 s by GC-MS < 0.5 < 0.5 < 0.5	< 1.4 < 1.4 < 0.7 < 0.7 < 0.7 < 0.7	< 1.6 < 1.6 < 0.8 < 0.8 < 0.8 < 0.8	< 0.7 < 0.7 < 0.5 < 0.5 < 0.5 < 0.5	< 0.8 < 0.5 < 0.5 < 0.5 < 0.5
N-Nitrosodiphenylamine + moliphenylamine Organochlorine Pesticides in SVOC Aldrin molipha-BHC molipheta-BHC molipheta-BHC molipheta-BHC molipheta-BHC molipheta-BHC molipheta-BHC molipheta-BHC molipheta-BHC (Lindane) molipheta-BHC (Lindane)	ng/kg dry wt ng/kg dry wt ng/kg dry wt Soil Sample ng/kg dry wt ng/kg dry wt ng/kg dry wt ng/kg dry wt ng/kg dry wt	< 0.5 < 0.7 < 0.7 s by GC-MS < 0.5 < 0.5 < 0.5 < 0.5	< 1.4 < 1.4 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7	< 1.6 < 1.6 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8	< 0.7 < 0.7 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.8 < 0.8 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5
N-Nitrosodiphenylamine + molphenylamine Organochlorine Pesticides in SVOC Aldrin malpha-BHC moleta-BHC (Lindane) moleta-BHC moleta-BHC moleta-BHC moleta-BHC moleta-BHC (Lindane) moleta-BHC moleta-BHC moleta-BHC moleta-BHC (Lindane) moleta-BHC moleta-BHC moleta-BHC (Lindane) moleta-BHC	ng/kg dry wt ng/kg dry wt ng/kg dry wt Soil Sample ng/kg dry wt ng/kg dry wt ng/kg dry wt ng/kg dry wt ng/kg dry wt ng/kg dry wt ng/kg dry wt	< 0.5 < 0.7 < 0.7 < by GC-MS < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1.4 < 1.4 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7	< 1.6 < 1.6 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8	< 0.7 < 0.7 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.8 < 0.8 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5
N-Nitrosodiphenylamine + Diphenylamine Organochlorine Pesticides in SVOC Aldrin malpha-BHC mbeta-BHC mcdelta-BHC mcgamma-BHC (Lindane) mcdelta-BHC mcd	ng/kg dry wt ng/kg dry wt ng/kg dry wt Soil Sample ng/kg dry wt ng/kg dry wt ng/kg dry wt ng/kg dry wt ng/kg dry wt ng/kg dry wt ng/kg dry wt ng/kg dry wt ng/kg dry wt	< 0.5 < 0.7 < 0.7 < 0.5 s by GC-MS < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1.4 < 1.4 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7	< 1.6 < 1.6 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8	< 0.7 < 0.7 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.8 < 0.8 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5
N-Nitrosodiphenylamine + Diphenylamine Organochlorine Pesticides in SVOC Aldrin malpha-BHC modelta-BHC	ng/kg dry wt ng/kg dry wt ng/kg dry wt Soil Sample ng/kg dry wt ng/kg dry wt ng/kg dry wt ng/kg dry wt ng/kg dry wt ng/kg dry wt ng/kg dry wt	< 0.5 < 0.7 < 0.7 < by GC-MS < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1.4 < 1.4 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7	< 1.6 < 1.6 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8	< 0.7 < 0.7 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.8 < 0.8 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5

Sample Type: Soil						
	mple Name:	B63 TP01 0.10 14-Jun-2023	B66 HA01 14-Jun-2023	B66 HA02 14-Jun-2023	B67 HA01 0.10 14-Jun-2023	B67 HA01 0.50 14-Jun-2023
	.ab Number:	3299078.222	3299078.225	3299078.226	3299078.227	3299078.228
Organochlorine Pesticides in SV		s by GC-MS				
Endosulfan I	mg/kg dry wt	< 1.0	< 3	< 4	< 1.0	< 1.0
Endosulfan II	mg/kg dry wt	< 2	< 3	< 4	< 2	< 2
Endosulfan sulphate	mg/kg dry wt	< 1.0	< 1.4	< 1.6	< 1.0	< 1.0
Endrin	mg/kg dry wt	< 0.7	< 1.4	< 1.6	< 0.7	< 0.8
Endrin ketone	mg/kg dry wt	< 1.0	< 1.4	< 1.6	< 1.0	< 1.0
Heptachlor	mg/kg dry wt	< 0.5	< 0.7	< 0.8	< 0.5	< 0.5
Heptachlor epoxide	mg/kg dry wt	< 0.5	< 0.7	< 0.8	< 0.5	< 0.5
Hexachlorobenzene	mg/kg dry wt	< 0.5	< 0.7	< 0.8	< 0.5	< 0.5
Polycyclic Aromatic Hydrocarbon	s in SVOC Soil	Samples by GC-MS	*			
Acenaphthene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	▲ < 0.5	< 0.5
Benzo[a]anthracene	mg/kg dry wt	< 0.5	< 0.5	1.9	< 0.5	< 0.5
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.5	< 0.7	3.2	< 0.5	< 0.5
Benzo[b]fluoranthene + Benzo[j]	mg/kg dry wt	< 0.5	< 0.7	4.7	< 0.5	< 0.5
fluoranthene	5 5,					
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.5	0.8	8.2	< 0.5	< 0.5
Benzo[k]fluoranthene	mg/kg dry wt	< 0.5	< 0.7	< 0.8	< 0.5	< 0.5
1&2-Chloronaphthalene	mg/kg dry wt	< 0.5	< 0.5	< 0.6	< 0.5	< 0.5
Chrysene	mg/kg dry wt	< 0.5	< 0.5	2.3	< 0.5	< 0.5
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.5	< 0.7	< 0.8	< 0.5	< 0.5
Fluoranthene	mg/kg dry wt	< 0.5	< 0.5	2.9	< 0.5	< 0.5
Fluorene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.5	0.8	2.8	< 0.5	< 0.5
2-Methylnaphthalene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	mg/kg dry wt	< 0.5	< 0.5	0.7	< 0.5	< 0.5
Pyrene	mg/kg dry wt	< 0.5	< 0.5	8.6	< 0.5	< 0.5
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES*	mg/kg dry wt	<13	<1.7	4.8	< 1.3	< 1.3
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	< 1.3	< 1.7	4.8	< 1.3	< 1.3
Phenols in SVOC Soil Samples b	y GC-MS		>			
4-Chloro-3-methylphenol	mg/kg dry wt	< 5	< 5	< 5	< 5	< 5
2-Chlorophenol	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,4-Dichlorophenol	mg/kg dry wt	1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,4-Dimethylphenol	mg/kg dry wt	< 3	< 3	< 3	< 3	< 3
3 & 4-Methylphenol (m- + p- cresol)	mg/kg dry wt	< 3	< 3	< 3	< 3	< 3
2-Methylphenol (o-cresol)	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Nitrophenol	mg/kg dry wt	< 5	< 5	< 5	< 5	< 5
Pentachlorophenol (PCP)	mg/kg dry wt	< 30	< 30	< 30	< 30	< 30
Phenol	mg/kg dry wt	< 1.0	< 1.4	< 1.6	< 1.0	< 1.0
2,4,5-Trichlorophenol	mg/kg dry wt	< 1.0	< 1.4	< 1.6	< 1.0	< 1.0
2,4,6-Trichlorophenol	mg/kg dry wt	< 1.0	< 1.4	< 1.6	< 1.0	< 1.0
Plasticisers in SVOC Soil Sample	es by GC-MS					
Bis(2-ethylhexyl)phthalate	mg/kg dry wt	< 5	< 5	27	< 5	< 5
Butylbenzylphthalate	mg/kg dry wt	< 1.0	< 1.4	< 1.6	< 1.0	< 1.0
Di(2-ethylhexyl)adipate	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Diethylphthalate	mg/kg dry wt	< 1.0	< 1.4	< 1.6	< 1.0	< 1.0
Dimethylphthalate	mg/kg dry wt	< 1.0	< 1.4	< 1.6	< 1.0	< 1.0
Di-n-butylphthalate	mg/kg dry wt	< 1.0	< 1.4	< 1.6	< 1.0	< 1.0
Di-n-octylphthalate	mg/kg dry wt	< 1.0	< 1.4	< 1.6	< 1.0	< 1.0
Other Halogenated compounds in				-	-	<u>-</u>
1,2-Dichlorobenzene	mg/kg dry wt	< 0.7	< 1.4	< 1.6	< 0.7	< 0.8
1,3-Dichlorobenzene	mg/kg dry wt	< 0.7	< 1.4	< 1.6	< 0.7	< 0.8
1,0-DICHIOIODENZENE	mg/kg dry Wt	~ 0.1	\ 1.4	\ 1.0	~ 0.1	\ U.U

Sample Type: Soil						
Sar	nple Name:	B63 TP01 0.10	B66 HA01	B66 HA02	B67 HA01 0.10	B67 HA01 0.50
		14-Jun-2023	14-Jun-2023	14-Jun-2023	14-Jun-2023	14-Jun-2023
	ab Number:	3299078.222	3299078.225	3299078.226	3299078.227	3299078.228
Other Halogenated compounds in		• •		1.0		.00
1,4-Dichlorobenzene	mg/kg dry wt	< 0.7	< 1.4	< 1.6	< 0.7	< 0.8
Hexachlorobutadiene	mg/kg dry wt	< 0.7	< 1.4	< 1.6	< 0.7	< 0.8
Hexachloroethane	mg/kg dry wt	< 0.7	< 1.4	< 1.6	< 0.7	< 0.8
1,2,4-Trichlorobenzene	mg/kg dry wt	< 0.5	< 0.7	< 0.8	< 0.5	< 0.5
Other compounds in SVOC Soil S						
Benzyl alcohol	mg/kg dry wt	< 10	< 10	< 10	< 10	< 10
Carbazole	mg/kg dry wt	< 0.5	< 0.7	< 0.8	< 0.5	< 0.5
Dibenzofuran	mg/kg dry wt	< 0.5	< 0.7	< 0.8	< 0.5	< 0.5
Isophorone	mg/kg dry wt	< 0.5	< 0.7	< 0.8	< 0.5	< 0.5
Total Petroleum Hydrocarbons in				,		
C7 - C9	mg/kg dry wt	-	< 40	< 40	-	-
C10 - C14	mg/kg dry wt	-	< 30	80	-	
C15 - C36	mg/kg dry wt	-	2,500	17,800	<i>N</i> -	
Total hydrocarbons (C7 - C36)	mg/kg dry wt	-	2,500	17,900)	*-
BTEX in VOC Soils by Headspace	e GC-MS				T \'/	<u></u>
Benzene	mg/kg dry wt	-	< 0.3	< 0.4		-
Ethylbenzene	mg/kg dry wt	-	< 0.3	< 0.4	30	-
Toluene	mg/kg dry wt	-	< 0.3	< 0.4	1 (-
m&p-Xylene	mg/kg dry wt	-	< 0.6	< 0.8	-	-
o-Xylene	mg/kg dry wt	-	< 0.3	< 0.4	-	-
Halogenated Aliphatics in VOC So	oils by Headspa	ice GC-MS		N.		
Bromomethane (Methyl Bromide)	mg/kg dry wt	-	< 0.3	< 0.4	-	-
Carbon tetrachloride	mg/kg dry wt	-	< 0.3	< 0.4	-	-
Chloroethane	mg/kg dry wt	-	< 0.3	< 0.4	-	-
Chloromethane	mg/kg dry wt	-	< 0.3	< 0.4	-	-
1,2-Dibromo-3-chloropropane	mg/kg dry wt	1-	< 0.5	< 0.5	-	-
1,2-Dibromoethane (ethylene dibromide, EDB)	mg/kg dry wt		< 0.3	< 0.4	-	-
Dibromomethane	mg/kg dry wt		< 0.3	< 0.4	-	-
1,3-Dichloropropane	mg/kg dry wt	-	< 0.3	< 0.4	-	-
Dichlorodifluoromethane	mg/kg dry wt	-	< 0.5	< 0.5	-	-
1,1-Dichloroethane	mg/kg dry wt	-(1)	< 0.3	< 0.4	-	-
1,2-Dichloroethane	mg/kg dry wt	-	< 0.3	< 0.4	-	-
1,1-Dichloroethene	mg/kg dry wt		< 0.3	< 0.4	-	-
cis-1,2-Dichloroethene	mg/kg dry wt	() -	< 0.3	< 0.4	-	-
trans-1,2-Dichloroethene	mg/kg dry wt	-	< 0.3	< 0.4	-	-
Dichloromethane (methylene chloride)	mg/kg dry wt	-	< 6	< 8	-	-
1,2-Dichloropropane	mg/kg dry wt	-	< 0.3	< 0.4	-	-
1,1-Dichloropropene	mg/kg dry wt	-	< 0.3	< 0.4	-	-
cis-1,3-Dichloropropene	mg/kg dry wt	-	< 0.3	< 0.4	-	-
trans-1,3-Dichloropropene	mg/kg dry wt	-	< 0.3	< 0.4	-	-
Hexachlorobutadiene	mg/kg dry wt	-	< 0.3	< 0.4	-	-
1,1,1,2-Tetrachloroethane	mg/kg dry wt	-	< 0.3	< 0.4	-	-
1,1,2,2-Tetrachloroethane	mg/kg dry wt	-	< 0.3	< 0.4	-	-
Tetrachloroethene (tetrachloroethylene)	mg/kg dry wt	-	< 0.3	< 0.4	-	-
1,1,1-Trichloroethane	mg/kg dry wt	-	< 0.3	< 0.4	-	-
1,1,2-Trichloroethane	mg/kg dry wt	-	< 0.3	< 0.4	-	-
Trichloroethene (trichloroethylene)	mg/kg dry wt	-	< 0.3	< 0.4	-	-
Trichlorofluoromethane	mg/kg dry wt	-	< 0.3	< 0.4	-	-
1,2,3-Trichloropropane	mg/kg dry wt	-	< 0.5	< 0.5	-	-
1,1,2-Trichlorotrifluoroethane	mg/kg dry wt	-	< 0.3	< 0.4	-	-
(Freon 113)						

Sample Type: Soil						
:	Sample Name:	B63 TP01 0.10 14-Jun-2023	B66 HA01 14-Jun-2023	B66 HA02 14-Jun-2023	B67 HA01 0.10 14-Jun-2023	B67 HA01 0.50 14-Jun-2023
	Lab Number:	3299078.222	3299078.225	3299078.226	3299078.227	3299078.228
Haloaromatics in VOC Soils b	y Headspace GC-N	1S				
Bromobenzene	mg/kg dry wt	-	< 0.3	< 0.4	-	-
1,3-Dichlorobenzene	mg/kg dry wt	-	< 0.3	< 0.4	-	-
4-Chlorotoluene	mg/kg dry wt	-	< 0.3	< 0.4	-	-
Chlorobenzene	mg/kg dry wt	-	< 0.3	< 0.4	-	-
(monochlorobenzene)						
1,2-Dichlorobenzene	mg/kg dry wt	-	< 0.3	< 0.4	-	-
1,4-Dichlorobenzene	mg/kg dry wt	-	< 0.3	< 0.4	-	-
2-Chlorotoluene	mg/kg dry wt	-	< 0.3	< 0.4	-	-
1,2,3-Trichlorobenzene	mg/kg dry wt	-	< 0.3	< 0.4	-	-
1,2,4-Trichlorobenzene	mg/kg dry wt	-	< 0.3	< 0.4	-	-
1,3,5-Trichlorobenzene	mg/kg dry wt	-	< 0.3	< 0.4	-	-
Monoaromatic Hydrocarbons i	n VOC Soils by He	adspace GC-MS			•	
n-Butylbenzene	mg/kg dry wt	-	< 0.3	< 0.4	-	A (.)
tert-Butylbenzene	mg/kg dry wt	-	< 0.3	< 0.4	-	-
Isopropylbenzene (Cumene)	mg/kg dry wt	-	< 0.3	< 0.4	7-10	-
4-Isopropyltoluene (p-Cymene) mg/kg dry wt	-	< 0.3	< 0.4		-
n-Propylbenzene	mg/kg dry wt	-	< 0.3	< 0.4		-
sec-Butylbenzene	mg/kg dry wt	-	< 0.3	< 0.4	10	-
Styrene	mg/kg dry wt	-	< 0.3	< 0.4	10	-
1,2,4-Trimethylbenzene	mg/kg dry wt	-	< 0.3	< 0.4	-	-
1,3,5-Trimethylbenzene	mg/kg dry wt	-	< 0.3	< 0.4	_	-
Ketones in VOC Soils by Head	dspace GC-MS		10	1/1		
2-Butanone (MEK)	mg/kg dry wt	-	< 60	< 80	-	-
4-Methylpentan-2-one (MIBK)	mg/kg dry wt	-	< 12	< 15	-	-
Acetone	mg/kg dry wt	-	< 60	< 80	-	-
Methyl tert-butylether (MTBE)	mg/kg dry wt	-	< 0.3	< 0.4	-	-
Trihalomethanes in VOC Soils	s by Headspace GC	-MS				
Bromodichloromethane	mg/kg dry wt		< 0.3	< 0.4	-	-
Bromoform (tribromomethane)	mg/kg dry wt	10	< 0.5	< 0.5	-	-
Chloroform (Trichloromethane) mg/kg dry wt	V - /	< 0.3	< 0.4	-	-
Dibromochloromethane	mg/kg dry wt	-	< 0.3	< 0.4	-	-
Other VOC in Soils by Heads						
Carbon disulphide	mg/kg dry wt	-	< 0.3	< 0.3	-	_
Naphthalene	mg/kg dry wt		< 0.3	< 0.4	-	_
		DC7114000 0 40	DC7 11400 0 50	D74 TD04 0 40	D74 TD04 0 50	D74 TD00 0 40
	Sample Name:	B67 HA02 0.10 14-Jun-2023	B67 HA02 0.50 14-Jun-2023	B71 TP01 0.10 14-Jun-2023	B71 TP01 0.50 14-Jun-2023	B71 TP02 0.10 14-Jun-2023
	Lab Number:	3299078.229	3299078.230	3299078.231	3299078.232	3299078.234
Individual Tests	200 11011001					
Dry Matter	g/100g as rcvd	89	60	66	60	67
Total Recoverable Beryllium	mg/kg dry wt	1.0	0.9	1.0	1.3	1.2
8 Heavy metals plus Boron	3.1.3 4.7 11				1.5	
Total Recoverable Arsenic	mg/kg dry wt	6	7	6	5	6
Total Recoverable Boron	mg/kg dry wt	580	84	< 20	< 20	< 20
Total Recoverable Cadmium	mg/kg dry wt	0.17	< 0.10	0.16	< 0.10	0.26
Total Recoverable Chromium	mg/kg dry wt	18	15	10	12	11
Total Recoverable Copper	mg/kg dry wt	46	22	24	32	35
Total Recoverable Lead	mg/kg dry wt	29	17.5	23	18.4	27
Total Recoverable Mercury	mg/kg dry wt	0.10	0.10	0.11	0.13	0.15
Total Recoverable Nickel	mg/kg dry wt	29	6	6	7	6
Total Recoverable Zinc	mg/kg dry wt	72	45	65	42	66
Haloethers in SVOC Soil Sam		12	40	00	44	UU
		- O E	~ O C	- O E	- O E	-05
Bis(2-chloroethoxy) methane	mg/kg dry wt	< 0.5	< 0.6	< 0.5	< 0.5	< 0.5
Bis(2-chloroethyl)ether	mg/kg dry wt	< 0.5	< 0.6	< 0.5	< 0.5	< 0.5
Bis(2-chloroisopropyl)ether	mg/kg dry wt	< 0.5	< 0.6	< 0.5	< 0.5	< 0.5

Sample Type: Soil						
Sa	mple Name:	B67 HA02 0.10	B67 HA02 0.50	B71 TP01 0.10	B71 TP01 0.50	B71 TP02 0.10
		14-Jun-2023	14-Jun-2023	14-Jun-2023	14-Jun-2023	14-Jun-2023
	ab Number:	3299078.229	3299078.230	3299078.231	3299078.232	3299078.234
Haloethers in SVOC Soil Sample						
4-Bromophenyl phenyl ether	mg/kg dry wt	< 0.4	< 0.6	< 0.5	< 0.5	< 0.5
4-Chlorophenyl phenyl ether	mg/kg dry wt	< 0.5	< 0.6	< 0.5	< 0.5	< 0.5
Nitrogen containing compounds		· · ·				
2,4-Dinitrotoluene	mg/kg dry wt	< 1.0	< 1.1	< 1.0	< 1.0	< 1.0
2,6-Dinitrotoluene	mg/kg dry wt	< 1.0	< 1.1	< 1.0	< 1.0	< 1.0
Nitrobenzene	mg/kg dry wt	< 0.5	< 0.6	< 0.5	< 0.5	< 0.5
N-Nitrosodi-n-propylamine	mg/kg dry wt	< 0.7	< 1.1	< 0.9	< 1.0	< 0.9
N-Nitrosodiphenylamine + Diphenylamine	mg/kg dry wt	< 0.7	< 1.1	< 0.9	< 1.0	< 0.9
Organochlorine Pesticides in SV	OC Soil Samples	s by GC-MS				
Aldrin	mg/kg dry wt	< 0.5	< 0.6	< 0.5	< 0.5	< 0.5
alpha-BHC	mg/kg dry wt	< 0.5	< 0.6	< 0.5	< 0.5	< 0.5
beta-BHC	mg/kg dry wt	< 0.5	< 0.6	< 0.5	< 0.5	< 0.5
delta-BHC	mg/kg dry wt	< 0.5	< 0.6	< 0.5	< 0.5	< 0.5
gamma-BHC (Lindane)	mg/kg dry wt	< 0.5	< 0.6	< 0.5	< 0.5	< 0.5
4,4'-DDD	mg/kg dry wt	< 0.5	< 0.6	< 0.5	< 0.5	< 0.5
4,4'-DDE	mg/kg dry wt	< 0.5	< 0.6	< 0.5	< 0.5	< 0.5
4,4'-DDT	mg/kg dry wt	< 1.0	< 1.1	<1.0	< 1.0	< 1.0
Dieldrin	mg/kg dry wt	< 0.5	< 0.6	< 0.5	< 0.5	< 0.5
Endosulfan I	mg/kg dry wt	< 1.0	< 1.1	< 1.8	< 2	< 1.0
Endosulfan II	mg/kg dry wt	< 2	< 2	< 2	< 2	< 2
Endosulfan sulphate	mg/kg dry wt	< 1.0	< 1.1	< 1.0	< 1.0	< 1.0
Endrin	mg/kg dry wt	< 0.7	< 1.1	< 0.9	< 1.0	< 0.9
Endrin ketone	mg/kg dry wt	< 1.0	<1.1	< 1.0	< 1.0	< 1.0
Heptachlor	mg/kg dry wt	< 0.5	< 0.6	< 0.5	< 0.5	< 0.5
Heptachlor epoxide	mg/kg dry wt	< 0.5 < 0.5	< 0.6	< 0.5	< 0.5	< 0.5
Hexachlorobenzene	mg/kg dry wt		< 0.6	< 0.5	< 0.5	< 0.5
Polycyclic Aromatic Hydrocarbon			· ·			
Acenaphthene	mg/kg dry wt	12.5	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	mg/kg dry wt	0.7	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	mg/kg dry wt	36	< 0.5	< 0.5	< 0.5	< 0.5
Benzo[a]anthracene	mg/kg dry wt	39	< 0.5	< 0.5	< 0.5	< 0.5
Benzo[a]pyrene (BAP)	mg/kg dry wt	35	< 0.6	< 0.5	< 0.5	< 0.5
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	38	< 0.6	< 0.5	< 0.5	< 0.5
Benzo[g,h,i]perylene	mg/kg dry wt	16.5	< 0.6	< 0.5	< 0.5	< 0.5
Benzo[k]fluoranthene	mg/kg dry wt	16	< 0.6	< 0.5	< 0.5	< 0.5
1&2-Chloronaphthalene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	mg/kg dry wt	31	< 0.5	< 0.5	< 0.5	< 0.5
Dibenzo[a,h]anthracene	mg/kg dry wt	4.7	< 0.6	< 0.5	< 0.5	< 0.5
Fluoranthene	mg/kg dry wt	102	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	mg/kg dry wt	13.6	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	19.3	< 0.6	< 0.5	< 0.5	< 0.5
2-Methylnaphthalene	mg/kg dry wt	0.6	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	mg/kg dry wt	79 85	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5
Pyrene Benzo[a]pyrene Potency Equivalency Factor (PEE) NES*	mg/kg dry wt mg/kg dry wt	52	< 1.3	< 1.3	< 1.3	< 1.3
Equivalency Factor (PEF) NES* Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	51	< 1.3	< 1.3	< 1.3	< 1.3
Phenols in SVOC Soil Samples b	ov GC-MS					
4-Chloro-3-methylphenol	mg/kg dry wt	< 5	< 5	< 5	< 5	< 5
2-Chlorophenol	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,4-Dichlorophenol	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,4-Dimethylphenol	mg/kg dry wt	< 3	< 3	< 3	< 3	< 3
2, 	mg/kg dry Wt		``J	٠,٠	٠٠	``

Sample Type: Soil						
5	Sample Name:	B67 HA02 0.10	B67 HA02 0.50	B71 TP01 0.10	B71 TP01 0.50	B71 TP02 0.10
	Lab Number:	14-Jun-2023 3299078.229	14-Jun-2023 3299078.230	14-Jun-2023 3299078.231	14-Jun-2023 3299078.232	14-Jun-2023 3299078.234
Phenols in SVOC Soil Samples		3299010.229	3299076.230	3299076.231	3299076.232	3299076.234
3 & 4-Methylphenol (m- + p-	mg/kg dry wt	< 3	< 3	< 3	< 3	< 3
cresol)	mg/kg dry m					
2-Methylphenol (o-cresol)	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Nitrophenol	mg/kg dry wt	< 5	< 5	< 5	< 5	< 5
Pentachlorophenol (PCP)	mg/kg dry wt	< 30	< 30	< 30	< 30	< 30
Phenol	mg/kg dry wt	< 1.0	< 1.1	< 1.0	< 1.0	< 1.0
2,4,5-Trichlorophenol	mg/kg dry wt	< 1.0	< 1.1	< 1.0	< 1.0	< 1.0
2,4,6-Trichlorophenol	mg/kg dry wt	< 1.0	< 1.1	< 1.0	< 1.0	< 1.0
Plasticisers in SVOC Soil Sam	ples by GC-MS					
Bis(2-ethylhexyl)phthalate	mg/kg dry wt	< 5	< 5	< 5	< 5	< 5
Butylbenzylphthalate	mg/kg dry wt	< 1.0	< 1.1	< 1.0	< 1.0	< 1.0
Di(2-ethylhexyl)adipate	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Diethylphthalate	mg/kg dry wt	< 1.0	< 1.1	< 1.0	< 1.0	< 1.0
Dimethylphthalate	mg/kg dry wt	< 1.0	< 1.1	< 1.0	< 1.0	< 1.0
Di-n-butylphthalate	mg/kg dry wt	< 1.0	< 1.1	< 1.0	< 1.0	< 1.0
Di-n-octylphthalate	mg/kg dry wt	< 1.0	< 1.1	< 1.0	< 1.0	< 1.0
Other Halogenated compounds	s in SVOC Soil Sai	mples by GC-MS		00		
1,2-Dichlorobenzene	mg/kg dry wt	< 0.7	< 1.1	< 0.9	≤1.0	< 0.9
1,3-Dichlorobenzene	mg/kg dry wt	< 0.7	< 1.1	< 0.9	<1.0	< 0.9
1,4-Dichlorobenzene	mg/kg dry wt	< 0.7	< 1.1	< 0.9	< 1.0	< 0.9
Hexachlorobutadiene	mg/kg dry wt	< 0.7	< 1.1	< 0.9	< 1.0	< 0.9
Hexachloroethane	mg/kg dry wt	< 0.7	< 1.1	< 0.9	< 1.0	< 0.9
1,2,4-Trichlorobenzene	mg/kg dry wt	< 0.5	< 0.6	< 0.5	< 0.5	< 0.5
Other compounds in SVOC Sc	oil Samples by GC-	·MS	70	10		
Benzyl alcohol	mg/kg dry wt	< 10	< 10	< 10	< 10	< 10
Carbazole	mg/kg dry wt	5.2	< 0.6	< 0.5	< 0.5	< 0.5
Dibenzofuran	mg/kg dry wt	5.9	< 0.6	< 0.5	< 0.5	< 0.5
Isophorone	mg/kg dry wt	< 0.5	< 0.6	< 0.5	< 0.5	< 0.5
BTEX in VOC Soils by Headsp	pace GC-MS	10		I.		
Benzene	mg/kg dry wt	J - /		< 0.3	< 0.3	-
Ethylbenzene	mg/kg dry wt	-	? -	< 0.3	< 0.3	-
Toluene	mg/kg dry wt	-	-	< 0.3	< 0.3	-
m&p-Xylene	mg/kg dry wt	1-1	-	< 0.6	< 0.6	-
o-Xylene	mg/kg dry wt		_	< 0.3	< 0.3	-
Halogenated Aliphatics in VOC		ce GC-MS				
Bromomethane (Methyl Bromid	, ,	-	_	< 0.3	< 0.3	_
Carbon tetrachloride	mg/kg dry wt	-	_	< 0.3	< 0.3	-
Chloroethane	mg/kg dry wt	-	_	< 0.3	< 0.3	_
Chloromethane	mg/kg dry wt		_	< 0.3	< 0.3	_
1,2-Dibromo-3-chloropropane	mg/kg dry wt	-	_	< 0.5	< 0.5	_
1,2-Dibromoethane (ethylene	mg/kg dry wt	-	_	< 0.3	< 0.3	_
dibromide, EDB)						
Dibromomethane	mg/kg dry wt	-	-	< 0.3	< 0.3	-
1,3-Dichloropropane	mg/kg dry wt	-	-	< 0.3	< 0.3	-
Dichlorodifluoromethane	mg/kg dry wt	-	-	< 0.5	< 0.5	-
1,1-Dichloroethane	mg/kg dry wt	-	-	< 0.3	< 0.3	-
1,2-Dichloroethane	mg/kg dry wt	-	-	< 0.3	< 0.3	-
1,1-Dichloroethene	mg/kg dry wt	-	-	< 0.3	< 0.3	-
cis-1,2-Dichloroethene	mg/kg dry wt	-	-	< 0.3	< 0.3	-
trans-1,2-Dichloroethene	mg/kg dry wt	-	-	< 0.3	< 0.3	-
Dichloromethane (methylene chloride)	mg/kg dry wt	-	-	< 6	< 6	-
1,2-Dichloropropane	mg/kg dry wt	-	-	< 0.3	< 0.3	-
1,1-Dichloropropene	mg/kg dry wt	-	-	< 0.3	< 0.3	-
cis-1,3-Dichloropropene	mg/kg dry wt	-	-	< 0.3	< 0.3	-

Bample Name: B67 HA02 0.10 B67 HA02 0.50 B67 HA02 0.50 B71 TF012.00 10 14 1 T	Sample Type: Soil						
Lab Numbor:	S	Sample Name:					
Heliogranutical Alighnitics in VOC Soils by Headspace OC-MS							
International Dischargeropene mg/kg dy wt -				3299078.230	3299078.231	3299078.232	3299078.234
HeaseInterbrothedadeine			ce GC-MS				
1.1.1.2 Tetrachloroethane mg/kg dry wt - - - 0.3 < 0.3 < 0.5		0 0 ,	-	-			-
1.1.2.2-Tetrachtoroethane mg/kg dry wt -			-	-			-
Tetrachbrocebane mg/kg dry wt			-	-			-
(letra-lichoroethyene)			-	-			-
1,1,2-Trichloroethane	(tetrachloroethylene)		-	-			-
Trichiorochlarene mg/kg dry wt -	1,1,1-Trichloroethane		-	-			-
(Inchlororethylene)	1,1,2-Trichloroethane	mg/kg dry wt	-	-			-
1,2,3-Trichloropropane mg/kg dry wt		mg/kg dry wt	-	-	< 0.3	< 0.3	-
1,1.2-Trichloroterifluoroethane (righty viterior 113) Viryl chloride (right)	Trichlorofluoromethane	mg/kg dry wt	-	-	< 0.3	< 0.3	-
(Freen 113) Imaging dry with childred - < 0.3 30.3 - Haloaromatics in VOC Soils by Headspace GC-MS Bromchenzene mg/kg dry with with children with children with children mg/kg dry with children mg/kg dry with children mg/kg dry with children with children with children with children mg/kg dry with children	1,2,3-Trichloropropane	mg/kg dry wt	-	-	< 0.5	< 0.5	1-
Halicaromatics in VOC Soils by Headspace GC-MS Firmoherzene mg/kg dry wt 	1 ' '	mg/kg dry wt	-	-	< 0.3	< 0.3	7 O
Bromobenzene	Vinyl chloride	mg/kg dry wt	-	-	< 0.3	< 0.3	-
Bromobenzene	Haloaromatics in VOC Soils by	Headspace GC-N	1S	1		Y 10	
1.3-Dichlorobenzene mg/kg dry wt 4-Chloroboluene mg/kg dry wt 1		· · · · · · · · · · · · · · · · · · ·		-	< 0.3	< 0.3	_
4-Chlorotoluene mg/kg dry wt	1,3-Dichlorobenzene		-	-			-
Chiorobenzene mg/kg dry wt			-	-			_
1,2-Dichlorobenzene	I -		-	- 6			-
1.4-Dichlorobenzene	` ,	ma/ka drv wt	-	- 0	< 0.3	< 0.3	_
2-Chlorotoluene mg/kg dry wt 1,2,3-Trichlorobenzene mg/kg dry wt 1,2,4-Trichlorobenzene mg/kg dry wt 1,3,3-Trichlorobenzene mg/kg dry wt			-	10		< 0.3	_
1,2,3-Trichlorobenzene mg/kg dry wt - 4,93 ≤ 0.3 ≤ 0.3 1,2,4-Trichlorobenzene mg/kg dry wt - < 0.3	· ·		-				_
1,2,4-Trichlorobenzene			-	70			-
1,3,5-Trichlorobenzene	1,2,4-Trichlorobenzene		-	- 1	< 0.3	< 0.3	_
Monoaromatic Hydrocarbons in VOC Soils by Headspace GC-MS n-Butylbenzene mg/kg dry wt co. 3.3			-	-			_
New New	* *		adspace GC-MS				
tert-Butylbenzene mg/kg dry wt - < 0.3 < 0.3 - Isopropylbenzene (Cumene) mg/kg dry wt - - < 0.3	•				< 0.3	< 0.3	_
Sopropylbenzene (Cumene) mg/kg dry wt - - < 0.3 < 0.3 - < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3	•		10				
### A-lsopropyltoluene (p-Cymene) mg/kg dry wt - - -							_
n-Propylbenzene mg/kg dry wt	,			-			_
Sec-Butylbenzene mg/kg dry wt - - < 0.3 < 0.3 -				_			_
Styrene			-	_			_
1,2,4-Trimethylbenzene mg/kg dry wt - - <0.3	·	V		_			
1,3,5-Trimethylbenzene mg/kg dry wt - < 0.3 < 0.3 - Ketones in VOC Soils by Headspace GC-MS 2-Butanone (MEK) mg/kg dry wt - - < 60	•			_			_
Ketones in VOC Soils by Headspace GC-MS 2-Butanone (MEK) mg/kg dry wt - - < 60			-	_			_
Part		· · · · ·			0.0	0.0	
4-Methylpentan-2-one (MIBK) mg/kg dry wt < < 11					< 60	< 60	
Acetone mg/kg dry wt - < 60 < 60 - Methyl tert-butylether (MTBE) mg/kg dry wt - - < 0.3	` '			_			-
Methyl tert-butylether (MTBE) mg/kg dry wt - - < 0.3 < 0.3 - Trihalomethanes in VOC Soils by Headspace GC-MS Bromodichloromethane mg/kg dry wt - - < 0.3	· ,			_			_
Trihalomethanes in VOC Soils by Headspace GC-MS Bromodichloromethane mg/kg dry wt - - < 0.3				_			-
Bromodichloromethane mg/kg dry wt - - < 0.3 < 0.3 - Bromoform (tribromomethane) mg/kg dry wt - - < 0.5				-	\ U. 3	\ U. 3	-
Bromoform (tribromomethane) mg/kg dry wt - - < 0.5 < 0.5 -		-			.00	-00	
Chloroform (Trichloromethane) mg/kg dry wt - - < 0.3 < 0.3 - Dibromochloromethane mg/kg dry wt - - < 0.3		- ,		-			-
Dibromochloromethane mg/kg dry wt - - < 0.3 < 0.3 - Other VOC in Soils by Headspace GC-MS Carbon disulphide mg/kg dry wt - - < 0.3				-			-
Other VOC in Soils by Headspace GC-MS Carbon disulphide mg/kg dry wt < < 0.3 < < 0.3	` '			-			-
Carbon disulphide mg/kg dry wt - - < 0.3 < 0.3 - Naphthalene mg/kg dry wt - - < 0.3 < 0.3 - Sample Name: B71 TP02 0.50 14-Jun-2023 DIP HA01 0.10 DIP HA02 0.10 14-Jun-2023 DIP HA03 0.10 14-Jun-2023 B16 TP01 0.1 14-Jun-2023 Lab Number: 3299078.235 3299078.237 3299078.239 3299078.241 3299078.245 Individual Tests		<u> </u>	-	-	< 0.3	< 0.3	-
Naphthalene mg/kg dry wt - - < 0.3 < 0.3 - Sample Name: B71 TP02 0.50 14-Jun-2023 DIP HA01 0.10 14-Jun-2023 DIP HA02 0.10 14-Jun-2023 DIP HA03 0.10 14-Jun-2023 B16 TP01 0.1 14-Jun-2023 Lab Number: 3299078.235 3299078.237 3299078.239 3299078.241 3299078.245 Individual Tests							İ
Sample Name: B71 TP02 0.50 14-Jun-2023 DIP HA01 0.10 14-Jun-2023 DIP HA02 0.10 14-Jun-2023 DIP HA03 0.10 14-Jun-2023 B16 TP01 0.1 14-Jun-2023 Lab Number: 3299078.235 3299078.237 3299078.239 3299078.241 3299078.245 Individual Tests	·			-			
14-Jun-2023 14-Jun-2023 14-Jun-2023 14-Jun-2023 Lab Number: 3299078.235 3299078.237 3299078.239 3299078.241 3299078.245 Individual Tests	Naphthalene	mg/kg dry wt	<u> </u>	-	< 0.3	< 0.3	-
Lab Number: 3299078.235 3299078.237 3299078.239 3299078.241 3299078.245 Individual Tests	s	Sample Name:					B16 TP01 0.1
		Lab Number:		3299078.237	3299078.239	3299078.241	3299078.245
Dry Matter g/100g as rcvd 57 53 69 71 90	Individual Tests						
	Dry Matter	g/100g as rcvd	57	53	69	71	90

Sample Type: Soil						
Sa	ample Name:	B71 TP02 0.50 14-Jun-2023	DIP HA01 0.10 14-Jun-2023	DIP HA02 0.10 14-Jun-2023	DIP HA03 0.10 14-Jun-2023	B16 TP01 0.1
	Lab Number:	3299078.235	3299078.237	3299078.239	3299078.241	3299078.245
Individual Tests						
Total Recoverable Beryllium	mg/kg dry wt	1.8	1.5	1.6	0.9	-
8 Heavy metals plus Boron	0 0 7					
Total Recoverable Arsenic	mg/kg dry wt	5	9	12	16	-
Total Recoverable Boron	mg/kg dry wt	< 20	210	300	< 20	_
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	0.43	0.50	0.35	-
Total Recoverable Chromium	mg/kg dry wt	26	12	10	15	-
Total Recoverable Copper	mg/kg dry wt	62	50	75	72	-
Total Recoverable Lead	mg/kg dry wt	22	88	104	85	-
Total Recoverable Mercury	mg/kg dry wt	0.38	0.85	0.29	0.28	-
Total Recoverable Nickel	mg/kg dry wt	11	25	41	7	-
Total Recoverable Zinc	mg/kg dry wt	67	220	164	160	A -
Acid Herbicides Screen in Soil b	- 0 0 7	01	220	101	100	
Acifluorfen	mg/kg dry wt	-	< 0.2	< 0.2	< 0.2	
Bentazone	- ,	-	< 0.2	< 0.2	< 0.2 < 0.2	(
	mg/kg dry wt	<u>-</u>	< 0.2	< 0.2	< 0.2	-
Bromoxynil Clopyralid	mg/kg dry wt	-	< 0.2	< 0.2	< 0.2	-
Dicamba	mg/kg dry wt	-	< 0.2	< 0.2	< 0.2	-
2,4-Dichlorophenoxyacetic acid	mg/kg dry wt mg/kg dry wt	-	< 0.2	< 0.2	< 0.2	-
(24D)		-	< 0.2	< 0.2	< 0.2	-
2,4-Dichlorophenoxybutyric acid (24DB)	mg/kg dry wt	-		<i>y</i>		-
Dichlorprop	mg/kg dry wt	-	< 0.2	< 0.2	< 0.2	-
Fluazifop	mg/kg dry wt	-	< 0.2	< 0.2	< 0.2	-
Fluroxypyr	mg/kg dry wt	-	< 0.2	< 0.2	< 0.2	-
Haloxyfop	mg/kg dry wt	-	< 0.2	< 0.2	< 0.2	-
2-methyl-4-chlorophenoxyacetic acid (MCPA)	mg/kg dry wt	-	< 0.2	< 0.2	< 0.2	-
2-methyl-4- chlorophenoxybutanoic acid (MCPB)	mg/kg dry wt	(8)	< 0.2	< 0.2	< 0.2	-
Mecoprop (MCPP; 2-methyl-4- chlorophenoxypropionic acid)	mg/kg dry wt	7 -	< 0.2	< 0.2	< 0.2	-
Oryzalin	mg/kg dry wt	- 0	< 0.4	< 0.4	< 0.4	-
Pentachlorophenol (PCP)	mg/kg dry wt		< 0.2	< 0.2	< 0.2	-
Picloram	mg/kg dry wt	- (-)	< 0.2	< 0.2	< 0.2	-
Quizalofop	mg/kg dry wt		< 0.2	< 0.2	< 0.2	-
2,3,4,6-Tetrachlorophenol (TCP)	mg/kg dry wt	(U .	< 0.4	< 0.4	< 0.4	-
2,4,5-trichlorophenoxypropionic acid (245TP,Fenoprop, Silvex)	mg/kg dry wt	-	< 0.2	< 0.2	< 0.2	-
2,4,5-Trichlorophenoxyacetic acid (245T)	mg/kg dry wt	-	< 0.2	< 0.2	< 0.2	-
Triclopyr	mg/kg dry wt	-	< 0.2	< 0.2	< 0.2	-
Organochlorine Pesticides Scree				1		
Aldrin	mg/kg dry wt	-	< 0.019	< 0.014	< 0.014	-
alpha-BHC	mg/kg dry wt	-	< 0.019	< 0.014	< 0.014	-
beta-BHC	mg/kg dry wt	-	< 0.019	< 0.014	< 0.014	-
delta-BHC	mg/kg dry wt	_	< 0.019	< 0.014	< 0.014	-
gamma-BHC (Lindane)	mg/kg dry wt	-	< 0.019	< 0.014	< 0.014	_
cis-Chlordane	mg/kg dry wt	_	< 0.019	< 0.014	< 0.014	-
trans-Chlordane	mg/kg dry wt	_	< 0.019	< 0.014	< 0.014	-
2,4'-DDD	mg/kg dry wt	-	< 0.019	< 0.014	< 0.014	-
4,4'-DDD	mg/kg dry wt	<u>-</u>	< 0.019	< 0.014	< 0.014	
2,4'-DDE	mg/kg dry wt	-	< 0.019	< 0.014	< 0.014	-
4,4'-DDE	mg/kg dry wt	-	< 0.019	< 0.014	< 0.014	-
2,4'-DDE	mg/kg dry wt		< 0.019	< 0.014	< 0.014	-
·		-	< 0.019 < 0.019			-
4,4'-DDT	mg/kg dry wt	-		0.019	< 0.014	-
Total DDT Isomers	mg/kg dry wt	-	< 0.11	< 0.09	< 0.09	-

Sample Type: Soil						
	Sample Name:	B71 TP02 0.50	DIP HA01 0.10	DIP HA02 0.10	DIP HA03 0.10 14-Jun-2023	B16 TP01 0.1
	Lab Number:	14-Jun-2023 3299078.235	14-Jun-2023 3299078.237	14-Jun-2023 3299078.239	3299078.241	3299078.245
Organochlorine Pesticides So		0200070.200	020001 0.201	020001 0.200	0200070.241	0200070.240
Dieldrin	mg/kg dry wt	-	< 0.019	< 0.014	< 0.014	-
Endosulfan I	mg/kg dry wt	_	< 0.019	< 0.014	< 0.014	_
Endosulfan II	mg/kg dry wt	-	< 0.019	< 0.014	< 0.014	-
Endosulfan sulphate	mg/kg dry wt	-	< 0.019	< 0.014	< 0.014	-
Endrin	mg/kg dry wt	-	< 0.019	< 0.014	< 0.014	-
Endrin aldehyde	mg/kg dry wt	-	< 0.019	< 0.014	< 0.014	-
Endrin ketone	mg/kg dry wt	-	< 0.019	< 0.014	< 0.014	-
Heptachlor	mg/kg dry wt	-	< 0.019	< 0.014	< 0.014	-
Heptachlor epoxide	mg/kg dry wt	-	< 0.019	< 0.014	< 0.014	-
Hexachlorobenzene	mg/kg dry wt	-	< 0.019	< 0.014	< 0.014	-
Methoxychlor	mg/kg dry wt	-	< 0.019	< 0.014	< 0.014	
Organonitro&phosphorus Pe		oil by GCMS			A	
Acetochlor	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	
Alachlor	mg/kg dry wt	-	< 0.05	< 0.05	< 0.05	(·
Atrazine	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Atrazine-desethyl	mg/kg dry wt		< 0.09	< 0.07	< 0.07	<u> </u>
Atrazine-desisopropyl	mg/kg dry wt	_	< 0.18	< 0.14	< 0.13	
Azaconazole	mg/kg dry wt	-	< 0.05	< 0.04	< 0.04	
Azinphos-methyl	mg/kg dry wt	_	< 0.18	0.14	< 0.13	
Benalaxyl	mg/kg dry wt	-	< 0.05	< 0.04	< 0.04	-
Bitertanol	mg/kg dry wt	-	< 0.18	< 0.14	< 0.13	-
Bromacil	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Bromopropylate	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Butachlor	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Captan	mg/kg dry wt	-	< 0.18	< 0.14	< 0.13	-
Carbaryl	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Carbofuran	mg/kg dry wt	13	< 0.09	< 0.07	< 0.07	-
Chlorfluazuron	mg/kg dry wt		< 0.09	< 0.07	< 0.07	-
Chlorothalonil	mg/kg dry wt	10	< 0.09	< 0.07	< 0.07	-
Chlorpyrifos	mg/kg dry wt	J - /	< 0.09	< 0.07	< 0.07	-
Chlorpyrifos-methyl	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Chlortoluron	mg/kg dry wt	-	< 0.18	< 0.14	< 0.13	-
Cyanazine	mg/kg dry wt	7-	< 0.09	< 0.07	< 0.07	-
Cyfluthrin	mg/kg dry wt		< 0.11	< 0.09	< 0.08	-
Cyhalothrin	mg/kg dry wt	() <u> </u>	< 0.09	< 0.07	< 0.07	-
Cypermethrin	mg/kg dry wt	-	< 0.3	< 0.17	< 0.16	-
Deltamethrin (including Tralomethrin)	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Diazinon	mg/kg dry wt	-	< 0.05	< 0.04	< 0.04	-
Dichlofluanid	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Dichloran	mg/kg dry wt	-	< 0.3	< 0.2	< 0.2	-
Dichlorvos	mg/kg dry wt	-	< 0.09	< 0.09	< 0.09	-
Difenoconazole	mg/kg dry wt	-	< 0.13	< 0.10	< 0.10	-
Dimethoate	mg/kg dry wt	-	< 0.18	< 0.14	< 0.13	-
Diphenylamine	mg/kg dry wt	-	< 0.18	< 0.14	< 0.13	-
Diuron	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Fenpropimorph	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Fluazifop-butyl	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Fluometuron	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Flusilazole	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Fluvalinate	mg/kg dry wt	-	< 0.07	< 0.05	< 0.05	-
Furalaxyl	mg/kg dry wt	-	< 0.05	< 0.04	< 0.04	-
Haloxyfop-methyl	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Hexaconazole	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Hexazinone	mg/kg dry wt	-	< 0.05	< 0.04	< 0.04	-

Sample Type: Soil						
	Sample Name:	B71 TP02 0.50 14-Jun-2023	DIP HA01 0.10 14-Jun-2023	DIP HA02 0.10 14-Jun-2023	DIP HA03 0.10 14-Jun-2023	B16 TP01 0.1
	Lab Number:	3299078.235	3299078.237	3299078.239	3299078.241	3299078.245
Organonitro&phosphorus Pe	sticides Screen in Sc	oil by GCMS				
IPBC (3-lodo-2-propynyl-n-butylcarbamate)	mg/kg dry wt	-	< 0.5	< 0.4	< 0.4	-
Kresoxim-methyl	mg/kg dry wt	-	< 0.05	< 0.04	< 0.04	-
Linuron	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Malathion	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Metalaxyl	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Methamidophos	mg/kg dry wt	-	< 0.5	< 0.4	< 0.4	-
Metolachlor	mg/kg dry wt	-	< 0.05	< 0.05	< 0.05	-
Metribuzin	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Molinate	mg/kg dry wt	-	< 0.18	< 0.14	< 0.13	-
Myclobutanil	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Naled	mg/kg dry wt	-	< 0.5	< 0.4	< 0.4	<u> </u>
Norflurazon	mg/kg dry wt	-	< 0.18	< 0.14	< 0.13	(-)
Oxadiazon	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Oxyfluorfen	mg/kg dry wt	-	< 0.05	< 0.04	< 0.04	-
Paclobutrazol	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Parathion-ethyl	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Parathion-methyl	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Pendimethalin	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Permethrin	mg/kg dry wt	-	< 0.03	< 0.03	< 0.03	-
Pirimicarb	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Pirimiphos-methyl	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Prochloraz	mg/kg dry wt	-	< 0.5	< 0.4	< 0.4	-
Procymidone	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Prometryn	mg/kg dry wt	-	< 0.05	< 0.04	< 0.04	-
Propachlor	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Propanil	mg/kg dry wt	1-51	< 0.2	< 0.2	< 0.2	-
Propazine	mg/kg dry wt		< 0.05	< 0.04	< 0.04	-
Propiconazole	mg/kg dry wt	10	< 0.07	< 0.05	< 0.05	-
Pyriproxyfen	mg/kg dry wt	<u> </u>	< 0.09	< 0.07	< 0.07	-
Quizalofop-ethyl	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Simazine	mg/kg dry wt	- ~	< 0.09	< 0.07	< 0.07	-
Simetryn	mg/kg dry wt		< 0.09	< 0.07	< 0.07	-
Sulfentrazone	mg/kg dry wt		< 0.5	< 0.4	< 0.4	-
TCMTB [2-(thiocyanomethyltl benzothiazole,Busan]	hio) mg/kg dry wt	(O-	< 0.18	< 0.14	< 0.13	-
Tebuconazole	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Terbacil	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Terbumeton	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Terbuthylazine	mg/kg dry wt	-	< 0.05	< 0.04	< 0.04	-
Terbuthylazine-desethyl	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Terbutryn	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Thiabendazole	mg/kg dry wt	-	< 0.5	< 0.4	< 0.4	-
Thiobencarb	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Tolylfluanid	mg/kg dry wt	-	< 0.05	< 0.04	< 0.04	-
Triazophos	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Trifluralin	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Vinclozolin	mg/kg dry wt	-	< 0.09	< 0.07	< 0.07	-
Polycyclic Aromatic Hydrocar	bons Screening in S	Soil*				
Total of Reported PAHs in Sc	oil mg/kg dry wt	-	-	-	-	< 0.3
1-Methylnaphthalene	mg/kg dry wt	-	-	-	-	< 0.011
2-Methylnaphthalene	mg/kg dry wt	-	-	-	-	< 0.011
Acenaphthylene	mg/kg dry wt	-	-	-	-	< 0.011
Acenaphthene	mg/kg dry wt	-	-	-	-	< 0.011
Anthracene	mg/kg dry wt	-	-	-	-	< 0.011

Sample Type: Soil						
Sa	ımple Name:	B71 TP02 0.50 14-Jun-2023	DIP HA01 0.10 14-Jun-2023	DIP HA02 0.10 14-Jun-2023	DIP HA03 0.10 14-Jun-2023	B16 TP01 0.1
L	_ab Number:	3299078.235	3299078.237	3299078.239	3299078.241	3299078.245
Polycyclic Aromatic Hydrocarbon		Soil*				
Benzo[a]anthracene	mg/kg dry wt	_	_	_	_	< 0.011
Benzo[a]pyrene (BAP)	mg/kg dry wt	-	_	_	_	< 0.011
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES*	mg/kg dry wt	-	-	-	-	< 0.027
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	-	-	-	-	< 0.027
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	-	-	-	-	< 0.011
Benzo[e]pyrene	mg/kg dry wt		_	_	_	< 0.011
Benzo[g,h,i]perylene	mg/kg dry wt		-	_	_	< 0.011
Benzo[k]fluoranthene	mg/kg dry wt	-	-	_	_	< 0.011
Chrysene	mg/kg dry wt		_	_	_	≤0.011
Dibenzo[a,h]anthracene	mg/kg dry wt		_	_	_	< 0.011
Fluoranthene	mg/kg dry wt		_	_	-	< 0.011
Fluorene	mg/kg dry wt	<u> </u>	_	_	1	< 0.011
		-	-	-		< 0.011
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt		-	-	/ (< 0.011
Naphthalene	mg/kg dry wt	-	-			
Perylene	mg/kg dry wt	-	-		. 50	< 0.011
Phenanthrene	mg/kg dry wt	-	-	6	1 (2)	0.049
Pyrene	mg/kg dry wt	-	-	9 - 1	-	< 0.011
Haloethers in SVOC Soil Sample	es by GC-MS					
Bis(2-chloroethoxy) methane	mg/kg dry wt	< 0.6	-	- 👠	<u>-</u>	-
Bis(2-chloroethyl)ether	mg/kg dry wt	< 0.6	0-	-31	-	-
Bis(2-chloroisopropyl)ether	mg/kg dry wt	< 0.6	\(\frac{1}{2}\)	(7-1)	-	-
4-Bromophenyl phenyl ether	mg/kg dry wt	< 0.6	A .		-	-
4-Chlorophenyl phenyl ether	mg/kg dry wt	< 0.6	-	-	-	-
Nitrogen containing compounds	in SVOC Soil Sa	amples by GC-MS				
2,4-Dinitrotoluene	mg/kg dry wt	< 1.1		-	-	-
2,6-Dinitrotoluene	mg/kg dry wt	< 1:1	*, (-)	-	-	-
Nitrobenzene	mg/kg dry wt	< 0.6	X	_	_	-
N-Nitrosodi-n-propylamine	mg/kg dry wt	< 1.1	70.	_	_	-
N-Nitrosodiphenylamine + Diphenylamine	mg/kg dry wt	< 1.1	-	-	-	-
Organochlorine Pesticides in SV	OC Soil Samples	s by GC-MS				
Aldrin	mg/kg dry wt	< 0.6	_	_	_	_
alpha-BHC	mg/kg dry wt	0.6	-	-	-	<u>-</u>
beta-BHC	mg/kg dry wt	< 0.6	-	-	-	-
delta-BHC	mg/kg dry wt	< 0.6	_	_	_	-
gamma-BHC (Lindane)	mg/kg dry wt	< 0.6	-	-	-	-
4,4'-DDD	mg/kg dry wt	< 0.6	_	_	_	_
4,4'-DDE	mg/kg dry wt	< 0.6	_	_	_	_
4,4'-DDT	mg/kg dry wt	< 1.1	_	_	_	_
Dieldrin	mg/kg dry wt	< 0.6			<u>-</u>	<u>-</u> -
Endosulfan I	mg/kg dry wt	< 1.1	-	-	-	-
Endosulfan II		< 2	-			-
	mg/kg dry wt		-	-	-	-
Endosulfan sulphate	mg/kg dry wt	< 1.1	-	-	-	-
Endrin - · · · · ·	mg/kg dry wt	< 1.1	-	-	-	-
Endrin ketone	mg/kg dry wt	< 1.1	-	-	-	-
Heptachlor	mg/kg dry wt	< 0.6	-	-	-	-
Heptachlor epoxide	mg/kg dry wt	< 0.6	-	-	-	-
Hexachlorobenzene	mg/kg dry wt	< 0.6	-	-	-	-
Polycyclic Aromatic Hydrocarbon	s in SVOC Soil	Samples by GC-MS	<u> </u>			
Acenaphthene	mg/kg dry wt	< 0.5	-	-	-	-
Acenaphthylene	mg/kg dry wt	< 0.5	-	-	-	-
Anthracene	mg/kg dry wt	< 0.5	-	-	-	-
Benzo[a]anthracene	mg/kg dry wt	< 0.5	-	-	-	-
1 ab No. 2200079 SDv6	5 5 7		Hill Lobo			Dogo 52 of 12

Sample Type: Soil						
Sai	mple Name:	B71 TP02 0.50 14-Jun-2023	DIP HA01 0.10 14-Jun-2023	DIP HA02 0.10 14-Jun-2023	DIP HA03 0.10 14-Jun-2023	B16 TP01 0.1
L	ab Number:	3299078.235	3299078.237	3299078.239	3299078.241	3299078.245
Polycyclic Aromatic Hydrocarbons	s in SVOC Soil	Samples by GC-MS	S*			
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.6	-	-	-	-
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	< 0.6	-	-	-	-
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.6	-	-	-	-
Benzo[k]fluoranthene	mg/kg dry wt	< 0.6	-	-	-	-
1&2-Chloronaphthalene	mg/kg dry wt	< 0.5	-	-	-	-
Chrysene	mg/kg dry wt	< 0.5	-	-	-	-
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.6	-	-	-	-
Fluoranthene	mg/kg dry wt	< 0.5	-	-	-	-
Fluorene	mg/kg dry wt	< 0.5	-	-	-	-
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.6	-	-	-	-
2-Methylnaphthalene	mg/kg dry wt	< 0.5	-	-	-	<u> </u>
Naphthalene	mg/kg dry wt	< 0.5	-	-	-	(-)
Phenanthrene	mg/kg dry wt	< 0.5	-	- 🗸	1 -	
Pyrene	mg/kg dry wt	< 0.5	-		J	-
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES*	mg/kg dry wt	< 1.3	-	· O		-
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	< 1.3	-	200	0	-
Phenols in SVOC Soil Samples b	y GC-MS			5		
4-Chloro-3-methylphenol	mg/kg dry wt	< 5		-	-	-
2-Chlorophenol	mg/kg dry wt	< 1.0	\- O1	- 6	-	-
2,4-Dichlorophenol	mg/kg dry wt	< 1.0	-		-	-
2,4-Dimethylphenol	mg/kg dry wt	< 3	7 -1	1 (7-1)	-	-
3 & 4-Methylphenol (m- + p- cresol)	mg/kg dry wt	< 3	7 .	70	-	-
2-Methylphenol (o-cresol)	mg/kg dry wt	< 1.0	-	-	-	-
2-Nitrophenol	mg/kg dry wt	< 5	-	-	-	-
Pentachlorophenol (PCP)	mg/kg dry wt	< 30	. (-)	-	-	-
Phenol	mg/kg dry wt	< 1.1		-	-	-
2,4,5-Trichlorophenol	mg/kg dry wt	< 1.1		-	-	-
2,4,6-Trichlorophenol	mg/kg dry wt	< 1.1	-	-	-	-
Plasticisers in SVOC Soil Sample	es by GC-MS					
Bis(2-ethylhexyl)phthalate	mg/kg dry wt	< 5	-	-	-	-
Butylbenzylphthalate	mg/kg dry wt	< 1.1	-	-	-	-
Di(2-ethylhexyl)adipate	mg/kg dry wt	< 1.0	-	-	-	-
Diethylphthalate	mg/kg dry wt	< 1.1	-	-	-	-
Dimethylphthalate	mg/kg dry wt	< 1.1	-	-	-	-
Di-n-butylphthalate	mg/kg dry wt	< 1.1	-	-	-	-
Di-n-octylphthalate	mg/kg dry wt	< 1.1	-	-	-	-
Other Halogenated compounds in			I	I	I	
1,2-Dichlorobenzene	mg/kg dry wt	< 1.1	_	_	_	-
1,3-Dichlorobenzene	mg/kg dry wt	< 1.1	_	_	_	_
1,4-Dichlorobenzene	mg/kg dry wt	< 1.1	_	_	_	-
Hexachlorobutadiene	mg/kg dry wt	< 1.1	_	_	_	-
Hexachloroethane	mg/kg dry wt	< 1.1	_	_	_	-
1,2,4-Trichlorobenzene	mg/kg dry wt	< 0.6	_	_	_	-
Other compounds in SVOC Soil S						
Benzyl alcohol	mg/kg dry wt	< 10	_	_	_	-
Carbazole	mg/kg dry wt	< 0.6	<u>-</u>	-	-	
Dibenzofuran	mg/kg dry wt	< 0.6	<u>-</u> _	<u>-</u>	-	<u>-</u>
Isophorone	mg/kg dry wt	< 0.6	<u>-</u>			
		\ 0.0	-	-	-	-
Total Petroleum Hydrocarbons in						- 00
C7 - C9	mg/kg dry wt	-	-	-	-	< 20
C10 - C14	mg/kg dry wt	-	-	-	-	< 20

Sample Type: Soil						
Sar	nple Name:	B71 TP02 0.50	DIP HA01 0.10	DIP HA02 0.10	DIP HA03 0.10	B16 TP01 0.1
	ala Nicosala aus	14-Jun-2023	14-Jun-2023	14-Jun-2023	14-Jun-2023	2200070 245
	ab Number:	3299078.235	3299078.237	3299078.239	3299078.241	3299078.245
Total Petroleum Hydrocarbons in C15 - C36						. 10
	mg/kg dry wt	-	-	-	-	< 40
Total hydrocarbons (C7 - C36)	mg/kg dry wt	-	-	-	-	< 80
BTEX in VOC Soils by Headspace			I	I		
Benzene	mg/kg dry wt	-	-	-	-	< 0.16
Ethylbenzene	mg/kg dry wt	-	-	-	-	< 0.3
Toluene	mg/kg dry wt	-	-	-	-	< 0.3
m&p-Xylene o-Xylene	mg/kg dry wt	-	-	-	-	< 0.4
Halogenated Aliphatics in VOC So	mg/kg dry wt	- CC MS	-	-	-	< 0.3
		ice GC-IVIS				.00
Bromomethane (Methyl Bromide) Carbon tetrachloride	mg/kg dry wt	- -	-	-	-	< 0.3
Chloroethane	mg/kg dry wt mg/kg dry wt	-	-	-	-	< 0.3
Chloromethane	mg/kg dry wt	-	-	-	-	< 0.3
1,2-Dibromo-3-chloropropane	mg/kg ary wt	<u>-</u> -	<u>-</u>	-	7	< 0.5
1,2-Dibromoethane (ethylene	mg/kg dry wt	<u>-</u> _	<u>-</u>	-	V	< 0.3
dibromide, EDB)	mg/kg ury Wt	-	_			\(\tau_{0.5}\)
Dibromomethane	mg/kg dry wt	-	-	60		< 0.3
1,3-Dichloropropane	mg/kg dry wt	-	-	~()	101	< 0.3
Dichlorodifluoromethane	mg/kg dry wt	-	-	9 - /	10	< 0.5
1,1-Dichloroethane	mg/kg dry wt	-	- (-	-	< 0.3
1,2-Dichloroethane	mg/kg dry wt	-	A- (C)	\	-	< 0.3
1,1-Dichloroethene	mg/kg dry wt	-	10	11/1	-	< 0.3
cis-1,2-Dichloroethene	mg/kg dry wt	-	- (7-1)	. 0.	-	< 0.3
trans-1,2-Dichloroethene	mg/kg dry wt	-			-	< 0.3
Dichloromethane (methylene chloride)	mg/kg dry wt	-	-	-	-	< 4
1,2-Dichloropropane	mg/kg dry wt	1		-	-	< 0.3
1,1-Dichloropropene	mg/kg dry wt	-		-	-	< 0.3
cis-1,3-Dichloropropene	mg/kg dry wt	1		-	-	< 0.3
trans-1,3-Dichloropropene	mg/kg dry wt		11-	-	-	< 0.3
Hexachlorobutadiene	mg/kg dry wt	-	-	-	-	< 0.3
1,1,1,2-Tetrachloroethane	mg/kg dry wt	-	-	-	-	< 0.3
1,1,2,2-Tetrachloroethane	mg/kg dry wt		-	-	-	< 0.3
Tetrachloroethene (tetrachloroethylene)	mg/kg dry wt		-	-	-	< 0.3
1,1,1-Trichloroethane	mg/kg dry wt	()-	-	-	-	< 0.3
1,1,2-Trichloroethane	mg/kg dry wt	-	-	-	-	< 0.3
Trichloroethene (trichloroethylene)	mg/kg dry wt	-	-	-	-	< 0.3
Trichlorofluoromethane	mg/kg dry wt	-	-	-	-	< 0.3
1,2,3-Trichloropropane	mg/kg dry wt	-	-	-	-	< 0.5
1,1,2-Trichlorotrifluoroethane (Freon 113)	mg/kg dry wt	-	-	-	-	< 0.3
Vinyl chloride	mg/kg dry wt	-		-	-	< 0.3
Haloaromatics in VOC Soils by He	eadspace GC-N	/IS				
Bromobenzene	mg/kg dry wt	-	-	-	-	< 0.3
1,3-Dichlorobenzene	mg/kg dry wt	-	-	-	-	< 0.3
4-Chlorotoluene	mg/kg dry wt	-	-	-	-	< 0.3
Chlorobenzene (monochlorobenzene)	mg/kg dry wt	-	-	-	-	< 0.3
1,2-Dichlorobenzene	mg/kg dry wt	-	-	-	-	< 0.3
1,4-Dichlorobenzene	mg/kg dry wt	-	-	-	-	< 0.3
2-Chlorotoluene	mg/kg dry wt	-	-	-	-	< 0.3
1,2,3-Trichlorobenzene	mg/kg dry wt	-	-	-	-	< 0.3
1,2,4-Trichlorobenzene	mg/kg dry wt	-	-	-	-	< 0.3
1,3,5-Trichlorobenzene	mg/kg dry wt	-	-	-	-	< 0.3

	ample Name:	B71 TP02 0.50 14-Jun-2023	DIP HA01 0.10 14-Jun-2023	DIP HA02 0.10 14-Jun-2023	DIP HA03 0.10 14-Jun-2023	B16 TP01 0.1
	Lab Number:	3299078.235	3299078.237	3299078.239	3299078.241	3299078.245
Monoaromatic Hydrocarbons in			3299010.231	3299010.239	3233070.241	3299070.243
n-Butylbenzene	mg/kg dry wt	auspace GC-IVIO				< 0.3
tert-Butylbenzene		-	-	-	-	< 0.3
	mg/kg dry wt	<u>-</u>	-	-	-	< 0.3
Isopropylbenzene (Cumene)	mg/kg dry wt		-			< 0.3
4-Isopropyltoluene (p-Cymene) n-Propylbenzene	mg/kg dry wt	-	-	-	-	< 0.3
sec-Butylbenzene	mg/kg dry wt mg/kg dry wt	-	-	-	-	< 0.3
Styrene		<u> </u>	-	-	_	< 0.3
1,2,4-Trimethylbenzene	mg/kg dry wt mg/kg dry wt	-	-	-	-	< 0.3
1,3,5-Trimethylbenzene	mg/kg dry wt	-	-	_	-	< 0.3
Ketones in VOC Soils by Heads		-	_	_	_	\ 0.5
						1.40
2-Butanone (MEK)	mg/kg dry wt	-	-	-	-	< 40
4-Methylpentan-2-one (MIBK)	mg/kg dry wt	-	-	-	-	< 7
Acetone	mg/kg dry wt	-	-	-	<i>A</i> -	<40
Methyl tert-butylether (MTBE)	mg/kg dry wt	-	-	-		< 0.3
Trihalomethanes in VOC Soils b	•		1		T //	
Bromodichloromethane	mg/kg dry wt	-	-	-0		< 0.3
Bromoform (tribromomethane)	mg/kg dry wt	-	-		SU	< 0.5
Chloroform (Trichloromethane)	mg/kg dry wt	-	-	6	10	< 0.3
Dibromochloromethane	mg/kg dry wt	-	-	· ·	-	< 0.3
Other VOC in Soils by Headspa				J .	V	
Carbon disulphide	mg/kg dry wt	-	1-10	- 1	-	< 0.3
Naphthalene	mg/kg dry wt	-	0	-7	-	< 0.3
Sa	ample Name:	B16 TP01 0.5	B16 TP02 0.1	B16 TP02 0.5	B19 TP01 0.1	B19 TP01 0.5
			/		19-Jun-2023	19-Jun-2023
	Lab Number:	3299078.246	3299078.248	3299078.249	3299078.251	3299078.252
Individual Tests			\sim			
Dry Matter	g/100g as rcvd	81	91	77	-	-
Total Recoverable Beryllium	mg/kg dry wt	. (/-1 > -	. '. (-)	-	1.0	1.1
рН*	pH Units		11-	-	7.0	-
pH* 8 Heavy metals plus Boron	pH Units		X \-	-	7.0	-
<u> </u>			<u> </u>	-	7.0	5
8 Heavy metals plus Boron	pH Units		<u> </u>	-		5 < 20
8 Heavy metals plus Boron Total Recoverable Arsenic	pH Units mg/kg dry wt		<u> </u>	-	12	-
8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron	pH Units mg/kg dry wt mg/kg dry wt		<u>.</u>	- - - -	12 < 20	< 20
8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Cadmium	pH Units mg/kg dry wt mg/kg dry wt mg/kg dry wt		- -	- - - -	12 < 20 0.27	< 20 < 0.10
8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium	pH Units mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt		- - - - -		12 < 20 0.27 12	< 20 < 0.10 8
8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper	pH Units mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt				12 < 20 0.27 12 36	< 20 < 0.10 8 18
8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	10,	-	- - - -	12 < 20 0.27 12 36 240	< 20 < 0.10 8 18 54
8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	10,	-	- - - - -	12 < 20 0.27 12 36 240 0.10	< 20 < 0.10 8 18 54 < 0.10
8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury	pH Units mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt		-	- - - - -	12 < 20 0.27 12 36 240 0.10	< 20 < 0.10 8 18 54 < 0.10
8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc	pH Units mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt		-	- - - - -	12 < 20 0.27 12 36 240 0.10	< 20 < 0.10 8 18 54 < 0.10
8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Polycyclic Aromatic Hydrocarbo Total of Reported PAHs in Soil	pH Units mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	- - - - - - - Soil*	- - -	- - - - - -	12 < 20 0.27 12 36 240 0.10	< 20 < 0.10 8 18 54 < 0.10
8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Polycyclic Aromatic Hydrocarbo	pH Units mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	- - - - - - Soil*	- - - - < 0.3	- - - - - - - - - -	12 < 20 0.27 12 36 240 0.10	< 20 < 0.10 8 18 54 < 0.10
8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Polycyclic Aromatic Hydrocarbo Total of Reported PAHs in Soil	pH Units mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt		- - - - < 0.3 < 0.011	- - - - - - - - - - - - - - - - -	12 < 20 0.27 12 36 240 0.10 7 171	< 20 < 0.10 8 18 54 < 0.10 5 76
8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Polycyclic Aromatic Hydrocarbo Total of Reported PAHs in Soil 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene	pH Units mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt		- - - - - < 0.3 < 0.011 < 0.011		12 < 20 0.27 12 36 240 0.10 7 171	< 20 < 0.10 8 18 54 < 0.10 5 76
8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Polycyclic Aromatic Hydrocarbo Total of Reported PAHs in Soil 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene	pH Units mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt				12 < 20 0.27 12 36 240 0.10 7 171	< 20 < 0.10 8 18 54 < 0.10 5 76
8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Polycyclic Aromatic Hydrocarbo Total of Reported PAHs in Soil 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Anthracene	pH Units mg/kg dry wt				12 < 20 0.27 12 36 240 0.10 7 171	< 20 < 0.10 8 18 54 < 0.10 5 76
8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Polycyclic Aromatic Hydrocarbo Total of Reported PAHs in Soil 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Anthracene Benzo[a]anthracene	pH Units mg/kg dry wt				12 < 20 0.27 12 36 240 0.10 7 171	< 20 < 0.10 8 18 54 < 0.10 5 76
8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Polycyclic Aromatic Hydrocarbo Total of Reported PAHs in Soil 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Anthracene Benzo[a]anthracene Benzo[a]pyrene (BAP) Benzo[a]pyrene Potency	pH Units mg/kg dry wt				12 < 20 0.27 12 36 240 0.10 7 171	< 20 < 0.10 8 18 54 < 0.10 5 76
8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Polycyclic Aromatic Hydrocarbo Total of Reported PAHs in Soil 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Anthracene Benzo[a]anthracene Benzo[a]pyrene (BAP)	pH Units mg/kg dry wt				12 < 20 0.27 12 36 240 0.10 7 171	< 20 < 0.10 8 18 54 < 0.10 5 76
8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Polycyclic Aromatic Hydrocarbo Total of Reported PAHs in Soil 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthene Benzo[a]anthracene Benzo[a]pyrene (BAP) Benzo[a]pyrene Potency Equivalency Factor (PEF) NES* Benzo[a]pyrene Toxic	pH Units mg/kg dry wt				12 < 20 0.27 12 36 240 0.10 7 171	< 20 < 0.10 8 18 54 < 0.10 5 76

Sample Type: Soil

Sample Type: Soil						
S	ample Name:	B16 TP01 0.5	B16 TP02 0.1	B16 TP02 0.5	B19 TP01 0.1 19-Jun-2023	B19 TP01 0.5 19-Jun-2023
	Lab Number:	3299078.246	3299078.248	3299078.249	3299078.251	3299078.252
Polycyclic Aromatic Hydrocarbo	ons Screening in S	Soil*				
Benzo[g,h,i]perylene	mg/kg dry wt	0.013	< 0.011	< 0.013	-	-
Benzo[k]fluoranthene	mg/kg dry wt	< 0.012	< 0.011	< 0.013	-	-
Chrysene	mg/kg dry wt	< 0.012	< 0.011	< 0.013	-	-
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.012	< 0.011	< 0.013	-	-
Fluoranthene	mg/kg dry wt	< 0.012	< 0.011	< 0.013	-	-
Fluorene	mg/kg dry wt	< 0.012	< 0.011	< 0.013	-	-
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	0.012	< 0.011	< 0.013	-	-
Naphthalene	mg/kg dry wt	< 0.06	< 0.06	< 0.07	-	-
Perylene	mg/kg dry wt	< 0.012	< 0.011	< 0.013	-	-
Phenanthrene	mg/kg dry wt	< 0.012	< 0.011	< 0.013	-	-
Pyrene	mg/kg dry wt	< 0.012	< 0.011	< 0.013	-	-
Total Petroleum Hydrocarbons	in Soil				•	
C7 - C9	mg/kg dry wt	< 20	< 20	< 20	-	
C10 - C14	mg/kg dry wt	< 20	< 20	< 20	<u> </u>	
C15 - C36	mg/kg dry wt	< 40	< 40	< 40	7	-
Total hydrocarbons (C7 - C36)	mg/kg dry wt	< 80	< 80	< 80		_
BTEX in VOC Soils by Headspa						
Benzene	mg/kg dry wt	< 0.19	< 0.15	< 0.3	0.0	_
Ethylbenzene	mg/kg dry wt	< 0.19	< 0.13	< 0.3		_
Toluene	mg/kg dry wt	< 0.3	< 0.3	< 0.3		_
m&p-Xylene	mg/kg dry wt	< 0.4	< 0.3	< 0.5	_	_
o-Xylene	mg/kg dry wt	< 0.3	< 0.3	< 0.3		_
				0.0	-	_
Halogenated Aliphatics in VOC				200		
Bromomethane (Methyl Bromide		< 0.3	< 0.3	< 0.3	-	-
Carbon tetrachloride Chloroethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
Chloromethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
1,2-Dibromo-3-chloropropane	mg/kg dry wt	< 0.5	< 0.5	< 0.5	-	-
1,2-Dibromoethane (ethylene dibromide, EDB)	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
Dibromomethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
1,3-Dichloropropane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
Dichlorodifluoromethane	mg/kg dry wt	< 0.5	< 0.5	< 0.5	-	-
1,1-Dichloroethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
1,2-Dichloroethane	mg/kg dry wt	0.3	< 0.3	< 0.3	-	-
1,1-Dichloroethene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
cis-1,2-Dichloroethene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
trans-1,2-Dichloroethene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
Dichloromethane (methylene chloride)	mg/kg dry wt	< 4	< 3	< 5	-	-
1,2-Dichloropropane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
1,1-Dichloropropene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
cis-1,3-Dichloropropene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
trans-1,3-Dichloropropene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
Hexachlorobutadiene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
1,1,1,2-Tetrachloroethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
1,1,2,2-Tetrachloroethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
Tetrachloroethene (tetrachloroethylene)	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
1,1,1-Trichloroethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
1,1,2-Trichloroethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	<u>-</u>	-
Trichloroethene (trichloroethylene)	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
Trichlorofluoromethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
1,2,3-Trichloropropane	mg/kg dry wt	< 0.5	< 0.5	< 0.5		_
1,2,0-111011010p10pane	mg/kg dry Wt	` 0.0	` 0.0	` 0.0	-	_

Sample Type: Soil						
	Sample Name:	B16 TP01 0.5	B16 TP02 0.1	B16 TP02 0.5	B19 TP01 0.1 19-Jun-2023	B19 TP01 0.5 19-Jun-2023
	Lab Number:	3299078.246	3299078.248	3299078.249	3299078.251	3299078.252
Halogenated Aliphatics in VO	C Soils by Headspa	ice GC-MS				
1,1,2-Trichlorotrifluoroethane (Freon 113)	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
Vinyl chloride	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
Haloaromatics in VOC Soils b	y Headspace GC-N	IS	1			
Bromobenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	_	-
1,3-Dichlorobenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
4-Chlorotoluene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
Chlorobenzene (monochlorobenzene)	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
1,2-Dichlorobenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
1,4-Dichlorobenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
2-Chlorotoluene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
1,2,3-Trichlorobenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
1,2,4-Trichlorobenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	N -	<u>_</u>
1,3,5-Trichlorobenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	J 6	-
Monoaromatic Hydrocarbons	in VOC Soils by He	adspace GC-MS				7
n-Butylbenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3		-
tert-Butylbenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	. 0	-
Isopropylbenzene (Cumene)	mg/kg dry wt	< 0.3	< 0.3	< 0.3	10	-
4-Isopropyltoluene (p-Cymene	e) mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
n-Propylbenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
sec-Butylbenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
Styrene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
1,2,4-Trimethylbenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
1,3,5-Trimethylbenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
Ketones in VOC Soils by Hea	dspace GC-MS					
2-Butanone (MEK)	mg/kg dry wt	< 40	< 30	< 50	-	-
4-Methylpentan-2-one (MIBK)	mg/kg dry wt	< 8	< 6	< 9	-	-
Acetone	mg/kg dry wt	< 40	< 30	< 50	-	-
Methyl tert-butylether (MTBE)	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
Trihalomethanes in VOC Soils	s by Headspace GO	-MS	^			
Bromodichloromethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
Bromoform (tribromomethane)) mg/kg dry wt	< 0.5	< 0.5	< 0.5	-	-
Chloroform (Trichloromethane	e) mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
Dibromochloromethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
Other VOC in Soils by Heads	pace GC-MS					
Carbon disulphide	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
Naphthalene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	-	-
	Sample Name:	B19 TP02 0.1 19-Jun-2023	B19 TP02 0.5 19-Jun-2023	B25 HA01 0.1 20-Jun-2023	B25 HA01 0.5 20-Jun-2023	B25 HA02 0.1 20-Jun-2023
	Lab Number:	3299078.254	3299078.255	3299078.257	3299078.258	3299078.260
Individual Tests)					
Total Recoverable Beryllium	mg/kg dry wt	1.6	0.7	1.1	0.5	0.7
pH*	pH Units	-	-	6.4	-	-
8 Heavy metals plus Boron						
Total Recoverable Arsenic	mg/kg dry wt	7	3	6	4	6
Total Recoverable Boron	mg/kg dry wt	< 20	< 20	< 20	< 20	< 20
Total Recoverable Cadmium	mg/kg dry wt	0.80	< 0.10	0.21	< 0.10	< 0.10
Total Recoverable Chromium	mg/kg dry wt	11	9	9	7	9
Total Recoverable Copper	mg/kg dry wt	43	10	18	8	17
Total Recoverable Lead	mg/kg dry wt	58	20	17.8	15.5	22
Total Recoverable Mercury	mg/kg dry wt	0.22	< 0.10	0.13	< 0.10	0.12
Total Recoverable Nickel	mg/kg dry wt	6	4	5	3	5
Total Recoverable Zinc	mg/kg dry wt	131	42	109	34	65

Sample Type: Soil						
S	ample Name:	B25 HA02 0.5	B25 HA03 0.1	B25 HA03 0.5	B26 TP01 0.1	B26 TP02 0.1
		20-Jun-2023	20-Jun-2023	20-Jun-2023	19-Jun-2023	19-Jun-2023
	Lab Number:	3299078.261	3299078.263	3299078.264	3299078.266	3299078.267
Individual Tests						
Dry Matter	g/100g as rcvd	-	-	-	70	78
Total Recoverable Beryllium	mg/kg dry wt	0.8	0.7	0.6	1.1	1.1
pH*	pH Units	-	-	-	7.8	-
8 Heavy metals plus Boron						
Total Recoverable Arsenic	mg/kg dry wt	5	4	5	8	7
Total Recoverable Boron	mg/kg dry wt	< 20	< 20	< 20	40	47
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	< 0.10	< 0.10	0.31	0.33
Total Recoverable Chromium	mg/kg dry wt	9	9	11	13	13
Total Recoverable Copper	mg/kg dry wt	14	12	12	69	71
Total Recoverable Lead	mg/kg dry wt	16.6	16.7	16.8	290	260
Total Recoverable Mercury	mg/kg dry wt	0.11	< 0.10	< 0.10	0.17	0.17
Total Recoverable Nickel	mg/kg dry wt	5	4	6	7	8
Total Recoverable Zinc	mg/kg dry wt	42	77	57	158	149
Haloethers in SVOC Soil Samp	les by GC-MS			V		
Bis(2-chloroethoxy) methane	mg/kg dry wt	-	-		< 0.5	< 0.5
Bis(2-chloroethyl)ether	mg/kg dry wt	-	-	-()	< 0.5	< 0.5
Bis(2-chloroisopropyl)ether	mg/kg dry wt	-	-	0.	< 0.5	< 0.5
4-Bromophenyl phenyl ether	mg/kg dry wt	-	-		< 0.5	< 0.4
4-Chlorophenyl phenyl ether	mg/kg dry wt	-	-	9.	< 0.5	< 0.5
Nitrogen containing compounds		amples by GC-MS		^		
2,4-Dinitrotoluene	mg/kg dry wt	<u> </u>	1- 21	-	< 1.0	< 1.0
2,6-Dinitrotoluene	mg/kg dry wt	-			< 1.0	< 1.0
Nitrobenzene	mg/kg dry wt	-	- 01	1 7-1	< 0.5	< 0.5
N-Nitrosodi-n-propylamine	mg/kg dry wt	-		No.	< 0.9	< 0.8
N-Nitrosodiphenylamine +	mg/kg dry wt	-	_	_	< 0.9	< 0.8
Diphenylamine	99,					
Organochlorine Pesticides in SV	VOC Soil Samples	s by GC-MS				
Aldrin	mg/kg dry wt	0-1	* , (-)	-	< 0.5	< 0.5
alpha-BHC	mg/kg dry wt	10	X	-	< 0.5	< 0.5
beta-BHC	mg/kg dry wt	V - (7 -	-	< 0.5	< 0.5
delta-BHC	mg/kg dry wt	-	-	-	< 0.5	< 0.5
gamma-BHC (Lindane)	mg/kg dry wt	-	-	-	< 0.5	< 0.5
4,4'-DDD	mg/kg dry wt	-	-	-	< 0.5	< 0.5
4,4'-DDE	mg/kg dry wt		-	-	< 0.5	< 0.5
4,4'-DDT	mg/kg dry wt	() -	-	-	< 1.0	< 1.0
Dieldrin	mg/kg dry wt	-	-	-	< 0.5	< 0.5
Endosulfan I	mg/kg dry wt	-	-	-	< 1.0	< 1.0
Endosulfan II	mg/kg dry wt	-	-	-	< 2	< 2
Endosulfan sulphate	mg/kg dry wt	-	-	-	< 1.0	< 1.0
Endrin	mg/kg dry wt	-	-	-	< 0.9	< 0.8
Endrin ketone	mg/kg dry wt	-	-	-	< 1.0	< 1.0
Heptachlor	mg/kg dry wt	-	-	-	< 0.5	< 0.5
Heptachlor epoxide	mg/kg dry wt	-	-	-	< 0.5	< 0.5
Hexachlorobenzene	mg/kg dry wt	-	-	-	< 0.5	< 0.5
Polycyclic Aromatic Hydrocarbo		Samples by GC-MS) *	1		
Acenaphthene	mg/kg dry wt	-	_	_	< 0.5	< 0.5
Acenaphthylene	mg/kg dry wt	-	_	_	< 0.5	< 0.5
Anthracene	mg/kg dry wt	-	_	-	< 0.5	< 0.5
Benzo[a]anthracene	mg/kg dry wt		_	_	< 0.5	< 0.5
Benzo[a]pyrene (BAP)	mg/kg dry wt		_	_	0.7	< 0.5
Benzo[b]fluoranthene + Benzo[j]		<u> </u>	_	_	0.8	< 0.5
fluoranthene						
Benzo[g,h,i]perylene	mg/kg dry wt	-	-	-	0.6	< 0.5
Benzo[k]fluoranthene	mg/kg dry wt	-	-	-	< 0.5	< 0.5
1&2-Chloronaphthalene	mg/kg dry wt	-	-	-	< 0.5	< 0.5

Sample Type: Soil						
	Sample Name:	B25 HA02 0.5 20-Jun-2023	B25 HA03 0.1 20-Jun-2023	B25 HA03 0.5 20-Jun-2023	B26 TP01 0.1 19-Jun-2023	B26 TP02 0.1 19-Jun-2023
	Lab Number:	3299078.261	3299078.263	3299078.264	3299078.266	3299078.267
Polycyclic Aromatic Hydrocart		Samples by GC-MS)*			
Chrysene	mg/kg dry wt	-	-	-	< 0.5	< 0.5
Dibenzo[a,h]anthracene	mg/kg dry wt	-	-	-	< 0.5	< 0.5
Fluoranthene	mg/kg dry wt	-	-	-	< 0.5	< 0.5
Fluorene	mg/kg dry wt	-	-	-	< 0.5	< 0.5
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	-	-	-	0.8	< 0.5
2-Methylnaphthalene	mg/kg dry wt	-	-	-	< 0.5	< 0.5
Naphthalene	mg/kg dry wt	-	-	-	< 0.5	< 0.5
Phenanthrene	mg/kg dry wt	-	-	-	< 0.5	< 0.5
Pyrene	mg/kg dry wt	-	-	-	< 0.5	< 0.5
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES	mg/kg dry wt S*	-	-	-	< 1.3	< 1.3
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	-	-	-	< 1.3	< 1.3
Phenols in SVOC Soil Sample	es by GC-MS				<u> </u>	
4-Chloro-3-methylphenol	mg/kg dry wt	-	-	-	< 5	< 5
2-Chlorophenol	mg/kg dry wt	-	-		< 1.0	< 1.0
2,4-Dichlorophenol	mg/kg dry wt	-	-		< 1.0	< 1.0
2,4-Dimethylphenol	mg/kg dry wt	-	-		3	< 3
3 & 4-Methylphenol (m- + p- cresol)	mg/kg dry wt	-	-	5 /	< 3	< 3
2-Methylphenol (o-cresol)	mg/kg dry wt	-	-	-	< 1.0	< 1.0
2-Nitrophenol	mg/kg dry wt	-	- (- 1	< 5	< 5
Pentachlorophenol (PCP)	mg/kg dry wt	-	0		< 30	< 30
Phenol	mg/kg dry wt	-	76		< 1.0	< 1.0
2,4,5-Trichlorophenol	mg/kg dry wt	-	- •		< 1.0	< 1.0
2,4,6-Trichlorophenol	mg/kg dry wt	-	-	-	< 1.0	< 1.0
Plasticisers in SVOC Soil Sar	mples by GC-MS		\sim	*		
Bis(2-ethylhexyl)phthalate	mg/kg dry wt			-	< 5	< 5
Butylbenzylphthalate	mg/kg dry wt	(/-)		-	< 1.0	< 1.0
Di(2-ethylhexyl)adipate	mg/kg dry wt	-	-	-	< 1.0	< 1.0
Diethylphthalate	mg/kg dry wt	-	-	-	< 1.0	< 1.0
Dimethylphthalate	mg/kg dry wt	-	-	-	< 1.0	< 1.0
Di-n-butylphthalate	mg/kg dry wt		-	-	< 1.0	< 1.0
Di-n-octylphthalate	mg/kg dry wt	- 1	-	-	< 1.0	< 1.0
Other Halogenated compound		mples by GC-MS				
1,2-Dichlorobenzene	mg/kg dry wt	<u> </u>	-	-	< 0.9	< 0.8
1,3-Dichlorobenzene	mg/kg dry wt	-	-	-	< 0.9	< 0.8
1,4-Dichlorobenzene	mg/kg dry wt	-	-	-	< 0.9	< 0.8
Hexachlorobutadiene	mg/kg dry wt	-	-	-	< 0.9	< 0.8
Hexachloroethane	mg/kg dry wt	-	-	-	< 0.9	< 0.8
1,2,4-Trichlorobenzene	mg/kg dry wt	-	-	-	< 0.5	< 0.5
Other compounds in SVOCS		-MS				
Benzyl alcohol	mg/kg dry wt	-	-	-	< 10	< 10
Carbazole	mg/kg dry wt	-	-	-	< 0.5	< 0.5
Dibenzofuran	mg/kg dry wt	-	-	-	< 0.5	< 0.5
Isophorone	mg/kg dry wt	-	-	-	< 0.5	< 0.5
Total Petroleum Hydrocarbons						
C7 - C9	mg/kg dry wt	-	-	-	< 20	< 20
C10 - C14	mg/kg dry wt	-	-	-	< 20	< 20
C15 - C36	mg/kg dry wt	-	-	-	64	54
Total hydrocarbons (C7 - C36) mg/kg dry wt	-	-	-	< 80	< 80
	Sample Name:	B26 TP02 0.5 19-Jun-2023	B26 TP03 0.1 19-Jun-2023	B26 TP03 0.5 19-Jun-2023	B59 TP02 0.1	B59 TP02 0.5
	Lab Number:	3299078.268	3299078.270	3299078.271	3299078.273	3299078.274

Sample Type: Soil	Sample Type: Soil							
Sa	mple Name:	B26 TP02 0.5 19-Jun-2023	B26 TP03 0.1 19-Jun-2023	B26 TP03 0.5 19-Jun-2023	B59 TP02 0.1	B59 TP02 0.5		
	_ab Number:	3299078.268	3299078.270	3299078.271	3299078.273	3299078.274		
Individual Tests								
Dry Matter	g/100g as rcvd	67	74	67	92	92		
Total Recoverable Beryllium	mg/kg dry wt	1.2	1.3	1.3	0.7	0.7		
pH*	pH Units	-	-	-	10.0	-		
8 Heavy metals plus Boron								
Total Recoverable Arsenic	mg/kg dry wt	6	7	6	4	4		
Total Recoverable Boron	mg/kg dry wt	31	32	23	< 20	< 20		
Total Recoverable Cadmium	mg/kg dry wt	0.13	0.42	0.28	< 0.10	< 0.10		
Total Recoverable Chromium	mg/kg dry wt	13	12	11	26	28		
Total Recoverable Copper	mg/kg dry wt	38	68	43	16	16		
Total Recoverable Lead	mg/kg dry wt	44	260	260	12.0	12.9		
Total Recoverable Mercury	mg/kg dry wt	0.13	0.15	0.17	< 0.10	≤ 0.10		
Total Recoverable Nickel	mg/kg dry wt	6	7	6	1 2	15		
Total Recoverable Zinc	mg/kg dry wt	63	151	103	60	61		
Acid Herbicides Screen in Soil b	0 0 ,		_		7			
Acifluorfen	mg/kg dry wt	-	_	-	< 0.2	< 0.2		
Bentazone	mg/kg dry wt	-	_		< 0.2	< 0.2		
Bromoxynil	mg/kg dry wt	-	_		< 0.2	< 0.2		
Clopyralid	mg/kg dry wt	-			0.2	< 0.2		
Dicamba	mg/kg dry wt	-		5	1.6	1.2		
2,4-Dichlorophenoxyacetic acid	mg/kg dry wt	-	-	<u> </u>	3.9	3.5		
(24D)		-	(0)					
2,4-Dichlorophenoxybutyric acid (24DB)	mg/kg dry wt	-	0	.01	< 0.2	< 0.2		
Dichlorprop	mg/kg dry wt	-			< 0.2	< 0.2		
Fluazifop	mg/kg dry wt	-	- 1	-	< 0.2	< 0.2		
Fluroxypyr	mg/kg dry wt	-	-	-	< 0.2	< 0.2		
Haloxyfop	mg/kg dry wt	1-7	-	-	< 0.2	< 0.2		
2-methyl-4-chlorophenoxyacetic acid (MCPA)	mg/kg dry wt		.:(O)	-	< 0.2	< 0.2		
2-methyl-4- chlorophenoxybutanoic acid (MCPB)	mg/kg dry wt			-	< 0.2	< 0.2		
Mecoprop (MCPP; 2-methyl-4- chlorophenoxypropionic acid)	mg/kg dry wt		-	-	< 0.2	< 0.2		
Oryzalin	mg/kg dry wt	1-	-	-	< 0.4	< 0.4		
Pentachlorophenol (PCP)	mg/kg dry wt	-	-	-	< 0.2	< 0.2		
Picloram	mg/kg dry wt	<u> </u>	-	-	< 0.2	< 0.2		
Quizalofop	mg/kg dry wt	-	-	-	< 0.2	< 0.2		
2,3,4,6-Tetrachlorophenol (TCP)	mg/kg dry wt	-	-	-	< 0.2	< 0.2		
2,4,5-trichlorophenoxypropionic acid (245TP,Fenoprop, Silvex)	mg/kg dry wt	-	-	-	< 0.2	< 0.2		
2,4,5-Trichlorophenoxyacetic acid (245T)	mg/kg dry wt	-	-	-	3.9	4.6		
Triclopyr	mg/kg dry wt	-	-	-	< 0.2	< 0.2		
Organochlorine Pesticides Scree	ening in Soil							
Aldrin	mg/kg dry wt	-	-	-	< 0.011	< 0.011		
alpha-BHC	mg/kg dry wt	-	_	-	< 0.011	< 0.011		
beta-BHC	mg/kg dry wt	-	_	_	< 0.011	< 0.011		
delta-BHC	mg/kg dry wt	-	_	-	< 0.011	< 0.011		
gamma-BHC (Lindane)	mg/kg dry wt	-	-	_	< 0.011	< 0.011		
cis-Chlordane	mg/kg dry wt	-	_	-	< 0.011	< 0.011		
trans-Chlordane	mg/kg dry wt	-	_	_	< 0.011	< 0.011		
2,4'-DDD	mg/kg dry wt	-	-	<u>-</u>	< 0.011	< 0.011		
4,4'-DDD	mg/kg dry wt	-	_	_	< 0.011	< 0.011		
2,4'-DDE	mg/kg dry wt	-	_	_	< 0.011	< 0.011		
4,4'-DDE	mg/kg dry wt	-	<u>-</u> _	-	< 0.011	< 0.011		
2,4'-DDE	mg/kg dry wt	-	-	<u>-</u>	< 0.011	< 0.011		
2, 4 -UU I	mg/kg dry Wt	-	-	_	\ U.U11	~ 0.011		

Sample Type: Soil						
	Sample Name:	B26 TP02 0.5 19-Jun-2023	B26 TP03 0.1 19-Jun-2023	B26 TP03 0.5 19-Jun-2023	B59 TP02 0.1	B59 TP02 0.5
	Lab Number:	3299078.268	3299078.270	3299078.271	3299078.273	3299078.274
Organochlorine Pesticides	Screening in Soil					
4,4'-DDT	mg/kg dry wt	-	-	-	< 0.011	< 0.011
Total DDT Isomers	mg/kg dry wt	-	-	-	< 0.07	< 0.07
Dieldrin	mg/kg dry wt	-	-	-	< 0.011	< 0.011
Endosulfan I	mg/kg dry wt	-	_	_	< 0.011	< 0.011
Endosulfan II	mg/kg dry wt	-	_	_	< 0.011	< 0.011
Endosulfan sulphate	mg/kg dry wt	-	_	_	< 0.011	< 0.011
Endrin	mg/kg dry wt	-	_	-	< 0.011	< 0.011
Endrin aldehyde	mg/kg dry wt	-	-	-	< 0.011	< 0.011
Endrin ketone	mg/kg dry wt	-	-	-	< 0.011	< 0.011
Heptachlor	mg/kg dry wt	_	_	_	< 0.011	< 0.011
Heptachlor epoxide	mg/kg dry wt	_	_	_	< 0.011	≤ 0.011
Hexachlorobenzene	mg/kg dry wt	_	_	_	< 0.011	< 0.011
Methoxychlor	mg/kg dry wt		_	_	< 0.011	< 0.011
Organonitro&phosphorus P		ail by CCMS	_	_	0.011	0.011
Acetochlor		on by GCIVIO			< 0.06	< 0.06
	mg/kg dry wt	-	-	-		
Alachlor	mg/kg dry wt	-	-		< 0.05	< 0.05
Atrazine	mg/kg dry wt	-	-		< 0.06	< 0.06
Atrazine-desethyl	mg/kg dry wt	-	-	6	< 0.06	< 0.06
Atrazine-desisopropyl	mg/kg dry wt	-	-	9 - 1	< 0.11	< 0.11
Azaconazole	mg/kg dry wt	-	- (-	< 0.03	< 0.03
Azinphos-methyl	mg/kg dry wt	-	- (/)	- 1	< 0.11	< 0.11
Benalaxyl	mg/kg dry wt	-	-		< 0.03	< 0.03
Bitertanol	mg/kg dry wt	-		(2)	< 0.11	< 0.11
Bromacil	mg/kg dry wt	-	\(\tag{\frac{1}{2}} \)		< 0.06	< 0.06
Bromopropylate	mg/kg dry wt	-	-	-	< 0.06	< 0.06
Butachlor	mg/kg dry wt	-		-	< 0.06	< 0.06
Captan	mg/kg dry wt	17	- 1	-	< 0.11	< 0.11
Carbaryl	mg/kg dry wt		• (-)	-	< 0.06	< 0.06
Carbofuran	mg/kg dry wt		X	-	< 0.06	< 0.06
Chlorfluazuron	mg/kg dry wt	9 -	7 6.	-	< 0.06	< 0.06
Chlorothalonil	mg/kg dry wt	-	O -	-	< 0.06	< 0.06
Chlorpyrifos	mg/kg dry wt	-	-	-	< 0.06	< 0.06
Chlorpyrifos-methyl	mg/kg dry wt	7 -	-	-	< 0.06	< 0.06
Chlortoluron	mg/kg dry wt		-	-	< 0.11	< 0.11
Cyanazine	mg/kg dry wt	(U -	-	-	< 0.06	< 0.06
Cyfluthrin	mg/kg dry wt	-	-	-	< 0.07	< 0.07
Cyhalothrin	mg/kg dry wt	-	-	-	< 0.06	< 0.06
Cypermethrin	mg/kg dry wt	-	-	-	< 0.13	< 0.13
Deltamethrin (including Tralomethrin)	mg/kg dry wt	-	-	-	< 0.06	< 0.06
Diazinon	mg/kg dry wt	-	-	-	< 0.03	< 0.03
Dichlofluanid	mg/kg dry wt	-		-	< 0.06	< 0.06
Dichloran	mg/kg dry wt	-	-	-	< 0.2	< 0.2
Dichlorvos	mg/kg dry wt	-	-	-	< 0.09	< 0.09
Difenoconazole	mg/kg dry wt	-	-	-	< 0.09	< 0.09
Dimethoate	mg/kg dry wt	-	-	-	< 0.11	< 0.11
Diphenylamine	mg/kg dry wt	-	-	-	< 0.11	< 0.11
Diuron	mg/kg dry wt	-	-	-	< 0.06	< 0.06
Fenpropimorph	mg/kg dry wt	-	-	-	< 0.06	< 0.06
Fluazifop-butyl	mg/kg dry wt	-	-	-	< 0.06	< 0.06
Fluometuron	mg/kg dry wt	-	-	-	< 0.06	< 0.06
Flusilazole	mg/kg dry wt	-	-	-	< 0.06	< 0.06
Fluvalinate	mg/kg dry wt	-	-	-	< 0.05	< 0.05
Furalaxyl	mg/kg dry wt		_	_	< 0.03	< 0.03
Haloxyfop-methyl	mg/kg dry wt	<u> </u>	_	_	< 0.06	< 0.06
r raioxyrop-mounyr	mg/kg dry Wt	=	-	-	- 0.00	- 0.00

Sample Type: Soil						
San	nple Name:	B26 TP02 0.5 19-Jun-2023	B26 TP03 0.1 19-Jun-2023	B26 TP03 0.5 19-Jun-2023	B59 TP02 0.1	B59 TP02 0.5
La	ab Number:	3299078.268	3299078.270	3299078.271	3299078.273	3299078.274
Organonitro&phosphorus Pesticide	es Screen in S	oil by GCMS				
Hexaconazole	mg/kg dry wt	-	-	-	< 0.06	< 0.06
Hexazinone	mg/kg dry wt	-	-	-	< 0.03	< 0.03
IPBC (3-lodo-2-propynyl-n- butylcarbamate)	mg/kg dry wt	-	-	-	< 0.3	< 0.3
Kresoxim-methyl	mg/kg dry wt	-	-	-	< 0.03	< 0.03
Linuron	mg/kg dry wt	-	-	-	< 0.06	< 0.06
Malathion	mg/kg dry wt	-	-	-	< 0.06	< 0.06
Metalaxyl	mg/kg dry wt	-	-	-	< 0.06	< 0.06
Methamidophos	mg/kg dry wt	-	-	-	< 0.3	< 0.3
Metolachlor	mg/kg dry wt	-	-	-	< 0.05	< 0.05
Metribuzin	mg/kg dry wt	-	-	-	< 0.06	< 0.06
Molinate	mg/kg dry wt	-	-	-	< 0.11	< 0.11
Myclobutanil	mg/kg dry wt	-	-	-	< 0.06	< 0.06
Naled	mg/kg dry wt	-	-	- 🗸	< 0.3	< 0.3
Norflurazon	mg/kg dry wt	-	-	-	< 0.11	< 0.11
Oxadiazon	mg/kg dry wt	-	-		< 0.06	< 0.06
Oxyfluorfen	mg/kg dry wt	-	-	~0	< 0.03	< 0.03
Paclobutrazol	mg/kg dry wt	-	-	_(-)	< 0.06	< 0.06
Parathion-ethyl	mg/kg dry wt	-	-	6- /	< 0.06	< 0.06
Parathion-methyl	mg/kg dry wt	-	- 0	-	< 0.06	< 0.06
Pendimethalin	mg/kg dry wt	-	- 0	- \	< 0.06	< 0.06
Permethrin	mg/kg dry wt	-	W	U.	< 0.03	< 0.03
Pirimicarb	mg/kg dry wt	-			< 0.06	< 0.06
Pirimiphos-methyl	mg/kg dry wt	-	70	10	< 0.06	< 0.06
Prochloraz	mg/kg dry wt	-	- 5	-	< 0.3	< 0.3
Procymidone	mg/kg dry wt	-	-	-	< 0.06	< 0.06
Prometryn	mg/kg dry wt	1-5		-	< 0.03	< 0.03
Propachlor	mg/kg dry wt			-	< 0.06	< 0.06
Propanil	mg/kg dry wt	1(-)		-	< 0.2	< 0.2
Propazine	mg/kg dry wt	-	11-	-	< 0.03	< 0.03
Propiconazole	mg/kg dry wt	-	-	-	< 0.05	< 0.05
Pyriproxyfen	mg/kg dry wt	-	-	-	< 0.06	< 0.06
Quizalofop-ethyl	mg/kg dry wt	-2	-	-	< 0.06	< 0.06
Simazine	mg/kg dry wt		-	-	< 0.06	< 0.06
Simetryn	mg/kg dry wt	-	-	-	< 0.06	< 0.06
Sulfentrazone	mg/kg dry wt	-	-	-	< 0.3	< 0.3
TCMTB [2-(thiocyanomethylthio) benzothiazole,Busan]	mg/kg dry wt	-	-	-	< 0.11	< 0.11
Tebuconazole	mg/kg dry wt	-	-	-	< 0.06	< 0.06
Terbacil	mg/kg dry wt	-	-	-	< 0.06	< 0.06
Terbumeton	mg/kg dry wt	-	-	-	< 0.06	< 0.06
Terbuthylazine	mg/kg dry wt	-	-	-	< 0.03	< 0.03
Terbuthylazine-desethyl	mg/kg dry wt	-	-	-	< 0.06	< 0.06
Terbutryn	mg/kg dry wt	-	-	-	< 0.06	< 0.06
Thiabendazole	mg/kg dry wt	-	-	-	< 0.3	< 0.3
Thiobencarb	mg/kg dry wt	-	-	-	< 0.06	< 0.06
Tolylfluanid	mg/kg dry wt	-	-	-	< 0.03	< 0.03
Triazophos	mg/kg dry wt	-	-	-	< 0.06	< 0.06
Trifluralin	mg/kg dry wt	-	-	-	< 0.06	< 0.06
Vinclozolin	mg/kg dry wt	-			< 0.06	< 0.06
Haloethers in SVOC Soil Samples	by GC-MS					
Bis(2-chloroethoxy) methane	mg/kg dry wt	< 0.5	< 0.5	< 0.5	-	-
Bis(2-chloroethyl)ether	mg/kg dry wt	< 0.5	< 0.5	< 0.5	-	-
Bis(2-chloroisopropyl)ether	mg/kg dry wt	< 0.5	< 0.5	< 0.5		
Dis(z-cilioroisopropyr)etriei	mg/kg ary wi	~ 0.5	~ 0.5	< 0.5	-	-

Sample Type: Soil									
	Sample Name:	B26 TP02 0.5 19-Jun-2023	B26 TP03 0.1 19-Jun-2023	B26 TP03 0.5 19-Jun-2023	B59 TP02 0.1	B59 TP02 0.5			
	Lab Number:	3299078.268	3299078.270	3299078.271	3299078.273	3299078.274			
Haloethers in SVOC Soil San	nples by GC-MS								
4-Chlorophenyl phenyl ether	mg/kg dry wt	< 0.5	< 0.5	< 0.5	-	-			
Nitrogen containing compounds in SVOC Soil Samples by GC-MS									
2,4-Dinitrotoluene	mg/kg dry wt	< 1.0	< 1.0	< 1.0	-	-			
2,6-Dinitrotoluene	mg/kg dry wt	< 1.0	< 1.0	< 1.0	-	-			
Nitrobenzene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	-	-			
N-Nitrosodi-n-propylamine	mg/kg dry wt	< 0.9	< 0.8	< 0.9	-	-			
N-Nitrosodiphenylamine + Diphenylamine	mg/kg dry wt	< 0.9	< 0.8	< 0.9	-	-			
Organochlorine Pesticides in	SVOC Soil Samples	s by GC-MS							
Aldrin	mg/kg dry wt	< 0.5	< 0.5	< 0.5	-	-			
alpha-BHC	mg/kg dry wt	< 0.5	< 0.5	< 0.5	-	-			
beta-BHC	mg/kg dry wt	< 0.5	< 0.5	< 0.5	<u> </u>				
delta-BHC	mg/kg dry wt	< 0.5	< 0.5	< 0.5	-				
gamma-BHC (Lindane)	mg/kg dry wt	< 0.5	< 0.5	< 0.5	7	-			
4,4'-DDD	mg/kg dry wt	< 0.5	< 0.5	< 0.5	2 - 10	-			
4,4'-DDE	mg/kg dry wt	< 0.5	< 0.5	< 0.5	- \	-			
4,4'-DDT	mg/kg dry wt	< 1.0	< 1.0	< 1.0		-			
Dieldrin	mg/kg dry wt	< 0.5	< 0.5	< 0.5	10:	-			
Endosulfan I	mg/kg dry wt	< 1.0	< 1.0	< 1.0	10	-			
Endosulfan II	mg/kg dry wt	< 2	< 2	< 2	-	_			
Endosulfan sulphate	mg/kg dry wt	< 1.0	< 1.0	< 1.0	-	-			
Endrin	mg/kg dry wt	< 0.9	< 0.8	< 0.9	-	-			
Endrin ketone	mg/kg dry wt	< 1.0	< 1.0	< 1.0	-	_			
Heptachlor	mg/kg dry wt	< 0.5	< 0.5	< 0.5	-	_			
Heptachlor epoxide	mg/kg dry wt	< 0.5	< 0.5	< 0.5	-	_			
Hexachlorobenzene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	-	-			
Polycyclic Aromatic Hydrocar		Samples by GC-MS	*						
Acenaphthene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	_	_			
Acenaphthylene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	_	-			
Anthracene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	-	-			
Benzo[a]anthracene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	_	-			
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.5	< 0.5	< 0.5	-	-			
Benzo[b]fluoranthene + Benzo fluoranthene		< 0.5	< 0.5	< 0.5	-	-			
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	-	-			
Benzo[k]fluoranthene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	-	-			
1&2-Chloronaphthalene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	_	-			
Chrysene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	-	-			
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	-	-			
Fluoranthene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	-	-			
Fluorene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	-	-			
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	-	-			
2-Methylnaphthalene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	-	-			
Naphthalene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	-	-			
Phenanthrene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	-	-			
Pyrene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	-	-			
Benzo[a]pyrene Potency Equivalency Factor (PEF) NE	mg/kg dry wt	< 1.3	< 1.3	< 1.3	-	-			
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	< 1.3	< 1.3	< 1.3	-	-			
Phenols in SVOC Soil Sampl	es by GC-MS		1	1	1	1			
4-Chloro-3-methylphenol	mg/kg dry wt	< 5	< 5	< 5	_	-			
2-Chlorophenol	mg/kg dry wt	< 1.0	< 1.0	< 1.0	_	-			
2,4-Dichlorophenol	mg/kg dry wt	< 1.0	< 1.0	< 1.0	_	-			
2,4-Dimethylphenol	mg/kg dry wt	< 3	< 3	< 3	_	-			
,			_	_					

Sample Type: Soil						
	Sample Name:	B26 TP02 0.5 19-Jun-2023	B26 TP03 0.1 19-Jun-2023	B26 TP03 0.5 19-Jun-2023	B59 TP02 0.1	B59 TP02 0.5
	Lab Number:	3299078.268	3299078.270	3299078.271	3299078.273	3299078.274
Phenols in SVOC Soil Sampl	les by GC-MS					
3 & 4-Methylphenol (m- + p- cresol)	mg/kg dry wt	< 3	< 3	< 3	-	-
2-Methylphenol (o-cresol)	mg/kg dry wt	< 1.0	< 1.0	< 1.0	-	-
2-Nitrophenol	mg/kg dry wt	< 5	< 5	< 5	-	-
Pentachlorophenol (PCP)	mg/kg dry wt	< 30	< 30	< 30	-	-
Phenol	mg/kg dry wt	< 1.0	< 1.0	< 1.0	-	-
2,4,5-Trichlorophenol	mg/kg dry wt	< 1.0	< 1.0	< 1.0	-	-
2,4,6-Trichlorophenol	mg/kg dry wt	< 1.0	< 1.0	< 1.0	-	-
Plasticisers in SVOC Soil Sa	mples by GC-MS		,			
Bis(2-ethylhexyl)phthalate	mg/kg dry wt	< 5	< 5	< 5	-	-
Butylbenzylphthalate	mg/kg dry wt	< 1.0	< 1.0	< 1.0	-	-
Di(2-ethylhexyl)adipate	mg/kg dry wt	< 1.0	< 1.0	< 1.0	-	
Diethylphthalate	mg/kg dry wt	< 1.0	< 1.0	< 1.0	-	
Dimethylphthalate	mg/kg dry wt	< 1.0	< 1.0	< 1.0	1	-
Di-n-butylphthalate	mg/kg dry wt	< 1.0	< 1.0	< 1.0	2	-
Di-n-octylphthalate	mg/kg dry wt	< 1.0	< 1.0	< 1.0	-	-
Other Halogenated compound	ds in SVOC Soil Sai	mples by GC-MS				
1,2-Dichlorobenzene	mg/kg dry wt	< 0.9	< 0.8	< 0.9	10	-
1,3-Dichlorobenzene	mg/kg dry wt	< 0.9	< 0.8	< 0.9		-
1,4-Dichlorobenzene	mg/kg dry wt	< 0.9	< 0.8	< 0.9	-	-
Hexachlorobutadiene	mg/kg dry wt	< 0.9	< 0.8	< 0.9	-	-
Hexachloroethane	mg/kg dry wt	< 0.9	< 0.8	< 0.9	-	-
1,2,4-Trichlorobenzene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	-	-
Other compounds in SVOC S	Soil Samples by GC-	·MS				
Benzyl alcohol	mg/kg dry wt	< 10	< 10	< 10	-	-
Carbazole	mg/kg dry wt	< 0.5	< 0.5	< 0.5	-	-
Dibenzofuran	mg/kg dry wt	< 0.5	< 0.5	< 0.5	-	-
Isophorone	mg/kg dry wt	< 0.5	< 0.5	< 0.5	-	-
Total Petroleum Hydrocarbon	ns in Soil	10	X			
C7 - C9	mg/kg dry wt	< 30	< 20	< 30	-	-
C10 - C14	mg/kg dry wt	< 20	< 20	< 20	-	-
C15 - C36	mg/kg dry wt	< 40	99	< 40	-	-
Total hydrocarbons (C7 - C36	6) mg/kg dry wt	< 90	99	< 90	-	-
	Sample Name:	B59 TP03 0.1	B65 TP01 0.1 16-Jun-2023	B65 TP01 0.5 16-Jun-2023	B65 TP01 1.5 16-Jun-2023	B65 TP02 0.1 16-Jun-2023
	Lab Number:	3299078.275	3299078.276	3299078.277	3299078.278	3299078.279
Individual Tests						
Dry Matter	g/100g as rcvd	92	89	70	65	70
Total Recoverable Beryllium	mg/kg dry wt	0.5	-	-	-	-
8 Heavy metals plus Boron						
Total Recoverable Arsenic	mg/kg dry wt	4	-	-	-	-
Total Recoverable Boron	mg/kg dry wt	< 20	-	-	-	-
Total Recoverable Cadmium	mg/kg dry wt	0.12	-	-	-	-
Total Recoverable Chromium	mg/kg dry wt	30	-	-	-	-
Total Recoverable Copper	mg/kg dry wt	13	-	-	-	-
Total Recoverable Lead	mg/kg dry wt	13.1	-	-	-	-
Total Recoverable Mercury	mg/kg dry wt	< 0.10	-	-	-	-
Total Recoverable Nickel	mg/kg dry wt	15	-	-	-	-
Total Recoverable Zinc	mg/kg dry wt	137	-	-	-	-
Acid Herbicides Screen in Sc	oil by LCMSMS					
Acifluorfen	mg/kg dry wt	< 0.2	-	-	-	-
Bentazone	mg/kg dry wt	< 0.2	-	-	-	-
Bromoxynil	mg/kg dry wt	< 0.2	-	-	-	-
Clopyralid	mg/kg dry wt	< 0.2	-	-	-	-
	•		1			

Sample Type: Soil								
Sai	mple Name:	B59 TP03 0.1	B65 TP01 0.1 16-Jun-2023	B65 TP01 0.5 16-Jun-2023	B65 TP01 1.5 16-Jun-2023	B65 TP02 0.1 16-Jun-2023		
L	ab Number:	3299078.275	3299078.276	3299078.277	3299078.278	3299078.279		
Acid Herbicides Screen in Soil by	LCMSMS							
Dicamba	mg/kg dry wt	< 0.2	-	-	-	-		
2,4-Dichlorophenoxyacetic acid (24D)	mg/kg dry wt	< 0.2	-	-	-	-		
2,4-Dichlorophenoxybutyric acid (24DB)	mg/kg dry wt	< 0.2	-	-	-	-		
Dichlorprop	mg/kg dry wt	< 0.2	-	-	-	-		
Fluazifop	mg/kg dry wt	< 0.2	-	-	-	-		
Fluroxypyr	mg/kg dry wt	< 0.2	-	-	-	-		
Haloxyfop	mg/kg dry wt	< 0.2	-	-	-	-		
2-methyl-4-chlorophenoxyacetic acid (MCPA)	mg/kg dry wt	< 0.2	-	-	-	-		
2-methyl-4- chlorophenoxybutanoic acid (MCPB)	mg/kg dry wt	< 0.2	-	-		6-		
Mecoprop (MCPP; 2-methyl-4- chlorophenoxypropionic acid)	mg/kg dry wt	< 0.2	-	-		-		
Oryzalin	mg/kg dry wt	< 0.4	-	-	\)		
Pentachlorophenol (PCP)	mg/kg dry wt	< 0.2	-	()		-		
Picloram	mg/kg dry wt	< 0.2	-		~ <u>`</u> O	-		
Quizalofop	mg/kg dry wt	< 0.2	-		1 ()	-		
2,3,4,6-Tetrachlorophenol (TCP)	mg/kg dry wt	< 0.2	-	9 - 1		-		
2,4,5-trichlorophenoxypropionic acid (245TP,Fenoprop, Silvex)	mg/kg dry wt	< 0.2		· - \	-	-		
2,4,5-Trichlorophenoxyacetic acid (245T)	mg/kg dry wt	0.4			-	-		
Triclopyr	mg/kg dry wt	< 0.2			-	-		
BTEX in Soil by Headspace GC-N	MS							
Benzene	mg/kg dry wt	- (< 0.05	< 0.07	< 0.08	< 0.07		
Toluene	mg/kg dry wt	1-7	< 0.05	< 0.07	< 0.08	< 0.07		
Ethylbenzene	mg/kg dry wt		< 0.05	< 0.07	< 0.08	< 0.07		
m&p-Xylene	mg/kg dry wt	10	< 0.10	< 0.13	< 0.15	< 0.13		
o-Xylene	mg/kg dry wt	J -	< 0.05	< 0.07	< 0.08	< 0.07		
Organochlorine Pesticides Screen	ning in Soil		^					
Aldrin	mg/kg dry wt	< 0.011	-	-	-	-		
alpha-BHC	mg/kg dry wt	< 0.011	-	-	-	-		
beta-BHC	mg/kg dry wt	< 0.011	-	-	-	-		
delta-BHC	mg/kg dry wt	< 0.011	-	-	-	-		
gamma-BHC (Lindane)	mg/kg dry wt	< 0.011	-	-	-	-		
cis-Chlordane	mg/kg dry wt	< 0.011	-	-	-	-		
trans-Chlordane	mg/kg dry wt	< 0.011	-	-	-	-		
2,4'-DDD	mg/kg dry wt	< 0.011	-	-	-	-		
4,4'-DDD	mg/kg dry wt	< 0.011	-	-	-	-		
2,4'-DDE	mg/kg dry wt	< 0.011	-	-	-	-		
4,4'-DDE	mg/kg dry wt	< 0.011	-	-	-	-		
2,4'-DDT	mg/kg dry wt	< 0.011	-	-	-	-		
4,4'-DDT	mg/kg dry wt	< 0.011	-	-	-	-		
Total DDT Isomers	mg/kg dry wt	< 0.07	-	-	-	-		
Dieldrin	mg/kg dry wt	< 0.011	-	-	-	-		
Endosulfan I	mg/kg dry wt	< 0.011	-	-	-	-		
Endosulfan II	mg/kg dry wt	< 0.011	-	-	-	-		
Endosulfan sulphate	mg/kg dry wt	< 0.011	-	-	-	-		
Endrin	mg/kg dry wt	< 0.011	-	-	-	-		
Endrin aldehyde	mg/kg dry wt	< 0.011	-	-	-	-		
Endrin ketone	mg/kg dry wt	< 0.011	-	-	-	-		
Heptachlor	mg/kg dry wt	< 0.011	-	-	-	-		
Heptachlor epoxide	mg/kg dry wt	< 0.011	-	-	-	-		
Hexachlorobenzene	mg/kg dry wt	< 0.011	-	-	-	-		

Sample Type: Soil						
Sar	mple Name:	B59 TP03 0.1	B65 TP01 0.1 16-Jun-2023	B65 TP01 0.5 16-Jun-2023	B65 TP01 1.5 16-Jun-2023	B65 TP02 0.1 16-Jun-2023
L	ab Number:	3299078.275	3299078.276	3299078.277	3299078.278	3299078.279
Organochlorine Pesticides Screen	ning in Soil					
Methoxychlor	mg/kg dry wt	< 0.011	-	-	-	-
Organonitro&phosphorus Pesticio	les Screen in S	oil by GCMS			,	,
Acetochlor	mg/kg dry wt	< 0.06	-	-	-	-
Alachlor	mg/kg dry wt	< 0.05	-	-	-	-
Atrazine	mg/kg dry wt	< 0.06	-	-	-	-
Atrazine-desethyl	mg/kg dry wt	< 0.06	-	-	-	-
Atrazine-desisopropyl	mg/kg dry wt	< 0.11	-	-	-	-
Azaconazole	mg/kg dry wt	< 0.03	-	-	-	-
Azinphos-methyl	mg/kg dry wt	< 0.11	-	-	-	-
Benalaxyl	mg/kg dry wt	< 0.03	-	-	-	-
Bitertanol	mg/kg dry wt	< 0.11	-	-	-	-
Bromacil	mg/kg dry wt	< 0.06	-	-	-	
Bromopropylate	mg/kg dry wt	< 0.06	-	-	1 -	70
Butachlor	mg/kg dry wt	< 0.06	-	- \	7	\
Captan	mg/kg dry wt	< 0.11	-	-	Y - 10	-
Carbaryl	mg/kg dry wt	< 0.06	-	- (~/(-
Carbofuran	mg/kg dry wt	< 0.06	-			-
Chlorfluazuron	mg/kg dry wt	< 0.06	-	70	101	-
Chlorothalonil	mg/kg dry wt	< 0.06	-	9. /	1 9	-
Chlorpyrifos	mg/kg dry wt	< 0.06	-		-	-
Chlorpyrifos-methyl	mg/kg dry wt	< 0.06	A- ()	\	-	-
Chlortoluron	mg/kg dry wt	< 0.11		1/4	-	-
Cyanazine	mg/kg dry wt	< 0.06	- 71	. 0-1	-	-
Cyfluthrin	mg/kg dry wt	< 0.07		10	-	-
Cyhalothrin	mg/kg dry wt	< 0.06	-	-	-	-
Cypermethrin	mg/kg dry wt	< 0.13	- 0	-	-	-
Deltamethrin (including Tralomethrin)	mg/kg dry wt	< 0.06		-	-	-
Diazinon	mg/kg dry wt	< 0.03		-	-	-
Dichlofluanid	mg/kg dry wt	< 0.06	1.1.	-	-	-
Dichloran	mg/kg dry wt	< 0.2	-	-	-	-
Dichlorvos	mg/kg dry wt	< 0.09	-	-	-	-
Difenoconazole	mg/kg dry wt	< 0.09	-	-	-	-
Dimethoate	mg/kg dry wt	< 0.11	-	-	-	-
Diphenylamine	mg/kg dry wt	< 0.11	-	-	-	-
Diuron	mg/kg dry wt	< 0.06	-	-	-	-
Fenpropimorph	mg/kg dry wt	< 0.06	-	-	-	-
Fluazifop-butyl	mg/kg dry wt	< 0.06	-	-	-	-
Fluometuron	mg/kg dry wt	< 0.06	-	-	-	-
Flusilazole	mg/kg dry wt	< 0.06	-	-	-	-
Fluvalinate	mg/kg dry wt	< 0.05	-	-	-	-
Furalaxyl	mg/kg dry wt	< 0.03	-	-	-	-
Haloxyfop-methyl	mg/kg dry wt	< 0.06	-	-	-	-
Hexaconazole	mg/kg dry wt	< 0.06	-	-	-	-
Hexazinone	mg/kg dry wt	< 0.03	-	-	-	-
IPBC (3-lodo-2-propynyl-n- butylcarbamate)	mg/kg dry wt	< 0.3	-	-	-	-
Kresoxim-methyl	mg/kg dry wt	< 0.03	-	-	-	-
Linuron	mg/kg dry wt	< 0.06	-	-	-	-
Malathion	mg/kg dry wt	< 0.06	-	-	-	-
Metalaxyl	mg/kg dry wt	< 0.06	-	-	-	-
Methamidophos	mg/kg dry wt	< 0.3	-	-	-	-
Metolachlor	mg/kg dry wt	< 0.05	-	-	-	-
Metribuzin	mg/kg dry wt	< 0.06	-	-	-	-
	ilig/ikg diy wi	0.00				

Sample Type: Soil						
Sai	mple Name:	B59 TP03 0.1	B65 TP01 0.1 16-Jun-2023	B65 TP01 0.5 16-Jun-2023	B65 TP01 1.5 16-Jun-2023	B65 TP02 0.1 16-Jun-2023
L	ab Number:	3299078.275	3299078.276	3299078.277	3299078.278	3299078.279
Organonitro&phosphorus Pesticio	des Screen in Sc	oil by GCMS				
Myclobutanil	mg/kg dry wt	< 0.06	-	-	-	-
Naled	mg/kg dry wt	< 0.3	-	-	-	-
Norflurazon	mg/kg dry wt	< 0.11	-	-	-	-
Oxadiazon	mg/kg dry wt	< 0.06	-	-	-	-
Oxyfluorfen	mg/kg dry wt	< 0.03	_	-	_	_
Paclobutrazol	mg/kg dry wt	< 0.06	_	-	_	_
Parathion-ethyl	mg/kg dry wt	< 0.06	_	-	_	_
Parathion-methyl	mg/kg dry wt	< 0.06	_	_	-	_
Pendimethalin	mg/kg dry wt	< 0.06	_	_	_	_
Permethrin	mg/kg dry wt	< 0.03	_	_	_	_
Pirimicarb	mg/kg dry wt	< 0.06	<u>-</u>	<u>-</u>	_	_
Pirimiphos-methyl		< 0.06	-	-	-	-
· · ·	mg/kg dry wt		-	-	-	
Prochloraz	mg/kg dry wt	< 0.3	-	-	4	
Procymidone	mg/kg dry wt	< 0.06	-	-)) _ ~	*-
Prometryn	mg/kg dry wt	< 0.03	-	-	Y - (1)	· -
Propachlor	mg/kg dry wt	< 0.06	-	-()		-
Propanil	mg/kg dry wt	< 0.2	-		•	-
Propazine	mg/kg dry wt	< 0.03	-		1 (7)	-
Propiconazole	mg/kg dry wt	< 0.05	-	9 - /	<u> </u>	-
Pyriproxyfen	mg/kg dry wt	< 0.06	-		-	-
Quizalofop-ethyl	mg/kg dry wt	< 0.06	·- O	-	-	-
Simazine	mg/kg dry wt	< 0.06		1/2	-	-
Simetryn	mg/kg dry wt	< 0.06	- (2-1)	. 0.	-	-
Sulfentrazone	mg/kg dry wt	< 0.3		10	-	-
TCMTB [2-(thiocyanomethylthio) benzothiazole,Busan]	mg/kg dry wt	< 0.11	-	-	-	-
Tebuconazole	mg/kg dry wt	< 0.06		-	-	-
Terbacil	mg/kg dry wt	< 0.06		-	-	-
Terbumeton	mg/kg dry wt	< 0.06		-	-	-
Terbuthylazine	mg/kg dry wt	< 0.03	-	-	-	-
Terbuthylazine-desethyl	mg/kg dry wt	< 0.06	7 -	-	-	-
Terbutryn	mg/kg dry wt		<u> </u>	-	_	_
Thiabendazole	mg/kg dry wt	< 0.3	_	_	_	_
Thiobencarb	mg/kg dry wt	< 0.06	_	_	_	_
Tolylfluanid	mg/kg dry wt	< 0.03	_	-	_	_
Triazophos	mg/kg dry wt	< 0.06	-	-	-	-
Trifluralin						
	mg/kg dry wt	< 0.06	-	-	-	-
Vinclozolin	mg/kg dry wt	< 0.06	-	-	-	-
Polycyclic Aromatic Hydrocarbons	_		Υ		1	1
Total of Reported PAHs in Soil	mg/kg dry wt	-	59	< 0.4	0.5	3.6
1-Methylnaphthalene	mg/kg dry wt	-	0.122	< 0.015	< 0.016	< 0.014
2-Methylnaphthalene	mg/kg dry wt	-	0.092	< 0.015	< 0.016	< 0.014
Acenaphthylene	mg/kg dry wt	-	0.112	< 0.015	< 0.016	< 0.014
Acenaphthene	mg/kg dry wt	-	0.78	< 0.015	< 0.016	0.021
Anthracene	mg/kg dry wt	-	1.64	< 0.015	< 0.016	0.038
Benzo[a]anthracene	mg/kg dry wt	-	4.2	< 0.015	0.036	0.24
Benzo[a]pyrene (BAP)	mg/kg dry wt	-	4.9	0.016	0.048	0.32
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES*	mg/kg dry wt	-	7.2	< 0.035	0.072	0.47
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	-	7.1	< 0.035	0.071	0.46
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	-	5.5	0.020	0.054	0.35
Benzo[e]pyrene	mg/kg dry wt	-	2.6	< 0.015	0.026	0.20
Benzo[g,h,i]perylene	mg/kg dry wt	-	3.2	< 0.015	0.030	0.22
Benzo[k]fluoranthene	mg/kg dry wt	-	2.1	< 0.015	0.023	0.135
25.120[N]NAOTAITATOTO	mg, ng ary wt		۷.۱	. 0.010	0.020	0.100

Sample Type: Soil						
	Sample Name:	B59 TP03 0.1	B65 TP01 0.1 16-Jun-2023	B65 TP01 0.5 16-Jun-2023	B65 TP01 1.5 16-Jun-2023	B65 TP02 0.1 16-Jun-2023
	Lab Number:	3299078.275	3299078.276	3299078.277	3299078.278	3299078.279
Polycyclic Aromatic Hydrocarbo	ons Screening in S	oil*				
Chrysene	mg/kg dry wt	-	4.1	0.015	0.035	0.26
Dibenzo[a,h]anthracene	mg/kg dry wt	-	0.67	< 0.015	< 0.016	0.048
Fluoranthene	mg/kg dry wt	-	9.1	0.030	0.072	0.59
Fluorene	mg/kg dry wt	-	0.48	< 0.015	< 0.016	0.016
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	_	3.6	< 0.015	0.036	0.22
Naphthalene	mg/kg dry wt	_	0.06	< 0.08	< 0.08	< 0.07
Perylene	mg/kg dry wt		1.41	< 0.015	0.023	0.066
Phenanthrene	mg/kg dry wt	<u> </u>	5.5	< 0.015	0.023	0.30
			8.9			
Pyrene	mg/kg dry wt	-	8.9	0.026	0.068	0.57
Total Petroleum Hydrocarbons			1	1		
C7 - C9	mg/kg dry wt	-	< 20	< 20	< 30	< 20
C10 - C14	mg/kg dry wt	-	< 20	< 20	< 20	< 20
C15 - C36	mg/kg dry wt	-	300	< 40	< 40	< 40
Total hydrocarbons (C7 - C36)	mg/kg dry wt	-	320	< 80	≤ 90	< 80
	Sample Name:	B65 TP02 1.0	B65 TP03 0.1	B65 TP03 0.5	B65 TP03 1.5	B73 TP01 0.1
	-	16-Jun-2023	16-Jun-2023	16-Jun-2023	16-Jun-2023	20-Jun-2023
	Lab Number:	3299078.280	3299078.281	3299078.282	3299078.283	3299078.284
Individual Tests					1 (/)	
Dry Matter	g/100g as rcvd	67	95	66	61	69
Total Recoverable Beryllium	mg/kg dry wt	-	7		-	1.1
8 Heavy metals plus Boron	-		100			
Total Recoverable Arsenic	mg/kg dry wt	-			_	7
Total Recoverable Boron	mg/kg dry wt	-	- (7.1)	A (2-1)	_	< 20
Total Recoverable Cadmium	mg/kg dry wt	_		10	_	0.40
Total Recoverable Chromium	mg/kg dry wt	_			_	10
Total Recoverable Copper	mg/kg dry wt	_		_	_	20
Total Recoverable Lead	mg/kg dry wt	13		<u>-</u>	_	47
Total Recoverable Mercury	mg/kg dry wt		. (1)	_	_	0.13
· · · · · · · · · · · · · · · · · · ·		10			-	
Total Recoverable Nickel	mg/kg dry wt	1	11.	-	-	4
Total Recoverable Zinc	mg/kg dry wt	-	^ ·	-	-	73
BTEX in Soil by Headspace G0	C-MS					
Benzene	mg/kg dry wt	< 0.07	< 0.05	< 0.07	< 0.08	-
Toluene	mg/kg dry wt	< 0.07	< 0.05	< 0.07	< 0.08	-
Ethylbenzene	mg/kg dry wt	< 0.07	< 0.05	< 0.07	< 0.08	-
m&p-Xylene	mg/kg dry wt	< 0.14	< 0.10	< 0.14	< 0.15	-
o-Xylene	mg/kg dry wt	< 0.07	< 0.05	< 0.07	< 0.08	-
Polycyclic Aromatic Hydrocarbo	ons Screening in S	oil*			,	
Total of Reported PAHs in Soil	mg/kg dry wt	< 0.4	9.6	< 0.4	< 0.4	< 0.4
1-Methylnaphthalene	mg/kg dry wt	< 0.015	0.015	< 0.015	< 0.016	< 0.015
2-Methylnaphthalene	mg/kg dry wt	< 0.015	0.011	< 0.015	< 0.016	< 0.015
Acenaphthylene	mg/kg dry wt	< 0.015	0.012	< 0.015	< 0.016	< 0.015
Acenaphthene	mg/kg dry wt	< 0.015	0.131	< 0.015	< 0.016	< 0.015
Anthracene	mg/kg dry wt	< 0.015	0.131	< 0.015	< 0.016	< 0.015
		< 0.015	0.28	< 0.015	< 0.016	< 0.015
Benzo[a]anthracene	mg/kg dry wt					
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.015	0.75	< 0.015	< 0.016	< 0.015
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES	mg/kg dry wt	< 0.035	1.13	< 0.036	< 0.039	< 0.035
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	< 0.035	1.12	< 0.036	< 0.039	< 0.035
Benzo[b]fluoranthene + Benzo[j fluoranthene	i] mg/kg dry wt	< 0.015	0.87	< 0.015	< 0.016	< 0.015
Benzo[e]pyrene	mg/kg dry wt	< 0.015	0.38	< 0.015	< 0.016	< 0.015
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.015	0.45	< 0.015	< 0.016	< 0.015
Benzo[k]fluoranthene	mg/kg dry wt	< 0.015	0.33	< 0.015	< 0.016	< 0.015
Chrysene	mg/kg dry wt	< 0.015	0.65	< 0.015	< 0.016	< 0.015
On your	mg/kg dry Wt	~ U.U13	0.05	~ U.U13	~ 0.010	- 0.013

Sample Type: Soil							
	Sample Name:	B65 TP02 1.0 16-Jun-2023	B65 TP03 0.1 16-Jun-2023	B65 TP03 0.5 16-Jun-2023	B65 TP03 1.5 16-Jun-2023	B73 TP01 0.1 20-Jun-2023	
	Lab Number:	3299078.280	3299078.281	3299078.282	3299078.283	3299078.284	
Polycyclic Aromatic Hydrocar		Soil*					
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.015	0.111	< 0.015	< 0.016	< 0.015	
Fluoranthene	mg/kg dry wt	< 0.015	1.66	< 0.015	< 0.016	< 0.015	
Fluorene	mg/kg dry wt	< 0.015	0.100	< 0.015	< 0.016	< 0.015	
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.015	0.53	< 0.015	< 0.016	< 0.015	
Naphthalene	mg/kg dry wt	< 0.08	< 0.06	< 0.08	< 0.08	< 0.08	
Perylene	mg/kg dry wt	< 0.015	0.197	< 0.015	< 0.016	< 0.015	
Phenanthrene	mg/kg dry wt	< 0.015	0.84	< 0.015	< 0.016	< 0.015	
Pyrene	mg/kg dry wt	< 0.015	1.56	< 0.015	< 0.016	< 0.015	
Total Petroleum Hydrocarbon							
C7 - C9	mg/kg dry wt	< 30	< 20	< 30	< 30	< 20	
C10 - C14	mg/kg dry wt	< 20	< 20	< 20	< 20	< 20	
C15 - C36	mg/kg dry wt	< 40	< 40	< 40	<u>4</u> < 40	< 40	
Total hydrocarbons (C7 - C36		< 90	< 80	< 90	< 90	< 80	
BTEX in VOC Soils by Heads	, , ,	- 00	. 00		- 00		
Brexin voc 30lls by Heads Benzene	mg/kg dry wt		_	_	\'\\ \(\)	< 0.3	
Ethylbenzene	mg/kg ary wt	<u>-</u> -	<u>-</u>	-	-	< 0.3	
Toluene	mg/kg dry wt	-	-	70		< 0.3	
		-	-		. 0.0	< 0.5	
m&p-Xylene	mg/kg dry wt	-	-	6			
o-Xylene	mg/kg dry wt	-	- 6	3 - '	-	< 0.3	
Halogenated Aliphatics in VO		ice GC-MS		<i>y</i>	V		
Bromomethane (Methyl Bromi		-	10	N:	-	< 0.3	
Carbon tetrachloride	mg/kg dry wt	-	0:		-	< 0.3	
Chloroethane	mg/kg dry wt	-		10	-	< 0.3	
Chloromethane	mg/kg dry wt	-	- 5	-	-	< 0.3	
1,2-Dibromo-3-chloropropane	0 0 7	-	-	-	-	< 0.5	
1,2-Dibromoethane (ethylene dibromide, EDB)	mg/kg dry wt	17		-	-	< 0.3	
Dibromomethane	mg/kg dry wt		• (-)	-	-	< 0.3	
1,3-Dichloropropane	mg/kg dry wt		XIO	-	-	< 0.3	
Dichlorodifluoromethane	mg/kg dry wt	-	70	-	-	< 0.5	
1,1-Dichloroethane	mg/kg dry wt	-	<u> </u>	-	-	< 0.3	
1,2-Dichloroethane	mg/kg dry wt	-(/)	-	-	-	< 0.3	
1,1-Dichloroethene	mg/kg dry wt	-	-	-	-	< 0.3	
cis-1,2-Dichloroethene	mg/kg dry wt		-	-	-	< 0.3	
trans-1,2-Dichloroethene	mg/kg dry wt		-	-	-	< 0.3	
Dichloromethane (methylene chloride)	mg/kg dry wt	-	-	-	-	< 5	
1,2-Dichloropropane	mg/kg dry wt	-	-	-	-	< 0.3	
1,1-Dichloropropene	mg/kg dry wt	-	-	-	-	< 0.3	
cis-1,3-Dichloropropene	mg/kg dry wt	-	-	-	-	< 0.3	
trans-1,3-Dichloropropene	mg/kg dry wt	-	-	-	-	< 0.3	
Hexachlorobutadiene	mg/kg dry wt	-	-	-	-	< 0.3	
1,1,1,2-Tetrachloroethane	mg/kg dry wt	-	-	-	-	< 0.3	
1,1,2,2-Tetrachloroethane	mg/kg dry wt	-	-	-	-	< 0.3	
Tetrachloroethene (tetrachloroethylene)	mg/kg dry wt	-	-	-	-	< 0.3	
1,1,1-Trichloroethane	mg/kg dry wt	-	-	-	-	< 0.3	
1,1,2-Trichloroethane	mg/kg dry wt	-	-	-	-	< 0.3	
Trichloroethene (trichloroethylene)	mg/kg dry wt	-	-	-	-	< 0.3	
Trichlorofluoromethane	mg/kg dry wt	-	-	-	-	< 0.3	
1,2,3-Trichloropropane	mg/kg dry wt	-	-	-	-	< 0.5	
1,1,2-Trichlorotrifluoroethane (Freon 113)	mg/kg dry wt	-	-	-	-	< 0.3	
Vinyl chloride	mg/kg dry wt	-	_	_	<u>-</u>	< 0.3	
	mg/ng dry Wt					, 0.0	

Sample Type: Soil								
Sa	ample Name:	B65 TP02 1.0	B65 TP03 0.1	B65 TP03 0.5	B65 TP03 1.5	B73 TP01 0.1		
		16-Jun-2023	16-Jun-2023	16-Jun-2023	16-Jun-2023	20-Jun-2023		
	Lab Number:	3299078.280	3299078.281	3299078.282	3299078.283	3299078.284		
Haloaromatics in VOC Soils by				ı				
Bromobenzene	mg/kg dry wt	-	-	-	-	< 0.3		
1,3-Dichlorobenzene	mg/kg dry wt	-	-	-	-	< 0.3		
4-Chlorotoluene	mg/kg dry wt	-	-	-	-	< 0.3		
Chlorobenzene (monochlorobenzene)	mg/kg dry wt	-	-	-	-	< 0.3		
1,2-Dichlorobenzene	mg/kg dry wt	-	_	_	-	< 0.3		
1,4-Dichlorobenzene	mg/kg dry wt	-	-	-	-	< 0.3		
2-Chlorotoluene	mg/kg dry wt	-	-	-	-	< 0.3		
1,2,3-Trichlorobenzene	mg/kg dry wt	-	-	-	-	< 0.3		
1,2,4-Trichlorobenzene	mg/kg dry wt	-	-	-	-	< 0.3		
1,3,5-Trichlorobenzene	mg/kg dry wt	-	-	-	-	< 0.3		
Monoaromatic Hydrocarbons in	VOC Soils by He	adspace GC-MS	1	1	•			
n-Butylbenzene	mg/kg dry wt	-	-	-	-	< 0.3		
tert-Butylbenzene	mg/kg dry wt	-	-	-	7	< 0.3		
Isopropylbenzene (Cumene)	mg/kg dry wt	-	-	- 4	2 1.0	< 0.3		
4-Isopropyltoluene (p-Cymene)	mg/kg dry wt	-	-	-	\	< 0.3		
n-Propylbenzene	mg/kg dry wt	-	-	20		< 0.3		
sec-Butylbenzene	mg/kg dry wt	-	-		. 0.	< 0.3		
Styrene	mg/kg dry wt	-	-	9-1	10	< 0.3		
1,2,4-Trimethylbenzene	mg/kg dry wt	-	- (7	-	/ -	< 0.3		
1,3,5-Trimethylbenzene	mg/kg dry wt	-	0	\	_	< 0.3		
Ketones in VOC Soils by Heads	pace GC-MS		10	N				
2-Butanone (MEK)	mg/kg dry wt	-		. 0	-	< 50		
4-Methylpentan-2-one (MIBK)	mg/kg dry wt	-		10	-	< 10		
Acetone	mg/kg dry wt	-	-		-	< 50		
Methyl tert-butylether (MTBE)	mg/kg dry wt	- (-	-	-	< 0.3		
Trihalomethanes in VOC Soils b	y Headspace GC	C-MS						
Bromodichloromethane	mg/kg dry wt		+ (-)	-	-	< 0.3		
Bromoform (tribromomethane)	mg/kg dry wt	10	X	-	-	< 0.5		
Chloroform (Trichloromethane)	mg/kg dry wt	V - /	<u> </u>	-	-	< 0.3		
Dibromochloromethane	mg/kg dry wt		-	-	-	< 0.3		
Other VOC in Soils by Headspa	ace GC-MS							
Carbon disulphide	mg/kg dry wt	V-	-	-	-	< 0.3		
Naphthalene	mg/kg dry wt		-	-	-	< 0.3		
S	ample Name:	B73 TP01 0.5	B74 HA01 0.1	B74 HA01 0.5	B74 HA02 0.1	B74 HA02 0.5		
	p.o reality	20-Jun-2023	19-Jun-2023	19-Jun-2023				
	Lab Number:	3299078.285	3299078.287	3299078.288	3299078.290	3299078.291		
Individual Tests	7							
Dry Matter	g/100g as rcvd	60	70	75	74	66		
Total Recoverable Beryllium	mg/kg dry wt	0.6	0.6	0.9	0.8	0.9		
8 Heavy metals plus Boron								
Total Recoverable Arsenic	mg/kg dry wt	7	6	4	4	5		
Total Recoverable Boron	mg/kg dry wt	< 20	< 20	< 20	< 20	< 20		
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		
Total Recoverable Chromium	mg/kg dry wt	10	10	8	12	14		
Total Recoverable Copper	mg/kg dry wt	20	21	17	22	26		
Total Recoverable Lead	mg/kg dry wt	20	22	17.9	23	20		
Total Recoverable Mercury	mg/kg dry wt	< 0.10	< 0.10	< 0.10	< 0.10	0.12		
Total Recoverable Nickel	mg/kg dry wt	4	6	5	9	7		
Total Recoverable Zinc	mg/kg dry wt	36	52	41	73	52		
Polycyclic Aromatic Hydrocarbo	ns Screening in S	Soil*						
Total of Reported PAHs in Soil	mg/kg dry wt	< 0.4	-	-	-	-		
1-Methylnaphthalene	mg/kg dry wt	< 0.017	-	-	-	-		
2-Methylnaphthalene	mg/kg dry wt	< 0.017	-	-	-	-		
	•							

Sample Type: Soil						
Sa	mple Name:	B73 TP01 0.5 20-Jun-2023	B74 HA01 0.1 19-Jun-2023	B74 HA01 0.5 19-Jun-2023	B74 HA02 0.1	B74 HA02 0.5
L	.ab Number:	3299078.285	3299078.287	3299078.288	3299078.290	3299078.291
Polycyclic Aromatic Hydrocarbon	s Screening in S	oil*				
Acenaphthylene	mg/kg dry wt	< 0.017	-	-	-	-
Acenaphthene	mg/kg dry wt	< 0.017	-	-	-	-
Anthracene	mg/kg dry wt	< 0.017	-	-	-	-
Benzo[a]anthracene	mg/kg dry wt	< 0.017	-	-	-	-
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.017	-	-	-	-
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES*	mg/kg dry wt	< 0.040	-	-	-	-
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	< 0.040	-	-	-	-
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	< 0.017	-	-	-	-
Benzo[e]pyrene	mg/kg dry wt	< 0.017	-	-	-	-
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.017	-	-	-	
Benzo[k]fluoranthene	mg/kg dry wt	< 0.017	-	-	71-	
Chrysene	mg/kg dry wt	< 0.017	-	-)-	-
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.017	-	-	Y . (7)	-
Fluoranthene	mg/kg dry wt	< 0.017	-	-(-
Fluorene	mg/kg dry wt	< 0.017	-	0	(1)	-
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.017	-		1 (7)	-
Naphthalene	mg/kg dry wt	< 0.09	-	9 - /	<u> </u>	-
Perylene	mg/kg dry wt	< 0.017	-	-	-	-
Phenanthrene	mg/kg dry wt	< 0.017	·- O		-	-
Pyrene	mg/kg dry wt	< 0.017			-	-
Total Petroleum Hydrocarbons in	Soil			(7)		
C7 - C9	mg/kg dry wt	< 30	7 .		-	-
C10 - C14	mg/kg dry wt	< 20	-	-	-	-
C15 - C36	mg/kg dry wt	< 40	- ^	-	-	-
Total hydrocarbons (C7 - C36)	mg/kg dry wt	< 90		-	-	-
BTEX in VOC Soils by Headspace	e GC-MS	. (7)	.*.()			
Benzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Ethylbenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Toluene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
m&p-Xylene	mg/kg dry wt	< 0.6	< 0.5	< 0.5	< 0.5	< 0.6
o-Xylene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Halogenated Aliphatics in VOC S	oils by Headspa	ce GC-MS				
Bromomethane (Methyl Bromide)	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Carbon tetrachloride	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Chloroethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Chloromethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
1,2-Dibromo-3-chloropropane	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-Dibromoethane (ethylene dibromide, EDB)	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Dibromomethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
1,3-Dichloropropane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Dichlorodifluoromethane	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-Dichloroethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
1,2-Dichloroethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
1,1-Dichloroethene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
cis-1,2-Dichloroethene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
trans-1,2-Dichloroethene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Dichloromethane (methylene chloride)	mg/kg dry wt	< 6	< 5	< 5	< 5	< 6
1,2-Dichloropropane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
1,1-Dichloropropene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
cis-1,3-Dichloropropene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
trans-1,3-Dichloropropene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3

Sample Type: Soil						
	Sample Name:	B73 TP01 0.5 20-Jun-2023	B74 HA01 0.1 19-Jun-2023	B74 HA01 0.5 19-Jun-2023	B74 HA02 0.1	B74 HA02 0.5
	Lab Number:	3299078.285	3299078.287	3299078.288	3299078.290	3299078.291
Halogenated Aliphatics in VO	C Soils by Headspa	ce GC-MS				
Hexachlorobutadiene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
1,1,1,2-Tetrachloroethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
1,1,2,2-Tetrachloroethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Tetrachloroethene (tetrachloroethylene)	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
1,1,1-Trichloroethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
1,1,2-Trichloroethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Trichloroethene (trichloroethylene)	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Trichlorofluoromethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
1,2,3-Trichloropropane	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2-Trichlorotrifluoroethane (Freon 113)	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Vinyl chloride	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Haloaromatics in VOC Soils b	0 0 ,		1			
Bromobenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
1,3-Dichlorobenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
4-Chlorotoluene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Chlorobenzene (monochlorobenzene)	mg/kg dry wt	< 0.3	< 0.3	0.3	< 0.3	< 0.3
1,2-Dichlorobenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
1,4-Dichlorobenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
2-Chlorotoluene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
1,2,3-Trichlorobenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
1,2,4-Trichlorobenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
1,3,5-Trichlorobenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Monoaromatic Hydrocarbons i						
n-Butylbenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
tert-Butylbenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Isopropylbenzene (Cumene)	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
4-Isopropyltoluene (p-Cymene	0 0	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
n-Propylbenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
sec-Butylbenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Styrene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
1,2,4-Trimethylbenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
1,3,5-Trimethylbenzene	mg/kg dry wt	0.3	< 0.3	< 0.3	< 0.3	< 0.3
Ketones in VOC Soils by Hea		10				
2-Butanone (MEK)	mg/kg dry wt	< 60	< 50	< 50	< 50	< 60
4-Methylpentan-2-one (MIBK)		< 12	< 10	< 9	< 9	< 11
Acetone	mg/kg dry wt	< 60	< 50	< 50	< 50	< 60
Methyl tert-butylether (MTBE)		< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Trihalomethanes in VOC Soils			1	1	1	1
Bromodichloromethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Bromoform (tribromomethane)		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Chloroform (Trichloromethane		< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Dibromochloromethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Other VOC in Soils by Heads			1	1	1	1
Carbon disulphide	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Naphthalene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
[0 0 7					
	Sample Name:	B74 TP08 0.1 16-Jun-2023	B74 TP08 0.5 16-Jun-2023	B74 TP08 2.1 16-Jun-2023	B74 TP09 0.1 16-Jun-2023	B74 TP09 0.5 16-Jun-2023
	Lab Number:	3299078.292	3299078.293	3299078.297	3299078.298	3299078.299
Individual Tests			T	ı	ı	
Dry Matter	g/100g as rcvd	71	68	67	71	58

Sample Type: Soil						
Sar	mple Name:	B74 TP08 0.1	B74 TP08 0.5	B74 TP08 2.1	B74 TP09 0.1	B74 TP09 0.5
	ab Number:	16-Jun-2023 3299078.292	16-Jun-2023 3299078.293	16-Jun-2023 3299078.297	16-Jun-2023 3299078.298	16-Jun-2023 3299078.299
BTEX in VOC Soils by Headspac		0200010.202	020001 0.200	020001 0.201	0200010.200	0200010.200
Benzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
Ethylbenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
Toluene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
m&p-Xylene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.7
o-Xylene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
Halogenated Aliphatics in VOC So						
Bromomethane (Methyl Bromide)	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
Carbon tetrachloride	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
Chloroethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
Chloromethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
1,2-Dibromo-3-chloropropane	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-Dibromoethane (ethylene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
dibromide, EDB)						70,
Dibromomethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
1,3-Dichloropropane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
Dichlorodifluoromethane	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-Dichloroethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
1,2-Dichloroethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
1,1-Dichloroethene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
cis-1,2-Dichloroethene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
trans-1,2-Dichloroethene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
Dichloromethane (methylene chloride)	mg/kg dry wt	< 5	<5	< 5	< 5	< 7
1,2-Dichloropropane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
1,1-Dichloropropene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
cis-1,3-Dichloropropene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
trans-1,3-Dichloropropene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
Hexachlorobutadiene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
1,1,1,2-Tetrachloroethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
1,1,2,2-Tetrachloroethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
Tetrachloroethene (tetrachloroethylene)	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
1,1,1-Trichloroethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
1,1,2-Trichloroethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
Trichloroethene (trichloroethylene)	mg/kg dry wt	0,3	< 0.3	< 0.3	< 0.3	< 0.4
Trichlorofluoromethane	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
1,2,3-Trichloropropane	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2-Trichlorotrifluoroethane (Freon 113)	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
Vinyl chloride	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
Haloaromatics in VOC Soils by He	·	1S				
Bromobenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
1,3-Dichlorobenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
4-Chlorotoluene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
Chlorobenzene (monochlorobenzene)	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
1,2-Dichlorobenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
1,4-Dichlorobenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
2-Chlorotoluene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
1,2,3-Trichlorobenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
1,2,4-Trichlorobenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
1,3,5-Trichlorobenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
Monoaromatic Hydrocarbons in V	OC Soils by He	adspace GC-MS				
n-Butylbenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
tert-Butylbenzene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4

ample Name:					B74 TP09 0.5 16-Jun-2023
Lab Number:	3299078.292	3299078.293	3299078.297	3299078.298	3299078.299
		< 0.3	< 0.3	< 0.3	< 0.4
0 0 ,		< 0.3			< 0.4
	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
					< 0.4
					< 0.4
	< 0.3				< 0.4
	< 0.3				< 0.4
					-
	< 50	< 50	< 50	< 50	< 70
					< 13
		-			< 70
					< 0.4
		10.5	10.5	10.5	(104
· · · · · · · · · · · · · · · · · · ·		-0. 2	403	30.2	204
					< 0.4
					< 0.5 < 0.4
	< U.3	< ∪.3	\$0.3	0.5	< 0.4
- ,					< 0.3
mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4
ample Name:	B74 TP09 2.0	DS02 TP01 0.1	DS02 TP01 0.5	DS02 TP02 0.1	DS02 TP03 0.1
	16-Jun-2023		19-Jun-2023	19-Jun-2023	20-Jun-2023
Lab Number:	3299078.302	3299078.303	3299078.304	3299078.306	3299078.309
					1
	61	-	-	-	-
mg/kg dry wt	1-2	1.2	1.9	1.1	0.9
	1	6			6
	7 -		< 20		< 20
	-		< 0.10		0.62
	-			14	13
mg/kg dry wt				45	55
	1- 1				490
		0.27		0.19	0.11
mg/kg dry wt	_	8	14	8	7
mg/kg dry wt	-	94	83	72	200
ice GC-MS					
mg/kg dry wt	< 0.3	-	-	-	-
mg/kg dry wt	< 0.3	-	-	-	-
mg/kg dry wt	< 0.3	-	-	-	-
mg/kg dry wt	< 0.6	-	-	-	-
mg/kg dry wt	< 0.3	-	-	-	-
Soils by Headspa	ice GC-MS				
) mg/kg dry wt	< 0.3	-	-	-	-
mg/kg dry wt	< 0.3	-	-	-	-
mg/kg dry wt	< 0.3	-	-	-	-
mg/kg dry wt	< 0.3	-	-	-	-
mg/kg dry wt	< 0.5	-	-	-	-
		_	-	-	-
mg/kg dry wt	< 0.3				
mg/kg dry wt	< 0.3	-	-	-	-
mg/kg dry wt	< 0.3	-	-	-	-
mg/kg dry wt					- -
	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt pace GC-MS mg/kg dry wt	Lab Number: 3299078.292 VOC Soils by Headspace GC-MS mg/kg dry wt	16-Jun-2023 16-Jun-2023 3299078.293 3299078.293 3299078.293 3299078.293 3299078.293 3299078.293 3299078.293 3299078.293 3299078.293 3299078.293 3299078.293 3299078.293 3299078.293 3299078.293 3299078.293 3299078.293 3299078.303	16-Jun-2023	Lab Number: 3299078.292 3299078.293 3299078.297 3299078.298 3299078.298 3299078.297 3299078.298 329907

Sample Type: Soil

Sample Type: Soil						
	Sample Name:	B74 TP09 2.0	DS02 TP01 0.1	DS02 TP01 0.5	DS02 TP02 0.1	DS02 TP03 0.1
		16-Jun-2023	19-Jun-2023	19-Jun-2023	19-Jun-2023	20-Jun-2023
	Lab Number:	3299078.302	3299078.303	3299078.304	3299078.306	3299078.309
Halogenated Aliphatics in VO					ī	
1,2-Dichloroethane	mg/kg dry wt	< 0.3	-	-	-	-
1,1-Dichloroethene	mg/kg dry wt	< 0.3	-	-	-	-
cis-1,2-Dichloroethene	mg/kg dry wt	< 0.3	-	-	-	-
trans-1,2-Dichloroethene	mg/kg dry wt	< 0.3	-	-	-	-
Dichloromethane (methylene chloride)	mg/kg dry wt	< 6	-	-	-	-
1,2-Dichloropropane	mg/kg dry wt	< 0.3	-	-	-	-
1,1-Dichloropropene	mg/kg dry wt	< 0.3	-	-	-	-
cis-1,3-Dichloropropene	mg/kg dry wt	< 0.3	-	-	-	-
trans-1,3-Dichloropropene	mg/kg dry wt	< 0.3	-	-	-	-
Hexachlorobutadiene	mg/kg dry wt	< 0.3	-	-	-	-
1,1,1,2-Tetrachloroethane	mg/kg dry wt	< 0.3	-	-	-	7
1,1,2,2-Tetrachloroethane	mg/kg dry wt	< 0.3	-	-	-	_ (-)
Tetrachloroethene (tetrachloroethylene)	mg/kg dry wt	< 0.3	-	- \	<u>)</u>	.
1,1,1-Trichloroethane	mg/kg dry wt	< 0.3	-	-		-
1,1,2-Trichloroethane	mg/kg dry wt	< 0.3	-	-()-		-
Trichloroethene (trichloroethylene)	mg/kg dry wt	< 0.3	-	60	0	-
Trichlorofluoromethane	mg/kg dry wt	< 0.3		5. /		-
1,2,3-Trichloropropane	mg/kg dry wt	< 0.5	- 6	-	-	_
1,1,2-Trichlorotrifluoroethane (Freon 113)	mg/kg dry wt	< 0.3	10	N:	-	-
Vinyl chloride	mg/kg dry wt	< 0.3			-	-
Haloaromatics in VOC Soils b			70	\W		
Bromobenzene	mg/kg dry wt	< 0.3			_	_
1,3-Dichlorobenzene	mg/kg dry wt	< 0.3	_	_	_	_
4-Chlorotoluene	mg/kg dry wt	< 0.3		_	_	_
Chlorobenzene	mg/kg dry wt	< 0.3		_	_	_
(monochlorobenzene)	mg/kg dry wt			_	_	_
1,2-Dichlorobenzene	mg/kg dry wt	< 0.3	1.	-	-	-
1,4-Dichlorobenzene	mg/kg dry wt	< 0.3	· -	-	-	-
2-Chlorotoluene	mg/kg dry wt	< 0.3		-	-	-
1,2,3-Trichlorobenzene	mg/kg dry wt	< 0.3	-	-	-	-
1,2,4-Trichlorobenzene	mg/kg dry wt	< 0.3	-	_	-	-
1,3,5-Trichlorobenzene	mg/kg dry wt	< 0.3	-	-	-	-
Monoaromatic Hydrocarbons			1	1	I	I.
n-Butylbenzene	mg/kg dry wt	< 0.3	_	_	_	_
tert-Butylbenzene	mg/kg dry wt	< 0.3	_	_	_	-
Isopropylbenzene (Cumene)	mg/kg dry wt	< 0.3	_	_	_	_
4-Isopropyltoluene (p-Cymene		< 0.3	_	_	_	_
n-Propylbenzene	mg/kg dry wt	< 0.3	_	_	_	_
sec-Butylbenzene	mg/kg dry wt	< 0.3	_	_	-	_
Styrene Styrene	mg/kg dry wt	< 0.3	_	_	-	_
1,2,4-Trimethylbenzene	mg/kg dry wt	< 0.3	_	-	_	
1,3,5-Trimethylbenzene	mg/kg dry wt	< 0.3	_	-	-	
Ketones in VOC Soils by Hea		٠٠.٥	-	-	<u>-</u>	
2-Butanone (MEK)	mg/kg dry wt	< 60	-	-	-	-
4-Methylpentan-2-one (MIBK)		< 12	-	-	-	-
Acetone	mg/kg dry wt	< 60	_	-	-	-
Methyl tert-butylether (MTBE)	mg/kg dry wt	< 0.3	_	_	-	_
Trihalomethanes in VOC Soils				<u> </u>	<u> </u>	
Bromodichloromethane	mg/kg dry wt	< 0.3	-	-	-	-
Bromoform (tribromomethane)) mg/kg dry wt	< 0.5	-	-	-	-
Chloroform (Trichloromethane	e) mg/kg dry wt	< 0.3	-	-	-	-
Dibromochloromethane	mg/kg dry wt	< 0.3	-	-	-	-
	•				1	1

Sample Type: Soil						
	Sample Name:	B74 TP09 2.0	DS02 TP01 0.1	DS02 TP01 0.5	DS02 TP02 0.1	DS02 TP03 0.1
	Lab Number:	16-Jun-2023 3299078.302	19-Jun-2023 3299078.303	19-Jun-2023 3299078.304	19-Jun-2023 3299078.306	20-Jun-2023 3299078.309
Other VOC in Soils by Heads		3299070.302	3299070.303	3299070.304	3299070.300	3299070.309
Carbon disulphide	mg/kg dry wt	< 0.3	_	_	_	_
Naphthalene	mg/kg dry wt	< 0.3	_	_	_	_
Тчартинаюто			 	 		
	Sample Name:	DS02 TP03 0.5 20-Jun-2023	DS02 TP04 0.1 20-Jun-2023	DS02 TP05 0.1 20-Jun-2023	DS02 TP05 0.5 20-Jun-2023	DS03 TP01 0.1 21-Jun-2023
	Lab Number:	3299078.310	3299078.312	3299078.315	3299078.316	3299078.318
Individual Tests			1	1		
Total Recoverable Beryllium	mg/kg dry wt	1.0	0.7	1.0	1.1	0.7
8 Heavy metals plus Boron	0 0 7		1	1		
Total Recoverable Arsenic	mg/kg dry wt	6	5	6	4	5
Total Recoverable Boron	mg/kg dry wt	< 20	< 20	< 20	< 20	< 20
Total Recoverable Cadmium	mg/kg dry wt	0.16	0.23	0.48	< 0.10	0.27
Total Recoverable Chromium		14	8	17	4 9	10
Total Recoverable Copper	mg/kg dry wt	56	20	50	28	39
Total Recoverable Lead	mg/kg dry wt	71	36	240	19.9	191
Total Recoverable Mercury	mg/kg dry wt	0.10	0.15	0.14	< 0.10	0.10
Total Recoverable Nickel	mg/kg dry wt	11	4	7	6	4
Total Recoverable Zinc	mg/kg dry wt	290	75	109	30	181
	Sample Name:	DS03 TP01 0.5 21-Jun-2023	DS03 TP02 0.1 21-Jun-2023	DS03 TP02 0.5 21-Jun-2023	DS03 TP03 0.1 21-Jun-2023	DS03 TP03 0.5 21-Jun-2023
	Lab Number:	3299078.319	3299078.321	3299078.322	3299078.324	3299078.325
Individual Tests			101			
Total Recoverable Beryllium	mg/kg dry wt	0.6	1.0	0.5	0.5	0.4
8 Heavy metals plus Boron				10)		
Total Recoverable Arsenic	mg/kg dry wt	5	5	3	4	3
Total Recoverable Boron	mg/kg dry wt	< 20	< 20	< 20	< 20	< 20
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	0.39	< 0.10	0.37	< 0.10
Total Recoverable Chromium	mg/kg dry wt	9	9	9	9	9
Total Recoverable Copper	mg/kg dry wt	11)	23	11	101	9
Total Recoverable Lead	mg/kg dry wt	31	34	18.1	112	22
Total Recoverable Mercury	mg/kg dry wt	< 0.10	0.18	0.12	< 0.10	< 0.10
Total Recoverable Nickel	mg/kg dry wt	3	5	4	4	4
Total Recoverable Zinc	mg/kg dry wt	45	85	40	112	31
	Sample Name:	DS03 TP04 0.1 21-Jun-2023	DS03 TP04 0.5 21-Jun-2023	Dup D1 [A]	Dup E1	Dup E3
	Lab Number:	3299078.327	3299078.328	3299078.330	3299078.332	3299078.334
Individual Tests	* (
Dry Matter	g/100g as rcvd	-	-	63	-	-
Total Recoverable Beryllium	mg/kg dry wt	1.0	0.7	0.9	1.1	0.6
8 Heavy metals plus Boron	~V					
Total Recoverable Arsenic	mg/kg dry wt	8	4	10	6	6
Total Recoverable Boron	mg/kg dry wt	< 20	< 20	< 20	< 20	< 20
Total Recoverable Cadmium	mg/kg dry wt	0.27	< 0.10	< 0.10	0.20	< 0.10
Total Recoverable Chromium		12	10	9	16	10
Total Recoverable Copper	mg/kg dry wt	98	9	13	46	22
Total Recoverable Lead	mg/kg dry wt	47	18.7	19.3	23	21
Total Recoverable Mercury	mg/kg dry wt	0.11	< 0.10	< 0.10	0.19	< 0.10
Total Recoverable Nickel	mg/kg dry wt	4	4	4	8	6
Total Recoverable Zinc	mg/kg dry wt	91	39	48	70	49
Polycyclic Aromatic Hydrocar		Soil*				
Total of Reported PAHs in Sc	oil mg/kg dry wt	-	-	0.6	-	-
·						
1-Methylnaphthalene	mg/kg dry wt	-	-	< 0.016	-	-
1-Methylnaphthalene 2-Methylnaphthalene	mg/kg dry wt mg/kg dry wt	-	-	< 0.016	-	-
1-Methylnaphthalene	mg/kg dry wt					

Sample Type: Soil						
Sa	mple Name:	DS03 TP04 0.1 21-Jun-2023	DS03 TP04 0.5 21-Jun-2023	Dup D1 [A]	Dup E1	Dup E3
	_ab Number:	3299078.327	3299078.328	3299078.330	3299078.332	3299078.334
Polycyclic Aromatic Hydrocarbon			020007 0.020	0200010.000	0200070.002	020007 0.00 1
Anthracene	mg/kg dry wt	-	_	0.027	-	-
Benzo[a]anthracene	mg/kg dry wt	-	_	0.044	-	-
Benzo[a]pyrene (BAP)	mg/kg dry wt	-	-	0.036	-	-
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES*	mg/kg dry wt	-	-	0.050	-	-
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	-	-	0.049	-	-
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	-	-	0.045	-	-
Benzo[e]pyrene	mg/kg dry wt	-	_	0.019	-	_
Benzo[g,h,i]perylene	mg/kg dry wt	-	_	0.016	-	_
Benzo[k]fluoranthene	mg/kg dry wt	-	-	0.016	-	A -
Chrysene	mg/kg dry wt	-	-	0.036	. -	
Dibenzo[a,h]anthracene	mg/kg dry wt		_	< 0.016	-	
Fluoranthene	mg/kg dry wt		_	0.120	1	.
Fluorene	mg/kg dry wt	<u> </u>	_	< 0.016) 	
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	-	-	0.021	/-	<u> </u>
		-	-	P		-
Naphthalene	mg/kg dry wt	-	-	< 0.08	00	-
Perylene	mg/kg dry wt	-	-			-
Phenanthrene	mg/kg dry wt	-	-	0.092	-	-
Pyrene	mg/kg dry wt	-	-	0.098	-	-
Sa	mple Name:	Dup E4	Dup E5	Dup F1	COMP A 0.1	COMP A 0.5
L	_ab Number:	3299078.335	3299078.336	3299078.338	3299078.339	3299078.340
Individual Tests			70	10		
Dry Matter	g/100g as rcvd	-	75	-	71	70
Total Recoverable Beryllium	mg/kg dry wt	0.5	0.5	0.7	0.9	0.7
8 Heavy metals plus Boron	0 0 7	4.4				
Total Recoverable Arsenic	mg/kg dry wt	4	3	3	6	4
Total Recoverable Boron	mg/kg dry wt	< 20	< 20	< 20	< 20	< 20
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	< 0.10	< 0.10	0.40	< 0.10
Total Recoverable Chromium	mg/kg dry wt	23	7	9	9	8
Total Recoverable Copper	mg/kg dry wt		9	8	42	13
Total Recoverable Lead	mg/kg dry wt	12.6	16.3	17.8	31	21
Total Recoverable Mercury	mg/kg dry wt	< 0.10	< 0.10	< 0.10	0.13	< 0.10
Total Recoverable Nickel	mg/kg dry wt	13	4	4	4	4
Total Recoverable Zinc	mg/kg dry wt	220	80	36	117	42
Acid Herbicides Screen in Soil by						
Acifluorfen	mg/kg dry wt	-	-	-	< 0.2	< 0.2
Bentazone	mg/kg dry wt	-	-	-	< 0.2	< 0.2
Bromoxynil	mg/kg dry wt	-	-	-	< 0.2	< 0.2
Clopyralid	mg/kg dry wt	-	-	-	< 0.2	< 0.2
Dicamba	mg/kg dry wt	-	-	-	< 0.2	< 0.2
2,4-Dichlorophenoxyacetic acid (24D)	mg/kg dry wt	-	-	-	< 0.2	< 0.2
2,4-Dichlorophenoxybutyric acid (24DB)	mg/kg dry wt	-	-	-	< 0.2	< 0.2
Dichlorprop	mg/kg dry wt	-	-	-	< 0.2	< 0.2
Fluazifop	mg/kg dry wt	-	-	-	< 0.2	< 0.2
Fluroxypyr	mg/kg dry wt	-	-	-	< 0.2	< 0.2
Haloxyfop	mg/kg dry wt	-	-	-	< 0.2	< 0.2
2-methyl-4-chlorophenoxyacetic acid (MCPA)	mg/kg dry wt	-	-	-	< 0.2	< 0.2
2-methyl-4- chlorophenoxybutanoic acid (MCPB)	mg/kg dry wt	-	-	-	< 0.2	< 0.2
Mecoprop (MCPP; 2-methyl-4-chlorophenoxypropionic acid)	mg/kg dry wt	-	-	-	< 0.2	< 0.2
1 ab No. 2200079 SDv6			Hill Lobo			Dogg 77 of 126

Sample Type: Soil						
Sar	mple Name:	Dup E4	Dup E5	Dup F1	COMP A 0.1	COMP A 0.5
L	ab Number:	3299078.335	3299078.336	3299078.338	3299078.339	3299078.340
Acid Herbicides Screen in Soil by	LCMSMS					
Oryzalin	mg/kg dry wt	-	-	-	< 0.4	< 0.4
Pentachlorophenol (PCP)	mg/kg dry wt	-	-	-	< 0.2	< 0.2
Picloram	mg/kg dry wt	-	-	-	< 0.2	< 0.2
Quizalofop	mg/kg dry wt	-	-	-	< 0.2	< 0.2
2,3,4,6-Tetrachlorophenol (TCP)	mg/kg dry wt	-	-	-	< 0.2	< 0.2
2,4,5-trichlorophenoxypropionic acid (245TP,Fenoprop, Silvex)	mg/kg dry wt	-	-	-	< 0.2	< 0.2
2,4,5-Trichlorophenoxyacetic acid (245T)	mg/kg dry wt	-	-	-	< 0.2	< 0.2
Triclopyr	mg/kg dry wt	-	-	-	< 0.2	< 0.2
Organochlorine Pesticides Screen	ning in Soil					
Aldrin	mg/kg dry wt	-	-	-	< 0.014	< 0.014
alpha-BHC	mg/kg dry wt	-	-	-	< 0.014	< 0.014
beta-BHC	mg/kg dry wt	-	-	-	< 0.014	< 0.014
delta-BHC	mg/kg dry wt	-	-	-	< 0.014	< 0.014
gamma-BHC (Lindane)	mg/kg dry wt	-	-		< 0.014	< 0.014
cis-Chlordane	mg/kg dry wt	-	_	-	< 0.014	< 0.014
trans-Chlordane	mg/kg dry wt	-	-	~ U	< 0.014	< 0.014
2,4'-DDD	mg/kg dry wt	-	_	_(/-)	< 0.014	< 0.014
4,4'-DDD	mg/kg dry wt	-	_	60.	< 0.014	< 0.014
2,4'-DDE	mg/kg dry wt		- 0		< 0.014	< 0.014
4,4'-DDE	mg/kg dry wt				< 0.014	< 0.014
2,4'-DDT	mg/kg dry wt	-			< 0.014	< 0.014
4,4'-DDT					< 0.014	< 0.014
	mg/kg dry wt	-	7 (C)	(()		
Total DDT Isomers	mg/kg dry wt	-			< 0.09	< 0.09
Dieldrin	mg/kg dry wt	-	-	-	< 0.014	< 0.014
Endosulfan I	mg/kg dry wt	-	-	-	< 0.014	< 0.014
Endosulfan II	mg/kg dry wt	- 17	- / /	-	< 0.014	< 0.014
Endosulfan sulphate	mg/kg dry wt		• (-) ·	-	< 0.014	< 0.014
Endrin	mg/kg dry wt	10	XIO	-	< 0.014	< 0.014
Endrin aldehyde	mg/kg dry wt	9 -	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-	< 0.014	< 0.014
Endrin ketone	mg/kg dry wt	-	<u> </u>	-	< 0.014	< 0.014
Heptachlor	mg/kg dry wt	-()	-	-	< 0.014	< 0.014
Heptachlor epoxide	mg/kg dry wt		-	-	< 0.014	< 0.014
Hexachlorobenzene	mg/kg dry wt		-	-	< 0.014	< 0.014
Methoxychlor	mg/kg dry wt	<u>. O-</u>	-	-	< 0.014	< 0.014
Organonitro&phosphorus Pesticio	les Screen in Sc	oil by GCMS				
Acetochlor	mg/kg dry wt	-	-	-	< 0.07	< 0.07
Alachlor	mg/kg dry wt	-	-	-	< 0.05	< 0.05
Atrazine	mg/kg dry wt	-	-	-	< 0.07	< 0.07
Atrazine-desethyl	mg/kg dry wt	-	-	-	< 0.07	< 0.07
Atrazine-desisopropyl	mg/kg dry wt	-	-	-	< 0.14	< 0.14
Azaconazole	mg/kg dry wt	-	-	-	< 0.04	< 0.04
Azinphos-methyl	mg/kg dry wt	-	-	-	< 0.14	< 0.14
Benalaxyl	mg/kg dry wt	-	-	-	< 0.04	< 0.04
Bitertanol	mg/kg dry wt	-	_	_	< 0.14	< 0.14
Bromacil	mg/kg dry wt	-	_	-	< 0.07	< 0.07
Bromopropylate	mg/kg dry wt	-	_	_	< 0.07	< 0.07
Butachlor	mg/kg dry wt	-	_	-	< 0.07	< 0.07
Captan	mg/kg dry wt	<u> </u>	-	-	< 0.14	< 0.14
Carbaryl	mg/kg dry wt	<u>-</u>	-	_	< 0.14	< 0.14
Carbofuran			_	-	< 0.07	< 0.07
	mg/kg dry wt	-				
Chlorethelenil	mg/kg dry wt	-	-	-	< 0.07	< 0.07
Chlorothalonil	mg/kg dry wt	-	-	-	< 0.07	< 0.07
Chlorpyrifos	mg/kg dry wt	-	-	-	< 0.07	< 0.07
Chlorpyrifos-methyl	mg/kg dry wt	-	-	-	< 0.07	< 0.07

Sample Type: Soil						
Sa	ample Name:	Dup E4	Dup E5	Dup F1	COMP A 0.1	COMP A 0.5
	Lab Number:	3299078.335	3299078.336	3299078.338	3299078.339	3299078.340
Organonitro&phosphorus Pestic	ides Screen in Sc	oil by GCMS				
Chlortoluron	mg/kg dry wt	-	-	-	< 0.14	< 0.14
Cyanazine	mg/kg dry wt	-	-	-	< 0.07	< 0.07
Cyfluthrin	mg/kg dry wt	-	-	-	< 0.09	< 0.09
Cyhalothrin	mg/kg dry wt	-	-	-	< 0.07	< 0.07
Cypermethrin	mg/kg dry wt	-	-	-	< 0.17	< 0.17
Deltamethrin (including Tralomethrin)	mg/kg dry wt	-	-	-	< 0.07	< 0.07
Diazinon	mg/kg dry wt	-	-	-	< 0.04	< 0.04
Dichlofluanid	mg/kg dry wt	-	-	-	< 0.07	< 0.07
Dichloran	mg/kg dry wt	-	-	-	< 0.2	< 0.2
Dichlorvos	mg/kg dry wt	-	-	-	< 0.09	< 0.09
Difenoconazole	mg/kg dry wt	-	-	-	< 0.10	< 0.10
Dimethoate	mg/kg dry wt	-	-	-	< 0.14	< 0.14
Diphenylamine	mg/kg dry wt	-	-	-	< 0.14	< 0.14
Diuron	mg/kg dry wt	-	-	-	< 0.07	< 0.07
Fenpropimorph	mg/kg dry wt	-	-	-	< 0.07	< 0.07
Fluazifop-butyl	mg/kg dry wt	-	-	-(< 0.07	< 0.07
Fluometuron	mg/kg dry wt	-	-		< 0.07	< 0.07
Flusilazole	mg/kg dry wt	-	-		< 0.07	< 0.07
Fluvalinate	mg/kg dry wt	-	-	9- /	< 0.05	< 0.05
Furalaxyl	mg/kg dry wt	-	-	-	< 0.04	< 0.04
Haloxyfop-methyl	mg/kg dry wt	-	-01	-	< 0.07	< 0.07
Hexaconazole	mg/kg dry wt	-		1/4	< 0.07	< 0.07
Hexazinone	mg/kg dry wt	-	5 (/5)	(0)	< 0.04	< 0.04
IPBC (3-lodo-2-propynyl-n- butylcarbamate)	mg/kg dry wt	-	- 1	70	< 0.4	< 0.4
Kresoxim-methyl	mg/kg dry wt	-	-	-	< 0.04	< 0.04
Linuron	mg/kg dry wt	1-3	-	-	< 0.07	< 0.07
Malathion	mg/kg dry wt		-	-	< 0.07	< 0.07
Metalaxyl	mg/kg dry wt	10		-	< 0.07	< 0.07
Methamidophos	mg/kg dry wt	-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-	< 0.4	< 0.4
Metolachlor	mg/kg dry wt	-	-	-	< 0.05	< 0.05
Metribuzin	mg/kg dry wt	- (-	-	< 0.07	< 0.07
Molinate	mg/kg dry wt	-	-	-	< 0.14	< 0.14
Myclobutanil	mg/kg dry wt		-	-	< 0.07	< 0.07
Naled	mg/kg dry wt	· ()-'	-	-	< 0.4	< 0.4
Norflurazon	mg/kg dry wt	-	-	-	< 0.14	< 0.14
Oxadiazon	mg/kg dry wt	-	-	-	< 0.07	< 0.07
Oxyfluorfen	mg/kg dry wt	-	-	-	< 0.04	< 0.04
Paclobutrazol	mg/kg dry wt	-	-	-	< 0.07	< 0.07
Parathion-ethyl	mg/kg dry wt	-	-	-	< 0.07	< 0.07
Parathion-methyl	mg/kg dry wt	-	-	-	< 0.07	< 0.07
Pendimethalin	mg/kg dry wt	-	-	-	< 0.07	< 0.07
Permethrin	mg/kg dry wt	-	-	-	< 0.03	< 0.03
Pirimicarb	mg/kg dry wt	-	-	-	< 0.07	< 0.07
Pirimiphos-methyl	mg/kg dry wt	-	-	-	< 0.07	< 0.07
Prochloraz	mg/kg dry wt	-	-	-	< 0.4	< 0.4
Procymidone	mg/kg dry wt	-	-	-	< 0.07	< 0.07
Prometryn	mg/kg dry wt	-	-	-	< 0.04	< 0.04
Propachlor	mg/kg dry wt	-	-	-	< 0.07	< 0.07
Propanil	mg/kg dry wt	-	-	-	< 0.2	< 0.2
Propazine	mg/kg dry wt	-	-	-	< 0.04	< 0.04
Propiconazole	mg/kg dry wt	-	-	-	< 0.05	< 0.05
Pyriproxyfen	mg/kg dry wt	-	-	-	< 0.07	< 0.07
Quizalofop-ethyl	mg/kg dry wt	-	-	-	< 0.07	< 0.07
Simazine	mg/kg dry wt	-	-	-	< 0.07	< 0.07

Sample Type: Soil						
Sar	mple Name:	Dup E4	Dup E5	Dup F1	COMP A 0.1	COMP A 0.5
L	ab Number:	3299078.335	3299078.336	3299078.338	3299078.339	3299078.340
Organonitro&phosphorus Pesticid	les Screen in S	oil by GCMS				
Simetryn	mg/kg dry wt	-	-	-	< 0.07	< 0.07
Sulfentrazone	mg/kg dry wt	-	-	-	< 0.4	< 0.4
TCMTB [2-(thiocyanomethylthio) benzothiazole,Busan]	mg/kg dry wt	-	-	-	< 0.14	< 0.14
Tebuconazole	mg/kg dry wt	-	-	-	< 0.07	< 0.07
Terbacil	mg/kg dry wt	-	-	-	< 0.07	< 0.07
Terbumeton	mg/kg dry wt	-	-	-	< 0.07	< 0.07
Terbuthylazine	mg/kg dry wt	-	-	-	< 0.04	< 0.04
Terbuthylazine-desethyl	mg/kg dry wt	-	-	-	< 0.07	< 0.07
Terbutryn	mg/kg dry wt	-	-	-	< 0.07	< 0.07
Thiabendazole	mg/kg dry wt	-	-	-	< 0.4	< 0.4
Thiobencarb	mg/kg dry wt	-	-	-	< 0.07	< 0.07
Tolylfluanid	mg/kg dry wt	-	-	-	< 0.04	< 0.04
Triazophos	mg/kg dry wt	-	-	-	< 0.07	< 0.07
Trifluralin	mg/kg dry wt	-	-	-	< 0.07	< 0.07
Vinclozolin	mg/kg dry wt	-	-	-	< 0.07	< 0.07
Polycyclic Aromatic Hydrocarbons	Screening in S	Soil*				
Total of Reported PAHs in Soil	mg/kg dry wt	-	< 0.4			-
1-Methylnaphthalene	mg/kg dry wt	-	< 0.013		1 ()	-
2-Methylnaphthalene	mg/kg dry wt	-	< 0.013	9 - 1		-
Acenaphthylene	mg/kg dry wt	-	< 0.013	-	-	-
Acenaphthene	mg/kg dry wt	-	< 0.013	-	-	-
Anthracene	mg/kg dry wt	-	< 0.013		-	-
Benzo[a]anthracene	mg/kg dry wt	-	< 0.013	(/-)	-	-
Benzo[a]pyrene (BAP)	mg/kg dry wt	-	< 0.013	70	-	-
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES*	mg/kg dry wt	-	< 0.032	-	-	-
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt		< 0.031	-	-	-
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	10.	< 0.013	-	-	-
Benzo[e]pyrene	mg/kg dry wt	-	< 0.013	-	-	-
Benzo[g,h,i]perylene	mg/kg dry wt	-	< 0.013	-	-	-
Benzo[k]fluoranthene	mg/kg dry wt	-	< 0.013	-	-	-
Chrysene	mg/kg dry wt	-	< 0.013	-	-	-
Dibenzo[a,h]anthracene	mg/kg dry wt	-	< 0.013	-	-	-
Fluoranthene	mg/kg dry wt	(-	< 0.013	-	-	-
Fluorene	mg/kg dry wt	-	< 0.013	-	-	-
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	-	< 0.013	-	-	-
Naphthalene	mg/kg dry wt	-	< 0.07	-	-	-
Perylene	mg/kg dry wt	-	< 0.013	-	-	-
Phenanthrene	mg/kg dry wt	-	0.014	-	-	-
Pyrene	mg/kg dry wt	-	< 0.013	-	-	-
Total Petroleum Hydrocarbons in			,			
C7 - C9	mg/kg dry wt	-	< 20	-	-	-
C10 - C14	mg/kg dry wt	_	< 20	-	-	-
C15 - C36	mg/kg dry wt	-	< 40	-	-	-
Total hydrocarbons (C7 - C36)	mg/kg dry wt	-	< 80	-	-	-
Sar	mple Name:	COMP B 0.1	COMP B 0.5	COMP C 0.1	COMP C 0.5	COMP D 0.1
	ab Number:	3299078.341	3299078.342	3299078.343	3299078.344	3299078.345
Individual Tests						
Dry Matter g	g/100g as rcvd	70	73	71	67	73
Total Recoverable Beryllium	mg/kg dry wt	0.9	0.6	1.2	0.8	1.2
8 Heavy metals plus Boron			1			
		6	3	6	2	8
Total Recoverable Arsenic	mg/kg dry wt	1 0	, S	U		

Sample Type: Soil						
Sa	mple Name:	COMP B 0.1	COMP B 0.5	COMP C 0.1	COMP C 0.5	COMP D 0.1
L	.ab Number:	3299078.341	3299078.342	3299078.343	3299078.344	3299078.345
8 Heavy metals plus Boron						
Total Recoverable Cadmium	mg/kg dry wt	0.36	< 0.10	0.25	< 0.10	0.51
Total Recoverable Chromium	mg/kg dry wt	9	8	10	8	9
Total Recoverable Copper	mg/kg dry wt	35	14	33	22	50
Total Recoverable Lead	mg/kg dry wt	27	18.4	24	19.4	33
Total Recoverable Mercury	mg/kg dry wt	0.17	< 0.10	0.33	< 0.10	0.18
Total Recoverable Nickel	mg/kg dry wt	7	4	6	5	5
Total Recoverable Zinc	mg/kg dry wt	126	36	82	44	140
Acid Herbicides Screen in Soil by	LCMSMS					
Acifluorfen	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Bentazone	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Bromoxynil	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Clopyralid	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Dicamba	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,4-Dichlorophenoxyacetic acid (24D)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,4-Dichlorophenoxybutyric acid (24DB)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorprop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Fluazifop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Fluroxypyr	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Haloxyfop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2-methyl-4-chlorophenoxyacetic acid (MCPA)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2-methyl-4- chlorophenoxybutanoic acid (MCPB)	mg/kg dry wt	< 0.2	< 0.2	0.2	< 0.2	< 0.2
Mecoprop (MCPP; 2-methyl-4- chlorophenoxypropionic acid)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Oryzalin	mg/kg dry wt	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Pentachlorophenol (PCP)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Picloram	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Quizalofop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,3,4,6-Tetrachlorophenol (TCP)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,4,5-trichlorophenoxypropionic acid (245TP,Fenoprop, Silvex)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,4,5-Trichlorophenoxyacetic acid (245T)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Triclopyr	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Organochlorine Pesticides Screen	ning in Soil					
Aldrin	mg/kg dry wt	< 0.015	< 0.014	< 0.014	< 0.015	< 0.014
alpha-BHC	mg/kg dry wt	< 0.015	< 0.014	< 0.014	< 0.015	< 0.014
beta-BHC	mg/kg dry wt	< 0.015	< 0.014	< 0.014	< 0.015	< 0.014
delta-BHC	mg/kg dry wt	< 0.015	< 0.014	< 0.014	< 0.015	< 0.014
gamma-BHC (Lindane)	mg/kg dry wt	< 0.015	< 0.014	< 0.014	< 0.015	< 0.014
cis-Chlordane	mg/kg dry wt	< 0.015	< 0.014	< 0.014	< 0.015	< 0.014
trans-Chlordane	mg/kg dry wt	< 0.015	< 0.014	< 0.014	< 0.015	< 0.014
2,4'-DDD	mg/kg dry wt	< 0.015	< 0.014	< 0.014	< 0.015	< 0.014
4,4'-DDD	mg/kg dry wt	< 0.015	< 0.014	< 0.014	< 0.015	< 0.014
2,4'-DDE	mg/kg dry wt	< 0.015	< 0.014	< 0.014	< 0.015	< 0.014
4,4'-DDE	mg/kg dry wt	< 0.015	< 0.014	< 0.014	< 0.015	< 0.014
2,4'-DDT	mg/kg dry wt	< 0.015	< 0.014	< 0.014	< 0.015	< 0.014
4,4'-DDT	mg/kg dry wt	< 0.015	< 0.014	< 0.014	< 0.015	< 0.014
Total DDT Isomers	mg/kg dry wt	< 0.09	< 0.08	< 0.09	< 0.09	< 0.08
Dieldrin	mg/kg dry wt	< 0.015	< 0.014	< 0.014	< 0.015	< 0.014
Endosulfan I	mg/kg dry wt	< 0.015	< 0.014	< 0.014	< 0.015	< 0.014
Endosulfan II	mg/kg dry wt	< 0.015	< 0.014	< 0.014	< 0.015	< 0.014
Endosulfan sulphate	mg/kg dry wt	< 0.015	< 0.014	< 0.014	< 0.015	< 0.014
Endrin	mg/kg dry wt	< 0.015	< 0.014	< 0.014	< 0.015	< 0.014

Sample Type: Soil								
S	Sample Name:	COMP B 0.1	COMP B 0.5	COMP C 0.1	COMP C 0.5	COMP D 0.1		
	Lab Number:	3299078.341	3299078.342	3299078.343	3299078.344	3299078.345		
Organochlorine Pesticides Scre	eening in Soil							
Endrin aldehyde	mg/kg dry wt	< 0.015	< 0.014	< 0.014	< 0.015	< 0.014		
Endrin ketone	mg/kg dry wt	< 0.015	< 0.014	< 0.014	< 0.015	< 0.014		
Heptachlor	mg/kg dry wt	< 0.015	< 0.014	< 0.014	< 0.015	< 0.014		
Heptachlor epoxide	mg/kg dry wt	< 0.015	< 0.014	< 0.014	< 0.015	< 0.014		
Hexachlorobenzene	mg/kg dry wt	< 0.015	< 0.014	< 0.014	< 0.015	< 0.014		
Methoxychlor	mg/kg dry wt	< 0.015	< 0.014	< 0.014	< 0.015	< 0.014		
Organonitro&phosphorus Pesti	cides Screen in Sc	oil by GCMS						
Acetochlor	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07		
Alachlor	mg/kg dry wt	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		
Atrazine	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07		
Atrazine-desethyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07		
Atrazine-desisopropyl	mg/kg dry wt	< 0.14	< 0.13	< 0.14	< 0.14	< 0.14		
Azaconazole	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04		
Azinphos-methyl	mg/kg dry wt	< 0.14	< 0.13	< 0.14	< 0.14	< 0.14		
Benalaxyl	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04		
Bitertanol	mg/kg dry wt	< 0.14	< 0.13	< 0.14	< 0.14	< 0.14		
Bromacil	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07		
Bromopropylate	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07		
Butachlor	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07		
Captan	mg/kg dry wt	< 0.14	< 0.13	< 0.14	< 0.14	< 0.14		
Carbaryl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07		
Carbofuran	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07		
Chlorfluazuron	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07		
Chlorothalonil	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07		
Chlorpyrifos	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07		
Chlorpyrifos-methyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07		
Chlortoluron	mg/kg dry wt	< 0.14	< 0.13	< 0.14	< 0.14	< 0.14		
Cyanazine	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07		
Cyfluthrin	mg/kg dry wt	< 0.09	< 0.08	< 0.08	< 0.09	< 0.09		
Cyhalothrin	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07		
Cypermethrin	mg/kg dry wt	< 0.17	< 0.16	< 0.16	< 0.17	< 0.17		
Deltamethrin (including	mg/kg dry wt		< 0.07	< 0.07	< 0.07	< 0.07		
Tralomethrin)								
Diazinon	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04		
Dichlofluanid	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07		
Dichloran	mg/kg dry wt	0.2	< 0.2	< 0.2	< 0.2	< 0.2		
Dichlorvos	mg/kg dry wt	< 0.09	< 0.09	< 0.09	< 0.09	< 0.09		
Difenoconazole	mg/kg dry wt	< 0.10	< 0.09	< 0.10	< 0.10	< 0.10		
Dimethoate	mg/kg dry wt	< 0.14	< 0.13	< 0.14	< 0.14	< 0.14		
Diphenylamine D:	mg/kg dry wt	< 0.14	< 0.13	< 0.14	< 0.14	< 0.14		
Diuron	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07		
Fenpropimorph	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07		
Fluazifop-butyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07		
Fluometuron	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07		
Flusilazole	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07		
Fluvalinate	mg/kg dry wt	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		
Furalaxyl	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04		
Haloxyfop-methyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07		
Hexaconazole	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07		
Hexazinone	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04		
IPBC (3-lodo-2-propynyl-n- butylcarbamate)	mg/kg dry wt	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4		
Kresoxim-methyl	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04		
Linuron	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07		
Malathion	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07		
Metalaxyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07		

Sample Type: Soil						
S	ample Name:	COMP B 0.1	COMP B 0.5	COMP C 0.1	COMP C 0.5	COMP D 0.1
	Lab Number:	3299078.341	3299078.342	3299078.343	3299078.344	3299078.345
Organonitro&phosphorus Pesti	cides Screen in Sc	oil by GCMS				
Methamidophos	mg/kg dry wt	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Metolachlor	mg/kg dry wt	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Metribuzin	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Molinate	mg/kg dry wt	< 0.14	< 0.13	< 0.14	< 0.14	< 0.14
Myclobutanil	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Naled	mg/kg dry wt	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Norflurazon	mg/kg dry wt	< 0.14	< 0.13	< 0.14	< 0.14	< 0.14
Oxadiazon	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Oxyfluorfen	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Paclobutrazol	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Parathion-ethyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Parathion-methyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Pendimethalin	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Permethrin	mg/kg dry wt	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Pirimicarb	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Pirimiphos-methyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Prochloraz	mg/kg dry wt	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Procymidone	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Prometryn	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Propachlor	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Propanil	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Propazine	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Propiconazole	mg/kg dry wt	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pyriproxyfen	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Quizalofop-ethyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Simazine	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Simetryn	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Sulfentrazone	mg/kg dry wt	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
TCMTB [2-(thiocyanomethylthio benzothiazole,Busan]	0 0 7	< 0.14	< 0.13	< 0.14	< 0.14	< 0.14
Tebuconazole	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Terbacil	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Terbumeton	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Terbuthylazine	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Terbuthylazine-desethyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Terbutryn	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Thiabendazole	mg/kg dry wt	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Thiobencarb	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Tolylfluanid	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Triazophos	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Trifluralin	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Vinclozolin	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
	ample Name:	COMP D 0.5	COMP E 0.1	COMP E 0.5	COMP F 0.1	COMP F 0.5
	Lab Number:	3299078.346	3299078.347	3299078.348	3299078.349	3299078.350
Individual Tests			-	1		
Dry Matter	g/100g as rcvd	72	74	76	69	75
Total Recoverable Beryllium	mg/kg dry wt	0.8	1.1	0.7	0.9	1.0
8 Heavy metals plus Boron	3 3 ,		1			I
Total Recoverable Arsenic	mg/kg dry wt	4	6	3	6	5
Total Recoverable Boron	mg/kg dry wt	< 20	70	< 20	< 20	< 20
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	0.32	< 0.10	0.29	0.16
Total Recoverable Chromium	mg/kg dry wt	9	10	8	9	9
Total Recoverable Copper	mg/kg dry wt	13	36	11	34	24
Total Recoverable Lead	mg/kg dry wt	21	83	17.1	74	33
Total Recoverable Mercury	mg/kg dry wt	< 0.10	0.12	< 0.10	0.18	0.13
Total I 1000 Vol abic IVIGICUI y	mg/ng dry wt	• 0.10	0.12	٠٠.١٥	0.10	0.10

Sample Type: Soil						
Sa	mple Name:	COMP D 0.5	COMP E 0.1	COMP E 0.5	COMP F 0.1	COMP F 0.5
L	.ab Number:	3299078.346	3299078.347	3299078.348	3299078.349	3299078.350
8 Heavy metals plus Boron						
Total Recoverable Nickel	mg/kg dry wt	3	8	4	5	5
Total Recoverable Zinc	mg/kg dry wt	38	97	33	118	87
Acid Herbicides Screen in Soil by	LCMSMS					
Acifluorfen	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Bentazone	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Bromoxynil	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Clopyralid	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Dicamba	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,4-Dichlorophenoxyacetic acid (24D)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,4-Dichlorophenoxybutyric acid (24DB)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorprop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Fluazifop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Fluroxypyr	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Haloxyfop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2-methyl-4-chlorophenoxyacetic acid (MCPA)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2-methyl-4- chlorophenoxybutanoic acid (MCPB)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	0.2	< 0.2
Mecoprop (MCPP; 2-methyl-4- chlorophenoxypropionic acid)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Oryzalin	mg/kg dry wt	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Pentachlorophenol (PCP)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Picloram	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Quizalofop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,3,4,6-Tetrachlorophenol (TCP)	mg/kg dry wt	< 0.2	< 0.2	< 0.4	< 0.4	< 0.4
2,4,5-trichlorophenoxypropionic acid (245TP,Fenoprop, Silvex)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,4,5-Trichlorophenoxyacetic acid (245T)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Triclopyr	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Organochlorine Pesticides Scree	ning in Soil		0			
Aldrin	mg/kg dry wt	< 0.014	< 0.014	< 0.013	< 0.015	< 0.014
alpha-BHC	mg/kg dry wt	< 0.014	< 0.014	< 0.013	< 0.015	< 0.014
beta-BHC	mg/kg dry wt	< 0.014	< 0.014	< 0.013	< 0.015	< 0.014
delta-BHC	mg/kg dry wt	< 0.014	< 0.014	< 0.013	< 0.015	< 0.014
gamma-BHC (Lindane)	mg/kg dry wt	< 0.014	< 0.014	< 0.013	< 0.015	< 0.014
cis-Chlordane	mg/kg dry wt	< 0.014	< 0.014	< 0.013	< 0.015	< 0.014
trans-Chlordane	mg/kg dry wt	< 0.014	< 0.014	< 0.013	< 0.015	< 0.014
2,4'-DDD	mg/kg dry wt	< 0.014	< 0.014	< 0.013	< 0.015	< 0.014
4,4'-DDD	mg/kg dry wt	< 0.014	< 0.014	< 0.013	< 0.015	< 0.014
2,4'-DDE	mg/kg dry wt	< 0.014	< 0.014	< 0.013	< 0.015	< 0.014
4,4'-DDE	mg/kg dry wt	< 0.014	< 0.014	< 0.013	< 0.015	< 0.014
2,4'-DDT	mg/kg dry wt	< 0.014	< 0.014	< 0.013	< 0.015	< 0.014
4,4'-DDT	mg/kg dry wt	< 0.014	0.099	< 0.013	< 0.015	< 0.014
Total DDT Isomers	mg/kg dry wt	< 0.08	0.10	< 0.08	< 0.09	< 0.08
Dieldrin	mg/kg dry wt	< 0.014	< 0.014	< 0.013	< 0.015	< 0.014
Endosulfan I	mg/kg dry wt	< 0.014	< 0.014	< 0.013	< 0.015	< 0.014
Endosulfan II	mg/kg dry wt	< 0.014	< 0.014	< 0.013	< 0.015	< 0.014
Endosulfan sulphate	mg/kg dry wt	< 0.014	< 0.014	< 0.013	< 0.015	< 0.014
Endrin	mg/kg dry wt	< 0.014	< 0.014	< 0.013	< 0.015	< 0.014
Endrin aldehyde	mg/kg dry wt	< 0.014	< 0.014	< 0.013	< 0.015	< 0.014
Endrin ketone	mg/kg dry wt	< 0.014	< 0.014	< 0.013	< 0.015	< 0.014
Heptachlor	mg/kg dry wt	< 0.014	< 0.014	< 0.013	< 0.015	< 0.014
Heptachlor epoxide	mg/kg dry wt	< 0.014	< 0.014	< 0.013	< 0.015	< 0.014
Hexachlorobenzene	mg/kg dry wt	< 0.014	< 0.014	< 0.013	< 0.015	< 0.014

Sample Type: Soil							
S	Sample Name:	COMP D 0.5	COMP E 0.1	COMP E 0.5	COMP F 0.1	COMP F 0.5	
	Lab Number:	3299078.346	3299078.347	3299078.348	3299078.349	3299078.350	
Organochlorine Pesticides Scre							
Methoxychlor	mg/kg dry wt	< 0.014	< 0.014	< 0.013	< 0.015	< 0.014	
Organonitro&phosphorus Pesti		oil by GCMS					
Acetochlor	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	
Alachlor	mg/kg dry wt	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Atrazine	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	
Atrazine-desethyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	
Atrazine-desisopropyl	mg/kg dry wt	< 0.14	< 0.13	< 0.13	< 0.14	< 0.13	
Azaconazole	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	
Azinphos-methyl	mg/kg dry wt	< 0.14	< 0.13	< 0.13	< 0.14	< 0.13	
Benalaxyl	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	
Bitertanol	mg/kg dry wt	< 0.14	< 0.13	< 0.13	< 0.14	< 0.13	
Bromacil	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	
Bromopropylate	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	
Butachlor	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	
Captan	mg/kg dry wt	< 0.14	< 0.13	< 0.13	< 0.14	< 0.13	
Carbaryl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	
Carbofuran	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	
Chlorfluazuron	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	
Chlorothalonil	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	
Chlorpyrifos	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	
Chlorpyrifos-methyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	
Chlortoluron	mg/kg dry wt	< 0.14	< 0.13	< 0.13	< 0.14	< 0.13	
Cyanazine	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	
Cyfluthrin	mg/kg dry wt	< 0.08	< 0.08	< 0.08	< 0.09	< 0.08	
Cyhalothrin	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	
Cypermethrin	mg/kg dry wt	< 0.16	< 0.16	< 0.16	< 0.17	< 0.16	
Deltamethrin (including Tralomethrin)	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	
Diazinon	mg/kg dry wt	< 0.04	♦ < 0.04	< 0.04	< 0.04	< 0.04	
Dichlofluanid	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	
Dichloran	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	
Dichlorvos	mg/kg dry wt	< 0.09	< 0.09	< 0.09	< 0.09	< 0.09	
Difenoconazole	mg/kg dry wt	< 0.10	< 0.10	< 0.09	< 0.10	< 0.09	
Dimethoate	mg/kg dry wt	< 0.14	< 0.13	< 0.13	< 0.14	< 0.13	
Diphenylamine	mg/kg dry wt	< 0.14	< 0.13	< 0.13	< 0.14	< 0.13	
Diuron	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	
Fenpropimorph	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	
Fluazifop-butyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	
Fluometuron	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	
Flusilazole	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	
Fluvalinate	mg/kg dry wt	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Furalaxyl	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	
Haloxyfop-methyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	
Hexaconazole	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	
Hexazinone	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	
IPBC (3-lodo-2-propynyl-n- butylcarbamate)	mg/kg dry wt	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	
Kresoxim-methyl	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	
Linuron	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	
Malathion	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	
Metalaxyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	
Methamidophos	mg/kg dry wt	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	
Metolachlor	mg/kg dry wt	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Metribuzin	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	
Molinate	mg/kg dry wt	< 0.14	< 0.13	< 0.13	< 0.14	< 0.13	
Myclobutanil	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	

Sample Type: Soil						
Sa	mple Name:	COMP D 0.5	COMP E 0.1	COMP E 0.5	COMP F 0.1	COMP F 0.5
L	_ab Number:	3299078.346	3299078.347	3299078.348	3299078.349	3299078.350
Organonitro&phosphorus Pesticio	des Screen in Sc	oil by GCMS				
Naled	mg/kg dry wt	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Norflurazon	mg/kg dry wt	< 0.14	< 0.13	< 0.13	< 0.14	< 0.13
Oxadiazon	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Oxyfluorfen	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Paclobutrazol	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Parathion-ethyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Parathion-methyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Pendimethalin	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Permethrin	mg/kg dry wt	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Pirimicarb	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Pirimiphos-methyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
		< 0.4	< 0.4	< 0.4	< 0.4	< 0.07
Prochloraz	mg/kg dry wt					
Procymidone	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Prometryn	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Propachlor	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Propanil -	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Propazine	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Propiconazole	mg/kg dry wt	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pyriproxyfen	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Quizalofop-ethyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Simazine	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Simetryn	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Sulfentrazone	mg/kg dry wt	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
TCMTB [2-(thiocyanomethylthio) benzothiazole,Busan]	mg/kg dry wt	< 0.14	< 0.13	< 0.13	< 0.14	< 0.13
Tebuconazole	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Terbacil	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Terbumeton	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Terbuthylazine	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Terbuthylazine-desethyl	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Terbutryn	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Thiabendazole	mg/kg dry wt	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Thiobencarb	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Tolylfluanid	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Triazophos	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Trifluralin	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Vinclozolin	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
	mple Name:	COMP G 0.1	COMP G 0.5	COMP H 0.1	COMP H 0.5	B65 TP02 2.0
1	ah Niyes barr	2200070 254	2200079 252	2200079 252	2200079 254	23-Jun-2023
Individual Tests	_ab Number:	3299078.351	3299078.352	3299078.353	3299078.354	3299078.373
	m/400-:	77	74	74	00	50
	g/100g as rcvd	77	71	74	69	50
Total Recoverable Beryllium	mg/kg dry wt	1.5	1.2	1.4	0.9	-
8 Heavy metals plus Boron						
Total Recoverable Arsenic	mg/kg dry wt	8	5	8	5	-
Total Recoverable Boron	mg/kg dry wt	23	< 20	360	< 20	-
Total Recoverable Cadmium	mg/kg dry wt	0.47	0.23	0.36	< 0.10	-
Total Recoverable Chromium	mg/kg dry wt	11	9	11	9	-
Total Recoverable Copper	mg/kg dry wt	64	28	42	16	-
Total Recoverable Lead	mg/kg dry wt	56	23	57	23	-
Total Recoverable Mercury	mg/kg dry wt	0.51	0.15	0.30	< 0.10	-
Total Recoverable Nickel	mg/kg dry wt	10	6	19	4	_
Total Recoverable Zinc	mg/kg dry wt	157	70	123	35	-
Acid Herbicides Screen in Soil by		-		-		1
Acifluorfen	,	< 0.2	< 0.2	< 0.2	< 0.2	
	mg/kg dry wt	► U. ∠	~ ∪.∠	~ ∪.∠	∇ U.Z	-

Sample Type: Soil						
Sai	mple Name:	COMP G 0.1	COMP G 0.5	COMP H 0.1	COMP H 0.5	B65 TP02 2.0 23-Jun-2023
L	ab Number:	3299078.351	3299078.352	3299078.353	3299078.354	3299078.373
Acid Herbicides Screen in Soil by	LCMSMS					
Bentazone	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	-
Bromoxynil	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	-
Clopyralid	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	-
Dicamba	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	-
2,4-Dichlorophenoxyacetic acid (24D)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	-
2,4-Dichlorophenoxybutyric acid (24DB)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	-
Dichlorprop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	-
Fluazifop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	-
Fluroxypyr	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	-
Haloxyfop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	-
2-methyl-4-chlorophenoxyacetic acid (MCPA)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	√ <i>O·</i>
2-methyl-4- chlorophenoxybutanoic acid (MCPB)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	<0.2	-
Mecoprop (MCPP; 2-methyl-4- chlorophenoxypropionic acid)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	-
Oryzalin	mg/kg dry wt	< 0.4	< 0.4	< 0.4	< 0.4	-
Pentachlorophenol (PCP)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	-
Picloram	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	-
Quizalofop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	-
2,3,4,6-Tetrachlorophenol (TCP)	mg/kg dry wt	< 0.4	< 0.4	< 0.4	< 0.4	-
2,4,5-trichlorophenoxypropionic acid (245TP,Fenoprop, Silvex)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	-
2,4,5-Trichlorophenoxyacetic acid (245T)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	-
Triclopyr	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	-
BTEX in Soil by Headspace GC-N	ИS		. 0			
Benzene	mg/kg dry wt	10		-	-	< 0.17
Toluene	mg/kg dry wt		1	-	-	< 0.17
Ethylbenzene	mg/kg dry wt	-		-	-	< 0.17
m&p-Xylene	mg/kg dry wt	-	-	-	-	< 0.4
o-Xylene	mg/kg dry wt		-	-	-	< 0.17
Organochlorine Pesticides Screen						
Aldrin	mg/kg dry wt	< 0.013	< 0.014	< 0.013	< 0.015	_
alpha-BHC	mg/kg dry wt	< 0.013	< 0.014	< 0.013	< 0.015	_
beta-BHC	mg/kg dry wt	< 0.013	< 0.014	< 0.013	< 0.015	_
delta-BHC	mg/kg dry wt	< 0.013	< 0.014	< 0.013	< 0.015	_
gamma-BHC (Lindane)	mg/kg dry wt	< 0.013	< 0.014	< 0.013	< 0.015	_
cis-Chlordane	mg/kg dry wt	< 0.013	< 0.014	< 0.013	< 0.015	_
trans-Chlordane	mg/kg dry wt	< 0.013	< 0.014	< 0.013	< 0.015	-
2,4'-DDD	mg/kg dry wt	< 0.013	< 0.014	< 0.013	< 0.015	_
·		< 0.013	< 0.014	< 0.013	< 0.015	-
4,4'-DDD	mg/kg dry wt					<u>-</u>
2,4'-DDE	mg/kg dry wt	< 0.013	< 0.014	< 0.013	< 0.015	<u>-</u>
4,4'-DDE	mg/kg dry wt	< 0.013 < 0.013	< 0.014 < 0.014	< 0.013 < 0.013	< 0.015 < 0.015	-
2,4'-DDT	mg/kg dry wt mg/kg dry wt	< 0.013	< 0.014	< 0.013	< 0.015	-
4,4'-DDT Total DDT Isomers		< 0.013	< 0.014	< 0.013	< 0.015	-
	mg/kg dry wt					<u>-</u>
Dieldrin	mg/kg dry wt	< 0.013	< 0.014	< 0.013	< 0.015	-
Endosulfan I	mg/kg dry wt	< 0.013	< 0.014	< 0.013	< 0.015	-
Endosulfan II	mg/kg dry wt	< 0.013	< 0.014	< 0.013	< 0.015	-
Endosulfan sulphate	mg/kg dry wt	< 0.013	< 0.014	< 0.013	< 0.015	-
Endrin	mg/kg dry wt	< 0.013	< 0.014	< 0.013	< 0.015	-
Endrin aldehyde	mg/kg dry wt	< 0.013	< 0.014	< 0.013	< 0.015	-
Endrin ketone	mg/kg dry wt	< 0.013	< 0.014	< 0.013	< 0.015	-

Sample Type: Soil						
Sa	ample Name:	COMP G 0.1	COMP G 0.5	COMP H 0.1	COMP H 0.5	B65 TP02 2.0 23-Jun-2023
	Lab Number:	3299078.351	3299078.352	3299078.353	3299078.354	3299078.373
Organochlorine Pesticides Scre	ening in Soil					
Heptachlor	mg/kg dry wt	< 0.013	< 0.014	< 0.013	< 0.015	-
Heptachlor epoxide	mg/kg dry wt	< 0.013	< 0.014	< 0.013	< 0.015	-
Hexachlorobenzene	mg/kg dry wt	< 0.013	< 0.014	< 0.013	< 0.015	-
Methoxychlor	mg/kg dry wt	< 0.013	< 0.014	< 0.013	< 0.015	-
Organonitro&phosphorus Pestic	ides Screen in S	oil by GCMS				
Acetochlor	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Alachlor	mg/kg dry wt	< 0.05	< 0.05	< 0.05	< 0.05	-
Atrazine	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Atrazine-desethyl	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	_
Atrazine-desisopropyl	mg/kg dry wt	< 0.12	< 0.14	< 0.13	< 0.14	-
Azaconazole	mg/kg dry wt	< 0.03	< 0.04	< 0.04	< 0.04	. -
Azinphos-methyl	mg/kg dry wt	< 0.12	< 0.14	< 0.13	▲ < 0.14	
Benalaxyl	mg/kg dry wt	< 0.03	< 0.04	< 0.04	< 0.04	
Bitertanol	mg/kg dry wt	< 0.12	< 0.14	< 0.13	< 0.14	⟨
Bromacil	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	_
Bromopropylate	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	
Butachlor	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
		< 0.12	< 0.14	< 0.13	< 0.14	-
Captan	mg/kg dry wt					-
Carbaryl	mg/kg dry wt	< 0.06	< 0.07	0.07	< 0.07	-
Carbofuran	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Chlorfluazuron	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Chlorothalonil	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Chlorpyrifos	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Chlorpyrifos-methyl	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Chlortoluron	mg/kg dry wt	< 0.12	< 0.14	< 0.13	< 0.14	-
Cyanazine	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Cyfluthrin	mg/kg dry wt	< 0.08	< 0.09	< 0.08	< 0.09	-
Cyhalothrin	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Cypermethrin	mg/kg dry wt	< 0.15	< 0.17	< 0.16	< 0.17	-
Deltamethrin (including	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Tralomethrin)	ma or // car clam c v et	< 0.03	1004	z 0.04	- 0.04	
Diazinon	mg/kg dry wt	< 0.03	< 0.04	< 0.04	< 0.04	-
Dichlofluanid	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Dichloran	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	-
Dichlorvos	mg/kg dry wt	< 0.09	< 0.09	< 0.09	< 0.09	-
Difenoconazole	mg/kg dry wt	< 0.09	< 0.10	< 0.09	< 0.10	-
Dimethoate	mg/kg dry wt	< 0.12	< 0.14	< 0.13	< 0.14	-
Diphenylamine	mg/kg dry wt	< 0.12	< 0.14	< 0.13	< 0.14	-
Diuron	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Fenpropimorph	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Fluazifop-butyl	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Fluometuron	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Flusilazole	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Fluvalinate	mg/kg dry wt	< 0.05	< 0.05	< 0.05	< 0.05	-
Furalaxyl	mg/kg dry wt	< 0.03	< 0.04	< 0.04	< 0.04	-
Haloxyfop-methyl	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Hexaconazole	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Hexazinone	mg/kg dry wt	< 0.03	< 0.04	< 0.04	< 0.04	-
IPBC (3-lodo-2-propynyl-n- butylcarbamate)	mg/kg dry wt	< 0.3	< 0.4	< 0.4	< 0.4	-
Kresoxim-methyl	mg/kg dry wt	< 0.03	< 0.04	< 0.04	< 0.04	-
Linuron	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Malathion	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Metalaxyl	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Methamidophos	mg/kg dry wt	< 0.3	< 0.4	< 0.4	< 0.4	-

Sample Type: Soil						
Sar	mple Name:	COMP G 0.1	COMP G 0.5	COMP H 0.1	COMP H 0.5	B65 TP02 2.0 23-Jun-2023
L	ab Number:	3299078.351	3299078.352	3299078.353	3299078.354	3299078.373
Organonitro&phosphorus Pesticid	les Screen in S	oil by GCMS				
Metolachlor	mg/kg dry wt	< 0.05	< 0.05	< 0.05	< 0.05	-
Metribuzin	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Molinate	mg/kg dry wt	< 0.12	< 0.14	< 0.13	< 0.14	-
Myclobutanil	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Naled	mg/kg dry wt	< 0.3	< 0.4	< 0.4	< 0.4	-
Norflurazon	mg/kg dry wt	< 0.12	< 0.14	< 0.13	< 0.14	-
Oxadiazon	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Oxyfluorfen	mg/kg dry wt	< 0.03	< 0.04	< 0.04	< 0.04	-
Paclobutrazol	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Parathion-ethyl	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Parathion-methyl	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Pendimethalin	mg/kg dry wt	< 0.06	< 0.07	< 0.07	▲ < 0.07	
Permethrin	mg/kg dry wt	< 0.03	< 0.03	< 0.03	< 0.03	
Pirimicarb	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	(
Pirimiphos-methyl	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Prochloraz	mg/kg dry wt	< 0.3	< 0.4	< 0.4	< 0.4	<i>-</i>
Procnioraz Procymidone		< 0.3	< 0.4	< 0.4	< 0.4	-
Procymidone Prometryn	mg/kg dry wt	< 0.06	< 0.07	< 0.04	< 0.07	-
,	mg/kg dry wt					-
Propachlor	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Propanil	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	-
Propazine	mg/kg dry wt	< 0.03	< 0.04	< 0.04	< 0.04	-
Propiconazole	mg/kg dry wt	< 0.05	< 0.05	< 0.05	< 0.05	-
Pyriproxyfen	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Quizalofop-ethyl	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Simazine	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Simetryn	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Sulfentrazone	mg/kg dry wt	< 0.3	< 0.4	< 0.4	< 0.4	-
TCMTB [2-(thiocyanomethylthio) benzothiazole,Busan]	mg/kg dry wt	< 0.12	< 0.14	< 0.13	< 0.14	-
Tebuconazole	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Terbacil	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Terbumeton	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Terbuthylazine	mg/kg dry wt	< 0.03	< 0.04	< 0.04	< 0.04	-
Terbuthylazine-desethyl	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Terbutryn	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Thiabendazole	mg/kg dry wt	< 0.3	< 0.4	< 0.4	< 0.4	-
Thiobencarb	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Tolylfluanid	mg/kg dry wt	< 0.03	< 0.04	< 0.04	< 0.04	-
Triazophos	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Trifluralin	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Vinclozolin	mg/kg dry wt	< 0.06	< 0.07	< 0.07	< 0.07	-
Polycyclic Aromatic Hydrocarbons			1	I .		
Total of Reported PAHs in Soil	mg/kg dry wt	-	_	_	_	< 0.5
1-Methylnaphthalene	mg/kg dry wt	-	_	_	<u>-</u>	< 0.02
2-Methylnaphthalene	mg/kg dry wt	-	_	_	-	< 0.02
Acenaphthylene	mg/kg dry wt	-	_		-	< 0.02
Acenaphthene	mg/kg dry wt	-		<u>-</u>	-	< 0.02
Anthracene	mg/kg dry wt		-	-		< 0.02
		-	-	-	-	
Benzo[a]anthracene	mg/kg dry wt	-	-	-	-	< 0.02
Benzo[a]pyrene (BAP)	mg/kg dry wt	-	-	-	-	< 0.02
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES*	mg/kg dry wt	-	-	-	-	< 0.048
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	-	-	-	-	< 0.048
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	-	-	-	-	< 0.02

Sample Type: Soil						
	Sample Name:	COMP G 0.1	COMP G 0.5	COMP H 0.1	COMP H 0.5	B65 TP02 2.0 23-Jun-2023
	Lab Number:	3299078.351	3299078.352	3299078.353	3299078.354	3299078.373
Polycyclic Aromatic Hydrocarl	bons Screening in S	Soil*				
Benzo[e]pyrene	mg/kg dry wt	-	-	-	-	< 0.02
Benzo[g,h,i]perylene	mg/kg dry wt	-	-	-	-	< 0.02
Benzo[k]fluoranthene	mg/kg dry wt	-	-	-	-	< 0.02
Chrysene	mg/kg dry wt	-	-	-	-	< 0.02
Dibenzo[a,h]anthracene	mg/kg dry wt	-	-	-	-	< 0.02
Fluoranthene	mg/kg dry wt	-	-	-	-	< 0.02
Fluorene	mg/kg dry wt	-	-	-	-	< 0.02
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	-	-	-	-	< 0.02
Naphthalene	mg/kg dry wt	-	-	-	-	< 0.10
Perylene	mg/kg dry wt	-	-	-	-	0.04
Phenanthrene	mg/kg dry wt	-	-	-	-	< 0.02
Pyrene	mg/kg dry wt	-	-	-	<u> </u>	< 0.02
Total Petroleum Hydrocarbons	s in Soil				3	70
C7 - C9	mg/kg dry wt	-	-	-)-	< 30
C10 - C14	mg/kg dry wt	-	-	-	Y - 10	< 30
C15 - C36	mg/kg dry wt	-	-	-0		< 50
Total hydrocarbons (C7 - C36	mg/kg dry wt	-	-			< 100
	Sample Name:	SB 01 TP 01 0.1	SB 01 TP 01 0.5	SB 02 TP 01 0.1	SB 05 TP 01 0.1	SB 05 TP 01 0.5
	Lab Number:	29-Jun-2023 3299078.384	29-Jun-2023 3299078.385	29-Jun-2023 3299078.387	29-Jun-2023 3299078.391	29-Jun-2023 3299078.392
Individual Tests	Lab Number:	3299076.364	3299076.363	3299076.367	3299076.391	3299076.392
	a/100a oo royd	76	-\0	80	48	48
Dry Matter Total Recoverable Beryllium	g/100g as rcvd mg/kg dry wt	0.5	0.6	0.7	1.7	1.6
	riig/kg dry wt	0.5	0.0	0.1	1.7	1.0
8 Heavy metals plus Boron Total Recoverable Arsenic	mg/kg dry wt	4	2	6	5	4
Total Recoverable Boron		< 20	< 20	< 20	< 20	< 20
Total Recoverable Cadmium	mg/kg dry wt mg/kg dry wt	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Recoverable Chromium	mg/kg dry wt	11	8	9	21	16
Total Recoverable Copper	mg/kg dry wt	13	11	39	59	49
Total Recoverable Lead	mg/kg dry wt	17.5	16.4	27	25	25
Total Recoverable Mercury	mg/kg dry wt		< 0.10	< 0.10	0.16	< 0.10
Total Recoverable Nickel	mg/kg dry wt	3	4	6	9	9
Total Recoverable Zinc	mg/kg dry wt	42	35	68	78	78
Polychlorinated Biphenyls Scr		72	33	00	70	70
PCB-18	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB-16	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB-31	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB-44	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB-49	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB-52	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB-60	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB-77	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB-81	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB-86	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB-101	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB-105	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB-110	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB-114	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB-118	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB-121	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB-123	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB-126	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB-128	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB-138	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
* *	-337					

Sample Type: Soil						
S	Sample Name:	SB 01 TP 01 0.1	SB 01 TP 01 0.5	SB 02 TP 01 0.1	SB 05 TP 01 0.1	SB 05 TP 01 0.5
	I ala Manada ana	29-Jun-2023	29-Jun-2023	29-Jun-2023	29-Jun-2023	29-Jun-2023
Polychlorinated Biphenyls Scre	Lab Number:	3299078.384	3299078.385	3299078.387	3299078.391	3299078.392
PCB-141		< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB-141 PCB-149	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB-149	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB-151	mg/kg dry wt mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB-155	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB-150	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB-159	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB-167	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB-169	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB-109	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB-170	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	≤ 0.010
PCB-189	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB-194	mg/kg dry wt	< 0.010	< 0.010	< 0.010	0.010	< 0.010
PCB-194 PCB-206	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
PCB-200 PCB-209	mg/kg dry wt	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Mono-Ortho PCB Toxic	mg/kg dry wt	< 0.00003	< 0.00003	< 0.000003	< 0.00003	< 0.00003
Equivalence (TEF)*				< 0.0014	< 0.0014	
Non-Ortho PCB Toxic Equivalence (TEF)*	mg/kg dry wt	< 0.0014	< 0.0014	6	10	< 0.0014
Total PCB (Sum of 35 congeners)	mg/kg dry wt	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Total Petroleum Hydrocarbons				N		
C7 - C9	mg/kg dry wt	< 20	0	< 20	< 30	< 30
C10 - C14	mg/kg dry wt	< 20	70	< 20	< 30	< 30
C15 - C36	mg/kg dry wt	< 40	- •	< 40	< 50	< 60
Total hydrocarbons (C7 - C36)	mg/kg dry wt	< 80	-	< 80	< 110	< 110
S						
	Sample Name:	SB 06 TP 01 0.1 2	29-Jun-2023 SB 0	7 TP 01 0.1 29-Jur	n-2023 SB 07 TP 0	01 0.5 29-Jun-202
	Lab Number:	SB 06 TP 01 0.1 2 3299078.		7 TP 01 0.1 29-Jur 3299078.395)1 0.5 29-Jun-202 99078.396
Individual Tests	<u> </u>					
	<u> </u>					
Dry Matter	Lab Number:	3299078. 95		3299078.395		99078.396
Dry Matter Total Recoverable Beryllium	Lab Number:	3299078. 95		3299078.395 89		99078.396
Dry Matter Total Recoverable Beryllium 8 Heavy metals plus Boron	Lab Number:	3299078. 95		3299078.395 89		99078.396
Dry Matter Total Recoverable Beryllium 8 Heavy metals plus Boron Total Recoverable Arsenic	g/100g as rovd mg/kg dry wt	3299078. 95 0.7		3299078.395 89 0.6		99078.396 94 0.6
Dry Matter Total Recoverable Beryllium 8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron	g/100g as rovd mg/kg dry wt	3299078. 95 0.7	394	3299078.395 89 0.6		99078.396 94 0.6
Dry Matter Total Recoverable Beryllium 8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Cadmium	g/100g as rovd mg/kg dry wt mg/kg dry wt mg/kg dry wt	3299078. 95 0.7 5 < 20	394	3299078.395 89 0.6 4 < 20		99078.396 94 0.6 3 < 20
Dry Matter Total Recoverable Beryllium 8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium	g/100g as rovd mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	3299078. 95 0.7 5 < 20 < 0.10	394	3299078.395 89 0.6 4 < 20 < 0.10		99078.396 94 0.6 3 < 20 < 0.10
Dry Matter Total Recoverable Beryllium 8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper	g/100g as rovd mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	3299078. 95 0.7 5 < 20 < 0.10 20	394	3299078.395 89 0.6 4 < 20 < 0.10 18		99078.396 94 0.6 3 < 20 < 0.10 15
Dry Matter Total Recoverable Beryllium 8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead	g/100g as rovd mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	3299078. 95 0.7 5 < 20 < 0.10 20 48	394	3299078.395 89 0.6 4 < 20 < 0.10 18 73		99078.396 94 0.6 3 < 20 < 0.10 15 21
Dry Matter Total Recoverable Beryllium 8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury	g/100g as rovd mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	3299078. 95 0.7 5 < 20 < 0.10 20 48 10.7	394	3299078.395 89 0.6 4 < 20 < 0.10 18 73 25		99078.396 94 0.6 3 < 20 < 0.10 15 21 11.7
Dry Matter Total Recoverable Beryllium 8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel	g/100g as rovd mg/kg dry wt mg/kg dry wt	3299078. 95 0.7 5 < 20 < 0.10 20 48 10.7 < 0.10	394	3299078.395 89 0.6 4 < 20 < 0.10 18 73 25 < 0.10		99078.396 94 0.6 3 < 20 < 0.10 15 21 11.7 < 0.10
Dry Matter Total Recoverable Beryllium 8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc	g/100g as rovd mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	3299078. 95 0.7 5 < 20 < 0.10 20 48 10.7 < 0.10 11	394	3299078.395 89 0.6 4 < 20 < 0.10 18 73 25 < 0.10 11		99078.396 94 0.6 3 < 20 < 0.10 15 21 11.7 < 0.10 8
Dry Matter Total Recoverable Beryllium 8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Polychlorinated Biphenyls Scre	g/100g as rovd mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	3299078. 95 0.7 5 < 20 < 0.10 20 48 10.7 < 0.10 11	394	3299078.395 89 0.6 4 < 20 < 0.10 18 73 25 < 0.10 11	32	99078.396 94 0.6 3 < 20 < 0.10 15 21 11.7 < 0.10 8
Dry Matter Total Recoverable Beryllium 8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Polychlorinated Biphenyls Scre	g/100g as rovd mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	3299078. 95 0.7 5 < 20 < 0.10 20 48 10.7 < 0.10 11 63	394	3299078.395 89 0.6 4 < 20 < 0.10 18 73 25 < 0.10 11 66	32	99078.396 94 0.6 3 < 20 < 0.10 15 21 11.7 < 0.10 8 56
Dry Matter Total Recoverable Beryllium 8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Polychlorinated Biphenyls Scre PCB-18 PCB-28	g/100g as rovd mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	3299078. 95 0.7 5 < 20 < 0.10 20 48 10.7 < 0.10 11 63	0 0	3299078.395 89 0.6 4 < 20 < 0.10 18 73 25 < 0.10 11 66 < 0.010	32	99078.396 94 0.6 3 < 20 < 0.10 15 21 11.7 < 0.10 8 56
Dry Matter Total Recoverable Beryllium 8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Polychlorinated Biphenyls Scre PCB-18 PCB-28 PCB-31	g/100g as rovd mg/kg dry wt	3299078. 95 0.7 5 < 20 < 0.10 20 48 10.7 < 0.10 11 63 < 0.010 < 0.010	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3299078.395 89 0.6 4 < 20 < 0.10 18 73 25 < 0.10 11 66 < 0.010 < 0.010	32	99078.396 94 0.6 3 < 20 < 0.10 15 21 11.7 < 0.10 8 56 < 0.010 < 0.010
Dry Matter Total Recoverable Beryllium 8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Polychlorinated Biphenyls Scre PCB-18 PCB-28 PCB-31 PCB-44	g/100g as rovd mg/kg dry wt	3299078. 95 0.7 5 < 20 < 0.10 20 48 10.7 < 0.10 11 63 < 0.010 < 0.010 < 0.010 < 0.010	394 0 0 0 0 0	3299078.395 89 0.6 4 < 20 < 0.10 18 73 25 < 0.10 11 66 < 0.010 < 0.010 < 0.010	32	99078.396 94 0.6 3 < 20 < 0.10 15 21 11.7 < 0.10 8 56 < 0.010 < 0.010 < 0.010
Dry Matter Total Recoverable Beryllium 8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Polychlorinated Biphenyls Scre PCB-18 PCB-28 PCB-31 PCB-44	g/100g as rovd mg/kg dry wt	3299078. 95 0.7 5 < 20 < 0.10 20 48 10.7 < 0.10 11 63 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010	394 0 0 0 0 0 0 0	3299078.395 89 0.6 4 < 20 < 0.10 18 73 25 < 0.10 11 66 < 0.010 < 0.010 < 0.010 < 0.010	32	99078.396 94 0.6 3 < 20 < 0.10 15 21 11.7 < 0.10 8 56 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010
Dry Matter Total Recoverable Beryllium 8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Mickel Total Recoverable Zinc Polychlorinated Biphenyls Scre PCB-18 PCB-28 PCB-31 PCB-44 PCB-49 PCB-52	g/100g as rovd mg/kg dry wt	3299078. 95 0.7 5 < 20 < 0.10 20 48 10.7 < 0.10 11 63 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010	394 0 0 0 0 0 0 0	3299078.395 89 0.6 4 < 20 < 0.10 18 73 25 < 0.10 11 66 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010	32	99078.396 94 0.6 3 < 20 < 0.10 15 21 11.7 < 0.10 8 56 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010
Dry Matter Total Recoverable Beryllium 8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Mercury Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Polychlorinated Biphenyls Scre PCB-18 PCB-28 PCB-31 PCB-44 PCB-49 PCB-52 PCB-52	g/100g as rovd mg/kg dry wt	3299078. 95 0.7 5 < 20 < 0.10 20 48 10.7 < 0.10 11 63 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010	394 0 0 0 0 0 0 0 0 0	3299078.395 89 0.6 4 < 20 < 0.10 18 73 25 < 0.10 11 66 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010	32	99078.396 94 0.6 3 < 20 < 0.10 15 21 11.7 < 0.10 8 56 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010
Dry Matter Total Recoverable Beryllium 8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Mercury Total Recoverable Mercury Total Recoverable Mickel Total Recoverable Zinc Polychlorinated Biphenyls Scre PCB-18 PCB-28 PCB-31 PCB-44 PCB-49 PCB-52 PCB-60 PCB-77	g/100g as rovd mg/kg dry wt	3299078. 95 0.7 5 < 20 < 0.10 20 48 10.7 < 0.10 11 63 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010	394 0 0 0 0 0 0 0 0 0 0	3299078.395 89 0.6 4 < 20 < 0.10 18 73 25 < 0.10 11 66 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010	32	99078.396 94 0.6 3 < 20 < 0.10 15 21 11.7 < 0.10 8 56 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010
Dry Matter Total Recoverable Beryllium 8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Polychlorinated Biphenyls Scre PCB-18 PCB-28 PCB-31 PCB-44 PCB-49 PCB-52 PCB-60 PCB-77 PCB-81	g/100g as rovd mg/kg dry wt	3299078. 95 0.7 5 < 20 < 0.10 20 48 10.7 < 0.10 11 63 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010	394 0 0 0 0 0 0 0 0 0 0 0	3299078.395 89 0.6 4 < 20 < 0.10 18 73 25 < 0.10 11 66 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010	32	99078.396 94 0.6 3 < 20 < 0.10 15 21 11.7 < 0.10 8 56 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010
Dry Matter Total Recoverable Beryllium 8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Polychlorinated Biphenyls Scre PCB-18 PCB-28 PCB-31 PCB-44 PCB-49 PCB-52 PCB-60 PCB-77 PCB-81	g/100g as rovd mg/kg dry wt	3299078. 95 0.7 5 < 20 < 0.10 20 48 10.7 < 0.10 11 63 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010	394 0 0 0 0 0 0 0 0 0 0 0 0 0	3299078.395 89 0.6 4 < 20 < 0.10 18 73 25 < 0.10 11 66 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010	32	99078.396 94 0.6 3 < 20 < 0.10 15 21 11.7 < 0.10 8 56 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010
Individual Tests Dry Matter Total Recoverable Beryllium 8 Heavy metals plus Boron Total Recoverable Arsenic Total Recoverable Boron Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Chromium Total Recoverable Lead Total Recoverable Mercury Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Polychlorinated Biphenyls Scre PCB-18 PCB-28 PCB-31 PCB-44 PCB-49 PCB-52 PCB-60 PCB-77 PCB-81 PCB-86 PCB-86 PCB-101 PCB-105	g/100g as rovd mg/kg dry wt	3299078. 95 0.7 5 < 20 < 0.10 20 48 10.7 < 0.10 11 63 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010	394 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3299078.395 89 0.6 4 < 20 < 0.10 18 73 25 < 0.10 11 66 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010	32	99078.396 94 0.6 3 < 20 < 0.10 15 21 11.7 < 0.10 8 56 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010

Sample Type: Soil				
	Sample Name:	SB 06 TP 01 0.1 29-Jun-2023	SB 07 TP 01 0.1 29-Jun-2023	SB 07 TP 01 0.5 29-Jun-2023
	Lab Number:	3299078.394	3299078.395	3299078.396
Polychlorinated Biphenyls Scr	eening in Soil*			
PCB-114	mg/kg dry wt	< 0.010	< 0.010	< 0.010
PCB-118	mg/kg dry wt	< 0.010	< 0.010	< 0.010
PCB-121	mg/kg dry wt	< 0.010	< 0.010	< 0.010
PCB-123	mg/kg dry wt	< 0.010	< 0.010	< 0.010
PCB-126	mg/kg dry wt	< 0.010	< 0.010	< 0.010
PCB-128	mg/kg dry wt	< 0.010	< 0.010	< 0.010
PCB-138	mg/kg dry wt	< 0.010	< 0.010	< 0.010
PCB-141	mg/kg dry wt	< 0.010	< 0.010	< 0.010
PCB-149	mg/kg dry wt	< 0.010	< 0.010	< 0.010
PCB-151	mg/kg dry wt	< 0.010	< 0.010	< 0.010
PCB-153	mg/kg dry wt	< 0.010	< 0.010	< 0.010
PCB-156	mg/kg dry wt	< 0.010	< 0.010	< 0.010
PCB-157	mg/kg dry wt	< 0.010	< 0.010	< 0.010
PCB-159	mg/kg dry wt	< 0.010	< 0.010	< 0.010
PCB-167	mg/kg dry wt	< 0.010	< 0.010	< 0.010
PCB-169	mg/kg dry wt	< 0.010	< 0.010	< 0.010
PCB-170	mg/kg dry wt	< 0.010	< 0.010	< 0.010
PCB-180	mg/kg dry wt	< 0.010	< 0.010	< 0.010
PCB-189	mg/kg dry wt	< 0.010	< 0.010	< 0.010
PCB-194	mg/kg dry wt	< 0.010	< 0.010	< 0.010
PCB-206	mg/kg dry wt	< 0.010	< 0.010	< 0.010
PCB-209	mg/kg dry wt	< 0.010	< 0.010	< 0.010
Mono-Ortho PCB Toxic Equivalence (TEF)*	mg/kg dry wt	< 0.000003	< 0.000003	< 0.000003
Non-Ortho PCB Toxic Equivalence (TEF)*	mg/kg dry wt	< 0.0014	< 0.0014	< 0.0014
Total PCB (Sum of 35 congeners)	mg/kg dry wt	< 0.4	< 0.4	< 0.4
Total Petroleum Hydrocarbons	s in Soil			
C7 - C9	mg/kg dry wt	< 20	< 20	< 20
C10 - C14	mg/kg drywt	< 20	< 20	< 20
C15 - C36	mg/kg dry wt	< 40	< 40	< 40
Total hydrocarbons (C7 - C36)) mg/kg dry wt	< 80	< 80	< 80
Sample Type: Sediment	t			
	Sample Name:	WWTP DIS-SED WWTF	STR SED 01 0.3 STR S	SED 01 0.05 STR SED 02 0.3

Sample Type: Sediment						
	Sample Name:	WWTP DIS-SED 0.10 13-Jun-2023	WWTP SEEPAGE-SED 0.10 13-Jun-2023	STR SED 01 0.3 23-Jun-2023	STR SED 01 0.05 23-Jun-2023	STR SED 02 0.3 23-Jun-2023
	Lab Number:	3299078.177	3299078.178	3299078.355	3299078.356	3299078.357
Individual Tests		•				
Dry Matter	g/100g as rcvd	77	48	49	53	32
Total Recoverable Beryllium	mg/kg dry wt	0.6	1.2	1.0	0.9	1.3
Total Recoverable Boron	mg/kg dry wt	< 20	< 20	< 20	< 20	< 20
pH	pH Units	5.7	6.2	5.6	5.5	5.6
Total Organic Carbon*	g/100g dry wt	3.0	1.45	2.2	1.38	6.3
Heavy metals, screen As,Cd,C	cr,Cu,Ni,Pb,Zn,Hg					
Total Recoverable Arsenic	mg/kg dry wt	4	5	5	4	7
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	< 0.10	0.12	0.11	0.41
Total Recoverable Chromium	mg/kg dry wt	8	8	9	9	12
Total Recoverable Copper	mg/kg dry wt	18	21	16	16	27
Total Recoverable Lead	mg/kg dry wt	15.1	17.7	30	37	27
Total Recoverable Mercury	mg/kg dry wt	< 0.10	0.31	< 0.10	< 0.10	0.11
Total Recoverable Nickel	mg/kg dry wt	5	4	4	4	7
Total Recoverable Zinc	mg/kg dry wt	56	47	88	77	126
Acid Herbicides Screen in Soil	by LCMSMS					
Acifluorfen	mg/kg dry wt	-	-	< 0.2	< 0.2	< 0.2
Bentazone	mg/kg dry wt	-	-	< 0.2	< 0.2	< 0.2

Sample Type: Sediment						
Sai	mple Name:	WWTP DIS-SED 0.10 13-Jun-2023	WWTP SEEPAGE-SED 0.10 13-Jun-2023	STR SED 01 0.3 23-Jun-2023	STR SED 01 0.05 23-Jun-2023	STR SED 02 0.3 23-Jun-2023
L	ab Number:	3299078.177	3299078.178	3299078.355	3299078.356	3299078.357
Acid Herbicides Screen in Soil by						
Bromoxynil	mg/kg dry wt	_	_	< 0.2	< 0.2	< 0.2
Clopyralid	mg/kg dry wt	_	_	< 0.2	< 0.2	< 0.2
Dicamba	mg/kg dry wt	_	_	< 0.2	< 0.2	< 0.2
2,4-Dichlorophenoxyacetic acid	mg/kg dry wt	_	_	< 0.2	< 0.2	< 0.2
(24D) 2,4-Dichlorophenoxybutyric acid	mg/kg dry wt	_	_	< 0.2	< 0.2	< 0.2
(24DB)	mg/kg dry wt	-	-	~ 0.2	< 0.Z	< 0.2
Dichlorprop	mg/kg dry wt	-	-	< 0.2	< 0.2	< 0.2
Fluazifop	mg/kg dry wt	-	-	< 0.2	< 0.2	< 0.2
Fluroxypyr	mg/kg dry wt	-	-	< 0.2	< 0.2	< 0.2
Haloxyfop	mg/kg dry wt	-	-	< 0.2	< 0.2	< 0.2
2-methyl-4-chlorophenoxyacetic acid (MCPA)	mg/kg dry wt	-	-	< 0.2	< 0.2	< 0.2
2-methyl-4- chlorophenoxybutanoic acid (MCPB)	mg/kg dry wt	-	-	< 0.2	₹0.2	< 0.2
Mecoprop (MCPP; 2-methyl-4- chlorophenoxypropionic acid)	mg/kg dry wt	-	-	< 0.2	< 0.2	< 0.2
Oryzalin	mg/kg dry wt	-	-	< 2	<2	< 2
Pentachlorophenol (PCP)	mg/kg dry wt	-	-	< 0.2	< 0.2	< 0.2
Picloram	mg/kg dry wt	-	- 6	< 0.2	< 0.2	< 0.2
Quizalofop	mg/kg dry wt	-	. 0	< 0.2	< 0.2	< 0.2
2,3,4,6-Tetrachlorophenol (TCP)	mg/kg dry wt	-	10	< 0.2	< 0.2	< 0.2
2,4,5-trichlorophenoxypropionic acid (245TP,Fenoprop, Silvex)	mg/kg dry wt	-	26,	< 0.2	< 0.2	< 0.2
2,4,5-Trichlorophenoxyacetic acid (245T)	mg/kg dry wt	-	- 1	< 0.2	< 0.2	< 0.2
Triclopyr	mg/kg dry wt	4-4		< 0.2	< 0.2	< 0.2
Organochlorine Pesticides Trace	in Soil	111				
Aldrin	mg/kg dry wt	7-1	. *. (-)	< 0.0010	< 0.0010	< 0.0010
alpha-BHC	mg/kg dry wt	_	X _	< 0.0010	< 0.0010	< 0.0010
beta-BHC	mg/kg dry wt	_	7	< 0.0010	< 0.0010	< 0.0010
delta-BHC	mg/kg dry wt		_	< 0.0010	< 0.0010	< 0.0010
gamma-BHC (Lindane)	mg/kg dry wt		_	< 0.0010	< 0.0010	< 0.0010
cis-Chlordane	mg/kg dry wt	-	-	< 0.0010	< 0.0010	< 0.0010
trans-Chlordane	mg/kg dry wt		_	< 0.0010	< 0.0010	< 0.0010
2,4'-DDD	mg/kg dry wt	(U .	_	< 0.0010	< 0.0010	< 0.0010
4,4'-DDD	mg/kg dry wt	-	-	< 0.0010	< 0.0010	< 0.0010
2,4'-DDE	mg/kg dry wt	-	-	< 0.0010	< 0.0010	< 0.0010
4,4'-DDE	mg/kg dry wt	<u> </u>	_	0.0010	0.0056	0.0065
2,4'-DDT	mg/kg dry wt	-	_	< 0.0010	< 0.0010	< 0.0010
4,4'-DDT	mg/kg dry wt	-	-	< 0.0010	< 0.0010	0.0010
Total DDT Isomers	mg/kg dry wt			< 0.0010	0.007	0.0023
Dieldrin	mg/kg dry wt	-	<u>-</u>	< 0.006	< 0.007	< 0.009
Endosulfan I	mg/kg dry wt	-	_	< 0.0010	< 0.0010	< 0.0010
Endosulfan II	mg/kg dry wt	-	-	< 0.0010	< 0.0010	< 0.0010
Endosulfan sulphate	mg/kg dry wt	-		< 0.0010	< 0.0010	< 0.0010
Endosulian sulphate Endrin		<u>-</u>	-	< 0.0010	< 0.0010	< 0.0010
	mg/kg dry wt		-	< 0.0010	< 0.0010	< 0.0010
Endrin aldehyde	mg/kg dry wt	-	-			
Endrin ketone	mg/kg dry wt	-	-	< 0.0010	< 0.0010	< 0.0010
Heptachlor	mg/kg dry wt	-	-	< 0.0010	< 0.0010	< 0.0010
Heptachlor epoxide	mg/kg dry wt	-	-	< 0.0010	< 0.0010	< 0.0010
Hexachlorobenzene Methodorobenzene	mg/kg dry wt	-	-	< 0.0010	< 0.0010	< 0.0010
Methoxychlor	mg/kg dry wt	-	-	< 0.0010	< 0.0010	< 0.0010

Sample Type: Sediment						
\$	Sample Name:	0.10 13-Jun-2023	WWTP SEEPAGE-SED 0.10 13-Jun-2023	STR SED 01 0.3 23-Jun-2023	STR SED 01 0.05 23-Jun-2023	STR SED 02 0.3 23-Jun-2023
	Lab Number:	3299078.177	3299078.178	3299078.355	3299078.356	3299078.357
Organonitro&phosphorus Pest	icides Trace in MF	R Soil by GCMS				
Acetochlor	mg/kg dry wt	-	-	< 0.012	< 0.011	< 0.019
Alachlor	mg/kg dry wt	-	-	< 0.006	< 0.006	< 0.010
Atrazine	mg/kg dry wt	-	-	< 0.012	< 0.011	< 0.019
Atrazine-desethyl	mg/kg dry wt	-	-	< 0.012	< 0.011	< 0.019
Atrazine-desisopropyl	mg/kg dry wt	-	-	< 0.03	< 0.03	< 0.04
Azaconazole	mg/kg dry wt	-	-	< 0.006	< 0.006	< 0.010
Azinphos-methyl	mg/kg dry wt	-	-	< 0.03	< 0.03	< 0.04
Benalaxyl	mg/kg dry wt	-	-	< 0.006	< 0.006	< 0.010
Bitertanol	mg/kg dry wt	-	_	< 0.03	< 0.03	< 0.04
Bromacil	mg/kg dry wt	_	_	< 0.012	< 0.011	< 0.019
Bromopropylate	mg/kg dry wt	-	-	< 0.012	< 0.011	< 0.019
Butachlor	mg/kg dry wt	-	-	< 0.012	0.011	< 0.019
Captan	mg/kg dry wt	_	_	< 0.03	< 0.03	< 0.04
Carbaryl	mg/kg dry wt	-	_	< 0.012	< 0.011	< 0.019
Carbofuran	mg/kg dry wt	-		< 0.012	< 0.011	< 0.019
Chlorfluazuron	mg/kg dry wt	<u>-</u>	<u>-</u>	< 0.012	< 0.011	< 0.019
Chlorothalonil		-	-	< 0.012	< 0.011	< 0.019
	mg/kg dry wt		-			
Chlorpyrifos	mg/kg dry wt	-	-	0.012	< 0.011	< 0.019
Chlorpyrifos-methyl	mg/kg dry wt	-	-	< 0.012	< 0.011	< 0.019
Chlortoluron	mg/kg dry wt	-	-01	< 0.03	< 0.03	< 0.04
Cyanazine	mg/kg dry wt	-	10	< 0.012	< 0.011	< 0.019
Cyfluthrin	mg/kg dry wt	-		< 0.015	< 0.014	< 0.03
Cyhalothrin	mg/kg dry wt	-		< 0.012	< 0.011	< 0.019
Cypermethrin	mg/kg dry wt	-	- 1	< 0.03	< 0.03	< 0.05
Cyproconazole	mg/kg dry wt	-	-	< 0.03	< 0.03	< 0.04
Deltamethrin (including Tralomethrin)	mg/kg dry wt	23		< 0.012	< 0.011	< 0.019
Diazinon	mg/kg dry wt			< 0.006	< 0.006	< 0.010
Dichlofluanid	mg/kg dry wt	-	-	< 0.03	< 0.03	< 0.04
Dichloran	mg/kg dry wt	-	-	< 0.03	< 0.03	< 0.05
Dichlorvos	mg/kg dry wt	-	-	< 0.012	< 0.011	< 0.019
Difenoconazole	mg/kg dry wt		-	< 0.017	< 0.016	< 0.03
Dimethoate	mg/kg dry wt	-	-	< 0.03	< 0.03	< 0.04
Diphenylamine	mg/kg dry wt		-	< 0.03	< 0.03	< 0.04
Diuron	mg/kg dry wt	<u> </u>	-	< 0.012	< 0.011	< 0.019
Fenpropimorph	mg/kg dry wt	-	-	< 0.012	< 0.011	< 0.019
Fluazifop-butyl	mg/kg dry wt	-	-	< 0.012	< 0.011	< 0.019
Fluometuron	mg/kg dry wt	-	-	< 0.012	< 0.011	< 0.019
Flusilazole	mg/kg dry wt	-	-	< 0.012	< 0.011	< 0.019
Fluvalinate	mg/kg dry wt	-	-	< 0.009	< 0.008	< 0.013
Furalaxyl	mg/kg dry wt	-	-	< 0.006	< 0.006	< 0.010
Haloxyfop-methyl	mg/kg dry wt	-	-	< 0.012	< 0.011	< 0.019
Hexaconazole	mg/kg dry wt	-	-	< 0.012	< 0.011	< 0.019
Hexazinone	mg/kg dry wt	-	-	< 0.006	< 0.006	< 0.010
IPBC (3-lodo-2-propynyl-n- butylcarbamate)	mg/kg dry wt	-	-	< 0.06	< 0.06	< 0.10
Kresoxim-methyl	mg/kg dry wt	-	-	< 0.006	< 0.006	< 0.010
Linuron	mg/kg dry wt	-	-	< 0.12	< 0.11	< 0.19
Malathion	mg/kg dry wt	-	-	< 0.012	< 0.011	< 0.019
Metalaxyl	mg/kg dry wt	-	_	< 0.012	< 0.011	< 0.019
Methamidophos	mg/kg dry wt	_	_	< 0.06	< 0.06	< 0.10
Metolachlor	mg/kg dry wt	_	_	< 0.006	< 0.006	< 0.010
Metribuzin	mg/kg dry wt	-	_	< 0.012	< 0.011	< 0.019
Molinate	mg/kg dry wt	<u>-</u>	_	< 0.012	< 0.03	< 0.04
			-			
Myclobutanil	mg/kg dry wt	-	-	< 0.012	< 0.011	< 0.019

Sample Type: Sediment						
Sai	mple Name:	WWTP DIS-SED 0.10 13-Jun-2023	WWTP SEEPAGE-SED 0.10 13-Jun-2023	STR SED 01 0.3 23-Jun-2023	STR SED 01 0.05 23-Jun-2023	STR SED 02 0.3 23-Jun-2023
L	ab Number:	3299078.177	3299078.178	3299078.355	3299078.356	3299078.357
Organonitro&phosphorus Pesticio	des Trace in MF	R Soil by GCMS				
Naled	mg/kg dry wt	-	-	< 0.06	< 0.06	< 0.10
Norflurazon	mg/kg dry wt	-	-	< 0.03	< 0.03	< 0.04
Oxadiazon	mg/kg dry wt	-	-	< 0.012	< 0.011	< 0.019
Oxyfluorfen	mg/kg dry wt	-	-	< 0.006	< 0.006	< 0.010
Paclobutrazol	mg/kg dry wt	-	-	< 0.012	< 0.011	< 0.019
Parathion-ethyl	mg/kg dry wt	-	-	< 0.012	< 0.011	< 0.019
Parathion-methyl	mg/kg dry wt	-	-	< 0.012	< 0.011	< 0.019
Penconazole	mg/kg dry wt	-	-	< 0.012	< 0.011	< 0.019
Pendimethalin	mg/kg dry wt	-	-	< 0.012	< 0.011	< 0.019
Permethrin	mg/kg dry wt	-	-	< 0.004	< 0.004	< 0.006
Pirimicarb	mg/kg dry wt	-	-	< 0.012	< 0.011	< 0.019
Pirimiphos-methyl	mg/kg dry wt	-	-	< 0.012	< 0.011	< 0.019
Prochloraz	mg/kg dry wt	-	-	< 0.06	< 0.06	< 0.10
Procymidone	mg/kg dry wt	-	-	< 0.012	< 0.011	< 0.019
Prometryn	mg/kg dry wt	-	-	< 0.006	< 0.006	< 0.010
Propachlor	mg/kg dry wt	-	-	< 0.012	< 0.011	< 0.019
Propanil	mg/kg dry wt	-	-	< 0.03	< 0.03	< 0.04
Propazine	mg/kg dry wt	-	-	0.006	< 0.006	< 0.010
Propiconazole	mg/kg dry wt	-	-	< 0.009	< 0.008	< 0.013
Pyriproxyfen	mg/kg dry wt	-	- 0	< 0.012	< 0.011	< 0.019
Quizalofop-ethyl	mg/kg dry wt	-	10	< 0.012	< 0.011	< 0.019
Simazine	mg/kg dry wt	-		< 0.012	< 0.011	< 0.019
Simetryn	mg/kg dry wt	-	70	< 0.012	< 0.011	< 0.019
Sulfentrazone	mg/kg dry wt	-	- 5	< 0.06	< 0.06	< 0.10
TCMTB [2-(thiocyanomethylthio) benzothiazole,Busan]	mg/kg dry wt	-1	-	< 0.12	< 0.11	< 0.19
Tebuconazole	mg/kg dry wt			< 0.012	< 0.011	< 0.019
Terbacil	mg/kg dry wt	7-1	\.\.\(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	< 0.012	< 0.011	< 0.019
Terbumeton	mg/kg dry wt	_	-	< 0.012	< 0.011	< 0.019
Terbuthylazine	mg/kg dry wt	-	· -	< 0.006	< 0.006	< 0.010
Terbuthylazine-desethyl	mg/kg dry wt	-	_	< 0.012	< 0.011	< 0.019
Terbutryn	mg/kg dry wt		-	< 0.012	< 0.011	< 0.019
Thiabendazole	mg/kg dry wt	-	-	< 0.06	< 0.06	< 0.10
Thiobencarb	mg/kg dry wt	-	-	< 0.012	< 0.011	< 0.019
Tolylfluanid	mg/kg dry wt	(·	-	< 0.03	< 0.03	< 0.04
Triazophos	mg/kg dry wt	-	-	< 0.012	< 0.011	< 0.019
Trifluralin	mg/kg dry wt	-	-	< 0.012	< 0.011	< 0.019
Vinclozolin	mg/kg dry wt	-	-	< 0.012	< 0.011	< 0.019
Haloethers in SVOC Soil Samples	s by GC-MS					
Bis(2-chloroethoxy) methane	mg/kg dry wt	< 0.5	< 0.7	< 0.6	< 0.6	< 1.0
Bis(2-chloroethyl)ether	mg/kg dry wt	< 0.5	< 0.7	< 0.6	< 0.6	< 1.0
Bis(2-chloroisopropyl)ether	mg/kg dry wt	< 0.5	< 0.7	< 0.6	< 0.6	< 1.0
4-Bromophenyl phenyl ether	mg/kg dry wt	< 0.4	< 0.7	< 0.6	< 0.6	< 1.0
4-Chlorophenyl phenyl ether	mg/kg dry wt	< 0.5	< 0.7	< 0.6	< 0.6	< 1.0
Nitrogen containing compounds i		amples by GC-MS	1			
2,4-Dinitrotoluene	mg/kg dry wt	< 4	< 7	< 6	< 6	< 10
2,6-Dinitrotoluene	mg/kg dry wt	< 1.0	< 1.3	< 1.2	< 1.2	< 1.9
Nitrobenzene	mg/kg dry wt	< 0.5	< 0.7	< 0.6	< 0.6	< 1.0
N-Nitrosodi-n-propylamine	mg/kg dry wt	< 0.8	< 1.3	< 1.2	< 1.2	< 1.9
N-Nitrosodiphenylamine + Diphenylamine	mg/kg dry wt	< 0.8	< 1.3	< 1.2	< 1.2	< 1.9
Organochlorine Pesticides in SVC	DC Soil Sample	s by GC-MS				
Aldrin			1			
/ warm	mg/kg dry wt	< 0.5	< 0.7	< 0.6	< 0.6	< 1.0

Sample Type: Sediment						
Sa	mple Name:	WWTP DIS-SED 0.10 13-Jun-2023	WWTP SEEPAGE-SED 0.10 13-Jun-2023	STR SED 01 0.3 23-Jun-2023	STR SED 01 0.05 23-Jun-2023	STR SED 02 0.3 23-Jun-2023
L	ab Number:	3299078.177	3299078.178	3299078.355	3299078.356	3299078.357
Organochlorine Pesticides in SV	OC Soil Sample	s by GC-MS				
beta-BHC	mg/kg dry wt	< 0.5	< 0.7	< 0.6	< 0.6	< 1.0
delta-BHC	mg/kg dry wt	< 0.5	< 0.7	< 0.6	< 0.6	< 1.0
gamma-BHC (Lindane)	mg/kg dry wt	< 0.5	< 0.7	< 0.6	< 0.6	< 1.0
4,4'-DDD	mg/kg dry wt	< 0.5	< 0.7	< 0.6	< 0.6	< 1.0
4,4'-DDE	mg/kg dry wt	< 0.5	< 0.7	< 0.6	< 0.6	< 1.0
4,4'-DDT	mg/kg dry wt	< 1.0	< 1.3	< 1.2	< 1.2	< 1.9
Dieldrin	mg/kg dry wt	< 0.5	< 0.7	< 0.6	< 0.6	< 1.0
Endosulfan I	mg/kg dry wt	< 1.0	< 1.3	< 1.2	< 1.2	< 1.9
Endosulfan II	mg/kg dry wt	< 2	< 2	< 2	< 2	< 2
Endosulfan sulphate	mg/kg dry wt	< 1.0	< 1.3	< 1.2	< 1.2	< 1.9
Endrin	mg/kg dry wt	< 0.8	< 1.3	< 1.2	< 1.2	< 1.9
Endrin ketone	mg/kg dry wt	< 1.0	< 1.3	< 1.2	< 1.2	< 1.9
Heptachlor	mg/kg dry wt	< 0.5	< 0.7	< 0.6	< 0.6	< 1.0
Heptachlor epoxide	mg/kg dry wt	< 0.5	< 0.7	< 0.6	< 0.6	< 1.0
Hexachlorobenzene	mg/kg dry wt	< 0.5	< 0.7	< 0.6	< 0.6	< 1.0
Polycyclic Aromatic Hydrocarbon				0.5	(A)	
Acenaphthene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo[a]anthracene	mg/kg dry wt	< 0.5	0.6	< 0.5	< 0.5	< 0.5
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.5	0.7	< 0.6	< 0.6	< 1.0
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	< 0.5	0.8	< 0.6	< 0.6	< 1.0
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.5	0.7	< 0.6	< 0.6	< 1.0
Benzo[k]fluoranthene	mg/kg dry wt	< 0.5	< 0.7	< 0.6	< 0.6	< 1.0
1&2-Chloronaphthalene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.7
Chrysene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.5	< 0.7	< 0.6	< 0.6	< 1.0
Fluoranthene	mg/kg dry wt		0.9	< 0.5	< 0.5	< 0.5
Fluorene	mg/kg dry wt		< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt		0.7	< 0.6	< 0.6	< 1.0
2-Methylnaphthalene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	mg/kg dry wt	< 0.5	0.9	< 0.5	< 0.5	< 0.5
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES*	mg/kg dry wt	•	< 1.5	< 1.5	< 1.4	< 2.2
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	< 1.3	< 1.5	< 1.4	< 1.4	< 2.2
Phenols in SVOC Soil Samples b						
4-Chloro-3-methylphenol	mg/kg dry wt	< 5	< 5	< 5	< 5	< 5
2-Chlorophenol	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,4-Dichlorophenol	mg/kg dry wt	< 1.0	< 1.3	< 1.2	< 1.2	< 1.9
2,4-Dimethylphenol	mg/kg dry wt	< 3	< 3	< 3	< 3	< 3
3 & 4-Methylphenol (m- + p- cresol)	mg/kg dry wt	< 3	< 3	< 3	< 3	< 3
2-Methylphenol (o-cresol)	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Nitrophenol	mg/kg dry wt	< 5	< 7	< 6	< 6	< 10
Pentachlorophenol (PCP)	mg/kg dry wt	< 30	< 30	< 30	< 30	< 30
Phenol	mg/kg dry wt	< 1.0	< 1.3	< 1.2	< 1.2	< 1.9
2,4,5-Trichlorophenol	mg/kg dry wt	< 4	< 7	< 6	< 6	< 10
2,4,6-Trichlorophenol	mg/kg dry wt	< 4	< 7	< 6	< 6	< 10
Plasticisers in SVOC Soil Sample	es by GC-MS					
Bis(2-ethylhexyl)phthalate	mg/kg dry wt	< 5	< 5	< 5	< 5	< 5
Butylbenzylphthalate	mg/kg dry wt	< 1.0	< 1.3	< 1.2	< 1.2	< 1.9

Sample Type: Sediment						
Sar	nple Name:	WWTP DIS-SED	WWTP		STR SED 01 0.05	
		0.10 13-Jun-2023	SEEPAGE-SED 0.10 13-Jun-2023	23-Jun-2023	23-Jun-2023	23-Jun-2023
-	ab Number:	3299078.177	3299078.178	3299078.355	3299078.356	3299078.357
Plasticisers in SVOC Soil Sample		3299076.177	3299070.176	3299076.333	3299076.330	3299076.337
		- 10	- 10	z 1 0	z 1 0	z 1 0
Di(2-ethylhexyl)adipate	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Diethylphthalate	mg/kg dry wt	< 1.0	< 1.3	< 1.2	< 1.2	< 1.9
Dimethylphthalate	mg/kg dry wt	< 1.0	< 1.3	< 1.2	< 1.2	< 1.9
Di-n-butylphthalate	mg/kg dry wt	< 1.0	< 1.3	< 1.2	< 1.2	< 1.9
Di-n-octylphthalate	mg/kg dry wt	< 1.0	< 1.3	< 1.2	< 1.2	< 1.9
Other Halogenated compounds in						
1,2-Dichlorobenzene	mg/kg dry wt	< 0.8	< 1.3	< 1.2	< 1.2	< 1.9
1,3-Dichlorobenzene	mg/kg dry wt	< 0.8	< 1.3	< 1.2	< 1.2	< 1.9
1,4-Dichlorobenzene	mg/kg dry wt	< 0.8	< 1.3	< 1.2	< 1.2	< 1.9
Hexachlorobutadiene	mg/kg dry wt	< 0.8	< 1.3	< 1.2	< 1.2	< 1.9
Hexachloroethane	mg/kg dry wt	< 0.8	< 1.3	< 1.2	< 1.2	< 1.9
1,2,4-Trichlorobenzene	mg/kg dry wt	< 0.5	< 0.7	< 0.6	< 0.6	< 1.0
Other compounds in SVOC Soil S	Samples by GC	-MS				
Benzyl alcohol	mg/kg dry wt	< 10	< 10	< 10	< 10	< 10
Carbazole	mg/kg dry wt	< 0.5	< 0.7	< 0.6	< 0.6	< 1.0
Dibenzofuran	mg/kg dry wt	< 0.5	< 0.7	< 0.6	< 0.6	< 1.0
Isophorone	mg/kg dry wt	< 0.5	< 0.7	< 0.6	< 0.6	< 1.0
Total Petroleum Hydrocarbons in	Solids			5) /		
C7 - C9	mg/kg dry wt	-		< 30	< 30	< 50
C10 - C14	mg/kg dry wt	-	1-0	< 30	< 30	< 40
C15 - C36	mg/kg dry wt	-	10	< 50	< 50	< 80
Total hydrocarbons (C7 - C36)	mg/kg dry wt	-	- 0-1	< 110	< 100	< 150
BTEX in VOC Soils by Headspac	e GC-MS			10		
Benzene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
Ethylbenzene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
Toluene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
m&p-Xylene	mg/kg dry wt	< 0.08	♦ < 0.08	< 0.08	< 0.08	< 0.3
o-Xylene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
Halogenated Aliphatics in VOC S		ace GC-MS				
Bromomethane (Methyl Bromide)			< 0.04	< 0.04	< 0.04	< 0.11
Carbon tetrachloride	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
Chloroethane	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
Chloromethane	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
1,2-Dibromo-3-chloropropane	mg/kg dry wt	0.08	< 0.08	< 0.08	< 0.08	< 0.3
1,2-Dibromoethane (ethylene	mg/kg dry wt		< 0.04	< 0.04	< 0.04	< 0.11
dibromide, EDB)		*				
Dibromomethane	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
1,3-Dichloropropane	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
Dichlorodifluoromethane	mg/kg dry wt	< 0.08	< 0.08	< 0.08	< 0.08	< 0.3
1,1-Dichloroethane	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
1,2-Dichloroethane	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
1,1-Dichloroethene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
cis-1,2-Dichloroethene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
trans-1,2-Dichloroethene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
Dichloromethane (methylene chloride)	mg/kg dry wt	< 0.8	< 0.8	< 0.8	< 0.8	< 3
1,2-Dichloropropane	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
1,1-Dichloropropene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
cis-1,3-Dichloropropene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
trans-1,3-Dichloropropene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
Hexachlorobutadiene	mg/kg dry wt	< 0.08	< 0.08	< 0.08	< 0.08	< 0.3
1,1,1,2-Tetrachloroethane	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
		< 0.04	< 0.04	< 0.04	< 0.04	< 0.11

Sample Type: Sediment						
8	Sample Name:	WWTP DIS-SED	WWTP		STR SED 01 0.05	
		0.10 13-Jun-2023	SEEPAGE-SED 0.10 13-Jun-2023	23-Jun-2023	23-Jun-2023	23-Jun-2023
	Lab Number:	3299078.177	3299078.178	3299078.355	3299078.356	3299078.357
Halogenated Aliphatics in VOC			02000101110	02000.0.000	02000.0.000	0200010.001
Tetrachloroethene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
(tetrachloroethylene)						
1,1,1-Trichloroethane	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
1,1,2-Trichloroethane	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
Trichloroethene (trichloroethylene)	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
Trichlorofluoromethane	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
1,2,3-Trichloropropane	mg/kg dry wt	< 0.08	< 0.08	< 0.08	< 0.08	< 0.3
1,1,2-Trichlorotrifluoroethane (Freon 113)	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
Vinyl chloride	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
Halogenated Aromatics in VOC	Soils by Headspa	ace GC-MS*			•	
Bromobenzene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
1,3-Dichlorobenzene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	≥ 0.11
4-Chlorotoluene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
Chlorobenzene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
(monochlorobenzene)						
1,2-Dichlorobenzene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
1,2-Dichloropropane	mg/kg dry wt	< 0.04	< 0.04	0.04	< 0.04	< 0.11
1,4-Dichlorobenzene*	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
2-Chlorotoluene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
1,2,3-Trichlorobenzene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
1,2,4-Trichlorobenzene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
1,3,5-Trichlorobenzene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
Monoaromatic Hydrocarbons in	n VOC Soils by He	eadspace GC-MS				
n-Butylbenzene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
tert-Butylbenzene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
Isopropylbenzene (Cumene)	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
4-Isopropyltoluene (p-Cymene)	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
n-Propylbenzene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
sec-Butylbenzene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
Styrene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
1,2,4-Trimethylbenzene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
1,3,5-Trimethylbenzene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
Ketones in VOC Soils by Head	space GC-MS	· ()				
2-Butanone (MEK)	mg/kg dry wt	< 8	< 8	< 8	< 8	< 30
4-Methylpentan-2-one (MIBK)	mg/kg dry wt	< 1.5	< 1.6	< 1.6	< 1.5	< 5
Acetone	mg/kg dry wt	< 8	< 8	< 8	< 8	< 30
Methyl tert-butylether (MTBE)	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
Trihalomethanes in VOC Soils			l	I	l	
Bromodichloromethane	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
Bromoform (tribromomethane)	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
Chloroform (Trichloromethane)		< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
Dibromochloromethane	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
		` 0.04	` 0.04	` 0.04	₹ 0.04	* 0.11
Other VOC in Soils by Headsp		- O OF	- O OF	- 0.05	× 0.05	- O OF
Carbon disulphide	mg/kg dry wt	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Naphthalene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.11
S	Sample Name:	STR SED 02 0.05 23-Jun-2023	STR SED 03 0.3 23-Jun-2023	STR SED 03 0.05 23-Jun-2023	STR SED 04 0.3 23-Jun-2023	STR SED 04 0.05 23-Jun-2023
	Lab Number:	3299078.358	3299078.359	3299078.360	3299078.361	3299078.362
Individual Tests						
Dry Matter	g/100g as rcvd	32	38	45	55	27
Total Recoverable Beryllium	mg/kg dry wt	1.3	1.3	1.2	1.0	1.4
Total Recoverable Boron	mg/kg dry wt	< 20	< 20	< 20	< 20	< 20
pH	pH Units	5.8	5.6	5.9	7.2	5.9
1 ab No. 2200079 SDv6	<u> </u>		Hill Lobo	l .	<u> </u>	Dago 09 of 126

Sample Type: Sediment						
Sai	mple Name:			STR SED 03 0.05		
	ab Number:	23-Jun-2023 3299078.358	23-Jun-2023 3299078.359	23-Jun-2023 3299078.360	23-Jun-2023 3299078.361	23-Jun-2023 3299078.362
Individual Tests	ab Nullibel.	323307 0.330	0200010.000	323301 0.300	3233070.301	3233010.302
Total Organic Carbon*	g/100g dry wt	5.1	2.5	2.3	1.00	5.9
Heavy metals, screen As,Cd,Cr,C			2.0	2.0	1.00	0.0
Total Recoverable Arsenic		6	5	5	< 2	4
Total Recoverable Cadmium	mg/kg dry wt	0.41	0.30	0.24	< 0.10	0.19
Total Recoverable Chromium	mg/kg dry wt	11	11	10	9	10
Total Recoverable Copper	mg/kg dry wt	28	31	28	10	18
Total Recoverable Lead	mg/kg dry wt	23	130	42	15.4	15.0
Total Recoverable Mercury	mg/kg dry wt	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Recoverable Nickel	mg/kg dry wt	6	7	6	4	4
Total Recoverable Zinc	mg/kg dry wt	127	115	111	52	75
		127	115	111	52	75
Acid Herbicides Screen in Soil by		1 .00			4 .00	
Acifluorfen	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Bentazone	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Bromoxynil	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Clopyralid	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Dicamba	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,4-Dichlorophenoxyacetic acid (24D)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,4-Dichlorophenoxybutyric acid (24DB)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorprop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Fluazifop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Fluroxypyr	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Haloxyfop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2-methyl-4-chlorophenoxyacetic acid (MCPA)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2-methyl-4- chlorophenoxybutanoic acid (MCPB)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Mecoprop (MCPP; 2-methyl-4- chlorophenoxypropionic acid)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Oryzalin	mg/kg dry wt	< 2	< 2	< 0.4	< 2	< 2
Pentachlorophenol (PCP)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Picloram	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Quizalofop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,3,4,6-Tetrachlorophenol (TCP)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,4,5-trichlorophenoxypropionic acid (245TP,Fenoprop, Silvex)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,4,5-Trichlorophenoxyacetic acid (245T)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Triclopyr	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Organochlorine Pesticides Trace	in Soil					
Aldrin	mg/kg dry wt	< 0.0013	< 0.0011	< 0.0010	< 0.0010	< 0.003
alpha-BHC	mg/kg dry wt	< 0.0013	< 0.0011	< 0.0010	< 0.0010	< 0.003
beta-BHC	mg/kg dry wt	< 0.0013	< 0.0011	< 0.0010	< 0.0010	< 0.003
delta-BHC	mg/kg dry wt	< 0.0013	< 0.0011	< 0.0010	< 0.0010	< 0.003
gamma-BHC (Lindane)	mg/kg dry wt	< 0.0013	< 0.0011	< 0.0010	< 0.0010	< 0.003
cis-Chlordane	mg/kg dry wt	< 0.0013	< 0.0011	< 0.0010	< 0.0010	< 0.003
trans-Chlordane	mg/kg dry wt	< 0.0013	< 0.0011	< 0.0010	< 0.0010	< 0.003
2,4'-DDD	mg/kg dry wt	< 0.0013	< 0.0011	< 0.0010	< 0.0010	< 0.003
4,4'-DDD	mg/kg dry wt	< 0.0013	0.0063	0.0088	< 0.0010	< 0.003
2,4'-DDE	mg/kg dry wt	< 0.0013	< 0.0011	< 0.0010	< 0.0010	< 0.003
4,4'-DDE	mg/kg dry wt	0.0091	0.0172	0.022	< 0.0010	< 0.003
2,4'-DDT	mg/kg dry wt	< 0.0013	< 0.0011	< 0.0010	< 0.0010	< 0.003
4,4'-DDT	mg/kg dry wt	< 0.0013	< 0.0011	< 0.0010	< 0.0010	< 0.003
Total DDT Isomers	mg/kg dry wt	0.010	0.024	0.031	< 0.006	< 0.016
Dieldrin	mg/kg dry wt	< 0.0013	< 0.0011	< 0.0010	< 0.0010	< 0.003

Sample Type: Sediment							
Sa	imple Name:	STR SED 02 0.05 23-Jun-2023	STR SED 03 0.3 23-Jun-2023	STR SED 03 0.05 23-Jun-2023	STR SED 04 0.3 23-Jun-2023	STR SED 04 0.05 23-Jun-2023	
	Lab Number:	3299078.358	3299078.359	3299078.360	3299078.361	3299078.362	
Organochlorine Pesticides Trace							
Endosulfan I	mg/kg dry wt	< 0.0013	< 0.0011	< 0.0010	< 0.0010	< 0.003	
Endosulfan II	mg/kg dry wt	< 0.0013	< 0.0011	< 0.0010	< 0.0010	< 0.003	
Endosulfan sulphate	mg/kg dry wt	< 0.0013	< 0.0011	< 0.0010	< 0.0010	< 0.003	
Endrin	mg/kg dry wt	< 0.0013	< 0.0011	< 0.0010	< 0.0010	< 0.003	
Endrin aldehyde	mg/kg dry wt	< 0.0013	< 0.0011	< 0.0010	< 0.0010	< 0.003	
Endrin ketone	mg/kg dry wt	< 0.0013	< 0.0011	< 0.0010	< 0.0010	< 0.003	
Heptachlor	mg/kg dry wt	< 0.0013	< 0.0011	< 0.0010	< 0.0010	< 0.003	
Heptachlor epoxide	mg/kg dry wt	< 0.0013	< 0.0011	< 0.0010	< 0.0010	< 0.003	
Hexachlorobenzene	mg/kg dry wt	< 0.0013	< 0.0011	< 0.0010	< 0.0010	< 0.003	
Methoxychlor	mg/kg dry wt	< 0.0013	< 0.0011	< 0.0010	< 0.0010	< 0.003	
Organonitro&phosphorus Pestic			10.0011	10.0010	10.0010	4 0.000	
Acetochlor		,	< 0.016	< 0.013	4 < 0.011	< 0.03	
	mg/kg dry wt	< 0.019					
Alachlor	mg/kg dry wt	< 0.010	< 0.008	< 0.007	< 0.006	< 0.011	
Atrazine desethed	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03	
Atrazine-desethyl	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03	
Atrazine-desisopropyl	mg/kg dry wt	< 0.04	< 0.04	< 0.03	< 0.03	< 0.05	
Azaconazole	mg/kg dry wt	< 0.010	< 0.008	< 0.007	< 0.006	< 0.011	
Azinphos-methyl	mg/kg dry wt	< 0.04	< 0.04	< 0.03	< 0.03	< 0.05	
Benalaxyl	mg/kg dry wt	< 0.010	< 0.008	< 0.007	< 0.006	< 0.011	
Bitertanol	mg/kg dry wt	< 0.04	< 0.04	< 0.03	< 0.03	< 0.05	
Bromacil	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03	
Bromopropylate	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03	
Butachlor	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03	
Captan	mg/kg dry wt	< 0.04	< 0.04	< 0.03	< 0.03	< 0.05	
Carbaryl	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03	
Carbofuran	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03	
Chlorfluazuron	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03	
Chlorothalonil	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03	
Chlorpyrifos	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03	
Chlorpyrifos-methyl	mg/kg dry wt		< 0.016	< 0.013	< 0.011	< 0.03	
Chlortoluron	mg/kg dry wt	< 0.04	< 0.04	< 0.03	< 0.03	< 0.05	
Cyanazine	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03	
Cyfluthrin	mg/kg dry wt	< 0.03	< 0.019	< 0.016	< 0.013	< 0.03	
Cyhalothrin	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03	
Cypermethrin	mg/kg dry wt	< 0.05	< 0.04	< 0.04	< 0.03	< 0.06	
Cyproconazole	mg/kg dry wt	< 0.04	< 0.04	< 0.03	< 0.03	< 0.05	
Deltamethrin (including Tralomethrin)	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03	
Diazinon	mg/kg dry wt	< 0.010	< 0.008	< 0.007	< 0.006	< 0.011	
Dichlofluanid	mg/kg dry wt	< 0.04	< 0.04	< 0.03	< 0.03	< 0.05	
Dichloran	mg/kg dry wt	< 0.05	< 0.04	< 0.04	< 0.03	< 0.06	
Dichlorvos	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03	
Difenoconazole	mg/kg dry wt	< 0.03	< 0.03	< 0.018	< 0.015	< 0.04	
Dimethoate	mg/kg dry wt	< 0.04	< 0.04	< 0.03	< 0.03	< 0.05	
Diphenylamine	mg/kg dry wt	< 0.04	< 0.04	< 0.03	< 0.03	< 0.05	
Diuron	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03	
Fenpropimorph	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03	
Fluazifop-butyl	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03	
Fluometuron	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03	
Flusilazole	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03	
Fluvalinate	mg/kg dry wt	< 0.013	< 0.011	< 0.009	< 0.008	< 0.016	
Furalaxyl	mg/kg dry wt	< 0.010	< 0.008	< 0.007	< 0.006	< 0.011	
Haloxyfop-methyl	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03	
Hexaconazole	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03	
	mg/kg dry wt	< 0.010	< 0.008	< 0.007	< 0.006	< 0.011	

Sample Type: Sediment						
Sa	mple Name:	STR SED 02 0.05 23-Jun-2023	STR SED 03 0.3 23-Jun-2023	STR SED 03 0.05 23-Jun-2023	STR SED 04 0.3 23-Jun-2023	STR SED 04 0.05 23-Jun-2023
L	ab Number:	3299078.358	3299078.359	3299078.360	3299078.361	3299078.362
Organonitro&phosphorus Pesticio	des Trace in MF	R Soil by GCMS				
IPBC (3-lodo-2-propynyl-n- butylcarbamate)	mg/kg dry wt	< 0.10	< 0.08	< 0.07	< 0.06	< 0.11
Kresoxim-methyl	mg/kg dry wt	< 0.010	< 0.008	< 0.007	< 0.006	< 0.011
Linuron	mg/kg dry wt	< 0.19	< 0.16	< 0.13	< 0.11	< 0.3
Malathion	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03
Metalaxyl	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03
Methamidophos	mg/kg dry wt	< 0.10	< 0.08	< 0.07	< 0.06	< 0.11
Metolachlor	mg/kg dry wt	< 0.010	< 0.008	< 0.007	< 0.006	< 0.011
Metribuzin	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03
Molinate	mg/kg dry wt	< 0.04	< 0.04	< 0.03	< 0.03	< 0.05
Myclobutanil	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03
Naled	mg/kg dry wt	< 0.10	< 0.08	< 0.07	< 0.06	< 0.11
Norflurazon	mg/kg dry wt	< 0.04	< 0.04	< 0.03	< 0.03	< 0.05
Oxadiazon	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03
Oxyfluorfen	mg/kg dry wt	< 0.010	< 0.008	< 0.007	< 0.006	< 0.011
Paclobutrazol	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03
Parathion-ethyl	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03
Parathion-methyl	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03
Penconazole	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03
Pendimethalin	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03
Permethrin	mg/kg dry wt	< 0.006	< 0.005	< 0.004	< 0.003	< 0.007
Pirimicarb	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03
Pirimiphos-methyl	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03
Prochloraz	mg/kg dry wt	< 0.10	< 0.08	< 0.07	< 0.06	< 0.11
Procymidone	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03
Prometryn	mg/kg dry wt	< 0.010	< 0.008	< 0.007	< 0.006	< 0.011
Propachlor	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03
Propanil	mg/kg dry wt	< 0.04	< 0.04	< 0.03	< 0.03	< 0.05
Propazine	mg/kg dry wt	< 0.010	< 0.008	< 0.007	< 0.006	< 0.011
Propiconazole	mg/kg dry wt	< 0.013	< 0.011	< 0.009	< 0.008	< 0.016
Pyriproxyfen	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03
Quizalofop-ethyl	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03
Simazine	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03
Simetryn	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03
Sulfentrazone	mg/kg dry wt	< 0.10	< 0.08	< 0.07	< 0.06	< 0.11
TCMTB [2-(thiocyanomethylthio) benzothiazole,Busan]	mg/kg dry wt	< 0.19	< 0.16	< 0.13	< 0.11	< 0.3
Tebuconazole	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03
Terbacil	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03
Terbumeton	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03
Terbuthylazine	mg/kg dry wt	< 0.010	< 0.008	< 0.007	< 0.006	< 0.011
Terbuthylazine-desethyl	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03
Terbutryn	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03
Thiabendazole	mg/kg dry wt	< 0.10	< 0.08	< 0.07	< 0.06	< 0.11
Thiobencarb	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03
Tolylfluanid	mg/kg dry wt	< 0.04	< 0.04	< 0.03	< 0.03	< 0.05
Triazophos	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03
Trifluralin	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03
Vinclozolin	mg/kg dry wt	< 0.019	< 0.016	< 0.013	< 0.011	< 0.03
Haloethers in SVOC Soil Sample	s by GC-MS					
Bis(2-chloroethoxy) methane	mg/kg dry wt	< 1.0	< 0.8	< 0.7	< 0.6	< 1.1
Bis(2-chloroethyl)ether	mg/kg dry wt	< 1.0	< 0.8	< 0.7	< 0.6	< 1.1
Bis(2-chloroisopropyl)ether	mg/kg dry wt	< 1.0	< 0.8	< 0.7	< 0.6	< 1.1
4-Bromophenyl phenyl ether	mg/kg dry wt	< 1.0	< 0.8	< 0.7	< 0.6	< 1.1
4-Chlorophenyl phenyl ether	mg/kg dry wt	< 1.0	< 0.8	< 0.7	< 0.6	< 1.1

Sample Type: Sediment						
Sa	mple Name:			STR SED 03 0.05		
	ah Numbari	23-Jun-2023 3299078.358	23-Jun-2023	23-Jun-2023	23-Jun-2023	23-Jun-2023
Nitrogen containing compounds	_ab Number:		3299078.359	3299078.360	3299078.361	3299078.362
				. 7	10	- 44
2,4-Dinitrotoluene	mg/kg dry wt	< 10	< 8	< 7	< 6	< 11
2,6-Dinitrotoluene	mg/kg dry wt	< 1.9	< 1.6	< 1.3	< 1.1	< 3
Nitrobenzene	mg/kg dry wt	< 1.0	< 0.8	< 0.7	< 0.6	< 1.1
N-Nitrosodi-n-propylamine	mg/kg dry wt	< 1.9	< 1.6	< 1.3	< 1.1	< 3
N-Nitrosodiphenylamine + Diphenylamine	mg/kg dry wt	< 1.9	< 1.6	< 1.3	< 1.1	< 3
Organochlorine Pesticides in SV	OC Soil Sample	s by GC-MS				
Aldrin	mg/kg dry wt	< 1.0	< 0.8	< 0.7	< 0.6	< 1.1
alpha-BHC	mg/kg dry wt	< 1.0	< 0.8	< 0.7	< 0.6	< 1.1
beta-BHC	mg/kg dry wt	< 1.0	< 0.8	< 0.7	< 0.6	< 1.1
delta-BHC	mg/kg dry wt	< 1.0	< 0.8	< 0.7	< 0.6	< 1.1
gamma-BHC (Lindane)	mg/kg dry wt	< 1.0	< 0.8	< 0.7	< 0.6	< 1,1
4,4'-DDD	mg/kg dry wt	< 1.0	< 0.8	< 0.7	< 0.6	< 1.1
4,4'-DDE	mg/kg dry wt	< 1.0	< 0.8	< 0.7	< 0.6	< 1.1
4,4'-DDT	mg/kg dry wt	< 1.9	< 1.6	< 1.3	< 1.1	< 3
Dieldrin	mg/kg dry wt	< 1.0	< 0.8	< 0.7	< 0.6	< 1.1
Endosulfan I	mg/kg dry wt	< 1.9	< 1.6	<1.3	< 1.1	< 3
Endosulfan II	mg/kg dry wt	< 2	< 2	< 2	2	< 3
Endosulfan sulphate	mg/kg dry wt	< 1.9	< 1.6	< 1.3	<1.1	< 3
Endrin	mg/kg dry wt	< 1.9	< 1.6	< 1.3	< 1.1	< 3
Endrin ketone	mg/kg dry wt	< 1.9	< 1.6	< 1.3	< 1.1	< 3
Heptachlor	mg/kg dry wt	< 1.0	< 0.8	< 0.7	< 0.6	< 1.1
Heptachlor epoxide	mg/kg dry wt	< 1.0	< 0.8	< 0.7	< 0.6	< 1.1
Hexachlorobenzene	mg/kg dry wt	< 1.0	< 0.8	< 0.7	< 0.6	< 1.1
Polycyclic Aromatic Hydrocarbon				0.1	\ 0.0	× 1.1
, ,				.05	.0.5	.00
Acenaphthene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.6
Acenaphthylene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.6
Anthracene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.6
Benzo[a]anthracene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.6
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 1.0	< 0.8	< 0.7	< 0.6	< 1.1
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	< 1.0	< 0.8	< 0.7	< 0.6	< 1.1
Benzo[g,h,i]perylene	mg/kg dry wt	< 1.0	< 0.8	< 0.7	< 0.6	< 1.1
Benzo[k]fluoranthene	mg/kg dry wt	< 1.0	< 0.8	< 0.7	< 0.6	< 1.1
1&2-Chloronaphthalene	mg/kg dry wt	< 0.7	< 0.6	< 0.5	< 0.5	< 0.8
Chrysene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.6
Dibenzo[a,h]anthracene	mg/kg dry wt	< 1.0	< 0.8	< 0.7	< 0.6	< 1.1
Fluoranthene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.6
Fluorene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.6
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 1.0	< 0.8	< 0.7	< 0.6	< 1.1
2-Methylnaphthalene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.6
Naphthalene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.6
Phenanthrene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.6
Pyrene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.6
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES*	mg/kg dry wt	< 2.2	< 1.9	< 1.6	< 1.3	< 2.6
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	< 2.2	< 1.9	< 1.6	< 1.3	< 2.6
Phenols in SVOC Soil Samples I	by GC-MS					I.
4-Chloro-3-methylphenol	mg/kg dry wt	< 5	< 5	< 5	< 5	< 5
2-Chlorophenol	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.1
2,4-Dichlorophenol	mg/kg dry wt	< 1.9	< 1.6	< 1.3	< 1.1	< 3
2,4-Dimethylphenol	mg/kg dry wt	< 3	< 3	< 3	< 3	< 3
3 & 4-Methylphenol (m- + p-cresol)	mg/kg dry wt	< 3	< 3	< 3	< 3	< 3
2-Methylphenol (o-cresol)	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.1
z-ivieuryiphenoi (o-cresoi)	mg/kg ary wt	< 1.U	< 1.U	< 1.U	< 1.U	\$ 1.1

Sample Type: Sediment						
Sa	mple Name:			STR SED 03 0.05		
	_ab Number:	23-Jun-2023 3299078.358	23-Jun-2023 3299078.359	23-Jun-2023 3299078.360	23-Jun-2023 3299078.361	23-Jun-2023 3299078.362
Phenols in SVOC Soil Samples b		3299070.330	3299010.339	3299070.300	3299070.301	3299070.302
2-Nitrophenol	mg/kg dry wt	< 10	< 8	< 7	< 6	< 11
Pentachlorophenol (PCP)	mg/kg dry wt	< 30	< 30	< 30	< 30	< 30
Phenol	mg/kg dry wt	< 1.9	< 1.6	< 1.3	< 1.1	< 3
2,4,5-Trichlorophenol	mg/kg dry wt	< 10	< 8	< 7	< 6	< 11
2,4,6-Trichlorophenol	mg/kg dry wt	< 10	< 8	< 7	< 6	< 11
Plasticisers in SVOC Soil Sample	00,	10				
Bis(2-ethylhexyl)phthalate	mg/kg dry wt	< 5	< 5	< 5	< 5	< 5
Butylbenzylphthalate	mg/kg dry wt	< 1.9	< 1.6	< 1.3	< 1.1	< 3
Di(2-ethylhexyl)adipate	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.1
Diethylphthalate	mg/kg dry wt	< 1.9	< 1.6	< 1.3	< 1.1	< 3
Dimethylphthalate	mg/kg dry wt	< 1.9	< 1.6	< 1.3	< 1.1	< 3
Di-n-butylphthalate	mg/kg dry wt	< 1.9	< 1.6	< 1.3	< 1.1 ▲ < 1.1	< 3
Di-n-octylphthalate	mg/kg dry wt	< 1.9	< 1.6	< 1.3	< 1.1	< 3
Other Halogenated compounds in		_	1.0	7 1.0	1.1	
		< 1.9	< 1.6	< 1.3	-11	< 3
1,2-Dichlorobenzene 1,3-Dichlorobenzene	mg/kg dry wt	< 1.9 < 1.9	< 1.6 < 1.6	< 1.3	< 1.1 < 1.1	< 3
1,4-Dichlorobenzene	mg/kg dry wt	< 1.9	< 1.6		<11	< 3
Hexachlorobutadiene	mg/kg dry wt	< 1.9	< 1.6	<1.3	21.1	< 3
Hexachloroethane	mg/kg dry wt	< 1.9	< 1.6	< 1.3	< 1.1	< 3
1,2,4-Trichlorobenzene	mg/kg dry wt	< 1.9	< 0.8	< 0.7	< 0.6	< 1.1
			< 0.8	₹ 0.1	< 0.0	\ 1.1
Other compounds in SVOC Soil					1.40	- 44
Benzyl alcohol	mg/kg dry wt	< 10	< 10	< 10	< 10	< 11
Carbazole	mg/kg dry wt	< 1.0		< 0.7	< 0.6	< 1.1
Dibenzofuran	mg/kg dry wt	< 1.0	< 0.8		< 0.6	< 1.1
Isophorone	mg/kg dry wt	< 1.0	< 0.8	< 0.7	< 0.6	< 1.1
Total Petroleum Hydrocarbons in			10			
C7 - C9	mg/kg dry wt	< 50	< 40	< 30	< 30	< 60
C10 - C14	mg/kg dry wt	< 40	< 40	< 30	< 30	< 50
C15 - C36	mg/kg dry wt	< 80	117	95	< 50	< 90
Total hydrocarbons (C7 - C36)	mg/kg dry wt	< 150	144	119	< 90	< 190
BTEX in VOC Soils by Headspace						
Benzene	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
Ethylbenzene	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
Toluene	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
m&p-Xylene	mg/kg dry wt	< 0.3	< 0.11	< 0.09	< 0.07	< 0.3
o-Xylene	mg/kg dry wt	*	< 0.06	< 0.05	< 0.04	< 0.13
Halogenated Aliphatics in VOC						
Bromomethane (Methyl Bromide)		< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
Carbon tetrachloride	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
Chloroethane	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
Chloromethane	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
1,2-Dibromo-3-chloropropane	mg/kg dry wt	< 0.3	< 0.11	< 0.09	< 0.07	< 0.3
1,2-Dibromoethane (ethylene dibromide, EDB)	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
Dibromomethane	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
1,3-Dichloropropane	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
Dichlorodifluoromethane	mg/kg dry wt	< 0.3	< 0.11	< 0.09	< 0.07	< 0.3
1,1-Dichloroethane	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
1,2-Dichloroethane	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
1,1-Dichloroethene	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
cis-1,2-Dichloroethene	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
trans-1,2-Dichloroethene	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
Dichloromethane (methylene chloride)	mg/kg dry wt	< 3	< 1.1	< 0.9	< 0.7	< 3
1,2-Dichloropropane	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13

Sample Type: Sediment						
	Sample Name:	STR SED 02 0.05 23-Jun-2023	STR SED 03 0.3 23-Jun-2023	STR SED 03 0.05 23-Jun-2023	STR SED 04 0.3 23-Jun-2023	STR SED 04 0.05 23-Jun-2023
	Lab Number:	3299078.358	3299078.359	3299078.360	3299078.361	3299078.362
Halogenated Aliphatics in VO	C Soils by Headsp	ace GC-MS				
1,1-Dichloropropene	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
cis-1,3-Dichloropropene	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
trans-1,3-Dichloropropene	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
Hexachlorobutadiene	mg/kg dry wt	< 0.3	< 0.11	< 0.09	< 0.07	< 0.3
1,1,1,2-Tetrachloroethane	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
1,1,2,2-Tetrachloroethane	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
Tetrachloroethene (tetrachloroethylene)	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
1,1,1-Trichloroethane	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
1,1,2-Trichloroethane	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
Trichloroethene (trichloroethylene)	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
Trichlorofluoromethane	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
1,2,3-Trichloropropane	mg/kg dry wt	< 0.3	< 0.11	< 0.09	< 0.07	< 0.3
1,1,2-Trichlorotrifluoroethane (Freon 113)	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
Vinyl chloride	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
Halogenated Aromatics in VO	C Soils by Headspa	ace GC-MS*				
Bromobenzene	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
1,3-Dichlorobenzene	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
4-Chlorotoluene	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
Chlorobenzene (monochlorobenzene)	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
1,2-Dichlorobenzene	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
1,2-Dichloropropane	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
1,4-Dichlorobenzene*	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
2-Chlorotoluene	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
1,2,3-Trichlorobenzene	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
1,2,4-Trichlorobenzene	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
1,3,5-Trichlorobenzene	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
Monoaromatic Hydrocarbons			7/2,			
n-Butylbenzene	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
tert-Butylbenzene	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
Isopropylbenzene (Cumene)	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
4-Isopropyltoluene (p-Cymene		< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
n-Propylbenzene	mg/kg dry wt		< 0.06	< 0.05	< 0.04	< 0.13
sec-Butylbenzene	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
Styrene	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
1,2,4-Trimethylbenzene	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
1,3,5-Trimethylbenzene	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
Ketones in VOC Soils by Hea						
2-Butanone (MEK)	mg/kg dry wt	< 30	< 11	< 9	< 7	< 30
4-Methylpentan-2-one (MIBK)		< 5	< 3	< 1.8	< 1.3	< 6
Acetone	mg/kg dry wt	< 30	< 11	< 9	< 7	< 30
Methyl tert-butylether (MTBE)	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
Trihalomethanes in VOC Soil	<u> </u>		2.55	2.55		
Bromodichloromethane	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
Bromoform (tribromomethane)	- 0 0 ,	< 0.3	< 0.11	< 0.09	< 0.07	< 0.3
Chloroform (Trichloromethane	,	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
Dibromochloromethane	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13
Other VOC in Soils by Heads		1		1		1
Carbon disulphide	mg/kg dry wt	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Naphthalene	mg/kg dry wt	< 0.11	< 0.06	< 0.05	< 0.04	< 0.13

Sample Type: Sediment						
Sa	mple Name:	HSP SED 01 0.05 23-Jun-2023	HSP SED 01 0.3 23-Jun-2023	HSP SED 02 0.3 23-Jun-2023	HSP SED 02 0.05 23-Jun-2023	HSP SED 03 0.3 23-Jun-2023
L	ab Number:	3299078.363	3299078.364	3299078.365	3299078.366	3299078.367
Individual Tests						
Dry Matter	g/100g as rcvd	58	66	31	65	57
Total Recoverable Beryllium	mg/kg dry wt	1.0	0.9	1.2	1.0	0.9
Total Recoverable Boron	mg/kg dry wt	< 20	< 20	< 20	40	< 20
pH	pH Units	5.3	5.2	5.9	5.9	5.4
Total Organic Carbon*	g/100g dry wt	5.7	3.1	6.5	3.6	4.3
Heavy metals, screen As,Cd,Cr,C		5.1	J. I	0.5	3.0	7.0
Total Recoverable Arsenic		5	5	6	5	7
	mg/kg dry wt					
Total Recoverable Cadmium	mg/kg dry wt	0.16	0.12	0.45	0.23	0.24
Total Recoverable Chromium	mg/kg dry wt	9	10	8	12	10
Total Recoverable Copper	mg/kg dry wt	27	27	42	41	27
Total Recoverable Lead	mg/kg dry wt	55	43	32	68	96
Total Recoverable Mercury	mg/kg dry wt	< 0.10	< 0.10	< 0.10	0.10	0.10
Total Recoverable Nickel	mg/kg dry wt	6	6	5	7	6
Total Recoverable Zinc	mg/kg dry wt	98	90	160	141	117
Acid Herbicides Screen in Soil by	LCMSMS				Y (1)	•
Acifluorfen	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Bentazone	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Bromoxynil	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Clopyralid	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Dicamba	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,4-Dichlorophenoxyacetic acid (24D)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,4-Dichlorophenoxybutyric acid (24DB)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorprop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Fluazifop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Fluroxypyr	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Haloxyfop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2-methyl-4-chlorophenoxyacetic acid (MCPA)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2-methyl-4- chlorophenoxybutanoic acid (MCPB)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Mecoprop (MCPP; 2-methyl-4- chlorophenoxypropionic acid)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Oryzalin	mg/kg dry wt	< 0.4	< 2	< 0.4	< 2	< 0.4
Pentachlorophenol (PCP)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Picloram	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Quizalofop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,3,4,6-Tetrachlorophenol (TCP)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,4,5-trichlorophenoxypropionic acid (245TP,Fenoprop, Silvex)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,4,5-Trichlorophenoxyacetic acid (245T)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Triclopyr	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Organochlorine Pesticides Trace	in Soil					
Aldrin	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
alpha-BHC	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
beta-BHC	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
delta-BHC	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
gamma-BHC (Lindane)	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
cis-Chlordane	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
trans-Chlordane	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
2,4'-DDD	mg/kg dry wt	< 0.0010	< 0.0010	0.0025	< 0.0010	0.0156
4,4'-DDD	mg/kg dry wt	< 0.0010	< 0.0010	0.0020	0.0060	0.035
2,4'-DDE	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.0045
4,4'-DDE	mg/kg dry wt	0.0017	0.0020	0.0088	0.0122	0.114
゙゙ ヺ, ゙゙゙゙゙ [→] ひひし	mg/kg dry Wt	0.0017	0.0020	0.0000	0.0122	U. I 14

Sample Type: Sediment						
Sa	mple Name:	HSP SED 01 0.05 23-Jun-2023	HSP SED 01 0.3 23-Jun-2023	HSP SED 02 0.3 23-Jun-2023	HSP SED 02 0.05 23-Jun-2023	HSP SED 03 0.3 23-Jun-2023
L	ab Number:	3299078.363	3299078.364	3299078.365	3299078.366	3299078.367
Organochlorine Pesticides Trace	in Soil					
2,4'-DDT	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.0157
4,4'-DDT	mg/kg dry wt	0.0015	0.0014	< 0.0010	0.0048	0.041
Total DDT Isomers	mg/kg dry wt	< 0.006	< 0.006	0.014	0.024	0.22
Dieldrin	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Endosulfan I	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Endosulfan II	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Endosulfan sulphate	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Endrin	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Endrin aldehyde	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Endrin ketone	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Heptachlor	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Heptachlor epoxide	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Hexachlorobenzene	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Methoxychlor	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Organonitro&phosphorus Pesticio			- 0.0010	- 0.0010	- 0.0010	70.0010
		-	40.000	10.00	10.000	10010
Acetochlor	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Alachlor	mg/kg dry wt	< 0.006	< 0.006	< 0.010	< 0.006	< 0.006
Atrazine	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Atrazine-desethyl	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Atrazine-desisopropyl	mg/kg dry wt	< 0.03	< 0.018	< 0.04	< 0.018	< 0.02
Azaconazole	mg/kg dry wt	< 0.006	< 0.005	< 0.010	< 0.005	< 0.005
Azinphos-methyl	mg/kg dry wt	< 0.03	< 0.018	< 0.04	< 0.018	< 0.02
Benalaxyl	mg/kg dry wt	< 0.006	< 0.005	< 0.010	< 0.005	< 0.005
Bitertanol	mg/kg dry wt	< 0.03	< 0.018	< 0.04	< 0.018	< 0.02
Bromacil	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Bromopropylate	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Butachlor	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Captan	mg/kg dry wt	< 0.03	< 0.018	< 0.04	< 0.018	< 0.02
Carbaryl	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Carbofuran	mg/kg dry wt		<0.009	< 0.019	< 0.009	< 0.010
Chlorfluazuron	mg/kg dry wt		< 0.009	< 0.019	< 0.009	< 0.010
Chlorothalonil	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Chlorpyrifos	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Chlorpyrifos-methyl	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Chlortoluron	mg/kg dry wt		< 0.018	< 0.04	< 0.018	< 0.02
Cyanazine	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Cyfluthrin	mg/kg dry wt	< 0.013	< 0.011	< 0.03	< 0.011	< 0.013
Cyhalothrin	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Cypermethrin	mg/kg dry wt	< 0.03	< 0.03	< 0.05	< 0.03	< 0.03
Cyproconazole	mg/kg dry wt	< 0.03	< 0.018	< 0.04	< 0.018	< 0.02
Deltamethrin (including Tralomethrin)	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Diazinon	mg/kg dry wt	< 0.006	< 0.005	< 0.010	< 0.005	< 0.005
Dichlofluanid	mg/kg dry wt	< 0.03	< 0.018	< 0.04	< 0.018	< 0.02
Dichloran	mg/kg dry wt	< 0.03	< 0.03	< 0.05	< 0.03	< 0.03
Dichlorvos	mg/kg dry wt	< 0.011	< 0.010	< 0.019	< 0.010	< 0.010
Difenoconazole	mg/kg dry wt	< 0.015	< 0.013	< 0.03	< 0.013	< 0.015
Dimethoate	mg/kg dry wt	< 0.03	< 0.018	< 0.04	< 0.018	< 0.02
Diphenylamine	mg/kg dry wt	< 0.03	< 0.018	< 0.04	< 0.018	< 0.02
Diuron	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Fenpropimorph	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Fluazifop-butyl	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Fluometuron	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Flusilazole	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Fluvalinate	mg/kg dry wt	< 0.008	< 0.007	< 0.014	< 0.007	< 0.008

		110D 0ED 04 0 0E	LIOD OFF 04 0 0	LIOD OFF AG A A	110D 0ED 00 0 0E	110D 0ED 00 0 0
S	ample Name:	HSP SED 01 0.05 23-Jun-2023	HSP SED 01 0.3 23-Jun-2023	HSP SED 02 0.3 23-Jun-2023	HSP SED 02 0.05 23-Jun-2023	HSP SED 03 0.3 23-Jun-2023
	Lab Number:	3299078.363	3299078.364	3299078.365	3299078.366	3299078.367
Organonitro&phosphorus Pestic			3299070.304	3299070.303	3299070.300	3299010.301
Furalaxyl	mg/kg dry wt	< 0.006	< 0.005	< 0.010	< 0.005	< 0.005
Haloxyfop-methyl		< 0.000	< 0.009	< 0.010	< 0.009	< 0.003
	mg/kg dry wt					
Hexaconazole	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Hexazinone	mg/kg dry wt	< 0.006	< 0.005	< 0.010	< 0.005	< 0.005
IPBC (3-lodo-2-propynyl-n- butylcarbamate)	mg/kg dry wt	< 0.06	< 0.05	< 0.10	< 0.05	< 0.05
Kresoxim-methyl	mg/kg dry wt	< 0.006	< 0.005	< 0.010	< 0.005	< 0.005
Linuron	mg/kg dry wt	< 0.11	< 0.09	< 0.19	< 0.09	< 0.10
Malathion	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Metalaxyl	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Methamidophos	mg/kg dry wt	< 0.06	< 0.05	< 0.10	< 0.05	< 0.05
Metolachlor	mg/kg dry wt	< 0.006	< 0.006	< 0.010	< 0.006	< 0.006
Metribuzin	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Molinate	mg/kg dry wt	< 0.03	< 0.018	< 0.04	< 0.018	< 0.02
Myclobutanil	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Naled	mg/kg dry wt	< 0.06	< 0.05	< 0.10	< 0.05	< 0.05
Norflurazon	mg/kg dry wt	< 0.03	< 0.018	< 0.04	< 0.018	< 0.02
Oxadiazon	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Oxyfluorfen	mg/kg dry wt	< 0.006	< 0.005	< 0.010	< 0.005	< 0.005
Paclobutrazol	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Parathion-ethyl	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Parathion-methyl	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Penconazole	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Pendimethalin	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Permethrin	mg/kg dry wt	< 0.003	< 0.003	< 0.006	< 0.003	< 0.003
Pirimicarb	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Pirimiphos-methyl	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Prochloraz	mg/kg dry wt	< 0.06	< 0.05	< 0.10	< 0.009	< 0.010
				< 0.019		< 0.010
Procymidone	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	
Prometryn	mg/kg dry wt	< 0.006	< 0.005		< 0.005	< 0.005
Propachlor	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Propanil	mg/kg dry wt		< 0.03	< 0.04	< 0.03	< 0.03
Propazine	mg/kg dry wt	< 0.006	< 0.005	< 0.010	< 0.005	< 0.005
Propiconazole	mg/kg dry wt	< 0.008	< 0.007	< 0.014	< 0.007	< 0.008
Pyriproxyfen	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Quizalofop-ethyl	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Simazine	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Simetryn	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Sulfentrazone	mg/kg dry wt	< 0.06	< 0.05	< 0.10	< 0.05	< 0.05
TCMTB [2-(thiocyanomethylthio benzothiazole,Busan]) mg/kg dry wt	< 0.11	< 0.09	< 0.19	< 0.09	< 0.10
Tebuconazole	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Terbacil	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Terbumeton	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Terbuthylazine	mg/kg dry wt	< 0.006	< 0.005	< 0.010	< 0.005	< 0.005
Terbuthylazine-desethyl	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Terbutryn	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Thiabendazole	mg/kg dry wt	< 0.06	< 0.05	< 0.10	< 0.05	< 0.05
Thiobencarb	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Tolylfluanid	mg/kg dry wt	< 0.03	< 0.018	< 0.04	< 0.018	< 0.02
Triazophos	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Trifluralin	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Vinclozolin	mg/kg dry wt	< 0.011	< 0.009	< 0.019	< 0.009	< 0.010
Haloethers in SVOC Soil Sampl			-	-	-	-
5 . 5 5 6611 64111pi	,		< 0.5	< 1.0	< 0.5	

Sample Type: Sediment						
5	Sample Name:	HSP SED 01 0.05	HSP SED 01 0.3	HSP SED 02 0.3	HSP SED 02 0.05	HSP SED 03 0.3
		23-Jun-2023	23-Jun-2023	23-Jun-2023	23-Jun-2023	23-Jun-2023
	Lab Number:	3299078.363	3299078.364	3299078.365	3299078.366	3299078.367
Haloethers in SVOC Soil Samp						
Bis(2-chloroethyl)ether	mg/kg dry wt	< 0.6	< 0.5	< 1.0	< 0.5	< 0.5
Bis(2-chloroisopropyl)ether	mg/kg dry wt	< 0.6	< 0.5	< 1.0	< 0.5	< 0.5
4-Bromophenyl phenyl ether	mg/kg dry wt	< 0.6	< 0.5	< 1.0	< 0.5	< 0.5
4-Chlorophenyl phenyl ether	mg/kg dry wt	< 0.6	< 0.5	< 1.0	< 0.5	< 0.5
Nitrogen containing compound						
2,4-Dinitrotoluene	mg/kg dry wt	< 6	< 5	< 10	< 5	< 5
2,6-Dinitrotoluene	mg/kg dry wt	< 1.1	< 1.0	< 1.9	< 1.0	< 1.0
Nitrobenzene	mg/kg dry wt	< 0.6	< 0.5	< 1.0	< 0.5	< 0.5
N-Nitrosodi-n-propylamine	mg/kg dry wt	< 1.1	< 0.9	< 1.9	< 0.9	< 1.0
N-Nitrosodiphenylamine + Diphenylamine	mg/kg dry wt	< 1.1	< 0.9	< 1.9	< 0.9	< 1.0
Organochlorine Pesticides in S	VOC Soil Sample	s by GC-MS			•	
Aldrin	mg/kg dry wt	< 0.6	< 0.5	< 1.0	< 0.5	< 0.5
alpha-BHC	mg/kg dry wt	< 0.6	< 0.5	< 1.0	< 0.5	< 0.5
beta-BHC	mg/kg dry wt	< 0.6	< 0.5	< 1.0	< 0.5	< 0.5
delta-BHC	mg/kg dry wt	< 0.6	< 0.5	< 1.0	< 0.5	< 0.5
gamma-BHC (Lindane)	mg/kg dry wt	< 0.6	< 0.5	< 1.0	< 0.5	< 0.5
4,4'-DDD	mg/kg dry wt	< 0.6	< 0.5	<1.0	< 0.5	< 0.5
4,4'-DDE	mg/kg dry wt	< 0.6	< 0.5	< 1.0	< 0.5	< 0.5
4,4'-DDT	mg/kg dry wt	< 1.1	< 1.0	< 1.9	< 1.0	< 1.0
Dieldrin	mg/kg dry wt	< 0.6	< 0.5	< 1.0	< 0.5	< 0.5
Endosulfan I	mg/kg dry wt	< 1.1	< 1.0	< 1.9	< 1.0	< 1.0
Endosulfan II	mg/kg dry wt	< 2	<2	< 2	< 2	< 2
Endosulfan sulphate	mg/kg dry wt	< 1.1	< 1.0	< 1.9	< 1.0	< 1.0
Endrin	mg/kg dry wt	< 1.1	< 0.9	< 1.9	< 0.9	< 1.0
Endrin ketone	mg/kg dry wt	< 1.1	< 1.0	< 1.9	< 1.0	< 1.0
Heptachlor	mg/kg dry wt	< 0.6	< 0.5	< 1.0	< 0.5	< 0.5
Heptachlor epoxide	mg/kg dry wt	< 0.6	< 0.5	< 1.0	< 0.5	< 0.5
Hexachlorobenzene	mg/kg dry wt	< 0.6	< 0.5	< 1.0	< 0.5	< 0.5
Polycyclic Aromatic Hydrocarbo						
Acenaphthene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo[a]anthracene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.6	< 0.5	< 1.0	< 0.5	< 0.5
Benzo[b]fluoranthene + Benzo[j fluoranthene	j] mg/kg dry wt	< 0.6	< 0.5	< 1.0	< 0.5	< 0.5
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.6	< 0.5	< 1.0	< 0.5	< 0.5
Benzo[k]fluoranthene	mg/kg dry wt	< 0.6	< 0.5	< 1.0	< 0.5	< 0.5
1&2-Chloronaphthalene	mg/kg dry wt	< 0.5	< 0.5	< 0.7	< 0.5	< 0.5
Chrysene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.6	< 0.5	< 1.0	< 0.5	< 0.5
Fluoranthene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.6	< 0.5	< 1.0	< 0.5	< 0.5
2-Methylnaphthalene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene Ponzelelnyrene Peteney	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES		< 1.3	< 1.3	< 2.3	< 1.3	< 1.3
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	< 1.3	< 1.3	< 2.3	< 1.3	< 1.3
Phenols in SVOC Soil Samples						
4-Chloro-3-methylphenol	mg/kg dry wt	< 5	< 5	< 5	< 5	< 5
2-Chlorophenol	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Lab No: 3299078-SPv6			Hill Lahe			Page 108 of 136

	mple Name: Lab Number: by GC-MS mg/kg dry wt	HSP SED 01 0.05 23-Jun-2023 3299078.363	HSP SED 01 0.3 23-Jun-2023 3299078.364	23-Jun-2023	HSP SED 02 0.05 23-Jun-2023	HSP SED 03 0.3 23-Jun-2023
Phenols in SVOC Soil Samples to 2,4-Dichlorophenol 2,4-Dimethylphenol 3 & 4-Methylphenol (m- + p-cresol) 2-Methylphenol (o-cresol)	by GC-MS				23-Jun-2023	23-Jun-2023
Phenols in SVOC Soil Samples to 2,4-Dichlorophenol 2,4-Dimethylphenol 3 & 4-Methylphenol (m- + p-cresol) 2-Methylphenol (o-cresol)	by GC-MS	3299078.363	3299078.364			
2,4-Dichlorophenol 2,4-Dimethylphenol 3 & 4-Methylphenol (m- + p-cresol) 2-Methylphenol (o-cresol)	•			3299078.365	3299078.366	3299078.367
2,4-Dimethylphenol 3 & 4-Methylphenol (m- + p- cresol) 2-Methylphenol (o-cresol)	mg/kg dry wt					
3 & 4-Methylphenol (m- + p- cresol) 2-Methylphenol (o-cresol)	" ' '	< 1.1	< 1.0	< 1.9	< 1.0	< 1.0
cresol) 2-Methylphenol (o-cresol)	mg/kg dry wt	< 3	< 3	< 3	< 3	< 3
71 (/	mg/kg dry wt	< 3	< 3	< 3	< 3	< 3
2-Nitrophenol	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
'	mg/kg dry wt	< 6	< 5	< 10	< 5	< 5
Pentachlorophenol (PCP)	mg/kg dry wt	< 30	< 30	< 30	< 30	< 30
Phenol	mg/kg dry wt	< 1.1	< 1.0	< 1.9	< 1.0	< 1.0
2,4,5-Trichlorophenol	mg/kg dry wt	< 6	< 5	< 10	< 5	< 5
2,4,6-Trichlorophenol	mg/kg dry wt	< 6	< 5	< 10	< 5	< 5
Plasticisers in SVOC Soil Sample	es by GC-MS					
Bis(2-ethylhexyl)phthalate	mg/kg dry wt	< 5	< 5	< 5	< 5	< 5
Butylbenzylphthalate	mg/kg dry wt	< 1.1	< 1.0	< 1.9	< 1.0	< 1.0
Di(2-ethylhexyl)adipate	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Diethylphthalate	mg/kg dry wt	< 1.1	< 1.0	< 1.9	< 1.0	< 1.0
Dimethylphthalate	mg/kg dry wt	< 1.1	< 1.0	< 1.9	< 1.0	< 1.0
Di-n-butylphthalate	mg/kg dry wt	< 1.1	< 1.0	< 1.9	< 1.0	< 1.0
Di-n-octylphthalate	mg/kg dry wt	< 1.1	< 1.0	< 1.9	≤ 1.0	< 1.0
Other Halogenated compounds in	n SVOC Soil Sai	mples by GC-MS		5 /		
1,2-Dichlorobenzene	mg/kg dry wt	< 1.1	< 0.9	< 1.9	< 0.9	< 1.0
1,3-Dichlorobenzene	mg/kg dry wt	< 1.1	< 0.9	< 1.9	< 0.9	< 1.0
1,4-Dichlorobenzene	mg/kg dry wt	< 1.1	< 0.9	< 1.9	< 0.9	< 1.0
Hexachlorobutadiene	mg/kg dry wt	< 1.1	< 0.9	< 1.9	< 0.9	< 1.0
Hexachloroethane	mg/kg dry wt	< 1.1	< 0.9	< 1.9	< 0.9	< 1.0
1,2,4-Trichlorobenzene	mg/kg dry wt	< 0.6	< 0.5	< 1.0	< 0.5	< 0.5
Other compounds in SVOC Soil	Samples by GC-	-MS	`			
Benzyl alcohol	mg/kg dry wt	< 10	< 10	< 10	< 10	< 10
Carbazole	mg/kg dry wt	< 0.6	< 0.5	< 1.0	< 0.5	< 0.5
Dibenzofuran	mg/kg dry wt	< 0.6	< 0.5	< 1.0	< 0.5	< 0.5
Isophorone	mg/kg dry wt	< 0.6	< 0.5	< 1.0	< 0.5	< 0.5
Total Petroleum Hydrocarbons in	Solids					
C7 - C9	mg/kg dry wt	< 30	< 30	< 50	< 30	< 30
C10 - C14	mg/kg dry wt	< 20	< 20	< 40	< 20	< 30
C15 - C36	mg/kg dry wt	< 40	< 40	< 80	< 40	47
Total hydrocarbons (C7 - C36)	mg/kg dry wt	90	< 90	< 170	< 90	< 90
BTEX in VOC Soils by Headspace	ce GC-MS					
Benzene	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
Ethylbenzene	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
Toluene	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
m&p-Xylene	mg/kg dry wt	< 0.11	< 0.06	< 0.3	< 0.06	< 0.07
o-Xylene	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
Halogenated Aliphatics in VOC	Soils by Headspa	ace GC-MS				
Bromomethane (Methyl Bromide)	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
Carbon tetrachloride	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
Chloroethane	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
Chloromethane	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
1,2-Dibromo-3-chloropropane	mg/kg dry wt	< 0.11	< 0.06	< 0.3	< 0.06	< 0.07
1,2-Dibromoethane (ethylene dibromide, EDB)	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
Dibromomethane	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
1,3-Dichloropropane	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
Dichlorodifluoromethane	mg/kg dry wt	< 0.11	< 0.06	< 0.3	< 0.06	< 0.07
1,1-Dichloroethane	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
1,2-Dichloroethane			< 0.03	< 0.11	< 0.03	< 0.04

Sample Type: Sediment						
Sar	nple Name:	HSP SED 01 0.05 23-Jun-2023	HSP SED 01 0.3 23-Jun-2023	HSP SED 02 0.3 23-Jun-2023	HSP SED 02 0.05 23-Jun-2023	HSP SED 03 0.3 23-Jun-2023
Li	ab Number:	3299078.363	3299078.364	3299078.365	3299078.366	3299078.367
Halogenated Aliphatics in VOC S	oils by Headsp	ace GC-MS			,	
cis-1,2-Dichloroethene	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
trans-1,2-Dichloroethene	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
Dichloromethane (methylene chloride)	mg/kg dry wt	< 1.1	< 0.6	< 3	< 0.6	< 0.7
1,2-Dichloropropane	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
1,1-Dichloropropene	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
cis-1,3-Dichloropropene	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
trans-1,3-Dichloropropene	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
Hexachlorobutadiene	mg/kg dry wt	< 0.11	< 0.06	< 0.3	< 0.06	< 0.07
1,1,1,2-Tetrachloroethane	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
1,1,2,2-Tetrachloroethane	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
Tetrachloroethene (tetrachloroethylene)	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
1,1,1-Trichloroethane	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
1,1,2-Trichloroethane	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
Trichloroethene (trichloroethylene)	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
Trichlorofluoromethane	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
1,2,3-Trichloropropane	mg/kg dry wt	< 0.11	< 0.06	< 0.3	< 0.06	< 0.07
1,1,2-Trichlorotrifluoroethane (Freon 113)	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
Vinyl chloride	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
Halogenated Aromatics in VOC So	oils by Headsp	ace GC-MS*	10	N		
Bromobenzene	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
1,3-Dichlorobenzene	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
4-Chlorotoluene	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
Chlorobenzene (monochlorobenzene)	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
1,2-Dichlorobenzene	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
1,2-Dichloropropane	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
1,4-Dichlorobenzene*	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
2-Chlorotoluene	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
1,2,3-Trichlorobenzene	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
1,2,4-Trichlorobenzene	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
1,3,5-Trichlorobenzene	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
Monoaromatic Hydrocarbons in V	OC Soils by H	eadspace GC-MS				
n-Butylbenzene	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
tert-Butylbenzene	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
Isopropylbenzene (Cumene)	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
4-Isopropyltoluene (p-Cymene)	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
n-Propylbenzene	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
sec-Butylbenzene	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
Styrene	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
1,2,4-Trimethylbenzene	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
1,3,5-Trimethylbenzene	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
Ketones in VOC Soils by Headspa						
2-Butanone (MEK)	mg/kg dry wt	< 11	< 6	< 30	< 6	< 7
4-Methylpentan-2-one (MIBK)	mg/kg dry wt	< 3	< 1.1	< 5	< 1.1	< 1.3
Acetone	mg/kg dry wt	< 11	< 6	< 30	< 6	< 7
Methyl tert-butylether (MTBE)	mg/kg dry wt	< 0.06	< 0.03	< 0.11	< 0.03	< 0.04
ivietry tert-butyletrier (WTDE)	ing/kg dry wt				-	
Trihalomethanes in VOC Soils by						
			< 0.03	< 0.11	< 0.03	< 0.04
Trihalomethanes in VOC Soils by	Headspace G	C-MS	< 0.03 < 0.06	< 0.11 < 0.3	< 0.03 < 0.06	< 0.04 < 0.07
Trihalomethanes in VOC Soils by Bromodichloromethane	Headspace G	C-MS < 0.06				

Dry Matter	Sample Type: Sediment						
Lab Number		Sample Name:					
Context Cont							
Carbon disulphishe mg/kg dry wt			3299078.363	3299078.364	3299078.365	3299078.366	3299078.367
Naphthalere Mighg dryw 4 0.06 4 0.03 4 0.11 4 0.03 4 0.04							
Sample Name: ISSP SED 03 0.05 ISSP SED 04 0.05 ISSP SED 05 0.0	•						
Lab Number: 23-Jun-2023							
Individual Teals	\$	Sample Name:					
Dry Matter g100g as road 54 31 27 43 54 1 1 27 1 43 54 1 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2		Lab Number:	3299078.368	3299078.369	3299078.370	3299078.371	3299078.372
Total Recoverable Beryllium mg/kg dry wt 0.9 1.0 1.0 1.3 1.0 1.0 1.3 1.0 1.0 1.0 1.3 1.0 1.0 1.0 1.3 1.0 1.0 1.0 1.3 1.0 1.0 1.0 1.3 1.0 1.0 1.0 1.3 1.0 1.0 1.0 1.3 1.0 1.0 1.0 1.0 1.3 1.0 1.0 1.0 1.0 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Individual Tests				,		
Total Recoverable Boron	Dry Matter	g/100g as rcvd	54	31	27	43	54
pH PH Units S.4 S.4 S.7 S.5 S.6 S.7 D.17	Total Recoverable Beryllium	mg/kg dry wt	0.9	1.0	1.0	1.3	1.0
Total Organic Carbon* g/100g dry w	Total Recoverable Boron	mg/kg dry wt	< 20	< 20	< 20	< 20	< 20
Heavy metals, screen As, Cd, Cr, Cu, Ni, Pb, Zn, Hg	pH	pH Units	5.4	5.4	5.7	6.1	6.0
Total Recoverable Arsenic mg/kg dry wt	Total Organic Carbon*	g/100g dry wt	4.0	7.2	5.5	0.67	0.17
Total Recoverable Cadmium mg/kg dry wt	Heavy metals, screen As,Cd,C	cr,Cu,Ni,Pb,Zn,Hg				•	
Total Recoverable Chromium mg/kg dry wt 77 67 54 15 17 7 1	Total Recoverable Arsenic	mg/kg dry wt	6	6	5	6	2
Total Recoverable Chromium mg/kg dry wt 77 67 54 15 17 7 1	Total Recoverable Cadmium		-	0.44			< 0.10
Total Recoverable Copper mg/kg dry wt 70tal Recoverable Lead mg/kg dry wt 33 63 42 13.0 10.7 Total Recoverable Lead mg/kg dry wt 33 63 42 13.0 10.7 Total Recoverable Mercury mg/kg dry wt 4 0.10 0.40 0.010 0.40 0.10 0.10 Total Recoverable Mickel mg/kg dry wt 5 6 7 4 5 Total Recoverable Mickel mg/kg dry wt 5 6 7 4 5 Total Recoverable Zinc mg/kg dry wt 15 260 250 47 51 Actif Horbicides Screen in Soil by LCMSMS Actifluorien mg/kg dry wt 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 Bentazone mg/kg dry wt 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Total Recoverable Chromium	0 0 7					
Total Recoverable Lead mg/kg dry wt 70tal Recoverable Mercury mg/kg dry wt 70tal Recoverable Mercury mg/kg dry wt 70tal Recoverable Nickel mg/kg dry wt 5 6 7 4 4 5 Total Recoverable Nickel mg/kg dry wt 125 260 250 47 51 Acid Heritoides Screen in Soil by LCMSMS Acid Heritoides Acid H					-	15	
Total Recoverable Mercury mg/kg dry wt 70.10	Total Recoverable Lead	- ,					
Total Recoverable Nickel mg/kg dry wt 125 260 250 47 51 Total Recoverable Zinc mg/kg dry wt 125 260 250 47 51 Acif Herbicides Screen in Soll by LCMSMS	Total Recoverable Mercury						
Total Recoverable Zinc mg/kg dry wt Acid Herbicides Screen in Soil by LCMSMS Acid Herbicides Screen in Soil by Missing Acid Herbicides Screen in Soil by Missing Acid Herbicides Screen in Soil by Missing Acid Herbicides Screen in Soil Herbicides Trace in Soil Herbicides Trace in Soil Herbicides Trace in Soil Herbicides Trace in Soil Herbicides Trace in Soil Herbicides Trace in Soil Herbicides Trace in Soil Herbicides Trace in Soil Herbicides Trace in Soil Herbicides Trace in Soil Herbicides Trace in Soil Herbicides Trace in Soil Herbicides Trace in Soil Herbicides	Total Recoverable Nickel						
Acid Herbicides Screen in Soil by LCMSMS Acidluctren mg/kg dry wt							
Acifluorfen mg/kg dry w			120	200	200		0.
Bentazone mg/kg dry wt			< 0.2	< 0.2	<02	<02	< 0.2
Bromoxynil							
Clopyralid mg/kg dry wt							
Dicamba	•						
2.4-Dichlorophenoxyacetic acid (24D) mg/kg dry wt (24D) < 0.2			•				
(24D) 2.4-Dichlorophenoxybutyric acid (24DB) Dichlorprop mg/kg dry wt (20.2		0 0 ,					
Dichlorprop mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	(24D)			• ()			
Fluazifop mg/kg dry wt	2,4-Dichlorophenoxybutyric aci (24DB)						
Fluroxypyr mg/kg dry wt	Dichlorprop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Haloxyfop mg/kg dry wt 20.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 <	Fluazifop	mg/kg dry wt		< 0.2	< 0.2	< 0.2	< 0.2
2-methyl-4-chlorophenoxyaceţic acid (MCPA) 2-methyl-4-chlorophenoxyaceţic acid (MCPA) 2-methyl-4-chlorophenoxybutanoic acid (MCPB) Mecoprop (MCPP; 2-methyl-4-chlorophenoxypropionic acid) Mecoprop (MCPP; 2-methyl-4-chlorophenoxypropionic acid) Oryzalin mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 clohorophenoxypropionic acid) Oryzalin mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 Picloram mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 clohorophenoxypropionic acid) Oryzalin mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 clohorophenoxypropionic acid) Oryzalin mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 <	Fluroxypyr	mg/kg dry wt		< 0.2	< 0.2	< 0.2	< 0.2
acid (MCPA) 2-methyl-4-	Haloxyfop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
chlorophenoxybutanoic acid (MCPB) Mecoprop (MCPP; 2-methyl-4-chlorophenoxypropionic acid) Oryzalin mg/kg dry wt < 0.4 < 2 < 0.4 < 0.4 < 0.4 < 0.4 Pentachlorophenol (PCP) mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 Picloram mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 Quizalofop mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 Quizalofop mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 Quizalofop mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 Quizalofop mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 Quizalofop mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 Quizalofop mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 Quizalofop mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 Quizalofop mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 Quizalofop mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 Quizalofop mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 Quizalofop mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 Quizalofop mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 Quizalofop mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 Quizalofop mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2-methyl-4-chlorophenoxyaceti acid (MCPA)	c mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Mecoprop (MCPP; 2-methyl-4-chlorophenoxypropionic acid) mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2-methyl-4- chlorophenoxybutanoic acid	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Oryzalin mg/kg dry wt < 0.4 < 2 < 0.4 < 0.4 < 0.4 Pentachlorophenol (PCP) mg/kg dry wt < 0.2	Mecoprop (MCPP; 2-methyl-4-	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Pentachlorophenol (PCP)	Oryzalin	mg/kg dry wt	< 0.4	< 2	< 0.4	< 0.4	< 0.4
Picloram mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	Pentachlorophenol (PCP)						
Quizalofop mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	Picloram						
2,3,4,6-Tetrachlorophenol (TCP) mg/kg dry wt	Quizalofop						
2,4,5-trichlorophenoxypropionic acid (245TP,Fenoprop, Silvex) mg/kg dry wt acid (245TP,Fenoprop, Silvex) < 0.2							
2,4,5-Trichlorophenoxyacetic acid (245T) mg/kg dry wt acid (245T) < 0.2	2,4,5-trichlorophenoxypropionic	mg/kg dry wt					
Triclopyr mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010	2,4,5-Trichlorophenoxyacetic acid (245T)		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Organochlorine Pesticides Trace in Soil Aldrin mg/kg dry wt < 0.0010 < 0.0016 < 0.0010 < 0.0010 < 0.0010 alpha-BHC mg/kg dry wt < 0.0010 < 0.0016 < 0.0010 < 0.0010 < 0.0010 beta-BHC mg/kg dry wt < 0.0010 < 0.0016 < 0.0010 < 0.0010 < 0.0010 delta-BHC mg/kg dry wt < 0.0010 < 0.0016 < 0.0010 < 0.0010 < 0.0010 gamma-BHC (Lindane) mg/kg dry wt < 0.0010 < 0.0016 < 0.0010 < 0.0010 < 0.0010	Triclopyr	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Aldrin mg/kg dry wt < 0.0010 < 0.0016 < 0.0010 < 0.0010 < 0.0010 alpha-BHC mg/kg dry wt < 0.0010 < 0.0016 < 0.0010 < 0.0010 < 0.0010 < 0.0010 beta-BHC mg/kg dry wt < 0.0010 < 0.0016 < 0.0010 < 0.0010 < 0.0010 < 0.0010 delta-BHC mg/kg dry wt < 0.0010 < 0.0016 < 0.0010 < 0.0010 < 0.0010 < 0.0010 alpha-BHC (Lindane) mg/kg dry wt < 0.0010 < 0.0016 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010			1				
alpha-BHC mg/kg dry wt < 0.0010 < 0.0016 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010			< 0.0010	< 0.0016	< 0.0010	< 0.0010	< 0.0010
beta-BHC mg/kg dry wt < 0.0010 < 0.0016 < 0.0010 < 0.0010 < 0.0010 delta-BHC mg/kg dry wt < 0.0010 < 0.0016 < 0.0010 < 0.0010 < 0.0010 gamma-BHC (Lindane) mg/kg dry wt < 0.0010 < 0.0016 < 0.0010 < 0.0010 < 0.0010							
delta-BHC mg/kg dry wt < 0.0010 < 0.0016 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010	·						
gamma-BHC (Lindane) mg/kg dry wt < 0.0010 < 0.0016 < 0.0010 < 0.0010 < 0.0010							
, , , , , , , , , , , , , , , , , , , ,							
	, ,				- 0.0010		

Sample Type: Sediment						
Sai	mple Name:	HSP SED 03 0.05 23-Jun-2023	HSP SED 04 0.3 23-Jun-2023	HSP SED 04 0.05 23-Jun-2023	HSP SED 05 0.3 23-Jun-2023	HSP SED 05 0.05 23-Jun-2023
L	ab Number:	3299078.368	3299078.369	3299078.370	3299078.371	3299078.372
Organochlorine Pesticides Trace						
cis-Chlordane	mg/kg dry wt	< 0.0010	< 0.0016	< 0.0010	< 0.0010	< 0.0010
trans-Chlordane	mg/kg dry wt	< 0.0010	< 0.0016	< 0.0010	< 0.0010	< 0.0010
2,4'-DDD	mg/kg dry wt	0.034	0.0065	0.0036	< 0.0010	< 0.0010
4.4'-DDD	mg/kg dry wt	0.076	0.0099	0.0092	< 0.0010	< 0.0010
2.4'-DDE	mg/kg dry wt	0.0026	< 0.0016	< 0.0010	< 0.0010	< 0.0010
4,4'-DDE	mg/kg dry wt	0.057	0.0111	0.0092	< 0.0010	< 0.0010
2,4'-DDT	mg/kg dry wt	0.049	< 0.0016	< 0.0010	< 0.0010	< 0.0010
4,4'-DDT	mg/kg dry wt	0.21	0.0031	0.0100	< 0.0010	< 0.0010
Total DDT Isomers	mg/kg dry wt	0.43	0.031	0.033	< 0.006	< 0.006
Dieldrin	mg/kg dry wt	< 0.0010	< 0.0016	< 0.0010	< 0.0010	< 0.0010
Endosulfan I	mg/kg dry wt	< 0.0010	< 0.0016	< 0.0010	< 0.0010	< 0.0010
Endosulfan II	mg/kg dry wt	< 0.0010	< 0.0016	< 0.0010	< 0.0010 ≤ 0.0010	< 0.0010
Endosulfan sulphate	mg/kg dry wt	< 0.0010	< 0.0016	< 0.0010	< 0.0010	< 0.0010
Endrin	mg/kg dry wt	< 0.0010	< 0.0016	< 0.0010	< 0.0010	< 0.0010
Endrin aldehyde	mg/kg dry wt	< 0.0010	< 0.0016	< 0.0010	< 0.0010	< 0.0010
Endrin aldenyde Endrin ketone		< 0.0010		< 0.0010 < 0.0010	< 0.0010	< 0.0010
	mg/kg dry wt	< 0.0010 < 0.0010	< 0.0016 < 0.0016	< 0.0010	< 0.0010	< 0.0010 < 0.0010
Heptachlor enevide	0 0 ,	< 0.0010		< 0.0010		
Heptachlor epoxide	mg/kg dry wt		< 0.0016	< 0.0010	< 0.0010 < 0.0010	< 0.0010
Hexachlorobenzene	mg/kg dry wt	< 0.0010	< 0.0016	·		< 0.0010
Methoxychlor	mg/kg dry wt	< 0.0010	< 0.0016	< 0.0010	< 0.0010	< 0.0010
Organonitro&phosphorus Pesticio		-				
Acetochlor	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Alachlor	mg/kg dry wt	< 0.006	< 0.10	< 0.11	< 0.007	< 0.006
Atrazine	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Atrazine-desethyl	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Atrazine-desisopropyl	mg/kg dry wt	< 0.03	< 0.4	< 0.5	< 0.03	< 0.03
Azaconazole	mg/kg dry wt	< 0.006	< 0.10	< 0.11	< 0.007	< 0.006
Azinphos-methyl	mg/kg dry wt	< 0.03	♦ < 0.4	< 0.5	< 0.03	< 0.03
Benalaxyl	mg/kg dry wt	< 0.006	< 0.10	< 0.11	< 0.007	< 0.006
Bitertanol	mg/kg dry wt	< 0.03	< 0.4	< 0.5	< 0.03	< 0.03
Bromacil	mg/kg dry wt		< 0.19	< 0.3	< 0.014	< 0.011
Bromopropylate	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Butachlor	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Captan	mg/kg dry wt	< 0.03	< 0.4	< 0.5	< 0.03	< 0.03
Carbaryl	mg/kg dry wt		< 0.19	< 0.3	< 0.014	< 0.011
Carbofuran	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Chlorfluazuron	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Chlorothalonil	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Chlorpyrifos	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Chlorpyrifos-methyl	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Chlortoluron	mg/kg dry wt	< 0.03	< 0.4	< 0.5	< 0.03	< 0.03
Cyanazine	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Cyfluthrin	mg/kg dry wt	< 0.014	< 0.3	< 0.3	< 0.017	< 0.014
Cyhalothrin	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Cypermethrin	mg/kg dry wt	< 0.03	< 0.5	< 0.6	< 0.04	< 0.03
Cyproconazole	mg/kg dry wt	< 0.03	< 0.4	< 0.5	< 0.03	< 0.03
Deltamethrin (including Tralomethrin)	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Diazinon	mg/kg dry wt	< 0.006	< 0.10	< 0.11	< 0.007	< 0.006
Dichlofluanid	mg/kg dry wt	< 0.03	< 0.19	< 0.3	< 0.014	< 0.011
Dichloran	mg/kg dry wt	< 0.03	< 0.5	< 0.6	< 0.04	< 0.03
Dichlorvos	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Difenoconazole	mg/kg dry wt	< 0.016	< 0.3	< 0.4	< 0.02	< 0.016
Dimethoate	mg/kg dry wt	< 0.03	< 0.4	< 0.5	< 0.03	< 0.03
Diphenylamine	mg/kg dry wt	< 0.03	< 0.4	< 0.5	< 0.03	< 0.03

Sample Type: Sediment						
Sa	mple Name:	HSP SED 03 0.05 23-Jun-2023	HSP SED 04 0.3 23-Jun-2023	HSP SED 04 0.05 23-Jun-2023	HSP SED 05 0.3 23-Jun-2023	HSP SED 05 0.05 23-Jun-2023
L	ab Number:	3299078.368	3299078.369	3299078.370	3299078.371	3299078.372
Organonitro&phosphorus Pesticio	des Trace in MF	R Soil by GCMS				
Diuron	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Fenpropimorph	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Fluazifop-butyl	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Fluometuron	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Flusilazole	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Fluvalinate	mg/kg dry wt	< 0.008	< 0.14	< 0.16	< 0.010	< 0.008
Furalaxyl	mg/kg dry wt	< 0.006	< 0.10	< 0.11	< 0.007	< 0.006
Haloxyfop-methyl	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Hexaconazole	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Hexazinone	mg/kg dry wt	< 0.006	< 0.10	< 0.11	< 0.007	< 0.006
IPBC (3-lodo-2-propynyl-n- butylcarbamate)	mg/kg dry wt	< 0.06	< 1.0	< 1.1	< 0.07	< 0.06
Kresoxim-methyl	mg/kg dry wt	< 0.006	< 0.10	< 0.11	< 0.007	< 0.006
Linuron	mg/kg dry wt	< 0.11	< 0.19	< 0.3	< 0.014	< 0.011
Malathion	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Metalaxyl	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Methamidophos	mg/kg dry wt	< 0.06	< 1.0	< 1.1	< 0.07	< 0.06
Metolachlor	mg/kg dry wt	< 0.006	< 0.10	< 0.11	< 0.007	< 0.006
Metribuzin	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Molinate	mg/kg dry wt	< 0.03	< 0.4	< 0.5	< 0.03	< 0.03
Myclobutanil	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Naled	mg/kg dry wt	< 0.06	< 1.0	< 1.1	< 0.07	< 0.06
Norflurazon	mg/kg dry wt	< 0.03	< 0.4	< 0.5	< 0.03	< 0.03
Oxadiazon	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Oxyfluorfen	mg/kg dry wt	< 0.006	< 0.10	< 0.11	< 0.007	< 0.006
Paclobutrazol	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Parathion-ethyl	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Parathion-methyl	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Penconazole	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Pendimethalin	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Permethrin	mg/kg dry wt	< 0.004	< 0.06	< 0.07	< 0.004	< 0.004
Pirimicarb	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Pirimiphos-methyl	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Prochloraz	mg/kg dry wt	< 0.06	< 1.0	< 1.1	< 0.07	< 0.06
Procymidone	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Prometryn	mg/kg dry wt	< 0.006	< 0.10	< 0.11	< 0.007	< 0.006
Propachlor	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Propanil	mg/kg dry wt	< 0.03	< 0.4	< 0.5	< 0.03	< 0.03
Propazine	mg/kg dry wt	< 0.006	< 0.10	< 0.11	< 0.007	< 0.006
Propiconazole	mg/kg dry wt	< 0.008	< 0.14	< 0.16	< 0.010	< 0.008
Pyriproxyfen	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Quizalofop-ethyl	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Simazine	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Simetryn	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Sulfentrazone	mg/kg dry wt	< 0.06	< 1.0	< 1.1	< 0.07	< 0.06
TCMTB [2-(thiocyanomethylthio) benzothiazole,Busan]	mg/kg dry wt	< 0.11	< 0.4	< 0.5	< 0.03	< 0.03
Tebuconazole	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Terbacil	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Terbumeton	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Terbuthylazine	mg/kg dry wt	< 0.006	< 0.10	< 0.11	< 0.007	< 0.006
Terbuthylazine-desethyl	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Terbutryn	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Thiabendazole	mg/kg dry wt	< 0.06	< 1.0	< 1.1	< 0.07	< 0.06
Thiobencarb	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011

Sample Type: Sediment						
Sar	mple Name:			HSP SED 04 0.05		
		23-Jun-2023	23-Jun-2023	23-Jun-2023	23-Jun-2023	23-Jun-2023
	ab Number:	3299078.368	3299078.369	3299078.370	3299078.371	3299078.372
Organonitro&phosphorus Pesticid						
Tolylfluanid	mg/kg dry wt	< 0.03	< 0.10	< 0.11	< 0.007	< 0.006
Triazophos	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Trifluralin	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Vinclozolin	mg/kg dry wt	< 0.011	< 0.19	< 0.3	< 0.014	< 0.011
Haloethers in SVOC Soil Samples	s by GC-MS					
Bis(2-chloroethoxy) methane	mg/kg dry wt	< 0.6	< 1.0	< 1.1	< 0.7	< 0.6
Bis(2-chloroethyl)ether	mg/kg dry wt	< 0.6	< 1.0	< 1.1	< 0.7	< 0.6
Bis(2-chloroisopropyl)ether	mg/kg dry wt	< 0.6	< 1.0	< 1.1	< 0.7	< 0.6
4-Bromophenyl phenyl ether	mg/kg dry wt	< 0.6	< 1.0	< 1.1	< 0.7	< 0.6
4-Chlorophenyl phenyl ether	mg/kg dry wt	< 0.6	< 1.0	< 1.1	< 0.7	< 0.6
Nitrogen containing compounds i	n SVOC Soil S	amples by GC-MS				
2,4-Dinitrotoluene	mg/kg dry wt	< 6	< 10	< 11	1.4	< 1.1
2,6-Dinitrotoluene	mg/kg dry wt	< 1.1	< 2	< 3	< 1.4	< 1.1
Nitrobenzene	mg/kg dry wt	< 0.6	< 1.0	< 1.1	< 0.7	< 0.6
N-Nitrosodi-n-propylamine	mg/kg dry wt	< 1.1	< 2	< 3	< 1.4	< 1.1
N-Nitrosodiphenylamine +	mg/kg dry wt	< 1.1	< 2	< 3	< 1.4	< 1.1
Diphenylamine					(V)	
Organochlorine Pesticides in SVC	OC Soil Sample	s by GC-MS		~0	101	
Aldrin	mg/kg dry wt	< 0.6	< 1.0	< 1.1	< 0.7	< 0.6
alpha-BHC	mg/kg dry wt	< 0.6	< 1.0	< 1.1	< 0.7	< 0.6
beta-BHC	mg/kg dry wt	< 0.6	< 1.0	< 1.1	< 0.7	< 0.6
delta-BHC	mg/kg dry wt	< 0.6	< 1.0	<1.1	< 0.7	< 0.6
gamma-BHC (Lindane)	mg/kg dry wt	< 0.6	< 1.0	<1.1	< 0.7	< 0.6
4,4'-DDD	mg/kg dry wt	< 0.6	< 1.0	<1.1	< 0.7	< 0.6
4,4'-DDE	mg/kg dry wt	< 0.6	< 1.0	< 1.1	< 0.7	< 0.6
4,4'-DDT	mg/kg dry wt	< 1.1	< 2	< 3	< 1.4	< 1.1
Dieldrin	mg/kg dry wt	< 0.6	< 1.0	< 1.1	< 0.7	< 0.6
Endosulfan I	mg/kg dry wt	<1.1	< 2	< 3	< 1.4	< 1.1
Endosulfan II	mg/kg dry wt	< 2	< 2	< 3	< 2	< 2
Endosulfan sulphate	mg/kg dry wt	< 1.1	< 2	< 3	< 1.4	< 1.1
Endrin	mg/kg dry wt	< 1.1	< 2	< 3	< 1.4	< 1.1
Endrin ketone	mg/kg dry wt	< 1.1	< 2	< 3	< 1.4	< 1.1
Heptachlor	mg/kg dry wt	< 0.6	< 1.0	< 1.1	< 0.7	< 0.6
Heptachlor epoxide	mg/kg dry wt	< 0.6	< 1.0	< 1.1	< 0.7	< 0.6
Hexachlorobenzene	mg/kg dry wt	0.6	< 1.0	< 1.1	< 0.7	< 0.6
Polycyclic Aromatic Hydrocarbons				\$ 1.1	- 0.1	10.0
				406	- 0 F	- O F
Acenaphthylana	mg/kg dry wt	< 0.5 < 0.5	< 0.5 < 0.5	< 0.6 < 0.6	< 0.5 < 0.5	< 0.5 < 0.5
Anthrosono	mg/kg dry wt					
Anthracene	mg/kg dry wt	< 0.5	< 0.5	< 0.6	< 0.5	< 0.5
Benzo[a]anthracene	mg/kg dry wt	< 0.5	< 0.5	< 0.6	< 0.5	< 0.5
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.6	< 1.0	< 1.1	< 0.7	< 0.6
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	< 0.6	< 1.0	< 1.1	< 0.7	< 0.6
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.6	< 1.0	< 1.1	< 0.7	< 0.6
Benzo[k]fluoranthene	mg/kg dry wt	< 0.6	< 1.0	< 1.1	< 0.7	< 0.6
1&2-Chloronaphthalene	mg/kg dry wt	< 0.5	< 0.7	< 0.8	< 0.5	< 0.5
Chrysene Chrysene	mg/kg dry wt	< 0.5	< 0.7	< 0.6	< 0.5	< 0.5
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.6	< 1.0	< 1.1	< 0.7	< 0.6
Fluoranthene	mg/kg dry wt	< 0.5	< 0.5	< 0.6	< 0.5	< 0.5
Fluorene	mg/kg dry wt	< 0.5	< 0.5	< 0.6	< 0.5	< 0.5
	mg/kg dry wt	< 0.6	< 1.0	< 1.1	< 0.5	< 0.6
Indeno(1,2,3-c,d)pyrene 2-Methylnaphthalene		< 0.6	< 0.5	< 0.6	< 0.7	< 0.6
· '	mg/kg dry wt					
Naphthalene	mg/kg dry wt	< 0.5	< 0.5	< 0.6	< 0.5	< 0.5
Phenanthrene	mg/kg dry wt	< 0.5	< 0.5	< 0.6	< 0.5	< 0.5
Pyrene	mg/kg dry wt	< 0.5	< 0.5	< 0.6	< 0.5	< 0.5

Sample Type: Sediment						
Sai	mple Name:	HSP SED 03 0.05 23-Jun-2023	HSP SED 04 0.3 23-Jun-2023	HSP SED 04 0.05 23-Jun-2023	HSP SED 05 0.3 23-Jun-2023	HSP SED 05 0.05 23-Jun-2023
L	ab Number:	3299078.368	3299078.369	3299078.370	3299078.371	3299078.372
Polycyclic Aromatic Hydrocarbons	s in SVOC Soil	Samples by GC-MS	5 *			
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES*	mg/kg dry wt	< 1.4	< 2.3	< 2.6	< 1.7	< 1.3
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	< 1.4	< 2.3	< 2.6	< 1.7	< 1.3
Phenols in SVOC Soil Samples b	y GC-MS					
4-Chloro-3-methylphenol	mg/kg dry wt	< 5	< 5	< 5	< 5	< 5
2-Chlorophenol	mg/kg dry wt	< 1.0	< 1.0	< 1.1	< 1.0	< 1.0
2,4-Dichlorophenol	mg/kg dry wt	< 1.1	< 2	< 3	< 1.0	< 1.0
2,4-Dimethylphenol	mg/kg dry wt	< 3	< 3	< 3	< 3	< 3
3 & 4-Methylphenol (m- + p- cresol)	mg/kg dry wt	< 3	< 3	< 3	< 3	< 3
2-Methylphenol (o-cresol)	mg/kg dry wt	< 1.0	< 1.0	< 1.1	< 1.0	≤ 1.0
2-Nitrophenol	mg/kg dry wt	< 6	< 10	< 11	4 < 5	< 5
Pentachlorophenol (PCP)	mg/kg dry wt	< 30	< 30	< 30	< 30	< 30
Phenol	mg/kg dry wt	< 1.1	< 2	< 3	\$ 1.4	< 1.1
2,4,5-Trichlorophenol	mg/kg dry wt	< 6	< 10	< 11	< 1.4	< 1.1
2,4,6-Trichlorophenol	mg/kg dry wt	< 6	< 10	< 11	< 1.4	< 1.1
Plasticisers in SVOC Soil Sample		, and the second				
Bis(2-ethylhexyl)phthalate	mg/kg dry wt	< 5	6	< 5	< 5	< 5
Butylbenzylphthalate	mg/kg dry wt	< 1.1	< 2	< 3	< 1.4	< 1.1
Di(2-ethylhexyl)adipate	mg/kg dry wt	< 1.0	< 1.0	< 1.1	< 1.0	< 1.0
Diethylphthalate	mg/kg dry wt	< 1.1	< 2	< 3	< 1.4	< 1.1
Dimethylphthalate	mg/kg dry wt	< 1.1	<2	< 3	< 1.4	< 1.1
Di-n-butylphthalate	mg/kg dry wt	< 1.1	<2	<3	< 1.4	< 1.1
Di-n-octylphthalate	mg/kg dry wt	< 1.1	< 2	< 3	< 1.4	< 1.1
Other Halogenated compounds in					- 111	
1,2-Dichlorobenzene	mg/kg dry wt	< 1.1	< 2	< 3	< 1.4	< 1.1
1,3-Dichlorobenzene	mg/kg dry wt	< 1.1	<2	< 3	< 1.4	< 1.1
1.4-Dichlorobenzene	mg/kg dry wt	2111	< 2	< 3	< 1.4	< 1.1
Hexachlorobutadiene	mg/kg dry wt		< 2	< 3	< 1.4	< 1.1
Hexachloroethane	mg/kg dry wt		< 2	< 3	< 1.4	< 1.1
1,2,4-Trichlorobenzene	mg/kg dry wt		< 1.0	< 1.1	< 0.7	< 0.6
Other compounds in SVOC Soil S						
Benzyl alcohol	mg/kg dry wt		< 10	< 11	< 10	< 10
Carbazole	mg/kg dry wt		< 1.0	< 1.1	< 0.7	< 0.6
Dibenzofuran	mg/kg dry wt		< 1.0	< 1.1	< 0.7	< 0.6
Isophorone	mg/kg dry wt		< 1.0	< 1.1	< 0.7	< 0.6
Total Petroleum Hydrocarbons in		▼				
C7 - C9	mg/kg dry wt	< 30	< 50	< 60	< 40	< 30
C10 - C14	mg/kg dry wt	< 30	< 40	59	< 30	< 30
C15 - C36	mg/kg dry wt	< 50	300	210	< 60	< 50
Total hydrocarbons (C7 - C36)	mg/kg dry wt		340	260	< 120	< 90
BTEX in VOC Soils by Headspace		1 00	0.10	200	1.20	
Benzene	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
Ethylbenzene	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
Toluene	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
m&p-Xylene	mg/kg dry wt	< 0.12	< 0.11	< 0.13	< 0.06	< 0.04
o-Xylene	mg/kg dry wt	< 0.12	< 0.11	< 0.13	< 0.15	< 0.07
Halogenated Aliphatics in VOC S			~ U.11	~ 0.13	\ U.UO	~ U.U4
<u> </u>	<u> </u>		< 0.11	< 0.13	< 0.08	< 0.04
Bromomethane (Methyl Bromide)			< 0.11			< 0.04 < 0.04
Carbon tetrachloride	mg/kg dry wt	< 0.06		< 0.13	< 0.08	
Chloromethane	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
Chloromethane	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
1,2-Dibromo-3-chloropropane	mg/kg dry wt	< 0.12	< 0.3	< 0.3	< 0.15	< 0.07

Sample Type: Sediment						
5	Sample Name:			HSP SED 04 0.05		
	Lab Maria	23-Jun-2023	23-Jun-2023	23-Jun-2023	23-Jun-2023	23-Jun-2023
Helegensted Alimbetics in VOC	Lab Number:	3299078.368	3299078.369	3299078.370	3299078.371	3299078.372
Halogenated Aliphatics in VOC			.0.44	. 0.40	. 0.00	.004
1,2-Dibromoethane (ethylene dibromide, EDB)	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
Dibromomethane	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
1,3-Dichloropropane	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
Dichlorodifluoromethane	mg/kg dry wt	< 0.12	< 0.3	< 0.3	< 0.15	< 0.07
1,1-Dichloroethane	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
1,2-Dichloroethane	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
1,1-Dichloroethene	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
cis-1,2-Dichloroethene	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
trans-1,2-Dichloroethene	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
Dichloromethane (methylene chloride)	mg/kg dry wt	< 1.2	< 3	< 3	< 1.5	< 0.7
1,2-Dichloropropane	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
1,1-Dichloropropene	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
cis-1,3-Dichloropropene	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
trans-1,3-Dichloropropene	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
Hexachlorobutadiene	mg/kg dry wt	< 0.12	< 0.3	< 0.3	< 0.08	< 0.04
1,1,1,2-Tetrachloroethane	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
1,1,2,2-Tetrachloroethane	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
Tetrachloroethene (tetrachloroethylene)	mg/kg dry wt	< 0.06	< 0.11	0.13	< 0.08	< 0.04
1,1,1-Trichloroethane	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
1,1,2-Trichloroethane	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
Trichloroethene (trichloroethylene)	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
Trichlorofluoromethane	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
1,2,3-Trichloropropane	mg/kg dry wt	< 0.12	< 0.3	< 0.3	< 0.15	< 0.07
1,1,2-Trichlorotrifluoroethane (Freon 113)	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
Vinyl chloride	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
Halogenated Aromatics in VOC	Soils by Headsp	ace GC-MS*	X			
Bromobenzene	mg/kg dry wt		< 0.11	< 0.13	< 0.08	< 0.04
1,3-Dichlorobenzene	mg/kg dry wt		< 0.11	< 0.13	< 0.08	< 0.04
4-Chlorotoluene	mg/kg dry wt		< 0.11	< 0.13	< 0.08	< 0.04
Chlorobenzene	mg/kg dry wt		< 0.11	< 0.13	< 0.08	< 0.04
(monochlorobenzene) 1,2-Dichlorobenzene		.0	< 0.11	< 0.13	< 0.08	< 0.04
	mg/kg dry wt					
1,2-Dichloropropane	mg/kg dry wt		< 0.11	< 0.13	< 0.08	< 0.04
1,4-Dichlorobenzene*	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
2-Chlorotoluene	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
1,2,3-Trichlorobenzene	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
1,2,4-Trichlorobenzene	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
1,3,5-Trichlorobenzene	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
Monoaromatic Hydrocarbons in				·		
n-Butylbenzene	mg/kg dry wt		< 0.11	< 0.13	< 0.08	< 0.04
tert-Butylbenzene	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
Isopropylbenzene (Cumene)	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
4-Isopropyltoluene (p-Cymene)	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
n-Propylbenzene	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
sec-Butylbenzene	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
Styrene	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
1,2,4-Trimethylbenzene	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
1,3,5-Trimethylbenzene	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
Ketones in VOC Soils by Head	space GC-MS	1				1
2-Butanone (MEK)	mg/kg dry wt	< 12	< 30	< 30	< 15	< 7
4-Methylpentan-2-one (MIBK)	mg/kg dry wt	< 3	< 5	< 6	< 3	< 1.4
, , , , ,	3 3 7					

Sample Type: Sediment						
Sar	mple Name:	HSP SED 03 0.05 23-Jun-2023	HSP SED 04 0.3 23-Jun-2023	HSP SED 04 0.05 23-Jun-2023	HSP SED 05 0.3 23-Jun-2023	HSP SED 05 0.05 23-Jun-2023
Li	ab Number:	3299078.368	3299078.369	3299078.370	3299078.371	3299078.372
Ketones in VOC Soils by Headspa	ace GC-MS					
Acetone	mg/kg dry wt	< 12	< 30	< 30	< 15	< 7
Methyl tert-butylether (MTBE)	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
Trihalomethanes in VOC Soils by		C-MS				
Bromodichloromethane	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
Bromoform (tribromomethane)	mg/kg dry wt	< 0.12	< 0.3	< 0.3	< 0.15	< 0.07
Chloroform (Trichloromethane)	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
Dibromochloromethane	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
Other VOC in Soils by Headspace			-			
Carbon disulphide	mg/kg dry wt	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Naphthalene	mg/kg dry wt	< 0.06	< 0.11	< 0.13	< 0.08	< 0.04
•						. 0.01
	mple Name:			HSP SED 01 0.1	•	
	ab Number:			3299078.401		
Individual Tests					77	
	g/100g as rcvd			30	7 . 0	
Total Recoverable Beryllium	mg/kg dry wt			1.3		<i>J</i>
Total Recoverable Boron	mg/kg dry wt			< 20	(), '	
pH	pH Units			5.2	. 0.	
Total Organic Carbon*	g/100g dry wt			9.1		
Heavy metals, screen As,Cd,Cr,C	u,Ni,Pb,Zn,Hg					
Total Recoverable Arsenic	mg/kg dry wt		0.	5		
Total Recoverable Cadmium	mg/kg dry wt			0.32		
Total Recoverable Chromium	mg/kg dry wt		- (2)	11		
Total Recoverable Copper	mg/kg dry wt			47		
Total Recoverable Lead	mg/kg dry wt			143		
Total Recoverable Mercury	mg/kg dry wt			< 0.10		
Total Recoverable Nickel	mg/kg dry wt	13		9		
Total Recoverable Zinc	mg/kg dry wt		.01	185		
Acid Herbicides Screen in Soil by	LCMSMS	10				
Acifluorfen	mg/kg dry wt	7		< 0.2		
Bentazone	mg/kg dry wt		()	< 0.2		
Bromoxynil	mg/kg dry wt			< 0.2		
Clopyralid	mg/kg dry wt			< 0.2		
Dicamba	mg/kg dry wt			< 0.2		
2,4-Dichlorophenoxyacetic acid	mg/kg dry wt	(U)		< 0.2		
(24D) 2,4-Dichlorophenoxybutyric acid	mg/kg dry wt			< 0.2		
(24DB)	page the state of			< 0.2		
Dichlorprop	mg/kg dry wt			< 0.2		
Fluracifop	mg/kg dry wt					
Fluroxypyr	mg/kg dry wt			< 0.2		
Haloxyfop	mg/kg dry wt mg/kg dry wt			< 0.2		
2-methyl-4-chlorophenoxyacetic acid (MCPA)						
2-methyl-4- chlorophenoxybutanoic acid (MCPB)	mg/kg dry wt			< 0.2		
Mecoprop (MCPP; 2-methyl-4-chlorophenoxypropionic acid)	mg/kg dry wt			< 0.2		
Oryzalin	mg/kg dry wt			< 0.4		
Pentachlorophenol (PCP)	mg/kg dry wt			< 0.2		
Picloram	mg/kg dry wt			< 0.2		
Quizalofop	mg/kg dry wt			< 0.2		
2,3,4,6-Tetrachlorophenol (TCP)	mg/kg dry wt			< 0.2		
2,4,5-trichlorophenoxypropionic acid (245TP,Fenoprop, Silvex)	mg/kg dry wt			< 0.2		

Sample Type: Sediment		
Sa	mple Name:	HSP SED 01 0.1
l	Lab Number:	3299078.401
Acid Herbicides Screen in Soil b	y LCMSMS	
2,4,5-Trichlorophenoxyacetic acid (245T)	mg/kg dry wt	< 0.2
Triclopyr	mg/kg dry wt	< 0.2
Organochlorine Pesticides Trace in Soil		
Aldrin	mg/kg dry wt	< 0.0010
alpha-BHC	mg/kg dry wt	< 0.0010
beta-BHC	mg/kg dry wt	< 0.0010
delta-BHC	mg/kg dry wt	< 0.0010
gamma-BHC (Lindane)	mg/kg dry wt	< 0.0010
cis-Chlordane	mg/kg dry wt	< 0.0010
trans-Chlordane	mg/kg dry wt	< 0.0010
2,4'-DDD	mg/kg dry wt	< 0.0010
4,4'-DDD	mg/kg dry wt	< 0.0010
2,4'-DDE	mg/kg dry wt	< 0.0010
4,4'-DDE	mg/kg dry wt	0.0035
2,4'-DDT	mg/kg dry wt	< 0.0010
4,4'-DDT	mg/kg dry wt	0.0017
Total DDT Isomers	mg/kg dry wt	< 0.006
Dieldrin	mg/kg dry wt	<0.0010
Endosulfan I	mg/kg dry wt	3 0.0010
Endosulfan II	mg/kg dry wt	< 0.0010
Endosulfan sulphate	mg/kg dry wt	< 0.0010
Endrin	mg/kg dry wt	< 0.0010
Endrin aldehyde	mg/kg dry wt	< 0.0010 20.0010
Endrin ketone	mg/kg dry wt	< 0.0010
Heptachlor Heptachlor epoxide	mg/kg dry wt	< 0.0010 < 0.0010
Hexachlorobenzene	mg/kg dry wt mg/kg dry wt	< 0.0010
Methoxychlor	mg/kg dry wt	< 0.0010
Organonitro&phosphorus Pestic		
Acetochlor	mg/kg dry wt	< 0.03
Acetochior		
Atrazine	mg/kg dry wt mg/kg dry wt	< 0.03
Atrazine-desethyl	mg/kg dry wt	< 0.03
Atrazine-desisopropyl	mg/kg dry wt	< 0.05
Azaconazole	mg/kg dry wt	< 0.011
Azinphos-methyl	mg/kg dry wt	< 0.05
Benalaxyl	mg/kg dry wt	< 0.011
Bitertanol	mg/kg dry wt	< 0.05
Bromacil	mg/kg dry wt	< 0.03
Bromopropylate	mg/kg dry wt	< 0.03
Butachlor	mg/kg dry wt	< 0.03
Captan	mg/kg dry wt	< 0.05
Carbaryl	mg/kg dry wt	< 0.03
Carbofuran	mg/kg dry wt	< 0.03
Chlorfluazuron	mg/kg dry wt	< 0.03
Chlorothalonil	mg/kg dry wt	< 0.03
Chlorpyrifos	mg/kg dry wt	< 0.03
Chlorpyrifos-methyl	mg/kg dry wt	< 0.03
Chlortoluron	mg/kg dry wt	< 0.05
Cyanazine	mg/kg dry wt	< 0.03
Cyfluthrin	mg/kg dry wt	< 0.03
Cyhalothrin	mg/kg dry wt	< 0.03
Cypermethrin	mg/kg dry wt	< 0.06
Cyproconazole	mg/kg dry wt	< 0.05

Sample Type: Sediment		
	nple Name:	HSP SED 01 0.1
	ab Number:	3299078.401
Organonitro&phosphorus Pesticide	es Trace in MR	· · · · · · · · · · · · · · · · · · ·
Deltamethrin (including Tralomethrin)	mg/kg dry wt	< 0.03
Diazinon	mg/kg dry wt	< 0.011
Dichlofluanid	mg/kg dry wt	< 0.03
Dichloran	mg/kg dry wt	< 0.06
Dichlorvos	mg/kg dry wt	< 0.03
Difenoconazole	mg/kg dry wt	< 0.03
Dimethoate	mg/kg dry wt	< 0.05
Diphenylamine	mg/kg dry wt	< 0.05
Diuron	mg/kg dry wt	< 0.03
Fenpropimorph	mg/kg dry wt	< 0.03
Fluazifop-butyl	mg/kg dry wt	< 0.03
Fluometuron	mg/kg dry wt	< 0.03
Flusilazole	mg/kg dry wt	< 0.03
Fluvalinate	mg/kg dry wt	< 0.015
Furalaxyl	mg/kg dry wt	< 0.011
Haloxyfop-methyl	mg/kg dry wt	< 0.03
Hexaconazole	mg/kg dry wt	< 0.03
Hexazinone	mg/kg dry wt	<0.011
IPBC (3-lodo-2-propynyl-n- butylcarbamate)	mg/kg dry wt	> 0.11
Kresoxim-methyl	mg/kg dry wt	< 0.011
Linuron	mg/kg dry wt	< 0.03
Malathion	mg/kg dry wt	< 0.03
Metalaxyl	mg/kg dry wt	< 0.03
Methamidophos	mg/kg dry wt	× 0.11
Metolachlor	mg/kg dry wt	< 0.011
Metribuzin	mg/kg dry wt	< 0.03
Molinate	mg/kg dry wt	< 0.05
Myclobutanil	mg/kg dry wt	< 0.03
Naled	mg/kg dry wt	< 0.11
Norflurazon	mg/kg dry wt	< 0.05
Oxadiazon	mg/kg dry wt	
Oxyfluorfen	mg/kg dry wt	< 0.011
Paclobutrazol	mg/kg dry wt	< 0.03
Parathion-ethyl	mg/kg dry wt	< 0.03
Parathion-methyl	mg/kg dry wt	< 0.03
Penconazole Dendimentalin	mg/kg dry wt	< 0.03 < 0.03
Pendimethalin Permethrin	mg/kg dry wt mg/kg dry wt	< 0.03
Permetirin Pirimicarb	mg/kg dry wt	< 0.006
	mg/kg dry wt	< 0.03
Pirimiphos-methyl Prochloraz	mg/kg dry wt	< 0.03
Procymidone	mg/kg dry wt	< 0.11
Prometryn	mg/kg dry wt	< 0.03
Propachlor	mg/kg dry wt	< 0.03
Propanil	mg/kg dry wt	< 0.05
Propazine	mg/kg dry wt	< 0.011
Propiconazole	mg/kg dry wt	< 0.015
Pyriproxyfen	mg/kg dry wt	< 0.03
Quizalofop-ethyl	mg/kg dry wt	< 0.03
Simazine	mg/kg dry wt	< 0.03
Simetryn	mg/kg dry wt	< 0.03
Sulfentrazone	mg/kg dry wt	< 0.11
TCMTB [2-(thiocyanomethylthio)	mg/kg dry wt	< 0.05
benzothiazole,Busan]	5 5 .,	

Sample Type: Sediment		
Sar	mple Name:	HSP SED 01 0.1
L	ab Number:	3299078.401
Organonitro&phosphorus Pesticid	les Trace in MR	R Soil by GCMS
Tebuconazole	mg/kg dry wt	< 0.03
Terbacil	mg/kg dry wt	< 0.03
Terbumeton	mg/kg dry wt	< 0.03
Terbuthylazine	mg/kg dry wt	< 0.011
Terbuthylazine-desethyl	mg/kg dry wt	< 0.03
Terbutryn	mg/kg dry wt	< 0.03
Thiabendazole	mg/kg dry wt	< 0.11
Thiobencarb	mg/kg dry wt	< 0.03
Tolylfluanid	mg/kg dry wt	< 0.011
Triazophos	mg/kg dry wt	< 0.03
Trifluralin	mg/kg dry wt	< 0.03
Vinclozolin	mg/kg dry wt	< 0.03
Haloethers in SVOC Soil Samples	s by GC-MS	
Bis(2-chloroethoxy) methane	mg/kg dry wt	<1.0
Bis(2-chloroethyl)ether	mg/kg dry wt	<1.0
Bis(2-chloroisopropyl)ether	mg/kg dry wt	<1.0
4-Bromophenyl phenyl ether	mg/kg dry wt	<1.0
4-Chlorophenyl phenyl ether	mg/kg dry wt	\$1.0
Nitrogen containing compounds i		
2,4-Dinitrotoluene	mg/kg dry wt	< 2
2,6-Dinitrotoluene	mg/kg dry wt	<2
Nitrobenzene	mg/kg dry wt	< 1.0
N-Nitrosodi-n-propylamine	mg/kg dry wt	<2
N-Nitrosodiphenylamine +	mg/kg dry wt	
Diphenylamine	nig/kg diy wi	
Organochlorine Pesticides in SVC	C Soil Samples	s by GC-MS
Aldrin	mg/kg dry wt	<1.0
alpha-BHC	mg/kg dry wt	< 1.0
beta-BHC	mg/kg dry wt	<1.0
delta-BHC	mg/kg dry wt	<1.0
gamma-BHC (Lindane)	mg/kg dry wt	< 1.0
4,4'-DDD	mg/kg dry wt	< 1.0
4,4'-DDE	mg/kg dry wt	<1.0
4,4'-DDT	mg/kg dry wt	<2
Dieldrin	mg/kg dry wt	<1.0
Endosulfan I	mg/kg dry wt	< 2
Endosulfan II	mg/kg dry wt	<2
Endosulfan sulphate	mg/kg dry wt	< 2
Endrin	mg/kg dry wt	< 2
Endrin ketone	mg/kg dry wt	< 2
Heptachlor	mg/kg dry wt	< 1.0
Heptachlor epoxide	mg/kg dry wt	< 1.0
Hexachlorobenzene	mg/kg dry wt	< 1.0
Polycyclic Aromatic Hydrocarbons		Samples by GC-MS*
Acenaphthene	mg/kg dry wt	< 0.5
Acenaphthylene	mg/kg dry wt	< 0.5
Anthracene	mg/kg dry wt	< 0.5
Benzo[a]anthracene	mg/kg dry wt	< 0.5
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 1.0
Benzo[b]fluoranthene + Benzo[j]	mg/kg dry wt	< 1.0
fluoranthene	J J	.
Benzo[g,h,i]perylene	mg/kg dry wt	< 1.0
Benzo[k]fluoranthene	mg/kg dry wt	< 1.0
1&2-Chloronaphthalene	mg/kg dry wt	< 0.7
Chrysene	mg/kg dry wt	< 0.5
Dibenzo[a,h]anthracene	mg/kg dry wt	< 1.0

Sample Type: Sediment			
Sa	mple Name:	HSP SED 01 0.1	
L	ab Number:	3299078.401	
Polycyclic Aromatic Hydrocarbon	s in SVOC Soil	Samples by GC-MS*	
Fluoranthene	mg/kg dry wt	< 0.5	
Fluorene	mg/kg dry wt	< 0.5	
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 1.0	
2-Methylnaphthalene	mg/kg dry wt	< 0.5	
Naphthalene	mg/kg dry wt	< 0.5	
Phenanthrene	mg/kg dry wt	< 0.5	
Pyrene	mg/kg dry wt	< 0.5	
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES*	mg/kg dry wt	< 2.3	
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	< 2.3	
Phenols in SVOC Soil Samples b	y GC-MS		
4-Chloro-3-methylphenol	mg/kg dry wt	< 5	
2-Chlorophenol	mg/kg dry wt	< 1.0	
2,4-Dichlorophenol	mg/kg dry wt	< 1.0	
2,4-Dimethylphenol	mg/kg dry wt	< 3	
3 & 4-Methylphenol (m- + p-cresol)	mg/kg dry wt		
2-Methylphenol (o-cresol)	mg/kg dry wt	\$1.0	
2-Nitrophenol	mg/kg dry wt	< 5	
Pentachlorophenol (PCP)	mg/kg dry wt	< 30	
Phenol	mg/kg dry wt	<2	
2,4,5-Trichlorophenol	mg/kg dry wt	< 2	
2,4,6-Trichlorophenol	mg/kg dry wt	<2	
Plasticisers in SVOC Soil Sample	es by GC-MS	70 (0	
Bis(2-ethylhexyl)phthalate	mg/kg dry wt	<5	
Butylbenzylphthalate	mg/kg dry wt	<2	
Di(2-ethylhexyl)adipate	mg/kg dry wt	< 1.0	
Diethylphthalate	mg/kg dry wt	<2	
Dimethylphthalate	mg/kg dry wt	< 2	
Di-n-butylphthalate	mg/kg dry wt	< 2	
Di-n-octylphthalate	mg/kg dry wt	< 2	
Other Halogenated compounds in	n SVOC Soil Sa	mples by GC-MS	
1,2-Dichlorobenzene	mg/kg dry wt	< 2	
1,3-Dichlorobenzene	mg/kg dry wt	< 2	
1,4-Dichlorobenzene	mg/kg dry wt	< 2	
Hexachlorobutadiene	mg/kg dry wt	< 2	
Hexachloroethane	mg/kg dry wt	< 2	
1,2,4-Trichlorobenzene	mg/kg dry wt	< 1.0	
Other compounds in SVOC Soil	Samples by GC	MS	
Benzyl alcohol	mg/kg dry wt	< 10	
Carbazole	mg/kg dry wt	< 1.0	
Dibenzofuran	mg/kg dry wt	< 1.0	
Isophorone	mg/kg dry wt	< 1.0	
Total Petroleum Hydrocarbons in			
C7 - C9	mg/kg dry wt	< 50	
C10 - C14	mg/kg dry wt	< 40	
C15 - C36	mg/kg dry wt	< 80	
Total hydrocarbons (C7 - C36)	mg/kg dry wt	< 170	
BTEX in VOC Soils by Headspace			
Benzene	mg/kg dry wt	< 0.12	
Ethylbenzene	mg/kg dry wt	< 0.12	
Toluene	mg/kg dry wt	0.17	
m&p-Xylene	mg/kg dry wt	< 0.3	
o-Xylene	mg/kg dry wt	< 0.12	
l ,	55		

Sample Type: Sediment		
Sar	nple Name:	HSP SED 01 0.1
L	ab Number:	3299078.401
Halogenated Aliphatics in VOC S	oils by Headsp	ace GC-MS
Bromomethane (Methyl Bromide)	mg/kg dry wt	< 0.12
Carbon tetrachloride	mg/kg dry wt	< 0.12
Chloroethane	mg/kg dry wt	< 0.12
Chloromethane	mg/kg dry wt	< 0.12
1,2-Dibromo-3-chloropropane	mg/kg dry wt	< 0.3
1,2-Dibromoethane (ethylene dibromide, EDB)	mg/kg dry wt	< 0.12
Dibromomethane	mg/kg dry wt	< 0.12
1,3-Dichloropropane	mg/kg dry wt	< 0.12
Dichlorodifluoromethane	mg/kg dry wt	< 0.3
1,1-Dichloroethane	mg/kg dry wt	< 0.12
1,2-Dichloroethane	mg/kg dry wt	< 0.12
1,1-Dichloroethene	mg/kg dry wt	< 0.12
cis-1,2-Dichloroethene	mg/kg dry wt	< 0.12
trans-1,2-Dichloroethene	mg/kg dry wt	< 0.12
Dichloromethane (methylene chloride)	mg/kg dry wt	< 3
1,2-Dichloropropane	mg/kg dry wt	<0.12
1,1-Dichloropropene	mg/kg dry wt	<0.12
cis-1,3-Dichloropropene	mg/kg dry wt	0.12
trans-1,3-Dichloropropene	mg/kg dry wt	< 0.12
Hexachlorobutadiene	mg/kg dry wt	< 0.12
1,1,1,2-Tetrachloroethane	mg/kg dry wt	< 0.12
1,1,2,2-Tetrachloroethane	mg/kg dry wt	< 0.12
Tetrachloroethene (tetrachloroethylene)	mg/kg dry wt	<0.12
1,1,1-Trichloroethane	mg/kg dry wt	< 0.12
1,1,2-Trichloroethane	mg/kg dry wt	< 0.12
Trichloroethene (trichloroethylene)	mg/kg dry wt	< 0.12
Trichlorofluoromethane	mg/kg dry wt	< 0.12
1,2,3-Trichloropropane	mg/kg dry wt	< 0.3
1,1,2-Trichlorotrifluoroethane (Freon 113)	mg/kg dry wt	< 0.12
Vinyl chloride	mg/kg dry wt	< 0.12
Halogenated Aromatics in VOC	oils by Headspa	ace GC-MS*
Bromobenzene	mg/kg dry wt	< 0.12
1,3-Dichlorobenzene	mg/kg dry wt	< 0.12
4-Chlorotoluene	mg/kg dry wt	< 0.12
Chlorobenzene (monochlorobenzene)	mg/kg dry wt	< 0.12
1,2-Dichlorobenzene	mg/kg dry wt	< 0.12
1,2-Dichloropropane	mg/kg dry wt	< 0.12
1,4-Dichlorobenzene*	mg/kg dry wt	< 0.12
2-Chlorotoluene	mg/kg dry wt	< 0.12
1,2,3-Trichlorobenzene	mg/kg dry wt	< 0.12
1,2,4-Trichlorobenzene	mg/kg dry wt	< 0.12
1,3,5-Trichlorobenzene	mg/kg dry wt	< 0.12
Monoaromatic Hydrocarbons in V	OC Soils by He	eadspace GC-MS
n-Butylbenzene	mg/kg dry wt	< 0.12
tert-Butylbenzene	mg/kg dry wt	< 0.12
Isopropylbenzene (Cumene)	mg/kg dry wt	< 0.12
4-Isopropyltoluene (p-Cymene)	mg/kg dry wt	< 0.12
n-Propylbenzene	mg/kg dry wt	< 0.12
sec-Butylbenzene	mg/kg dry wt	< 0.12
Styrene	mg/kg dry wt	< 0.12
1,2,4-Trimethylbenzene	mg/kg dry wt	< 0.12
·	5 5 7 **	

Lab Number: 3299078.401 Monoaromatic Hydrocarbons in VOC Soils by Headspace GC-MS "3,5-Trimethylbenzene mg/kg dry wt < 0.12 Ketones in VOC Soils by Headspace GC-MS 2-Butanone (MEK) mg/kg dry wt < 30 Methylpentan-2-one (MIBK) mg/kg dry wt < 30 Methyl tert-butylether (MTBE) mg/kg dry wt < 0.12 Trihalomethanes in VOC Soils by Headspace GC-MS Bromodichloromethane mg/kg dry wt < 0.12 Bromoform (tribromomethane) mg/kg dry wt < 0.3 Chloroform (Trichloromethane) mg/kg dry wt < 0.12 Obbromochloromethane mg/kg dry wt < 0.12 Other VOC in Soils by Headspace GC-MS Carbon disulphide mg/kg dry wt < 0.05	Sam	nple Name:	HSP SED 01 0.1
As Frinterhylbernzene mg/kg dy wt			
3.5-TimeIntylbenzene mg/kg dy wl < 0.12 Vetenes in VOC Solis by Headspace GC-MS Buttannon (MEK) mg/kg dy wl < 50 -Methylpontan-2-one (MIBK) mg/kg dy wl < 50 -Methylpontan-2-one (MIBK) mg/kg dy wl < 0.012 Inflationathanes in VOC Solis by Headspace GC-MS Vetener mg/kg dy wl < 0.12 Vetenedre mg/kg dy wl < 0.12 Vetenedre mg/kg dy wl < 0.12 Vetenedre mg/kg dy wl < 0.12 Vetenedre mg/kg dy wl < 0.12 Vetenedre mg/kg dy wl < 0.12 Vetenedre mg/kg dy wl < 0.12 Vetenedre mg/kg dy wl < 0.12 Vetenedre mg/kg dy wl < 0.12 Vetenedre mg/kg dy wl < 0.12 Vetenedre mg/kg dy wl < 0.12 Vetenedre mg/kg dy wl < 0.12 Vetenedre mg/kg dy wl < 0.12 Vetenedre mg/kg dy wl < 0.12 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl < 0.05 Vetenedre mg/kg dy wl			
Returner (NEK)			< 0.12
-Butanore (MEK) mg/kg dry wt < 50 -Sectione mg/kg dry wt < 30 -Settle - Sectione mg/kg dry wt < 30 -Settle - Settle > </u>			
-Methylpentan-2-one (MIBK) mg/kg dry wt < 30 cetone mg/kg dry wt < 30 ribladomethanes in VOC Solis by Headspace GC-MS romoidomin (ribromonnethane) mg/kg dry wt < 0.12 romoidomin (ribromonnethane) mg/kg dry wt < 0.12 romoidomin (ribromonnethane) mg/kg dry wt < 0.12 romoidomin (ribromonnethane) mg/kg dry wt < 0.12 romoidomin (ribromonnethane) mg/kg dry wt < 0.12 romoidomin (ribromonnethane) mg/kg dry wt < 0.12 romoidomin (ribromonnethane) mg/kg dry wt < 0.12 romoidomin (ribromonnethane) mg/kg dry wt < 0.12 romoidomin (ribromonnethane) mg/kg dry wt < 0.12 romoidomin (ribromonnethane) mg/kg dry wt < 0.12 romoidomin (ribromonnethane) mg/kg dry wt < 0.12 romoidomin (ribromonnethane) mg/kg dry wt < 0.12 romoidomin (ribromonnethane) mg/kg dry wt < 0.12 romoidomin (ribromonnethane) mg/kg dry wt < 0.12 romoidomin (ribromonnethane) mg/kg dry wt < 0.12 romoidomin (ribromonnethane) mg/kg dry wt < 0.12 romoidomin (ribromonnethane) mg/kg dry wt < 0.12 romoidomin (ribromonnethane) mg/kg dry wt < 0.12 romoidomin (ribromonnethane) mg/kg dry wt < 0.12 romoidomin (ribromonnethane) mg/kg dry wt < 0.12 romoidomin (ribromonnethane) mg/kg dry wt < 0.12 romoidomin (ribromonnethane) mg/kg dry wt < 0.12 romoidomin (ribromonnethane) mg/kg dry wt < 0.12 romoidomin (ribromonnethane) mg/kg dry wt < 0.12 romoidomin (ribromonnethane) mg/kg dry wt < 0.12 romoidomin (ribromonnethane) mg/kg dry wt < 0.12 romoidomin (ribromonnethane) mg/kg dry wt < 0.12 romoidomin (ribromonnethane) mg/kg dry wt < 0.12 romoidomin (ribromonnethane) mg/kg dry wt < 0.12 romoidomin (ribromonnethane) mg/kg dry wt < 0.12 romoidomin (ribromonnethane) mg/kg dry wt < 0.12 romoidomin (ribromonnethane) mg/kg dry wt < 0.12 romoidomin (ribromonnethane) mg/kg dry wt < 0.12 romoidomin (ribromonnethane) mg/kg dry wt < 0.12 romoidomin (ribromonnethane) mg/kg dry wt < 0.12 romoidomin (ribromonnethane) mg/kg dry wt < 0.12 romoidomin (ribromonnethane) mg/kg dry wt < 0.12 romoidomin (ribromonnethanethanethanethanethanethanethaneth			< 30
Acedone mg/kg dry w			< 5
Alethyl terk-buylether (MTBE) mg/kg dy wf	Acetone		< 30
formodichloromethane mg/kg dry wt	Methyl tert-butylether (MTBE)		< 0.12
identedform (tribromomethane) mg/kg dry wt			
Attendorm (Iribchromethane) mg/kg dry wt	Bromodichloromethane	mg/kg dry wt	< 0.12
Observed Observed	Bromoform (tribromomethane)		< 0.3
Direct VOC in Soils by Headspace GC-MS arbon disulphide mg/kg dry wt	Chloroform (Trichloromethane)	mg/kg dry wt	< 0.12
Carbon disulphide mg/kg dry wt	Dibromochloromethane	mg/kg dry wt	< 0.12
Support Supp	Other VOC in Soils by Headspace	GC-MS	
Support Supp	Carbon disulphide	mg/kg dry wt	< 0.05
B66 HA01 14-Jun-2023 Client Chromatogram for TPH by FID 3299078:226 B66 HA02 14-Jun-2023 Client Chromatogram for TPH by FID 143.5 137.5 126.5 190.0 17.5 126.5 190.0 17.5 126.5 190.0 17.5 180.0 17.5 180.0 180.	Naphthalene		
B66 HA01 14-Jun-2023 Client Chromatogram for TPH by FID 3299078:226 B66 HA02 14-Jun-2023 Client Chromatogram for TPH by FID 143.5 137.5 126.5 190.0 87.5 126.5 190.0 87.5 190.	2200079 225	<u> </u>	, U , W
3299078.226 B66 HA02 14-Jun-2023 Client Chromatogram for TPH by FID 143.5 137.5 125.0 112.5 100.0 97.5 75.0 97.5 97.5 97.5 97.5 97.5 97.5 97.5 97.5	Client Chromatogram for TPH by		60,60
3299078.226 B66 HA02 14-Jun-2023 Client Chromatogram for TPH by FID 143.5 125.0 112.5 100.0 87.5 25.0	40.0 35.0 30.0 25.0 20.0 15.0		20/0/ mm/m
137.5 126.0 112.5 100.0 87.5 75.0 62.5 50.0 37.5 25.0	3299078.226 B66 HA02 14-Jun-2023 Client Chromatogram for TPH by	FID	6.00 7.00 8.00 9.00 9.43
A SAFET	137.5 125.0 112.5 100.0 87.5 75.0		J. Warman Mary Mary Mary Mary Mary Mary Mary Mary

Analyst's Comments

It has been noted that the System Monitoring Compound 2,4,6-tribromophenol in the SVOC analysis on sample 3299078.174, had a lower than expected recovery at 36%. Therefore Pentachlorophenol may be underestimated.

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Labs, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Individual Tests			

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
	Method Description Air dried at 35°C Used for sample preparation. May contain a residual moisture content of 2-5%.	Default Detection Limit	1-2, 4-5, 7-8, 10-11, 13-14, 16-17, 19-20, 22-23, 25-26, 28-29, 31-32, 34-35, 37-40, 42-43, 45-46, 48-51, 82, 103, 109, 133-134, 136-137, 139-140, 142-143, 165-166, 168-169, 171-172, 174-175, 177-180, 182-183, 185-187, 190-191, 193, 196-197, 199-200, 202-203, 205-206, 208, 211-212, 2214, 217, 219-220, 225-232, 234-235, 237, 239, 241, 251-252, 254-255, 257-258, 260-261, 263-264, 266-268, 270-271, 273-275, 284-285, 287-288, 290-291, 303-304, 306, 309-310, 312, 315-316, 318-319, 321-322, 324-325, 327-328,
Soil Prep Dry & Sieve for Agriculture	Air dried at 35°C and sieved, <2mm fraction.	<u>-</u>	318-319, 321-322, 324-325,

Sample Type: Soil			
Test	Method Description	Default Detection Limit	
Soil Prep Dry for Organics,Trace* Total of Reported PAHs in Soil	Air dried at 35°C Used for sample preparation. May contain a residual moisture content of 2-5%. Sonication extraction, GC-MS/MS analysis. In-house based on	0.03 mg/kg dry/wt	1-2, 4-5, 7-8, 10-11, 13-14, 16-17, 19-20, 22-23, 25-26, 28-29, 31-32, 34-35, 37-39, 42-43, 45, 48-50, 82, 103, 109, 179-180, 182, 219-220, 237, 239, 241, 273-275, 339-372, 401
·	US EPA 8270.	183/0	245-246, 248-249, 276-285, 330, 336, 373
Dry Matter	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. (Free water removed before analysis, non-seil objects such as sticks, leaves, grass and stones also removed). US EPA 3550.	0.10 g/100g as revd	1-2, 4-5, 7-8, 10-11, 13-14, 16-17, 19-20, 22-23, 25-26, 28-29, 31-32, 34-35, 37-39, 42-43, 45, 48-50, 82, 103, 109, 133-134, 136-137, 139-140, 165-166, 168-169, 171-172, 174-175, 177-180, 182, 219-220, 225-232, 234-235, 237, 239, 241, 245-246, 248-249, 266-268, 270-271, 273-285, 287-288, 290-293, 297-299, 302, 330, 336, 339-373, 384, 387, 391-392, 394-396, 401

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Composite Environmental Solid Samples*	Individual sample fractions mixed together to form a composite fraction.	-	52-53, 55-56, 58-59, 61-62, 64, 67-68, 70, 73-74, 76-77, 82-83, 85-86, 88-89, 91-92, 94-95, 97, 100-101, 106-107, 110, 112-113, 115-116, 118,
	600	03/31/	121-122, 124-125, 127-128, 130-131, 156-157, 159-160, 162-163
	Cilvely Silon		

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
	Method Description Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	Default Detection Limit 0.2 mg/kg dry wt	Sample No 1-2, 4-5, 7-8, 10-11, 13-14, 16-17, 19-20, 22-23, 25-26, 28-29, 31-32, 34-35, 37-40, 42-43, 45-46, 48-51, 82, 103, 109, 133-134, 136-137, 139-140, 142-143, 165-166, 168-169, 171-172, 174-175, 177-180, 182-183, 185-187, 190-191, 193, 196-197, 199-200, 202-203, 205-206, 208, 211-212, 214, 217, 219-220, 225-232, 234-235, 237, 239, 241, 251-252, 254-255, 257-258, 260-261, 263-264, 266-268, 270-271, 273-275, 284-285, 287-288, 290-291, 303-310, 312, 315-316, 318-319, 321-322, 324-325, 327-328, 330, 332, 334-336, 339-310, 312, 315-316, 318-319, 321-322, 324-325, 327-328, 330, 332, 334-336, 338-337, 338-385, 387,
pH*	1:2 (v/v) soil : water slurry followed by potentiometric determination of pH. In-house.	0.1 pH Units	391-392, 394-396, 401 1, 13, 22, 37-38, 133, 199, 251, 257, 266, 273

Test Benzo[a]pyrene Potency Equivalency		B 6 14 B 4 11 11 11	
Factor (PEF) NES*	Method Description BaP Potency Equivalence calculated from; Benzo(a)anthracene x 0.1 + Benzo(b)fluoranthene x 0.1 + Benzo(j)fluoranthene x 0.1 + Benzo(k)fluoranthene x 0.1 + Benzo(a)pyrene x 1.0 + Chrysene x 0.01 + Dibenzo(a,h)anthracene x 1.0 + Fluoranthene x 0.01 + Indeno(1,2,3-c,d)pyrene x 0.1. Ministry for the Environment. 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health. Wellington:	Default Detection Limit 0.024 mg/kg dry wt	82, 245-246, 248-249, 276-285, 330, 336, 373
Benzo[a]pyrene Toxic Equivalence TEF)*	Ministry for the Environment. Benzo[a]pyrene Toxic Equivalence (TEF) calculated from; Benzo[a]pyrene x 1.0 + Benzo(a)anthracene x 0.1 + Benzo(b) fluoranthene x 0.1 + Benzo(k)fluoranthene x 0.1 + Chrysene x 0.01 + Dibenzo(a,h)anthracene x 1.0 + Indeno(1,2,3-c,d)pyrene x 0.1. Guidelines for assessing and managing contaminated gasworks sites in New Zealand (GMG) (MfE, 1997).	0.024 mg/kg dry wt	82, 245-246, 248-249, 276-285, 330, 336, 373
PH Oil Industry Profile + PAHscreen	Sonication extraction, GC-FID and GC-MS/MS analysis. Tested on as received sample. In-house based on US EPA 8015 and US EPA 8270.	0.010 - 70 mg/kg dry wt	245-246, 248-249, 284-285, 336
	Cively Silon		

Sample Type: Soil			
	Method Description	Default Detection Limit	Sample No
Test 8 Heavy metals plus Boron	Method Description Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP-MS screen level, interference removal by Kinetic Energy Discrimination if required.	Default Detection Limit 0.10 - 20 mg/kg dry wt	Sample No 1-2, 4-5, 7-8, 10-11, 13-14, 16-17, 19-20, 22-23, 25-26, 28-29, 31-32, 34-35, 37-40, 42-43, 45-46, 48-51, 82, 103, 109, 133-134, 136-137, 139-140, 142-143, 165-166, 168-169, 171-172, 174-175, 179-180, 182-183, 185-187, 190-191, 193, 196-197, 199-200, 202-203, 205-206, 208, 211-212, 214, 217, 219-220, 222, 224-235, 237, 239, 241, 251-252, 254-255, 257-258, 260-261, 263-264, 266-268, 270-271, 273-275, 284-285, 287-288, 290-291, 303-304, 306, 309-310, 312, 315-316, 318-319, 321-322, 324-325, 327-328, 330-3304, 306, 309-310, 312, 315-316, 318-319, 321-322, 324-325, 327-328, 330-3304, 336, 338-354, 334-335, 334-336, 338-354, 384-385,

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Acid Herbicides Screen in Soil by LCMSMS	Solvent extraction, LC-MS/MS analysis. Tested on dried sample. In-house.	0.2 - 0.4 mg/kg dry wt	1-2, 4-5, 7-8, 10-11, 13-14, 16-17, 19-20, 22-23, 25-26, 28-29, 31-32, 34-35, 37-39, 42-43, 45, 48-50, 82, 103, 109, 179-180, 182, 219-220, 237, 239, 241, 273-275, 339-372, 401
BTEX in Soil by Headspace GC-MS	Solvent extraction, Headspace GC-MS analysis. Tested on as received sample. In-house based on US EPA 8260 and 5021.	0.05 - 0.10 mg/kg dry wt	276-283, 373
Organochlorine/nitro&phosphorus Pest.s Screen in Soils, GCMS	Sonication extraction, GC-ECD and GC-MS analysis, In-house based on US EPA 8081 and US EPA 8270.	0.010 - 0.2 mg/kg dry wt	1-2, 4-5, 7-8, 10-11, 13-14, 16-17, 19-20, 22-23, 25-26, 28-29, 31-32, 34-35, 37-39, 42-43, 45, 48-50, 82, 103, 109, 179-180, 182, 219-220, 237, 239, 241, 273-275, 339-354
Polycyclic Aromatic Hydrocarbons Screening in Soil*	Sonication extraction, GC-MS/MS analysis. Tested on as received sample. In-house based on US EPA 8270.	0.010 - 0.05 mg/kg dry wt	82, 276-283, 330, 373
Polychlorinated Biphenyls Screening in Soil*	Sonication extraction, GC-MS analysis. Tested on dried sample. In-house based on US EPA 8270.	0.00000020 - 0.2 mg/kg dry wt	384-385, 387, 391-392, 394-396
Semivolatile Organic Compounds Screening in Soil by GC-MS	Sonication extraction, GC-MS analysis. Tested on as received sample. In-house based on US EPA 8270.	0.024 - 30 mg/kg dry wt	133-134, 136-137, 139-140, 165-166, 168-169, 171-172, 174-175, 177-178, 222, 225-232, 234-235, 266-268, 270-271, 355-372, 401

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Volatile Organic Compounds Screening in Soil by Headspace GC-MS	Sonication extraction, Headspace GC-MS analysis. Tested on as received sample. In-house based on US EPA 8260 and 5021.	0.13 - 30 mg/kg dry wt	165, 168, 171, 174, 225-226, 231-232, 245-246, 248-249, 284-285, 287-288, 290-293, 297-299, 302
Total Petroleum Hydrocarbons in Soil		-	
Client Chromatogram for TPH by FID	Small peaks associated with QC compounds may be visible in chromatograms with low TPH concentrations. QC peaks are as follows: one peak in the C12 - 14 band, the C21 - 25 band and the C30 - 36 band. All QC peaks are corrected for in the reported TPH concentrations.	-	225-226, 266-267, 270, 276, 359-360, 367, 369-370
C7 - C9	Solvent extraction, GC-FID analysis. In-house based on US EPA 8015.	20 mg/kg dry wt	225-226, 245-246, 248-249, 266-268, 270-271, 276-285, 336, 355-373, 384, 387, 391-392, 394-396, 401
C10 - C14	Solvent extraction, GC-FID analysis. Tested on as received sample. In-house based on US EPA 8015.	20 mg/kg dry wt	225-226, 245-246, 248-249, 266-268, 270-271, 276-285, 336, 355-373, 384, 387, 391-392, 394-396, 401
C15 - C36	Solvent extraction, GC-FID analysis. Tested on as received sample. In-house based on US EPA 8015.	40 mg/kg dry wt	225-226, 245-246, 248-249, 266-268, 270-271, 276-285, 336, 355-373, 384, 387, 391-392, 394-396,
Total hydrocarbons (C7 - C36)	Calculation: Sum of carbon bands from C7 to C36. In-house based on US EPA 8015.	70 mg/kg dry wt	401 225-226, 245-246, 248-249, 266-268, 270-271, 276-285, 336, 355-373, 384, 387, 391-392, 394-396, 401
Sample Type: Sediment			
Test	Method Description	Default Detection Limit	Sample No
Individual Tests		1	
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation May contain a residual moisture content of 2-5%.	-	177-178, 355-372, 401

Sample Type: Sediment				
Test	Method Description	Default Detection Limit	Sample No	
Non-Routine Environmental Solids Sample Drying*	Air dried at 35°C Used for sample preparation. May contain a residual moisture content of 2-5%.	-	177-178, 355-372, 401	
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.	-	177-178, 355-372, 401	
Total Recoverable Boron	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	20 mg/kg dry wt	177-178, 355-372, 401	
pН	1:2 v/v soil:water slurry after 16±2hrs, pH meter. APHA 4500-H+B 23 rd ed. 2017.	0.1 pH Units	177-178, 355-372, 401	
Total Organic Carbon*	Acid pretreatment to remove carbonates present followed by Catalytic Combustion (O2), separation, Thermal Conductivity Detector [Elementar Analyser].	0.05 g/100g dry wt	177-178, 355-372, 401	
Heavy metals, screen As,Cd,Cr,Cu,Ni,Pb,Zn,Hg	Dried sample, <2mm fraction. Nitric/Hydrochloric acid digestion, ICP-MS, screen level.	0.10 - 4 mg/kg dry wt	177-178, 355-372, 401	
Organochlorine/nitro&phosphorus Pest.s Trace in Soils, GC-MS	Sonication extraction, GC-ECD and GC-MS analysis. In-house based on US EPA 8081 and US EPA 8270.	0.0010 - 0.03 mg/kg dry wt	355-372, 401	
Volatile Organic Compounds Trace in Soil by Headspace GC-MS	Sonication extraction, Headspace GC-MS analysis. Tested on as received sample. In-house based on US EPA 8260 and 5021.	0.010 - 3 mg/kg dry wt	177-178, 355-372, 401	

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 13-Jun-2023 and 24-Jul-2023. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Kim Harrison MSc

Client Services Manager - Environmental

R J Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205 Hamilton 3240 New Zealand ♦ 0508 HILL LAB (44 555 22)
 ♦ +64 7 858 2000
 ☑ mail@hill-labs.co.nz
 ⊕ www.hill-labs.co.nz

Certificate of Analysis

Page 1 of 1

SPv1

Client: **GHD Limited** Lab No: 3318172 Contact: Adam Gray **Date Received:** 07-Jul-2023 **Date Reported:** C/- GHD Limited 21-Jul-2023 PO Box 1746 **Quote No:** 124299 Wellington 6140 Order No: 12559090 **Client Reference:** 12559090

Client Reference: 12559090
Submitted By: David Jackson

Sample Type: Soil		
Sample Name:	B67 HA01 0.10 [3299078.227]	B67 HA02 0.10 [3299078.229]
Lab Number:	3318172.1	3318172.2
Dioxins‡	See attached report	See attached report

Analyst's Comments

‡ Analysis subcontracted to an external provider. Refer to the Summary of Methods section for more details.

Appendix No.1 - 3318172 - Asurequality - Dioxins

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Labs, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil				
Test	Method Description		Default Detection Limit	Sample No
Dioxins (Solid)	High resolution GC-MS. Su Hutt. [See attached report].	eQuality, Lower	-	1-2

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed on 21-Jul-2023. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech)

Client Services Manager - Environmental

AsureQuality
AsureQuality Limited | 1C Quadrant Drive | Waiwhetu | Lower Hutt 5010 | Wellington | New Zealand PO Box 31242 | Lower Hutt 5040 | Wellington | New Zealand t. +64 4 570 8800 | e. cswellington@asurequality.com | w. www.asurequality.com

Certificate of Analysis

Submission Reference: EnvSubAQ_LH 918

Final Report

Pre-registration ID: aRd-Qxk-fUH

PO Number: 159907

Hill Subcontracting Hill Laboratories- Parent Private Bag 3205 Hamilton 3240 **New Zealand**

Report Issued: 20-Jul-2023 AsureQuality Reference: 23-185534 Sample(s) Received: 08-Jul-2023 07:50

Testing Period: 08-Jul-2023 to 20-Jul-2023 Date of analysis is available on request.

Sample Description: 3318172.1 Sample Condition: Acceptable

Report Number: 3379481

Results

The tests were performed on the samples as received.

Customer Sample Name: B67 HA01 0.10 [3299078.227]	~0	A (7)	Lab ID: 23-185534-1
---	----	-------	---------------------

Sampled Date: 07- Jul-2023

Campio Condition: Acceptable	Campica Date. or our 202
Test	Result

Test	Result	Unit	Method Reference
olychlorinated Dibenzo-p-dioxins and Polychlorinated Dib	penzofurans (PCDD/Fs)		7,
2378-TCDF	<2.0	ng/kg (dry weight)	AsureQuality Method (GC-MS/MS)
2378-TCDD	<2.0	ng/kg (dry weight)	AsureQuality Method (GC-MS/MS)
12378-PeCDF	<10	ng/kg (dry weight)	AsureQuality Method (GC-MS/MS)
23478-PeCDF	<10	ng/kg (dry weight)	AsureQuality Method (GC-MS/MS)
12378-PeCDD	<10	ng/kg (dry weight)	AsureQuality Method (GC-MS/MS)
123478-HxCDF	<10	ng/kg (dry weight)	AsureQuality Method (GC-MS/MS)
123678-HxCDF	<10	ng/kg (dry weight)	AsureQuality Method (GC-MS/MS)
234678-HxCDF	<10	ng/kg (dry weight)	AsureQuality Method (GC-MS/MS)
123789-HxCDF	<10	ng/kg (dry weight)	AsureQuality Method (GC-MS/MS)
123478-HxCDD	<10	ng/kg (dry weight)	AsureQuality Method (GC-MS/MS)
123678-HxCDD	<10	ng/kg (dry weight)	AsureQuality Method (GC-MS/MS)
123789-HxCDD	<10	ng/kg (dry weight)	AsureQuality Method (GC-MS/MS)
1234678-HpCDF	<10	ng/kg (dry weight)	AsureQuality Method (GC-MS/MS)
1234789-HpCDF	<10	ng/kg (dry weight)	AsureQuality Method (GC-MS/MS)
1234678-HpCDD	<20	ng/kg (dry weight)	AsureQuality Method (GC-MS/MS)
OCDF	<20	ng/kg (dry weight)	AsureQuality Method (GC-MS/MS)
OCDD	<100	ng/kg (dry weight)	AsureQuality Method (GC-MS/MS)
Total PCDD/F WHO-TEQ - Lowerbound	0.00	ng/kg (dry weight)	AsureQuality Method (GC-MS/MS)
Total PCDD/F WHO-TEQ - Mediumbound	11	ng/kg (dry weight)	AsureQuality Method (GC-MS/MS)
Total PCDD/F WHO-TEQ - Upperbound	23	ng/kg (dry weight)	AsureQuality Method (GC-MS/MS)
Total PCDD/F I-TEQ - Lowerbound	0.00	ng/kg (dry weight)	AsureQuality Method (GC-MS/MS)
Total PCDD/F I-TEQ - Mediumbound	10	ng/kg (dry weight)	AsureQuality Method (GC-MS/MS)
Total PCDD/F I-TEQ - Upperbound	20	ng/kg (dry weight)	AsureQuality Method (GC-MS/MS)
Clean-Up Standards			
³⁷ Cl₄ 2378-TCDD	72	%	AsureQuality Method (GC-MS/MS)

AsureQuality Ltd has used reasonable skill, care, and effort to provide an accurate analysis of the sample(s) which form(s) the subject of this report. However, the accuracy of this analysis is reliant on, and subject to, the sample(s) provided by you and your responsibility as to transportation of the sample(s). AsureQuality Ltd's standard terms of business apply to the analysis set out in this report.

AsureQuality Reference: 23-185534 Report Issued: 20-Jul-2023

Test	Result	Unit Method Reference	Method Reference
Internal Standards			
¹³ C ₁₂ 2378-TCDF	71	%	AsureQuality Method (GC-MS/MS)
¹³ C ₁₂ 2378-TCDD	74	%	AsureQuality Method (GC-MS/MS)
¹³ C ₁₂ 12378-PeCDF	72	%	AsureQuality Method (GC-MS/MS)
¹³ C ₁₂ 23478-PeCDF	93	%	AsureQuality Method (GC-MS/MS)
¹³ C ₁₂ 12378-PeCDD	80	%	AsureQuality Method (GC-MS/MS)
¹³ C ₁₂ 123478-HxCDF	57	%	AsureQuality Method (GC-MS/MS)
¹³ C ₁₂ 123678-HxCDF	65	%	AsureQuality Method (GC-MS/MS)
¹³ C ₁₂ 234678-HxCDF	90	%	AsureQuality Method (GC-MS/MS)
¹³ C ₁₂ 123789-HxCDF	73	%	AsureQuality Method (GC-MS/MS)
¹³ C ₁₂ 123478-HxCDD	62	%	AsureQuality Method (GC-MS/MS)
¹³ C ₁₂ 123678-HxCDD	73	%	AsureQuality Method (GC-MS/MS)
¹³ C ₁₂ 1234678-HpCDF	56	%	AsureQuality Method (GC-MS/MS)
¹³ C ₁₂ 1234789-HpCDF	58	%	AsureQuality Method (GC-MS/MS)
¹³ C ₁₂ 1234678-HpCDD	81	%	AsureQuality Method (GC-MS/MS)
13C ₁₂ OCDD	50	%	AsureQuality Method (GC-MS/MS)

Customer Sample Name: B67 HA02 0.10 [3299078.229]

Lab ID: 23-185534-2

Sample Description: 3318172.2	-
-------------------------------	---

Sample Condition: Acceptable	Sampled Date: 07-Jul-2023			
Test	Result	Unit	Method Referen	ce
Polychlorinated Dibenzo-p-dioxins and Polychlo	orinated Dibenzofurans (PCDD/Fs)			
2378-TCDF	<5.0	ng/kg (dry weight)	AsureQuality Method	d (GC-MS/MS)
2378-TCDD	<5.0	ng/kg (dry weight)	AsureQuality Method	d (GC-MS/MS)
12378-PeCDF	<10	ng/kg (dry weight)	AsureQuality Method	d (GC-MS/MS)
23478-PeCDF	<10	ng/kg (dry weight)	AsureQuality Method	d (GC-MS/MS)
12378-PeCDD	<10	ng/kg (dry weight)	AsureQuality Method	d (GC-MS/MS)
123478-HxCDF	<10	ng/kg (dry weight)	AsureQuality Method	d (GC-MS/MS)
123678-HxCDF	<10	ng/kg (dry weight)	AsureQuality Method	d (GC-MS/MS)
234678-HxCDF	*10	ng/kg (dry weight)	AsureQuality Method	d (GC-MS/MS)
123789-HxCDF	<10	ng/kg (dry weight)	AsureQuality Method	d (GC-MS/MS)
123478-HxCDD	<10	ng/kg (dry weight)	AsureQuality Method	d (GC-MS/MS)
123678-HxCDD	<10.	ng/kg (dry weight)	AsureQuality Method	d (GC-MS/MS)
123789-HxCDD	<10	ng/kg (dry weight)	AsureQuality Method	d (GC-MS/MS)
1234678-HpCDF	\$10	ng/kg (dry weight)	AsureQuality Method	d (GC-MS/MS)
1234789-HpCDF	<10	ng/kg (dry weight)	AsureQuality Method	d (GC-MS/MS)
1234678-HpCDD	<50	ng/kg (dry weight)	AsureQuality Method	d (GC-MS/MS)
OCDF	<20	ng/kg (dry weight)	AsureQuality Method	d (GC-MS/MS)
OCDD	<200	ng/kg (dry weight)	AsureQuality Method	d (GC-MS/MS)
Total PCDD/F WHO-TEQ - Lowerbound	0.00	ng/kg (dry weight)	AsureQuality Method	d (GC-MS/MS)
Total PCDD/F WHO-TEQ - Mediumbound	13	ng/kg (dry weight)	AsureQuality Method	d (GC-MS/MS)
Total PCDD/F WHO-TEQ - Upperbound	27	ng/kg (dry weight)	AsureQuality Method	d (GC-MS/MS)
Total PCDD/F I-TEQ - Lowerbound	0.00	ng/kg (dry weight)	AsureQuality Method	d (GC-MS/MS)
Total PCDD/F I-TEQ - Mediumbound	12	ng/kg (dry weight)	AsureQuality Method	d (GC-MS/MS)
Total PCDD/F I-TEQ - Upperbound	24	ng/kg (dry weight)	AsureQuality Method	d (GC-MS/MS)
Clean-Up Standards				
³⁷ Cl ₄ 2378-TCDD	16 (R)	%	AsureQuality Method	d (GC-MS/MS)
Internal Standards				
¹³ C ₁₂ 2378-TCDF	12 (R)	%	AsureQuality Method	d (GC-MS/MS)
¹³ C ₁₂ 2378-TCDD	16 (R)	%	AsureQuality Method	d (GC-MS/MS)

AsureQuality Reference: 23-185534 Report Issued: 20-Jul-2023

Test	Result	Unit	Method Reference
¹³ C ₁₂ 12378-PeCDF	47	%	AsureQuality Method (GC-MS/MS)
¹³ C ₁₂ 23478-PeCDF	65	%	AsureQuality Method (GC-MS/MS)
¹³ C ₁₂ 12378-PeCDD	62	%	AsureQuality Method (GC-MS/MS)
¹³ C ₁₂ 123478-HxCDF	52	%	AsureQuality Method (GC-MS/MS)
¹³ C ₁₂ 123678-HxCDF	53	%	AsureQuality Method (GC-MS/MS)
¹³ C ₁₂ 234678-HxCDF	102	%	AsureQuality Method (GC-MS/MS)
¹³ C ₁₂ 123789-HxCDF	77	%	AsureQuality Method (GC-MS/MS)
¹³ C ₁₂ 123478-HxCDD	70	%	AsureQuality Method (GC-MS/MS)
¹³ C ₁₂ 123678-HxCDD	67	%	AsureQuality Method (GC-MS/MS)
¹³ C ₁₂ 1234678-HpCDF	46	%	AsureQuality Method (GC-MS/MS)
¹³C₁₂ 1234789-HpCDF	56	%	AsureQuality Method (GC-MS/MS)
¹³ C ₁₂ 1234678-HpCDD	65	%	AsureQuality Method (GC-MS/MS)
¹³ C ₁₂ OCDD	71	%	AsureQuality Method (GC-MS/MS)

R = Recovery outside method limits

Analysis Summary

Wellington Laboratory

Analysis Method Accreditation **Authorised by**

Polychlorinated Dibenzo-p-dioxins and Polychlorinated Dibenzofurans (PCDD/Fs)

DX-DIOX06, 01-DEFAULT

AsureQuality Method (GC-MS/MS)

Phil Bridgen

The total toxic equivalence (TEQ) is calculated for each sample using both WHO toxic equivalency factors (WHO-TEFs; Van den Berg et al., 2005) and international toxic equivalency factors (I-TEFs; Kutz et al., 1990).

Lowerbound concept uses zero for the contribution of each non-quantified analyte. Mediumbound conce analyte. Upperbound concept uses the reporting limit for the contribution for each non-quantified analyte

Results that are prefixed with '<' indicate the lowest level at which the analyte can be reported, and that in this case the analyte was not observed above this limit. Jacilyely ill

Phil Bridgen Senior Scientist

Accreditation

AsureQuality Reference: 23-185534 Report Issued: 20-Jul-2023

Appendix

Analyte LOR Summary

Analyte	LOR
2378-TCDF	2.0 ng/kg (dry weight)
2378-TCDD	2.0 ng/kg (dry weight)
12378-PeCDF	10 ng/kg (dry weight)
23478-PeCDF	10 ng/kg (dry weight)
12378-PeCDD	10 ng/kg (dry weight)
123478-HxCDF	10 ng/kg (dry weight)
123678-HxCDF	10 ng/kg (dry weight)
234678-HxCDF	10 ng/kg (dry weight)
123789-HxCDF	10 ng/kg (dry weight)
123478-HxCDD	10 ng/kg (dry weight)
123678-HxCDD	10 ng/kg (dry weight)
123789-HxCDD	10 ng/kg (dry weight)
1234678-HpCDF	10 ng/kg (dry weight)
1234789-HpCDF	10 ng/kg (dry weight)
1234678-HpCDD	10 ng/kg (dry weight)
OCDF	20 ng/kg (dry weight)
OCDD	20 ng/kg (dry weight)

Analyte Definitions

eq 1 saland Polychlorinated Dibenzo-p-dioxins and Polychlorinated Dibenzofurans (PCDD/Fs) - AsureQuality Method (GC-MS/MS)

Analyte	Full Name
2378-TCDF	2,3,7,8-Tetrachlorodibenzofuran
2378-TCDD	2,3,7,8-Tetrachlorodibenzodioxin
12378-PeCDF	1,2,3,7,8-Pentachlorodibenzofuran
23478-PeCDF	2,3,4,7,8-Pentachlorodibenzofuran
12378-PeCDD	1,2,3,7,8-Pentachlorodibenzodioxin
123478-HxCDF	1,2,3,4,7,8-Hexachlorodibenzofuran
123678-HxCDF	1,2,3,6,7,8-Hexachlorodibenzofuran
234678-HxCDF	2,3,4,6,7,8-Hexachlorodibenzofuran
123789-HxCDF	1,2,3,7,8,9-Hexachlorodibenzofuran
123478-HxCDD	1,2,3,4,7,8-Hexachlorodibenzodioxin
123678-HxCDD	1,2,3,6,7,8-Hexachlorodibenzodioxin
123789-HxCDD	1,2,3,7,8,9-Hexachlorodibenzodioxin
1234678-HpCDF	1,2,3,4,6,7,8-Heptachlorodibenzofuran
1234789-HpCDF	1,2,3,4,7,8,9-Heptachlorodibenzofuran
1234678-HpCDD	1,2,3,4,6,7,8-Heptachlorodibenzodioxin
OCDF	Octachlorodibenzofuran
OCDD	Octachlorodibenzodioxin

LOD = Limit of Detection LOR = Limit of Reporting NR = Not Reportable

R J Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205 Hamilton 3240 New Zealand ♦ 0508 HILL LAB (44 555 22)
 ♦ +64 7 858 2000
 ☑ mail@hill-labs.co.nz
 ⊕ www.hill-labs.co.nz

Certificate of Analysis

Page 1 of 11

Client: Contact: GHD Limited
David Jackson
C/- GHD Limited
PO Box 660

PO Box 660 Waikato Mail Centre Hamilton 3240

 Lab No:
 3362681

 Date Received:
 12-Sep-2023

 Date Reported:
 27-Sep-2023

 Quote No:
 124299

 Order No:
 12559090

 Client Reference:
 12559090

 Submitted By:
 David Jackson

Sample Type: Soil						
	Sample Name:	SB08 TP01 0.2	SB08 TP01 0.5	B68 HA01	WDH TP01 0.1	WDH TP02 0.1
	Campio Hamor	12-Sep-2023	12-Sep-2023	12-Sep-2023	12-Sep-2023	12-Sep-2023
	Lab Number:	3362681.1	3362681.2	3362681.4	3362681.5	3362681.8
Individual Tests						
Dry Matter	g/100g as rcvd	69	65	19.6	- \ 7	-
Total Recoverable Beryllium	mg/kg dry wt	1.0	1.1	0.2	0.9	0.9
8 Heavy metals plus Boron				0,	~'0	
Total Recoverable Arsenic	mg/kg dry wt	6	6	76	4	3
Total Recoverable Boron	mg/kg dry wt	< 20	< 20	101	< 20	< 20
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	< 0.10	0.40	0.11	< 0.10
Total Recoverable Chromium	mg/kg dry wt	15	13	46	12	14
Total Recoverable Copper	mg/kg dry wt	54	27	151	35	25
Total Recoverable Lead	mg/kg dry wt	18.8	18.6	17.5	38	24
Total Recoverable Mercury	mg/kg dry wt	0.19	0.13	< 0.10	0.17	< 0.10
Total Recoverable Nickel	mg/kg dry wt	16	8	70	6	8
Total Recoverable Zinc	mg/kg dry wt	41	39	670	61	58
Polychlorinated Biphenyls Sci	reening in Soil*					
PCB-18	mg/kg dry wt	< 0.010	< 0.010	-	-	-
PCB-28	mg/kg dry wt	< 0.010	< 0.010	-	-	-
PCB-31	mg/kg dry wt	< 0.010	< 0.010	-	-	-
PCB-44	mg/kg dry wt	< 0.010	< 0.010	-	-	-
PCB-49	mg/kg dry wt	< 0.010	< 0.010	-	-	-
PCB-52	mg/kg dry wt	< 0.010	< 0.010	-	-	-
PCB-60	mg/kg dry wt	< 0.010	< 0.010	-	-	-
PCB-77	mg/kg dry wt	< 0.010	< 0.010	-	-	-
PCB-81	mg/kg dry wt	< 0.010	< 0.010	-	-	-
PCB-86	mg/kg dry wt	< 0.010	< 0.010	-	-	-
PCB-101	mg/kg dry wt	< 0.010	< 0.010	-	-	-
PCB-105	mg/kg dry wt	< 0.010	< 0.010	-	-	-
PCB-110	mg/kg dry wt	< 0.010	< 0.010	-	-	-
PCB-114	mg/kg dry wt	< 0.010	< 0.010	-	-	-
PCB-118	mg/kg dry wt	< 0.010	< 0.010	-	-	-
PCB-121	mg/kg dry wt	< 0.010	< 0.010	-	-	-
PCB-123	mg/kg dry wt	< 0.010	< 0.010	-	-	-
PCB-126	mg/kg dry wt	< 0.010	< 0.010	-	-	-
PCB-128	mg/kg dry wt	< 0.010	< 0.010	-	-	-
PCB-138	mg/kg dry wt	< 0.010	< 0.010	-	-	-
PCB-141	mg/kg dry wt	< 0.010	< 0.010	-	-	-
PCB-149	mg/kg dry wt	< 0.010	< 0.010	-	-	-
PCB-151	mg/kg dry wt	< 0.010	< 0.010	-	-	-
PCB-153	mg/kg dry wt	< 0.010	< 0.010	-	-	-
PCB-156	mg/kg dry wt	< 0.010	< 0.010	-	-	-

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked * or any comments and interpretations, which are not accredited.

Sample Type: Soil						
	mple Name:	SB08 TP01 0.2 12-Sep-2023	SB08 TP01 0.5 12-Sep-2023	B68 HA01 12-Sep-2023	WDH TP01 0.1 12-Sep-2023	WDH TP02 0.1 12-Sep-2023
L	ab Number:	3362681.1	3362681.2	3362681.4	3362681.5	3362681.8
Polychlorinated Biphenyls Screen	ning in Soil*					
PCB-157	mg/kg dry wt	< 0.010	< 0.010	-	-	-
PCB-159	mg/kg dry wt	< 0.010	< 0.010	-	-	-
PCB-167	mg/kg dry wt	< 0.010	< 0.010	-	-	-
PCB-169	mg/kg dry wt	< 0.010	< 0.010	-	-	-
PCB-170	mg/kg dry wt	< 0.010	< 0.010	-	-	-
PCB-180	mg/kg dry wt	< 0.010	< 0.010	-	-	-
PCB-189	mg/kg dry wt	< 0.010	< 0.010	-	-	-
PCB-194	mg/kg dry wt	< 0.010	< 0.010	-	-	-
PCB-206	mg/kg dry wt	< 0.010	< 0.010	-	-	-
PCB-209	mg/kg dry wt	< 0.010	< 0.010	-	-	-
Mono-Ortho PCB Toxic Equivalence (TEF)*	mg/kg dry wt	< 0.000003	< 0.000003	-	-	\ <u>\ \</u>
Non-Ortho PCB Toxic Equivalence (TEF)*	mg/kg dry wt	< 0.0014	< 0.0014	-	3 -	7 (-)
Total PCB (Sum of 35 congeners)	mg/kg dry wt	< 0.4	< 0.4	-	Q , (1)	-
Haloethers in SVOC Soil Sample	s by GC-MS					
Bis(2-chloroethoxy) methane	mg/kg dry wt	-	-	< 1.6		-
Bis(2-chloroethyl)ether	mg/kg dry wt	-	-	< 1.6	1 (7)	-
Bis(2-chloroisopropyl)ether	mg/kg dry wt	-	-	< 1.6	1	-
4-Bromophenyl phenyl ether	mg/kg dry wt	-	7	< 1.6	-	-
4-Chlorophenyl phenyl ether	mg/kg dry wt	-	1-01	< 1.6	-	-
Nitrogen containing compounds	in SVOC Soil Sa	amples by GC-MS				ı
2,4-Dinitrotoluene	mg/kg dry wt	-	5 (Z)	<4	-	-
2,6-Dinitrotoluene	mg/kg dry wt	-	7 .	< 4	-	-
Nitrobenzene	mg/kg dry wt	- ,	-	< 1.6	-	-
N-Nitrosodi-n-propylamine	mg/kg dry wt	A-A	- 0	< 4	-	-
N-Nitrosodiphenylamine + Diphenylamine	mg/kg dry wt		.01	< 4	-	-
Organochlorine Pesticides in SV	OC Soil Samples	s by GC-MS	7/0			
Aldrin	mg/kg dry wt		-	< 1.6	_	-
alpha-BHC	mg/kg dry wt	- 0	-	< 1.6	_	_
beta-BHC	mg/kg dry wt	-	-	< 1.6	_	-
delta-BHC	mg/kg dry wt	-	-	< 1.6	-	-
gamma-BHC (Lindane)	mg/kg dry wt		-	< 1.6	-	-
4,4'-DDD	mg/kg dry wt	() -	-	< 1.6	_	-
4,4'-DDE	mg/kg dry wt	-	_	< 1.6	_	_
4,4'-DDT	mg/kg dry wt	-	_	< 4	_	_
Dieldrin	mg/kg dry wt	-	_	< 1.6	_	_
Endosulfan I	mg/kg dry wt	-	_	< 4	_	_
Endosulfan II	mg/kg dry wt	-	-	< 4	-	-
Endosulfan sulphate	mg/kg dry wt	-	-	< 4	_	-
Endrin	mg/kg dry wt	-	-	< 4	-	-
Endrin ketone	mg/kg dry wt	-	_	< 4	_	_
Heptachlor	mg/kg dry wt	-	-	< 1.6	_	-
Heptachlor epoxide	mg/kg dry wt	-	-	< 1.6	-	-
Hexachlorobenzene	mg/kg dry wt	-	-	< 1.6	_	-
Polycyclic Aromatic Hydrocarbon		Samples by GC-MS	*		I	I
Acenaphthene	mg/kg dry wt	- , , , , , , , , , , ,	-	< 0.8	_	-
Acenaphthylene	mg/kg dry wt	-	_	< 0.8	_	-
Anthracene	mg/kg dry wt	_	_	< 0.8	_	_
Benzo[a]anthracene	mg/kg dry wt	-	_	< 0.8	_	_
Benzo[a]pyrene (BAP)	mg/kg dry wt	-	_	< 1.6	_	_
Benzo[b]fluoranthene + Benzo[j]	mg/kg dry wt	-	-	< 1.6	_	-
fluoranthene Benzo[g,h,i]perylene	mg/kg dry wt	_	_	< 1.6	_	_
20.120[g,ri,i]poryiono	mg/ng dry Wt			- 1.0		

Sample Type: Soil						
	Sample Name:	SB08 TP01 0.2	SB08 TP01 0.5	B68 HA01	WDH TP01 0.1	WDH TP02 0.1
		12-Sep-2023	12-Sep-2023	12-Sep-2023	12-Sep-2023	12-Sep-2023
	Lab Number:	3362681.1	3362681.2	3362681.4	3362681.5	3362681.8
Polycyclic Aromatic Hydrocar		Samples by GC-MS	5* 			
Benzo[k]fluoranthene	mg/kg dry wt	-	-	< 1.6	-	-
1&2-Chloronaphthalene	mg/kg dry wt	-	-	< 1.1	-	-
Chrysene	mg/kg dry wt	-	-	< 0.8	-	-
Dibenzo[a,h]anthracene	mg/kg dry wt	-	-	< 1.6	-	-
Fluoranthene	mg/kg dry wt	-	-	< 0.8	-	-
Fluorene	mg/kg dry wt	-	-	< 0.8	-	-
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	-	-	< 1.6	-	-
2-Methylnaphthalene	mg/kg dry wt	-	-	< 0.8	-	-
Naphthalene	mg/kg dry wt	-	-	< 0.8	-	-
Phenanthrene	mg/kg dry wt	-	-	< 0.8	-	-
Pyrene	mg/kg dry wt	-	-	< 0.8	-	-
Benzo[a]pyrene Potency Equivalency Factor (PEF) NE	mg/kg dry wt	-	-	< 3.7	-	\Q
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	-	-	< 3.6		-
Phenols in SVOC Soil Sample	es by GC-MS				<u> </u>	<u> </u>
4-Chloro-3-methylphenol	mg/kg dry wt	-	-	< 5		-
2-Chlorophenol	mg/kg dry wt	-	-	< 1.6	60	-
2,4-Dichlorophenol	mg/kg dry wt	-	-	< 1.6	10	-
2,4-Dimethylphenol	mg/kg dry wt	-	-	< 3		-
3 & 4-Methylphenol (m- + p-cresol)	mg/kg dry wt	-	.0	< 4	-	-
2-Methylphenol (o-cresol)	mg/kg dry wt	-		< 1.6	-	-
2-Nitrophenol	mg/kg dry wt	-	- (7-1)	< 5	_	-
Pentachlorophenol (PCP)	mg/kg dry wt	-		< 40	-	-
Phenol	mg/kg dry wt	-	_	< 4	-	-
2,4,5-Trichlorophenol	mg/kg dry wt		- ^	< 4	-	-
2,4,6-Trichlorophenol	mg/kg dry wt	13	- ()	< 4	-	-
Plasticisers in SVOC Soil Sar	mples by GC-MS		•. ()			
Bis(2-ethylhexyl)phthalate	mg/kg dry wt	10	X \ -	< 7	-	-
Butylbenzylphthalate	mg/kg dry wt	-	7 -	< 4	-	-
Di(2-ethylhexyl)adipate	mg/kg dry wt	- 0	-	< 1.6	-	-
Diethylphthalate	mg/kg dry wt		-	< 4	-	-
Dimethylphthalate	mg/kg dry wt	-	_	< 4	-	-
Di-n-butylphthalate	mg/kg dry wt	-	-	< 4	-	-
Di-n-octylphthalate	mg/kg dry wt	(U.	-	< 4	-	-
Other Halogenated compound		mples by GC-MS	1	1		1
1,2-Dichlorobenzene	mg/kg dry wt	-	_	< 4	-	_
1,3-Dichlorobenzene	mg/kg dry wt	-	-	< 4	-	-
1,4-Dichlorobenzene	mg/kg dry wt	-	-	< 4	-	-
Hexachlorobutadiene	mg/kg dry wt	-	-	< 4	-	-
Hexachloroethane	mg/kg dry wt	-	_	< 4	-	-
1,2,4-Trichlorobenzene	mg/kg dry wt	-	-	< 1.6	-	-
Other compounds in SVOC S			1	I .		
Benzyl alcohol	mg/kg dry wt	-	_	< 16	-	_
Carbazole	mg/kg dry wt		_	< 1.6	<u>-</u>	_
Dibenzofuran	mg/kg dry wt		_	< 1.6	<u>-</u>	_
Isophorone	mg/kg dry wt	<u> </u>	_	< 1.6	<u>-</u>	-
Total Petroleum Hydrocarbon				1.0		
C7 - C9	mg/kg dry wt	< 30	< 30	< 70	-	_
C10 - C14	mg/kg dry wt	< 20	< 20	< 60	-	-
C10 - C14 C15 - C36	mg/kg dry wt	< 40	< 40	< 120	-	-
Total hydrocarbons (C7 - C36		< 90	< 90	< 300	-	-
Total Hydrocarbons (C7 - C30	, mg/kg dry Wt	> 90	> 50	> 300	-	-

Sample Type: Soll	Sample Type: Soil					
San	nple Name:	SB08 TP01 0.2	SB08 TP01 0.5	B68 HA01	WDH TP01 0.1	WDH TP02 0.1
La	b Number:	12-Sep-2023 3362681.1	12-Sep-2023 3362681.2	12-Sep-2023 3362681.4	12-Sep-2023 3362681.5	12-Sep-2023 3362681.8
BTEX in VOC Soils by Headspace		3302001.1	3302001.2	3302001.4	3302001.3	3302001.0
Benzene	mg/kg dry wt		_	< 1.8	-	-
Ethylbenzene	mg/kg dry wt		_	< 1.8	_	_
Toluene	mg/kg dry wt		_	< 1.8	_	_
m&p-Xylene	mg/kg dry wt		_	< 4		
o-Xylene	mg/kg dry wt		_	< 1.8	_	_
Halogenated Aliphatics in VOC So		ice GC-MS		11.0		
Bromomethane (Methyl Bromide)	mg/kg dry wt	-	_	< 1.8	-	-
Carbon tetrachloride	mg/kg dry wt	<u> </u>	_	< 1.8	<u> </u>	<u>-</u>
Chloroethane	mg/kg dry wt		<u> </u>	< 1.8	<u>-</u>	
Chloromethane	mg/kg dry wt		_	< 1.8	_	_
1,2-Dibromo-3-chloropropane	mg/kg dry wt		_	< 1.8	_	A -
1,2-Dibromoethane (ethylene	mg/kg dry wt		_	< 1.8	A -	
dibromide, EDB)						70
Dibromomethane	mg/kg dry wt	-	-	< 1.8	77.	-
1,3-Dichloropropane	mg/kg dry wt	-	-	< 1.8	Y - 1	-
Dichlorodifluoromethane	mg/kg dry wt	-	-	< 1.8	-//	-
1,1-Dichloroethane	mg/kg dry wt	-	-	< 1.8	•/>	-
1,2-Dichloroethane	mg/kg dry wt	-	-	< 1.8	10	-
1,1-Dichloroethene	mg/kg dry wt	-	-	< 1.8		-
cis-1,2-Dichloroethene	mg/kg dry wt	-	- (/	< 1.8	-	-
trans-1,2-Dichloroethene	mg/kg dry wt	-	-01	< 1.8	-	-
Dichloromethane (methylene chloride)	mg/kg dry wt	-		< 40	-	-
1,2-Dichloropropane	mg/kg dry wt	-	70	< 1.8	-	-
1,1-Dichloropropene	mg/kg dry wt	-	- 5	< 1.8	-	-
cis-1,3-Dichloropropene	mg/kg dry wt	-	-	< 1.8	-	-
trans-1,3-Dichloropropene	mg/kg dry wt	1-7	- (< 1.8	-	-
Hexachlorobutadiene	mg/kg dry wt	0.//		< 1.8	-	-
1,1,1,2-Tetrachloroethane	mg/kg dry wt	10		< 1.8	-	-
1,1,2,2-Tetrachloroethane	mg/kg dry wt	<u> </u>	11-	< 1.8	-	-
Tetrachloroethene (tetrachloroethylene)	mg/kg dry wt	-	O	< 1.8	-	-
1,1,1-Trichloroethane	mg/kg dry wt		-	< 1.8	-	-
1,1,2-Trichloroethane	mg/kg dry wt	-	-	< 1.8	-	-
Trichloroethene (trichloroethylene)	mg/kg dry wt	(O)	-	< 1.8	-	-
Trichlorofluoromethane	mg/kg dry wt	-	-	< 1.8	-	-
1,2,3-Trichloropropane	mg/kg dry wt	-	-	< 1.8	-	-
1,1,2-Trichlorotrifluoroethane (Freon 113)	mg/kg dry wt	-	-	< 1.8	-	-
Vinyl chloride	mg/kg dry wt	-	-	< 1.8	-	-
Haloaromatics in VOC Soils by He	adspace GC-N	/IS				
Bromobenzene	mg/kg dry wt	-	-	< 1.8	-	-
1,3-Dichlorobenzene	mg/kg dry wt	-	-	< 1.8	-	-
4-Chlorotoluene	mg/kg dry wt	-	-	< 1.8	-	-
Chlorobenzene (monochlorobenzene)	mg/kg dry wt	-	-	< 1.8	-	-
1,2-Dichlorobenzene	mg/kg dry wt	-	-	< 1.8	-	-
1,4-Dichlorobenzene	mg/kg dry wt	-	-	< 1.8	-	-
2-Chlorotoluene	mg/kg dry wt	-	-	< 1.8	-	-
1,2,3-Trichlorobenzene	mg/kg dry wt	-	-	< 1.8	-	-
1,2,4-Trichlorobenzene	mg/kg dry wt	-	-	< 1.8	-	-
1,3,5-Trichlorobenzene	mg/kg dry wt	-	-	< 1.8	-	-
Monoaromatic Hydrocarbons in VC	OC Soils by He	adspace GC-MS				
n-Butylbenzene	mg/kg dry wt	-	-	< 1.8	-	-
tert-Butylbenzene	mg/kg dry wt	-	-	< 1.8	-	-

Sample Type: Soil						
	Sample Name:	SB08 TP01 0.2 12-Sep-2023	SB08 TP01 0.5 12-Sep-2023	B68 HA01 12-Sep-2023	WDH TP01 0.1 12-Sep-2023	WDH TP02 0.1 12-Sep-2023
	Lab Number:	3362681.1	3362681.2	3362681.4	3362681.5	3362681.8
Monoaromatic Hydrocarbons in	n VOC Soils by He	adspace GC-MS				
Isopropylbenzene (Cumene)	mg/kg dry wt	-	-	< 1.8	-	-
4-Isopropyltoluene (p-Cymene)	mg/kg dry wt	-	-	< 1.8	-	-
n-Propylbenzene	mg/kg dry wt	-	-	< 1.8	-	-
sec-Butylbenzene	mg/kg dry wt	-	-	< 1.8	-	-
Styrene	mg/kg dry wt	-	-	< 1.8	-	-
1,2,4-Trimethylbenzene	mg/kg dry wt	-	-	< 1.8	-	-
1,3,5-Trimethylbenzene	mg/kg dry wt	-	-	< 1.8	-	-
Ketones in VOC Soils by Head						
2-Butanone (MEK)	mg/kg dry wt	_	_	< 400	_	
4-Methylpentan-2-one (MIBK)	mg/kg dry wt	_	_	< 80	_	_
Acetone Acetone	mg/kg dry wt	_	_	< 400	_	A -
Methyl tert-butylether (MTBE)	mg/kg dry wt	<u>-</u>	_	< 1.8	-	
		-	-	< 1.0	-	
Trihalomethanes in VOC Soils	·		I		<i>N</i>	<u> </u>
Bromodichloromethane	mg/kg dry wt	-	-	< 1.8	J - 6	· -
Bromoform (tribromomethane)	mg/kg dry wt	-	-	< 1.8	· - / · /	-
Chloroform (Trichloromethane)	0 0 ,	-	-	< 1.8		-
Dibromochloromethane	mg/kg dry wt	-	-	< 1.8	~0	-
Other VOC in Soils by Headsp	ace GC-MS				1 ()	
Carbon disulphide	mg/kg dry wt	-	-	< 0.4	-	-
Naphthalene	mg/kg dry wt	-	- ~ (< 1.8	-	-
	Sample Name:	WDH TP03 0.1 12-Sep-2023	WDH TP03 0.5 12-Sep-2023	WDG TP01 0.1 12-Sep-2023	WDG TP02 0.1 12-Sep-2023	WDG TP03 0.1 12-Sep-2023
	Lab Number:	3362681.11	3362681.12	3362681.14	3362681.17	3362681.20
Individual Tests						
Total Recoverable Beryllium	mg/kg dry wt	1.4	1.9	1.3	0.8	1.6
8 Heavy metals plus Boron					0.0	
Total Recoverable Arsenic	mg/kg dry wt	4	3	5	5	4
Total Recoverable Boron		< 20	< 20	< 20	< 20	< 20
Total Recoverable Cadmium	mg/kg dry wt mg/kg dry wt	0.12	< 0.10	0.12	< 0.10	< 0.10
	mg/kg dry wt					
Total Recoverable Chromium		20	24	18	12	22
Total Recoverable Copper	mg/kg dry wt		101	47	21	61
Total Recoverable Lead	mg/kg dry wt	48	16.0	44	18.6	16.3
Total Recoverable Mercury	mg/kg dry wt	0.18	0.25	0.17	0.16	0.27
Total Recoverable Nickel	mg/kg dry wt	13	13	9	6	11
Total Recoverable Zinc	mg/kg dry wt	103	53	66	31	62
	Sample Name:	WDG TP03 0.5	WDF TP01 0.1	WDF TP02 0.1	WDF TP03 0.1	WDF TP03 0.5
		12-Sep-2023	11-Sep-2023	11-Sep-2023	11-Sep-2023	11-Sep-2023
	Lab Number:	3362681.21	3362681.23	3362681.26	3362681.29	3362681.30
Individual Tests						
Total Recoverable Beryllium	mg/kg dry wt	1.8	1.0	1.3	2.2	2.3
8 Heavy metals plus Boron						
Total Recoverable Arsenic	mg/kg dry wt	3	5	4	4	3
Total Recoverable Boron	mg/kg dry wt	< 20	< 20	< 20	< 20	< 20
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	0.11	0.15	< 0.10	< 0.10
Total Recoverable Chromium	mg/kg dry wt	25	14	18	27	26
Total Recoverable Copper	mg/kg dry wt	41	33	61	85	35
Total Recoverable Lead	mg/kg dry wt	16.4	33	320	19.5	20
Total Recoverable Mercury	mg/kg dry wt	0.35	0.17	0.23	0.27	0.12
Total Recoverable Nickel	mg/kg dry wt	9	8	9	11	10
Total Recoverable Zinc	mg/kg dry wt	58	56	91	47	53
	Sample Name:	NW FILL TP01	NW FILL TP01	NW FILL TP02	NW FILL TP03	NW FILL TP03
	Lab Number:	0.1 11-Sep-2023 3362681.32	0.5 11-Sep-2023 3362681.33	0.1 11-Sep-2023 3362681.35	0.1 11-Sep-2023 3362681.38	0.5 11-Sep-2023 3362681.39
	Lau Mulliber:	JJUZUU 1.3Z	JJUZUU 1.JJ	0002001.00	JJUZUU 1.30	3302001.38

Individual Tests Dry Matter	Sample Name: Lab Number:	NW FILL TP01 0.1 11-Sep-2023 3362681.32	NW FILL TP01 0.5 11-Sep-2023 3362681.33	NW FILL TP02 0.1 11-Sep-2023 3362681.35	NW FILL TP03 0.1 11-Sep-2023 3362681.38	NW FILL TP03 0.5 11-Sep-2023
Dry Matter	Lab Number:					
Dry Matter	Lab Number:	3362681.32	3362681.33	3362681 35	336368138	
Dry Matter				0002001.00	3302001.30	3362681.39
•						
	g/100g as rcvd	60	64	68	64	70
Total Recoverable Beryllium	mg/kg dry wt	1.0	0.8	0.8	1.0	0.6
8 Heavy metals plus Boron			í			Í
Total Recoverable Arsenic	mg/kg dry wt	6	5	4	4	4
Total Recoverable Boron	mg/kg dry wt	< 20	< 20	< 20	< 20	< 20
Total Recoverable Cadmium	mg/kg dry wt	0.18	< 0.10	0.22	0.34	< 0.10
Total Recoverable Chromium	mg/kg dry wt	10	12	8	8	12
Total Recoverable Copper	mg/kg dry wt	25	19	28	26	13
Total Recoverable Lead	mg/kg dry wt	13.6	15.3	15.0	12.4	14.4
Total Recoverable Mercury	mg/kg dry wt	0.19	0.12	0.15	0.17	0.12
Total Recoverable Nickel	mg/kg dry wt	5	6	4	4	5
Total Recoverable Zinc	mg/kg dry wt	43	31	71	50	26
Haloethers in SVOC Soil Samp					N	
Bis(2-chloroethoxy) methane	mg/kg dry wt	< 0.5	< 0.5	< 0.5	≤ 0.5	< 0.5
Bis(2-chloroethyl)ether	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Bis(2-chloroisopropyl)ether	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4-Bromophenyl phenyl ether	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4-Chlorophenyl phenyl ether	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Nitrogen containing compound						
2,4-Dinitrotoluene	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,6-Dinitrotoluene	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Nitrobenzene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-Nitrosodi-n-propylamine	mg/kg dry wt	< 1.0	< 1.0	< 0.9	< 1.0	< 0.9
N-Nitrosodiphenylamine + Diphenylamine	mg/kg dry wt	< 1.0	< 1.0	< 0.9	< 1.0	< 0.9
Organochlorine Pesticides in S	SVOC Soil Samples	s by GC-MS				
Aldrin	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
alpha-BHC	mg/kg dry wt	< 0.5	♦ < 0.5	< 0.5	< 0.5	< 0.5
beta-BHC	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
delta-BHC	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
gamma-BHC (Lindane)	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4,4'-DDD	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4,4'-DDE	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4,4'-DDT	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dieldrin	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Endosulfan I	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Endosulfan II	mg/kg dry wt	< 2	< 2	< 2	< 2	< 2
Endosulfan sulphate	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Endrin	mg/kg dry wt	< 1.0	< 1.0	< 0.9	< 1.0	< 0.9
Endrin ketone	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Heptachlor	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Heptachlor epoxide	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Hexachlorobenzene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Polycyclic Aromatic Hydrocarbo						
Acenaphthene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo[a]anthracene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo[b]fluoranthene + Benzo[j] mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
fluoranthene					405	< 0.5
fluoranthene Benzo[g,h,i]perylene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	mg/kg dry wt mg/kg dry wt	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5
Benzo[g,h,i]perylene						

Sample Type: Soil						
	Sample Name:	NW FILL TP01	NW FILL TP01		NW FILL TP03	NW FILL TP03
	Lab Number:	0.1 11-Sep-2023 3362681.32	0.5 11-Sep-202 3362681.33	33 0.1 11-Sep-2023 3362681.35	0.1 11-Sep-2023 3362681.38	0.5 11-Sep-2023 3362681.39
Polycyclic Aromatic Hydroca				0002001.00	0002001.00	0002001.00
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-Methylnaphthalene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo[a]pyrene Potency	mg/kg dry wt	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3
Equivalency Factor (PEF) NE Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3
Phenols in SVOC Soil Samp	les by GC-MS					
4-Chloro-3-methylphenol	mg/kg dry wt	< 5	< 5	< 5	< 5	< 5
2-Chlorophenol	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,4-Dichlorophenol	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,4-Dimethylphenol	mg/kg dry wt	< 3	< 3	< 3	< 3	< 3
3 & 4-Methylphenol (m- + p-cresol)	mg/kg dry wt	< 3	< 3	C 2 3	030	< 3
2-Methylphenol (o-cresol)	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Nitrophenol	mg/kg dry wt	< 5	< 5	< 5	< 5	< 5
Pentachlorophenol (PCP)	mg/kg dry wt	< 30	< 30	< 30	< 30	< 30
Phenol	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,4,5-Trichlorophenol	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,4,6-Trichlorophenol	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Plasticisers in SVOC Soil Sa	amples by GC-MS					
Bis(2-ethylhexyl)phthalate	mg/kg dry wt	< 5	< 5	< 5	< 5	< 5
Butylbenzylphthalate	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Di(2-ethylhexyl)adipate	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Diethylphthalate	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dimethylphthalate	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Di-n-butylphthalate	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Di-n-octylphthalate	mg/kg dry wt	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Other Halogenated compoun	ids in SVOC Soil Sa	mples by GC-MS				
1,2-Dichlorobenzene	mg/kg dry wt	< 1.0	< 1.0	< 0.9	< 1.0	< 0.9
1,3-Dichlorobenzene	mg/kg dry wt	< 1.0	< 1.0	< 0.9	< 1.0	< 0.9
1,4-Dichlorobenzene	mg/kg dry wt	< 1.0	< 1.0	< 0.9	< 1.0	< 0.9
Hexachlorobutadiene	mg/kg dry wt	< 1.0	< 1.0	< 0.9	< 1.0	< 0.9
Hexachloroethane	mg/kg dry wt	< 1.0	< 1.0	< 0.9	< 1.0	< 0.9
1,2,4-Trichlorobenzene	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Other compounds in SVOC	Soil Samples by GC	-MS				
Benzyl alcohol	mg/kg dry wt	< 10	< 10	< 10	< 10	< 10
Carbazole	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Dibenzofuran	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Isophorone	mg/kg dry wt	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Sample Name:	NW FILL TP 11-Sep-2	023	DUP J1 12-Sep-202		2 12-Sep-2023
	Lab Number:	3362681	.40	3362681.45	33	362681.46
Individual Tests			1			
Dry Matter	g/100g as rcvd	65		64		84
Total Recoverable Beryllium	mg/kg dry wt	1.0		0.8		0.8
8 Heavy metals plus Boron						
Total Recoverable Arsenic	mg/kg dry wt	5		4		3
Total Recoverable Boron	mg/kg dry wt	< 20		< 20		< 20
Total Recoverable Cadmium	mg/kg dry wt	0.13		< 0.10		< 0.10

Sample Type: Soil						
Sai	mple Name:	NW FILL TP04 0.1	DUP J1 12-Sep-2023	DUP J2 12-Sep-2023		
	ab Number:	11-Sep-2023 3362681.40	3362681.45	3362681.46		
8 Heavy metals plus Boron	ab Nullibel.	3302001.40	3302001.43	0002001.40		
Total Recoverable Chromium	mg/kg dry wt	11	12	13		
Total Recoverable Copper	mg/kg dry wt	19	19	25		
Total Recoverable Lead	mg/kg dry wt	14.9	15.8	26		
Total Recoverable Mercury	mg/kg dry wt	0.27	0.14	< 0.10		
Total Recoverable Nickel	mg/kg dry wt	3	6	8		
Total Recoverable Zinc	mg/kg dry wt	27	30	58		
Polycyclic Aromatic Hydrocarbons						
Total of Reported PAHs in Soil	mg/kg dry wt	-	< 0.4	2.4		
1-Methylnaphthalene	mg/kg dry wt		< 0.016	< 0.012		
2-Methylnaphthalene	mg/kg dry wt	<u> </u>	< 0.016	< 0.012		
Acenaphthylene	mg/kg dry wt		< 0.016	< 0.012		
Acenaphthene	mg/kg dry wt		< 0.016	< 0.012		
Anthracene	mg/kg dry wt		< 0.016	0.021		
Benzo[a]anthracene	mg/kg dry wt		< 0.016	0.20		
Benzo[a]pyrene (BAP)	mg/kg dry wt	<u> </u>	< 0.016	0.25		
Benzo[a]pyrene Potency	mg/kg dry wt	<u>-</u>	< 0.037	0.37		
Equivalency Factor (PEF) NES*						
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	-	< 0.037	0.37		
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	-	< 0.016	0.29		
Benzo[e]pyrene	mg/kg dry wt	-	< 0.016	0.153		
Benzo[g,h,i]perylene	mg/kg dry wt	-	< 0.016	0.179		
Benzo[k]fluoranthene	mg/kg dry wt	- ~ (1)	< 0.016	0.131		
Chrysene	mg/kg dry wt		< 0.016	0.165		
Dibenzo[a,h]anthracene	mg/kg dry wt	-	< 0.016	0.034		
Fluoranthene	mg/kg dry wt	-	< 0.016	0.36		
Fluorene	mg/kg dry wt		< 0.016	< 0.012		
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt		< 0.016	0.178		
Naphthalene	mg/kg dry wt	10 · X/0	< 0.08	< 0.06		
Perylene	mg/kg dry wt	-00	< 0.016	0.057		
Phenanthrene	mg/kg dry wt	, ~0.	< 0.016	0.047		
Pyrene	mg/kg dry wt	-	< 0.016	0.35		
Haloethers in SVOC Soil Samples	s by GC-MS					
Bis(2-chloroethoxy) methane	mg/kg dry wt	< 0.5	-	-		
Bis(2-chloroethyl)ether	mg/kg dry wt	< 0.5	-	-		
Bis(2-chloroisopropyl)ether	mg/kg dry wt	< 0.5	-	-		
4-Bromophenyl phenyl ether	mg/kg dry wt	< 0.5	-	-		
4-Chlorophenyl phenyl ether	mg/kg dry wt	< 0.5	-	-		
Nitrogen containing compounds	in SVOC Soil Sa	amples by GC-MS				
2,4-Dinitrotoluene	mg/kg dry wt	< 1.0	-	-		
2,6-Dinitrotoluene	mg/kg dry wt	< 1.0	-	-		
Nitrobenzene	mg/kg dry wt	< 0.5	-	-		
N-Nitrosodi-n-propylamine	mg/kg dry wt	< 0.9	-	-		
N-Nitrosodiphenylamine + Diphenylamine	mg/kg dry wt	< 0.9	-	-		
Organochlorine Pesticides in SV0	DC Soil Sample:	s by GC-MS				
Aldrin	mg/kg dry wt	< 0.5	-	_		
alpha-BHC	mg/kg dry wt	< 0.5	-	-		
beta-BHC	mg/kg dry wt	< 0.5	-	-		
delta-BHC	mg/kg dry wt	< 0.5	-	-		
gamma-BHC (Lindane)	mg/kg dry wt	< 0.5	-	-		
4,4'-DDD	mg/kg dry wt	< 0.5	-	-		
4,4'-DDE	mg/kg dry wt	< 0.5	-	-		
4,4'-DDT	mg/kg dry wt	< 1.0	-	-		
Dieldrin	mg/kg dry wt	< 0.5	-	-		
	,					

Sample Type: Soil				
Sai	mple Name:	NW FILL TP04 0.1	DUP J1 12-Sep-2023	DUP J2 12-Sep-2023
		11-Sep-2023		000004.40
	ab Number:	3362681.40	3362681.45	3362681.46
Organochlorine Pesticides in SVC				
Endosulfan I	mg/kg dry wt	< 1.0	-	-
Endosulfan II	mg/kg dry wt	< 2	-	-
Endosulfan sulphate	mg/kg dry wt	< 1.0	-	-
Endrin	mg/kg dry wt	< 0.9	-	-
Endrin ketone	mg/kg dry wt	< 1.0	-	-
Heptachlor	mg/kg dry wt	< 0.5	-	-
Heptachlor epoxide	mg/kg dry wt	< 0.5	-	-
Hexachlorobenzene	mg/kg dry wt	< 0.5	-	-
Polycyclic Aromatic Hydrocarbons		<u> </u>		
Acenaphthene	mg/kg dry wt	< 0.5	-	-
Acenaphthylene	mg/kg dry wt	< 0.5	-	-
Anthracene	mg/kg dry wt	< 0.5	-	-
Benzo[a]anthracene	mg/kg dry wt	< 0.5	-	
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.5	-	
Benzo[b]fluoranthene + Benzo[j]	mg/kg dry wt	< 0.5	-7	
fluoranthene		. 0.5		
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.5		
Benzo[k]fluoranthene	mg/kg dry wt	< 0.5		-
1&2-Chloronaphthalene	mg/kg dry wt	< 0.5	72. (1)	-
Chrysene	mg/kg dry wt	< 0.5		-
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.5	2.0	-
Fluoranthene	mg/kg dry wt	< 0.5		-
Fluorene	mg/kg dry wt	< 0.5		-
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.5		-
2-Methylnaphthalene	mg/kg dry wt	< 0.5	-	-
Naphthalene	mg/kg dry wt	< 0.5	-	-
Phenanthrene	mg/kg dry wt	< 0.5	-	-
Pyrene	mg/kg dry wt	< 0.5	-	-
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES*	mg/kg dry wt	< 1.3	-	-
	mg/kg dry wt	< 1,3	_	_
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt		-	-
Phenols in SVOC Soil Samples b	y GC-MS			
4-Chloro-3-methylphenol	mg/kg dry wt	< 5	-	-
2-Chlorophenol	mg/kg dry wt	< 1.0	_	-
2,4-Dichlorophenol	mg/kg dry wt	< 1.0	-	-
2,4-Dimethylphenol	mg/kg dry wt	< 3	_	_
3 & 4-Methylphenol (m-+p-	mg/kg dry wt	< 3	-	-
cresol)		. •		
2-Methylphenol (o-cresol)	mg/kg dry wt	< 1.0	-	-
2-Nitrophenol	mg/kg dry wt	< 5	-	-
Pentachlorophenol (PCP)	mg/kg dry wt	< 30	-	-
Phenol	mg/kg dry wt	< 1.0	-	-
2,4,5-Trichlorophenol	mg/kg dry wt	< 1.0	-	-
2,4,6-Trichlorophenol	mg/kg dry wt	< 1.0	-	-
Plasticisers in SVOC Soil Sample	es by GC-MS			
Bis(2-ethylhexyl)phthalate	mg/kg dry wt	< 5	-	-
Butylbenzylphthalate	mg/kg dry wt	< 1.0	-	-
Di(2-ethylhexyl)adipate	mg/kg dry wt	< 1.0	-	-
Diethylphthalate	mg/kg dry wt	< 1.0	-	-
Dimethylphthalate	mg/kg dry wt	< 1.0	-	-
Di-n-butylphthalate	mg/kg dry wt	< 1.0	-	-
Di-n-octylphthalate	mg/kg dry wt	< 1.0	-	-
Other Halogenated compounds in				
1,2-Dichlorobenzene	mg/kg dry wt	< 0.9		_
		< 0.9	- -	<u> </u>
1,3-Dichlorobenzene	mg/kg dry wt	\ U. 8	<u>-</u>	

Sample Type: Soil							
	Sample Name:	NW FILL TP04 0.1 11-Sep-2023	DUP J1 12-Sep-2023	DUP J2 12-Sep-2023			
	Lab Number:	3362681.40	3362681.45	3362681.46			
Other Halogenated compounds in SVOC Soil Samples by GC-MS							
1,4-Dichlorobenzene	mg/kg dry wt	< 0.9	-	-			
Hexachlorobutadiene	mg/kg dry wt	< 0.9	-	-			
Hexachloroethane	mg/kg dry wt	< 0.9	-	-			
1,2,4-Trichlorobenzene	1,2,4-Trichlorobenzene mg/kg dry wt		-	-			
Other compounds in SVOC Soil Samples by GC-MS							
Benzyl alcohol	mg/kg dry wt	< 10	-	-			
Carbazole	mg/kg dry wt	< 0.5	-	-			
Dibenzofuran	mg/kg dry wt	< 0.5	-	-			
Isophorone	mg/kg dry wt	< 0.5	-	-			

Sample Type: Aqueous						
	Sample Name:	A1 11-Sep-2023	A2 12-Sep-2023			
	Lab Number:	3362681.43	3362681.44			
Individual Tests						
Total Beryllium	g/m³	< 0.00011	< 0.00011			
Total Boron	g/m³	< 0.0053	< 0.0053			
Total Mercury	g/m³	< 0.00008	< 0.0008			
Heavy metals, totals, trace As,	Cd,Cr,Cu,Ni,Pb,Zn		0 10			
Total Arsenic	g/m³	< 0.0011	< 0.0011			
Total Cadmium	g/m³	< 0.000053	< 0.000053			
Total Chromium	g/m³	< 0.00053	< 0.00053			
Total Copper	g/m³	< 0.00053	< 0.00053			
Total Lead	g/m³	< 0.00011	< 0.00011			
Total Nickel	g/m³	< 0.00053	< 0.00053			
Total Zinc	g/m³	< 0.0011	< 0.0011			

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Labs, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil	X/ N		
Test	Method Description	Default Detection Limit	Sample No
Individual Tests			
Environmental Solids Sample Drying*	Air dried at 35°C Used for sample preparation. May contain a residual moisture content of 2-5%.	-	1-2, 4-5, 8, 11-12, 14, 17, 20-21, 23, 26, 29-30, 32-33, 35, 38-40, 45-46
Total of Reported PAHs in Soil	Sonication extraction, GC-MS/MS analysis. In-house based on US EPA 8270.	0.03 mg/kg dry wt	45-46
Dry Matter	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. (Free water removed before analysis, non-soil objects such as sticks, leaves, grass and stones also removed). US EPA 3550.	0.10 g/100g as rcvd	1-2, 4, 32-33, 35, 38-40, 45-46
Total Recoverable Beryllium	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.2 mg/kg dry wt	1-2, 4-5, 8, 11-12, 14, 17, 20-21, 23, 26, 29-30, 32-33, 35, 38-40, 45-46

Sample Type: Soil						
Test	Method Description	Default Detection Limit	Sample No			
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES*	BaP Potency Equivalence calculated from; Benzo(a)anthracene x 0.1 + Benzo(b)fluoranthene x 0.1 + Benzo(j)fluoranthene x 0.1 + Benzo(k)fluoranthene x 0.1 + Benzo(a)pyrene x 1.0 + Chrysene x 0.01 + Dibenzo(a,h)anthracene x 1.0 + Fluoranthene x 0.01 + Indeno(1,2,3-c,d)pyrene x 0.1. Ministry for the Environment. 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health. Wellington: Ministry for the Environment.	0.024 mg/kg dry wt	45-46			
Benzo[a]pyrene Toxic Equivalence (TEF)*	Benzo[a]pyrene Toxic Equivalence (TEF) calculated from; Benzo[a]pyrene x 1.0 + Benzo(a)anthracene x 0.1 + Benzo(b) fluoranthene x 0.1 + Benzo(k)fluoranthene x 0.1 + Chrysene x 0.01 + Dibenzo(a,h)anthracene x 1.0 + Indeno(1,2,3-c,d)pyrene x 0.1. Guidelines for assessing and managing contaminated gasworks sites in New Zealand (GMG) (MfE, 1997).	0.024 mg/kg dry wt	45-46			
8 Heavy metals plus Boron	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP-MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 20 mg/kg dry wt	1-2, 4-5, 8, 11-12, 14, 17, 20-21, 23, 26, 29-30, 32-33, 35, 38-40, 45-46			
Polycyclic Aromatic Hydrocarbons Screening in Soil*	Sonication extraction, GC-MS/MS analysis. Tested on as received sample. In-house based on US EPA 8270.	0.010 - 0.05 mg/kg dry wt	45-46			
Polychlorinated Biphenyls Screening in Soil*	Sonication extraction, GC-MS analysis. Tested on dried sample. In-house based on US EPA 8270.	0.000000020 - 0.2 mg/kg dry wt	1-2			
Semivolatile Organic Compounds Screening in Soil by GC-MS	Sonication extraction, GC-MS analysis. Tested on as received sample. In-house based on US EPA 8270.	0.024 - 30 mg/kg dry wt	4, 32-33, 35, 38-40			
Volatile Organic Compounds Screening in Soil by Headspace GC-MS	Sonication extraction, Headspace GC-MS analysis. Tested on as received sample. In-house based on US EPA 8260 and 5021.	0.13 - 30 mg/kg dry wt	4			
Total Petroleum Hydrocarbons in Soil						
C7 - C9	Solvent extraction, GC-FID analysis. In-house based on US EPA 8015.	20 mg/kg dry wt	1-2, 4			
C10 - C14	Solvent extraction, GC-FID analysis. Tested on as received sample. In-house based on US EPA 8015.	20 mg/kg dry wt	1-2, 4			
C15 - C36	Solvent extraction, GC-FID analysis. Tested on as received sample. In-house based on US EPA 8015.	40 mg/kg dry wt	1-2, 4			
Total hydrocarbons (C7 - C36)	Calculation: Sum of carbon bands from C7 to C36. In-house based on US EPA 8015.	70 mg/kg dry wt	1-2, 4			
Sample Type: Aqueous						
Test	Method Description	Default Detection Limit	Sample No			
Individual Tests		•	ı			
Total Digestion	Nitric acid digestion. APHA 3030 E (modified) 23rd ed. 2017.	-	43-44			
Total Beryllium	Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 23 rd ed. 2017 / US EPA 200.8.	0.00011 g/m ³	43-44			
Total Boron	Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 23 rd ed. 2017.	0.0053 g/m ³	43-44			

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Method 245.7, Feb 2005.

Testing was completed between 15-Sep-2023 and 26-Sep-2023. For completion dates of individual analyses please contact the laboratory.

Nitric acid digestion, ICP-MS, trace level. APHA 3125 B (modified) 23rd ed. 2017 / US EPA 200.8.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

Bromine Oxidation followed by Atomic Fluorescence. US EPA

0.00008 g/m³

0.000053 - 0.0011 g/m³

43-44

43-44

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Kim Harrison MSc

Total Mercury

Heavy metals, totals, trace As,Cd,Cr,Cu,Ni,Pb,Zn

Client Services Manager - Environmental

Lab No: 3362681-SPv1 Hill Labs Page 11 of 11

R J Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205 Hamilton 3240 New Zealand ♦ 0508 HILL LAB (44 555 22)
 ♦ +64 7 858 2000
 ☑ mail@hill-labs.co.nz
 ⊕ www.hill-labs.co.nz

Certificate of Analysis

Page 1 of 4

SPv2

Client: Contact: GHD Limited David Jackson C/- GHD Limited PO Box 660 Waikato Mail Centre

Hamilton 3240

Lab No:
Date Received:
Date Reported:
Quote No:
Order No:
Client Reference:
Submitted By:

30-Mar-2023 15-Dec-2023 122978 12559090 12559090 David Jackson

3221506

Sample Type: Soil						
Sa	ample Name:	TRF TP01 0.1 29-Mar-2023	TRF TP01 0.5 29-Mar-2023	TRF TP02 0.1 29-Mar-2023	TRF TP03 0.1 29-Mar-2023	TRF TP03 0.5 29-Mar-2023
I	Lab Number:	3221506.8	3221506.9	3221506.10	3221506.12	3221506.13
Individual Tests				V		
Dry Matter	g/100g as rcvd	69	71	64	67	74
Total Recoverable Beryllium	mg/kg dry wt	0.7	1.1	0.9	1.0	0.8
8 Heavy metals plus Boron			1	0.	20	
Total Recoverable Arsenic	mg/kg dry wt	4	< 2	4	6	< 2
Total Recoverable Boron	mg/kg dry wt	< 20	< 20	< 20	< 20	< 20
Total Recoverable Cadmium	mg/kg dry wt	0.12	< 0.10	0.16	0.21	< 0.10
Total Recoverable Chromium	mg/kg dry wt	6	7	7	7	6
Total Recoverable Copper	mg/kg dry wt	9	14	10	12	9
Total Recoverable Lead	mg/kg dry wt	18.2	14.3	21)	18.5	15.9
Total Recoverable Mercury	mg/kg dry wt	0.13	< 0.10	< 0.10	< 0.10	< 0.10
Total Recoverable Nickel	mg/kg dry wt	3	4	3	3	3
Total Recoverable Zinc	mg/kg dry wt	43	35	78	56	34
Acid Herbicides Screen in Soil b	y LCMSMS					
Acifluorfen	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Bentazone	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Bromoxynil	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Clopyralid	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Dicamba	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,4-Dichlorophenoxyacetic acid (24D)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,4-Dichlorophenoxybutyric acid (24DB)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorprop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Fluazifop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Fluroxypyr	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Haloxyfop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2-methyl-4-chlorophenoxyacetic acid (MCPA)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2-methyl-4- chlorophenoxybutanoic acid (MCPB)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Mecoprop (MCPP; 2-methyl-4-chlorophenoxypropionic acid)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Oryzalin	mg/kg dry wt	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Pentachlorophenol (PCP)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Picloram	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Quizalofop	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,3,4,6-Tetrachlorophenol (TCP)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2,4,5-trichlorophenoxypropionic acid (245TP,Fenoprop, Silvex)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked * or any comments and interpretations, which are not accredited.

Sample Type: Soil						
	Sample Name:	TRF TP01 0.1 29-Mar-2023	TRF TP01 0.5 29-Mar-2023	TRF TP02 0.1 29-Mar-2023	TRF TP03 0.1 29-Mar-2023	TRF TP03 0.5 29-Mar-2023
	Lab Number:	3221506.8	3221506.9	3221506.10	3221506.12	3221506.13
Acid Herbicides Screen in Soil by LCMSMS						
2,4,5-Trichlorophenoxyacetic acid (245T)	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Triclopyr	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Organochlorine Pesticides S	creening in Soil					
Aldrin	mg/kg dry wt	< 0.015	< 0.014	< 0.016	< 0.015	< 0.013
alpha-BHC	mg/kg dry wt	< 0.015	< 0.014	< 0.016	< 0.015	< 0.013
beta-BHC	mg/kg dry wt	< 0.015	< 0.014	< 0.016	< 0.015	< 0.013
delta-BHC	mg/kg dry wt	< 0.015	< 0.014	< 0.016	< 0.015	< 0.013
gamma-BHC (Lindane)	mg/kg dry wt	< 0.015	< 0.014	< 0.016	< 0.015	< 0.013
cis-Chlordane	mg/kg dry wt	< 0.015	< 0.014	< 0.016	< 0.015	< 0.013
trans-Chlordane	mg/kg dry wt	< 0.015	< 0.014	< 0.016	< 0.015	< 0.013
2,4'-DDD	mg/kg dry wt	< 0.015	< 0.014	< 0.016	< 0.015	< 0.013
4,4'-DDD	mg/kg dry wt	< 0.015	< 0.014	< 0.016	< 0.015	< 0.013
2,4'-DDE	mg/kg dry wt	< 0.015	< 0.014	< 0.016	< 0.015	< 0.013
4,4'-DDE	mg/kg dry wt	< 0.015	< 0.014	< 0.016	< 0.015	< 0.013
2,4'-DDT	mg/kg dry wt	< 0.015	< 0.014	< 0.016	< 0.015	< 0.013
4,4'-DDT	mg/kg dry wt	< 0.015	< 0.014	< 0.016	< 0.015	< 0.013
Total DDT Isomers	mg/kg dry wt	< 0.09	< 0.09	< 0.10	< 0.09	< 0.08
Dieldrin	mg/kg dry wt	< 0.015	< 0.014	< 0.016	< 0.015	< 0.013
Endosulfan I	mg/kg dry wt	< 0.015	< 0.014	< 0.016	< 0.015	< 0.013
Endosulfan II	mg/kg dry wt	< 0.015	< 0.014	< 0.016	< 0.015	< 0.013
Endosulfan sulphate	mg/kg dry wt	< 0.015	< 0.014	< 0.016	< 0.015	< 0.013
Endrin	mg/kg dry wt	< 0.015	< 0.014	< 0.016	< 0.015	< 0.013
Endrin aldehyde	mg/kg dry wt	< 0.015	< 0.014	< 0.016	< 0.015	< 0.013
Endrin ketone	mg/kg dry wt	< 0.015	< 0.014	< 0.016	< 0.015	< 0.013
Heptachlor	mg/kg dry wt	< 0.015	< 0.014	< 0.016	< 0.015	< 0.013
Heptachlor epoxide	mg/kg dry wt	< 0.015	< 0.014	< 0.016	< 0.015	< 0.013
Hexachlorobenzene	mg/kg dry wt	< 0.015	< 0.014	< 0.016	< 0.015	< 0.013
Methoxychlor	mg/kg dry wt	< 0.015	< 0.014	< 0.016	< 0.015	< 0.013
Organonitro&phosphorus Pe			0.011	0.010	0.010	0.010
	mg/kg dry wt		< 0.07	< 0.08	< 0.08	< 0.07
Acetochlor						
Alachlor	mg/kg dry wt	< 0.05 < 0.07	< 0.05 < 0.07	< 0.05 < 0.08	< 0.05 < 0.08	< 0.05 < 0.07
Atrazine	mg/kg dry wt	< 0.07				
Atrazine-desethyl Atrazine-desisopropyl	mg/kg dry wt		< 0.07 < 0.14	< 0.08	< 0.08	< 0.07
	mg/kg dry wt	< 0.14	< 0.14	< 0.15	< 0.15	< 0.13
Azaconazole	mg/kg dry wt mg/kg dry wt	< 0.04	< 0.04	< 0.04 < 0.15	< 0.04 < 0.15	< 0.04
Azinphos-methyl		< 0.14	< 0.14			< 0.13
Benalaxyl	mg/kg dry wt	< 0.04		< 0.04	< 0.04	< 0.04
Bitertanol	mg/kg dry wt	< 0.14	< 0.14	< 0.15	< 0.15	< 0.13
Bromacil	mg/kg dry wt	< 0.07	< 0.07	< 0.08	< 0.08	< 0.07
Bromopropylate	mg/kg dry wt	< 0.07	< 0.07	< 0.08	< 0.08	< 0.07
Butachlor	mg/kg dry wt	< 0.07	< 0.07	< 0.08	< 0.08	< 0.07
Captan	mg/kg dry wt	< 0.14	< 0.14	< 0.15	< 0.15	< 0.13
Carbaryl	mg/kg dry wt	< 0.07	< 0.07	< 0.08	< 0.08	< 0.07
Carbofuran	mg/kg dry wt	< 0.07	< 0.07	< 0.08	< 0.08	< 0.07
Chlorfluazuron	mg/kg dry wt	< 0.07	< 0.07	< 0.08	< 0.08	< 0.07
Chlorothalonil	mg/kg dry wt	< 0.07	< 0.07	< 0.08	< 0.08	< 0.07
Chlorpyrifos	mg/kg dry wt	< 0.07	< 0.07	< 0.08	< 0.08	< 0.07
Chlorpyrifos-methyl	mg/kg dry wt	< 0.07	< 0.07	< 0.08	< 0.08	< 0.07
Chlortoluron	mg/kg dry wt	< 0.14	< 0.14	< 0.15	< 0.15	< 0.13
Cyanazine	mg/kg dry wt	< 0.07	< 0.07	< 0.08	< 0.08	< 0.07
Cyfluthrin	mg/kg dry wt	< 0.09	< 0.09	< 0.09	< 0.09	< 0.08
Cyhalothrin	mg/kg dry wt	< 0.07	< 0.07	< 0.08	< 0.08	< 0.07
Cypermethrin	mg/kg dry wt	< 0.17	< 0.17	< 0.18	< 0.18	< 0.16

Tradomaterinin) Desimen mg/kg dy wt	Sample Type: Soil						
Cognomic phosphorous Presiducies Screen in Soil by GCMS	Sa	ample Name:					
Detartement (reducting mights dry will consider the consideration (reducting mights dry will considerate the consideration of the con		Lab Number:	3221506.8	3221506.9	3221506.10	3221506.12	3221506.13
Traiometritrin) Diazziono myokg dy wi	Organonitro&phosphorus Pestic	cides Screen in Sc	oil by GCMS				
Dichlorlamid	Deltamethrin (including Tralomethrin)	mg/kg dry wt	< 0.07	< 0.07	< 0.08	< 0.08	< 0.07
Dichlorons	Diazinon	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Dichloroos mg/kg dry wt	Dichlofluanid		< 0.07	< 0.07	< 0.08	< 0.08	< 0.07
Dichloroca mg/kg dyv w	Dichloran	mg/kg dry wt	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Differentiation	Dichlorvos		< 0.09	< 0.09	< 0.09	< 0.09	< 0.09
Dimetholate mg/kg dry w	Difenoconazole		< 0.10	< 0.10	< 0.11	< 0.11	< 0.09
Diphenylamine	Dimethoate	0 0 ,	< 0.14	< 0.14	< 0.15	< 0.15	< 0.13
Diuron	Diphenvlamine		< 0.14	< 0.14	< 0.15	< 0.15	< 0.13
Ferproprimorph mg/kg dry wt < 0.07	Diuron						
Fibazarifop-butly mg/kg dry wt	Fenpropimorph			< 0.07	< 0.08		
Flucimeturon mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.07							
Filusializace mg/kg dry wt	. ,					4 3.33	
Fluvalinate mg/kg dry wt	Flusilazole						
Furalizacy mg/kg dry wt < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.05 < 0.07 < 0.08 < 0.09 < 0.07 < 0.08 < 0.08 < 0.08 < 0.06 < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.06 < 0.07 < 0.08 < 0.08 < 0.08 < 0.06 < 0.07 < 0.08 < 0.08 < 0.08 < 0.06 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 <							
Haloxyfop-methyl mg/kg dry wt							
Hexacionazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.07 < 0.07 < 0.08 < 0.07 < 0.07 < 0.08 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.05 < 0.08 < 0.08 < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 < 0.07 < 0.08 < 0.08 < 0.07 < 0.07 < 0.08 < 0.08 < 0.07 < 0.07 < 0.08 < 0.08 < 0.07 < 0.07 < 0.08 < 0.08 < 0.07 < 0.07 < 0.08 < 0.08 < 0.07 < 0.07 < 0.08 < 0.08 < 0.07 < 0.07 < 0.08 < 0.08 < 0.07 < 0.07 < 0.08 < 0.08 < 0.07 < 0.07 < 0.08 < 0.08 < 0.07 < 0.07 < 0.07 < 0.08 < 0.08 < 0.07 < 0.07 < 0.07 < 0.08 < 0.08 < 0.07 < 0.07 < 0.08 < 0.08 < 0.07 < 0.07 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	•	0 0 ,					
Hexazinone							
PBC (3-lodo-2-propynyl-nub/labramate)		0 0 ,					
Cresoxim-methyl mg/kg dry wt < 0.04	IPBC (3-lodo-2-propynyl-n-						
Linuron mg/kg dry wt	,	ma/ka dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Malathion mg/kg dry wt < 0.07	•						
Metalaxyl mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.07 Methamidophos mg/kg dry wt < 0.4		0 0 ,					
Methamidophos mg/kg dry wt < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.07 < 0.08 < 0.03 < 0.07 < 0.08 < 0.03 < 0.07 < 0.08 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.05 < 0.07 < 0.07 < 0.08 < 0.07 < 0.07 < 0.08 < 0.07 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.07 < 0.08 < 0.07							
Metolachlor mg/kg dry wt < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.07 < 0.08 < 0.07 < 0.07 < 0.08 < 0.07 < 0.13 < 0.07 < 0.08 < 0.08 < 0.07 < 0.08 < 0.08 < 0.07 < 0.08 < 0.08 < 0.07 < 0.08 < 0.08 < 0.07 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.05 < 0.07 < 0.03 < 0.08 < 0.07 < 0.03 < 0.08 < 0.07 < 0.03 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04	•						
Metribuzin mg/kg dry wt	•			_			
Molinate mg/kg dry wt wyk wyk wyk wyk wyk wyk wyk wyk wyk wyk							
Myclobutanil mg/kg dry wt							
Naled mg/kg dry wt							
Norflurazon mg/kg dry wt	•						
Oxadiazon mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.07 Oxyfluorfen mg/kg dry wt < 0.04							
Oxyfluorfen mg/kg dry wt < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.07 < 0.08 < 0.08 < 0.07 < 0.07 < 0.08 < 0.08 < 0.07 < 0.07 < 0.08 < 0.08 < 0.07 < 0.08 < 0.08 < 0.07 < 0.08 < 0.08 < 0.07 < 0.08 < 0.08 < 0.07 < 0.08 < 0.08 < 0.07 < 0.08 < 0.08 < 0.07 < 0.07 < 0.08 < 0.08 < 0.07 < 0.08 < 0.08 < 0.07 < 0.08 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.00 < 0.08 < 0.00 < 0.08 < 0.00 < 0.00 < 0.08 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00							
Pacilobutrazol mg/kg dry wt							
Parathion-ethyl mg/kg dry wt	•						
Parathion-methyl mg/kg dry wt < 0.07			· • • • • • • • • • • • • • • • • • • •				
Pendimethalin mg/kg dry wt	,						
Permethrin mg/kg dry wt	,						
Primicarb mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.07 Primicarb mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Primiphos-methyl mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Prochloraz mg/kg dry wt < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 Procymidone mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Prometryn mg/kg dry wt < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 Propachlor mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propachlor mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propacile mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 Propazine mg/kg dry wt < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 Propiconazole mg/kg dry wt < 0.05 < 0.05 < 0.06 < 0.06 < 0.06 < 0.05 Priproxyfen mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propacine mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propacine mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propacine mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propacine mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propacine mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propacine mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propacine mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propacine mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propacine mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propacine mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propacine mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propacine mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propacine mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propacine mg/kg dry wt < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propacine mg/kg dry wt < 0.07 < 0.08 Propacine mg/kg dry wt < 0.07 < 0.08 Propacine mg/kg dry wt < 0.07 Propacine mg/kg dry wt < 0.07 < 0.08 Propacine mg/kg dry wt < 0.07 Propacine mg/kg dry wt < 0.07 Propacine mg/kg dry wt < 0.07 Propacine mg/kg dry wt < 0.07 Propacine mg/kg dry wt < 0.07 Propacine mg/kg dry wt < 0.07 Propacine mg/kg d							
Priniphos-methyl mg/kg dry wt							
Prochloraz mg/kg dry wt < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 Procymidone mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Prometryn mg/kg dry wt < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 Propachlor mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propachlor mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propachlor mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 Propazine mg/kg dry wt < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 Propiconazole mg/kg dry wt < 0.05 < 0.05 < 0.05 < 0.06 < 0.06 < 0.06 < 0.05 Pryiproxyfen mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.08 < 0.08 < 0.08 < 0.08 Propiconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 Propiconazole mg/kg dry wt < 0.07 Propiconazole mg/kg							
Procymidone mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Prometryn mg/kg dry wt < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 Propachlor mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.08 < 0.07 Propachlor mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propanil mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 Propazine mg/kg dry wt < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 Propiconazole mg/kg dry wt < 0.05 < 0.05 < 0.05 < 0.06 < 0.06 < 0.06 Pryiproxyfen mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propiconazole mg/kg dry wt < 0.07 < 0.08 < 0.08 < 0.08 < 0.08 Propiconazole mg/kg dry wt < 0.07 Propiconazole mg/kg dry wt < 0.07 Propiconazole mg/kg dry wt < 0.07 Propiconazole mg/kg dry wt < 0.07 Propiconazole mg/kg dry wt < 0.07							
Prometryn mg/kg dry wt < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 Propachlor mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Propanil mg/kg dry wt < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 Propazine mg/kg dry wt < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 Propiconazole mg/kg dry wt < 0.05 < 0.05 < 0.05 < 0.06 < 0.06 < 0.06 < 0.05 Pryriproxyfen mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.07 < 0.07 < 0.08 < 0.08 < 0.07 < 0.07 Simazine mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.07 < 0.07 < 0.08 < 0.08 < 0.07 < 0.07 < 0.08 < 0.07 < 0.07 < 0.08 < 0.07 < 0.07 < 0.08 < 0.07 < 0.07 < 0.08 < 0.07 < 0.07 < 0.08 < 0.07 < 0.07 < 0.08 < 0.07 < 0.07 < 0.08 < 0.07 < 0.07 < 0.08 < 0.07 < 0.07 < 0.08 < 0.07 < 0.07 < 0.08 < 0.07 < 0.07 < 0.08 < 0.07 < 0.07 < 0.08 < 0.07 < 0.07 < 0.08 < 0.07 < 0.07 < 0.08 < 0.07 < 0.07 < 0.08 < 0.07 < 0.07 < 0.08 < 0.07 < 0.07 < 0.08 < 0.07 < 0.07 < 0.08 < 0.07 < 0.07 < 0.08 < 0.07 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.08 < 0.07 < 0.07 < 0.08 < 0.07 < 0.08 < 0.08 < 0.07 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 <							
Propachlor mg/kg dry wt < 0.07 < 0.08 < 0.08 < 0.07 Propanil mg/kg dry wt < 0.2							
Proparil mg/kg dry wt							
Propazine mg/kg dry wt < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04	<u> </u>						
Propiconazole mg/kg dry wt < 0.05 < 0.05 < 0.06 < 0.06 < 0.05 < 0.05 Pyriproxyfen mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 < 0.07 < 0.08 < 0.08 < 0.07 < 0.07 < 0.08 < 0.08 < 0.07 < 0.07 < 0.08 < 0.08 < 0.07 < 0.07 < 0.08 < 0.08 < 0.07 < 0.07 < 0.08 < 0.08 < 0.07 < 0.07 < 0.08 < 0.08 < 0.07 < 0.07 < 0.08 < 0.08 < 0.07 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.07 < 0.08 < 0.08 < 0.07 < 0.07 < 0.08 < 0.08 < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 < 0.08 < 0.08 < 0.07 < 0.08 < 0.08 < 0.07 < 0.08 < 0.08 < 0.07 < 0.08 < 0.08 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 < 0.08 < 0.08 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 < 0.08 < 0.08 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 < 0.08 < 0.08 < 0.08 < 0.08 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 < 0.08 < 0.08 < 0.08 < 0.08 < 0.07 < 0.08 < 0.08 < 0.08 < 0.08 < 0.07 < 0.08 < 0.08 < 0.08 < 0.08 < 0.07 < 0.08 < 0.08 < 0.08 < 0.08 < 0.07 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.07 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.08 < 0.0							
Pyriproxyfen mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.07 Quizalofop-ethyl mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Simazine mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Simetryn mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Sulfentrazone mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.08 < 0.07 Sulfentrazone mg/kg dry wt < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 CMTB [2-(thiocyanomethylthio) mg/kg dry wt benzothiazole,Busan]	<u> </u>						
Quizalofop-ethyl mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.07 Simazine mg/kg dry wt < 0.07							
Simazine mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.07 Simetryn mg/kg dry wt < 0.07	Pyriproxyfen						
Simetryn mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.07 Sulfentrazone mg/kg dry wt < 0.4	Quizalofop-ethyl	0 0 ,					
Sulfentrazone mg/kg dry wt < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.1 < 0.15 < 0.13 < 0.13 < 0.13 < 0.13 < 0.15 < 0.13 < 0.13 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.1	Simazine						
TCMTB [2-(thiocyanomethylthio) mg/kg dry wt < 0.14 < 0.14 < 0.15 < 0.15 < 0.13 benzothiazole,Busan]	Simetryn						
benzothiazole,Busan]	Sulfentrazone						
Tebuconazole mg/kg dry wt < 0.07 < 0.07 < 0.08 < 0.08 < 0.07	benzothiazole,Busan]	,					
	Tebuconazole	mg/kg dry wt	< 0.07	< 0.07	< 0.08	< 0.08	< 0.07

Sample Type: Soil						
	Sample Name:	TRF TP01 0.1	TRF TP01 0.5	TRF TP02 0.1	TRF TP03 0.1	TRF TP03 0.5
		29-Mar-2023	29-Mar-2023	29-Mar-2023	29-Mar-2023	29-Mar-2023
	Lab Number:	3221506.8	3221506.9	3221506.10	3221506.12	3221506.13
Organonitro&phosphorus F	Pesticides Screen in Sc	oil by GCMS				
Terbacil	mg/kg dry wt	< 0.07	< 0.07	< 0.08	< 0.08	< 0.07
Terbumeton	mg/kg dry wt	< 0.07	< 0.07	< 0.08	< 0.08	< 0.07
Terbuthylazine	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Terbuthylazine-desethyl	mg/kg dry wt	< 0.07	< 0.07	< 0.08	< 0.08	< 0.07
Terbutryn	mg/kg dry wt	< 0.07	< 0.07	< 0.08	< 0.08	< 0.07
Thiabendazole	mg/kg dry wt	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Thiobencarb	mg/kg dry wt	< 0.07	< 0.07	< 0.08	< 0.08	< 0.07
Tolylfluanid	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Triazophos	mg/kg dry wt	< 0.07	< 0.07	< 0.08	< 0.08	< 0.07
Trifluralin	mg/kg dry wt	< 0.07	< 0.07	< 0.08	< 0.08	< 0.07
Vinclozolin	mg/kg dry wt	< 0.07	< 0.07	< 0.08	< 0.08	< 0.07

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Labs, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Environmental Solids Sample Drying*	Air dried at 35°C Used for sample preparation. May contain a residual moisture content of 2-5%		8-10, 12-13
Soil Prep Dry for Organics,Trace*	Air dried at 35°C Used for sample preparation. May contain a residual moisture content of 2-5%.	-	8-10, 12-13
8 Heavy metals plus Boron	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP-MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 20 mg/kg dry wt	8-10, 12-13
Acid Herbicides Screen in Soil by LCMSMS	Solvent extraction, LC-MS/MS analysis. Tested on dried sample. In-house.	0.2 - 0.4 mg/kg dry wt	8-10, 12-13
Organochlorine Pesticides Screening in Soil	Sonication extraction, GC-ECD analysis. Tested on as received sample. In-house based on US EPA 8081.	0.010 - 0.06 mg/kg dry wt	8-10, 12-13
Organonitro&phosphorus Pesticides Screen in Soil by GCMS	Sonication extraction, GC-MS analysis. Tested on as received sample. In-house based on US EPA 8270.	0.02 - 0.2 mg/kg dry wt	8-10, 12-13
Dry Matter	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. (Free water removed before analysis, non-soil objects such as sticks, leaves, grass and stones also removed). US EPA 3550.	0.10 g/100g as rcvd	8-10, 12-13
Total Recoverable Beryllium	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.2 mg/kg dry wt	8-10, 12-13

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 08-Dec-2023 and 15-Dec-2023. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech)

Client Services Manager - Environmental

R J Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205 Hamilton 3240 New Zealand ♦ 0508 HILL LAB (44 555 22)
 ♦ +64 7 858 2000
 ☑ mail@hill-labs.co.nz
 ⊕ www.hill-labs.co.nz

Certificate of Analysis

Page 1 of 8

SPv3

Client: Contact: A

GHD Limited Adam Gray C/- GHD Limited PO Box 1746 Wellington 6140

 Lab No:
 3325652

 Date Received:
 20-Jul-2023

 Date Reported:
 10-Aug-2023

 Quote No:
 124299

 Order No:
 12559090

Client Reference: 12559090 Tokanui Submitted By: David Jackson

				Ju	billitted by.	David Jackso	
	Sample Type: Soil						
Individual Tests SPLP Sample Weight g G G G G G G G G G	Sá	ample Name:	[3299078.251]	[3299078.266]	[3299078.267]	[3299078.13]	B34 TP 06 0.10 [3299078.16] 07-Jun-2023
SPLP Sample Weight		Lab Number:	3325652.1		3325652.3	3325652.4	3325652.5
SPLP Extractant Type*	Individual Tests					7 10	
SPLP Final ph	SPLP Sample Weight	g	-	-	50	-	50
TCLP Weight of Sample Taken 9 PU Units 101 50 - 50 - TCLP Initial Sample PH pH Units 6.9 7.7 - 6.3 - TCLP Acid Adjusted Sample PH pH Units 1.6 1.6 1.6 1.5 1.5 TCLP Extraction Type' NaOH/Acetic acid at pH 4.93 +/- 0.05 at pH 4.93 +/-	SPLP Extractant Type*		-	-		0.0	De-ionised Water, pH 5.8 +/- 0.4
TCLP Initial Sample PH pH Units 6.9 7.7 - 6.3 1- TCLP Acid Adjusted Sample pH pH Units 1.6 1.6 - 1.5 - TCLP Extractant Type* NaOH/Acetic acid at pH 4.93 +/- 0.05 at pH 4	SPLP Final pH	pH Units	-	-	9.0		9.8
TCLP Acid Adjusted Sample pH	TCLP Weight of Sample Taken	g	101	50		50	-
TCLP Extraction Type*	TCLP Initial Sample pH	pH Units	6.9	7.7	-	6.3	-
at pH 4.93 +/- 0.05 at pH 4.93 +/- 0.05 TCLP Extraction Fluid pH	TCLP Acid Adjusted Sample pH	pH Units	1.6	1.6	N.	1.5	-
Sample Name: Sample Name: B35 HA01 0 10 [3299078 179] 12-Jun 2023 12-Jun	TCLP Extractant Type*						-
Sample Name: B35 HA01 0 10 [3299078 179] 12 Jun 2023 12 Jun 2023 12 Jun 2023 14 Jun 20	TCLP Extraction Fluid pH	pH Units	4.9	4.9		4.9	-
S299078, 219 S299078, 219 S299078, 219 S299078, 2219	TCLP Post Extraction Sample pl	H pH Units	5.0	5.1	-	4.9	-
Individual Tests	Sa	ample Name:	[3299078.179]	[3299078.28]	[3299078.219]	[3299078.225]	B66 HA02 [3299078.226] 14-Jun-2023
SPLP Sample Weight 9 - 50 50 - - SPLP Extractant Type* De-ionised Water, pH 5.8 +/- 0.4 - - SPLP Final pH pH Units 9.1 9.4 - - - TCLP Weight of Sample Taken g 50 - - 100 10 TCLP Initial Sample pH pH Units 7.5 - - 8.5 7.3 TCLP Acid Adjusted Sample pH pH Units 1.5 - - NaOH/Acetic acid at pH 4.93 +/- 0.05 - - NaOH/Acetic acid at pH 4.93 +/- 0.05 - - NaOH/Acetic acid at pH 4.93 +/- 0.05 - - NaOH/Acetic acid at pH 4.93 +/- 0.05 - - NaOH/Acetic acid at pH 4.93 +/- 0.05 - - NaOH/Acetic acid at pH 4.93 +/- 0.05 - - - NaOH/Acetic acid at pH 4.93 +/- 0.05 - - - - - - - - - - - - - -		Lab Number:	3325652.6	3325652.7	3325652.8	3325652.9	3325652.10
SPLP Extractant Type* De-ionised Water, pH 5.8 +/- 0.4	Individual Tests		7	y _c .			
PH 5.8 +/- 0.4 PH 5	SPLP Sample Weight	9	- 0	50	50	-	-
TCLP Weight of Sample Taken 9 50 - - 100 10 TCLP Initial Sample pH pH Units 7.5 - - 8.5 7.3 TCLP Acid Adjusted Sample pH pH Units 1.5 - - NaOH/Acetic acid at pH 4.93 +/- 0.05 NaOH/Acetic	SPLP Extractant Type*	00				-	-
TCLP Initial Sample pH pH Units 7.5 8.5 7.5 TCLP Acid Adjusted Sample pH pH Units 1.5 2.7 1.3 TCLP Extractant Type* NaOH/Acetic acid at pH 4.93 +/- 0.05	SPLP Final pH	pH Units		9.1	9.4	-	-
TCLP Acid Adjusted Sample pH pH Units 1.5 - - 2.7 1.3 TCLP Extractant Type* NaOH/Acetic acid at pH 4.93 +/- 0.05 - - NaOH/Acetic acid at pH 4.93 +/- 0.05 NaOH/Acetic acid at pH 4.93 +/- 0.06 NaOH/Acetic acid at pH 4.9	TCLP Weight of Sample Taken	g	50	-	-	100	100
TCLP Extractant Type* NaOH/Acetic acid at pH 4.93 +/- 0.05 NaOH/Acetic acid at pH 4.93 +/- 0.05 at pH 4.93 NaOH/Acetic acid at pH 4.93 +/- 0.05 at pH 4.93 NaOH/Acetic acid at pH 4.93 +/- 0.05 at pH 4.93 NaOH/Acetic acid at pH 4.93 +/- 0.05 at pH 4.93 NaOH/Acetic acid at pH 4.93 +/- 0.05 at pH 4.93 NaOH/Acetic acid at pH 4.93 +/- 0.05 at pH 4.93 NaOH/Acetic acid at pH 4.93 +/- 0.05 at pH 4.93 NaOH/Acetic acid at pH 4.93 +/- 0.05 at pH 4.93 NaOH/Acetic acid at pH 4.93 +/- 0.05 at pH 4.93 NaOH/Acetic acid at pH 4.93 +/- 0.05 at pH 4.93 NaOH/Acetic acid at pH 4.93 +/- 0.05 at pH 4.93 NaOH/Acetic acid at pH 4.93 +/- 0.05 at pH 4.93 NaOH/Acetic acid at pH 4.93 +/- 0.05 at pH 4.93 NaOH/Acetic acid at pH 4.93 +/- 0.05 at pH 4.93 NaOH/Acetic acid at pH 4.93 +/- 0.05 at pH 4.93 NaOH/Acetic acid at pH 4.93 +/- 0.05 at pH 4.93 NaOH/Acetic acid at pH 4.93 +/- 0.05 at pH 4.93 NaOH/Acetic acid at pH 4.93 +/- 0.05 at pH 4.93 NaOH/Acetic acid at pH 4.93 +/- 0.05 at pH 4.93 NaOH/Acetic acid at pH 4.93 NaOH/Acetic acid at pH 4.93 NaOH/Acetic acid at pH 4.93 NaOH/Acetic acid at pH 4.93 NaOH/Acetic acid at pH 4.93 NaOH/Acetic acid at pH 4.93 NaOH/Acetic acid at pH 4.93 NaOH/Acetic acid at pH 4.93	TCLP Initial Sample pH		7.5	-	-	8.5	7.2
at pH 4.93 +/- 0.05 at pH 4.93 +/- 0.05	TCLP Acid Adjusted Sample pH	pH Units	1.5	-	-	2.7	1.8
TCLP Post Extraction Sample pH pH Units 5.0 - - 6.6 5.4 Sample Name: B67 HA02 0.10 [3299078.229] 14-Jun-2023 B71 TP02 0.10 [3299078.234] 14-Jun-2023 B73 TP01 0.1 [3299078.239] 14-Jun-2023 DIP HA02 0.10 [3299078.239] 14-Jun-2023 DIP HA02 0.10 [3299078.239] 14-Jun-2023 D00 DE DE DE DE DE DE DE DE DE DE DE DE DE	TCLP Extractant Type*	Y		-	-		
Sample Name: B67 HA02 0.10 [3299078.229] 14-Jun-2023 B71 TP02 0.10 [3299078.284] 20-Jun-2023 B73 TP01 0.1 [3299078.284] 20-Jun-2023 DIP HA02 0.10 [3299078.239] 14-Jun-2023 DS02 TF [3299078.284] 20-Jun-2023 DIP HA02 0.10 [3299078.28] 20-Jun-2023 DIP HA02 0.10 [3299078.28] 20-Jun-2023 DIP HA0	TCLP Extraction Fluid pH	pH Units	4.9	-	-	5.0	5.0
[3299078.239] [3299078.234] [3299078.284] [3299078.239] [3	TCLP Post Extraction Sample p	H pH Units	5.0	-	-	6.6	5.4
Individual Tests SPLP Sample Weight g - 101 100 - - SPLP Extractant Type* - De-ionised Water, pH 5.8 +/- 0.4 De-ionised Water, pH 5.8 +/- 0.4 De-ionised Water, pH 5.8 +/- 0.4 - - - SPLP Final pH pH Units - 9.4 7.1 - - TCLP Weight of Sample Taken g 50 - - 50 50	S	ample Name:	[3299078.229] 14-Jun-2023	[3299078.234] 14-Jun-2023	[3299078.284] 20-Jun-2023	[3299078.239] 14-Jun-2023	DS02 TP03 0.1 [3299078.309] 20-Jun-2023
SPLP Sample Weight g - 101 100 - - SPLP Extractant Type* - De-ionised Water, pH 5.8 +/- 0.4 De-ionised Water, pH 5.8 +/- 0.4 - - - SPLP Final pH pH Units - 9.4 7.1 - - TCLP Weight of Sample Taken g 50 - - 50 50		Lab Number:	3325652.11	3325652.12	3325652.13	3325652.14	3325652.15
SPLP Extractant Type* - De-ionised Water, pH 5.8 +/- 0.4 De-ionised Water, pH 5.8 +/- 0.4 - </td <td></td> <td></td> <td>T</td> <td></td> <td></td> <td>1</td> <td></td>			T			1	
PH 5.8 +/- 0.4 pH 5.8 +/- 0.4 SPLP Final pH pH Units - 9.4 7.1 - - TCLP Weight of Sample Taken g 50 - - 50 50		g	-			-	-
TCLP Weight of Sample Taken g 50 50 50	,		-	pH 5.8 +/- 0.4	pH 5.8 +/- 0.4	-	-
	<u>'</u>	<u> </u>		9.4	7.1	-	-
	·			-	-	50	50
···	TCLP Initial Sample pH	pH Units	9.3	-	-	7.3	6.8
TCLP Acid Adjusted Sample pH pH Units	TCLP Acid Adjusted Sample pH	pH Units	1.7	-	-	1.8	1.6

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked * or any comments and interpretations, which are not accredited.

Sample Type: Soil							
Sam	ple Name:	B67 HA02 0.10 [3299078.229]	B71 TP02 0.10 [3299078.234]	B73 TP		DIP HA02 0.10 [3299078.239]	DS02 TP03 0.1 [3299078.309]
		14-Jun-2023	14-Jun-2023	20-Jun		14-Jun-2023	20-Jun-2023
La	b Number:	3325652.11	3325652.12	33256	52.13	3325652.14	3325652.15
Individual Tests				'		1	
TCLP Extractant Type*		NaOH/Acetic acid at pH 4.93 +/- 0.05	-	-			NaOH/Acetic acid at pH 4.93 +/- 0.05
TCLP Extraction Fluid pH	pH Units	5.0	-	-		4.9	5.0
TCLP Post Extraction Sample pH	pH Units	5.3	-	-		5.0	5.0
Sam	ple Name:	DS02 TP03 0.5	DS02 TP05 0.1	DS03 TF	203 0.1	HSP SED 04 0.05	HT TP 29 0.10
Guin	pio maino.	[3299078.310] 20-Jun-2023	[3299078.315] 20-Jun-2023	[329907 21-Jun	78.324]	[3299078.370] 23-Jun-2023	[3299078.133] 07-Jul-2023
La	b Number:	3325652.16	3325652.17	33256	52.18	3325652.19	3325652.20
Individual Tests		,	,	'			
SPLP Sample Weight	g	-	50	-		100	-
SPLP Extractant Type*		-	De-ionised Water, pH 5.8 +/- 0.4	-		De-ionised Water, pH 5.8 +/- 0.4	\ <u>\</u>
SPLP Final pH	pH Units	-	8.5	_		8.2	
TCLP Weight of Sample Taken	 g	100	-	10	0	77	50
TCLP Initial Sample pH	pH Units	6.5	-	6.	1	Y	6.5
TCLP Acid Adjusted Sample pH	pH Units	1.5	-	1.	5		1.5
TCLP Extractant Type*		NaOH/Acetic acid at pH 4.93 +/- 0.05	-	NaOH/Ac at pH 4.93		0.0	NaOH/Acetic acid at pH 4.93 +/- 0.05
TCLP Extraction Fluid pH	pH Units	5.0	-	4.		10	5.0
TCLP Post Extraction Sample pH	pH Units	5.0	- (4.	9	-	5.0
Sam	ple Name:	HT TP 30 0.10 [3299078.136] 07-Jul-2023	PAV TP01 0.10 [3299078.211] 12-Jun-2023	STR SEI [329907 23-Jun	78.359]	WWTP TP03 0.10 [3299078.171]	B16 TP04 0.1 [3209697.9] 16-Mar-2023
La	b Number:	3325652.21	3325652.22	33256	52 23	13-Jun-2023 3325652.24	3325652.49
Individual Tests	o Nullibel.	3023032.21	30Z303Z.ZZ	30230	02.20	3020002.24	0020002.40
SPLP Sample Weight			50	10	ın.	_	50
SPLP Extractant Type*	g	131	De-ionised Water,	De-ionise		-	De-ionised Water,
			pH 5.8 +/- 0.4	pH 5.8			pH 5.8 +/- 0.4
SPLP Final pH	pH Units		9.8	6.	9	-	9.3
TCLP Weight of Sample Taken	9	50	X -	-		100	-
TCLP Initial Sample pH	pH Units	6.7	O ' -	-		6.3	-
TCLP Acid Adjusted Sample pH	pH Units	1.6	-	-		1.5	-
TCLP Extractant Type*	(0)	NaOH/Acetic acid at pH 4.93 +/- 0.05	-	-		NaOH/Acetic acid at pH 4.93 +/- 0.05	-
TCLP Extraction Fluid pH	pH Units	5.0	-	-		5.0	-
TCLP Post Extraction Sample pH	pH Units	5.0	-	-		5.0	-
Sam	ple Name:	B16 TP06 0.1 [3209697.12] 16-Mar-2023	B66 TP01 0.1 [3211645.29] 21-Mar-2023	CHP TF [32096 16-Mar	897.5]	CHP TP04 0.2 [3209697.7] 16-Mar-2023	DIP TP03 0.2 [3209697.25] 17-Mar-2023
	Number:	3325652.50	3325652.51	33256	52.52	3325652.53	3325652.54
Individual Tests	•						
TCLP Weight of Sample Taken	g	50	100	50		100	50
TCLP Initial Sample pH	pH Units	9.1	6.9	6.		7.1	8.7
TCLP Acid Adjusted Sample pH	pH Units	2.8	1.5	1.		1.4	1.6
TCLP Extractant Type*		at pH 4.93 +/- 0.05	at pH 4.93 +/- 0.05	at pH 4.93	3 +/- 0.05	NaOH/Acetic acid at pH 4.93 +/- 0.05	at pH 4.93 +/- 0.05
TCLP Extraction Fluid pH	pH Units	5.0	4.9	4.		4.9	4.9
TCLP Post Extraction Sample pH	pH Units	6.5	4.9	4.	9	4.9	5.1
Sam	ple Name:	HSP SED 01 0.1	[3299078.363] 23-J	Jun-2023	HT T	P25 0.2 [3209697.2	28] 17-Mar-2023
La	b Number:	3	3325652.55			3325652.5	56
Individual Tests							
SPLP Sample Weight	g		50			-	
SPLP Extractant Type*		De-ionised	Water, pH 5.8 +/- 0	.4		-	
SPLP Final pH	pH Units		9.2			-	
TCLP Weight of Sample Taken	g		-			50	

Sample Type: Soil							
Sam	ple Name:	HSP SED 01 0.1	[3299078.363] 23-J	lun-2023	HT T	P25 0.2 [3209697.2	28] 17-Mar-2023
Lal	b Number:	3	3325652.55			3325652.5	66
Individual Tests							
TCLP Initial Sample pH	pH Units		-			7.7	
TCLP Acid Adjusted Sample pH	pH Units		-			1.5	
TCLP Extractant Type*			-		Na	OH/Acetic acid at ph	1 4.93 +/- 0.05
TCLP Extraction Fluid pH	pH Units		-			4.9	
TCLP Post Extraction Sample pH	pH Units		-			5.0	
Sample Type: Aqueous							
	ple Name:	B19 TP01 0.1	B26 TP01 0.1	B26 TP	02 0.1	B34 TP 05 0.10	B34 TP 06 0.10
Guiii	pio italiio.	[3299078.251]	[3299078.266]	[329907		[3299078.13]	[3299078.16]
		[TCLP Extract]	[TCLP Extract]	[SPLP E		[TCLP Extract]	[SPLP Extract]
	b Number:	3325652.25	3325652.26	33256	52.27	3325652.28	3325652.29
Heavy metals, totals, trace As,Cd,C		1	1				
Total Arsenic	g/m ³	-	-	0.00		-	< 0.0011
Total Cadmium	g/m³	-	-	< 0.00		-	< 0.000053
Total Chromium	g/m³	-	-	0.00		- N-	0.00079
Total Copper	g/m³	-	-	0.00		D 3- 6	0.0047
Total Lead	g/m³	-	-	0.0		\'	0.0079
Total Nickel	g/m³	-	-	0.00			0.00099
Total Zinc	g/m³	-	-	0.011	0 #3	S'U	0.0164 #3
Heavy metals, totals, screen As,Cd	,Cr,Cu,Ni,Pb,	Zn		Ca		10	
Total Arsenic	g/m³	< 0.021	< 0.021	-		< 0.021	-
Total Cadmium	g/m³	< 0.0011	0.0024	-	•	< 0.0011	-
Total Chromium	g/m³	< 0.011	< 0.011	-	N	< 0.011	-
Total Copper	g/m³	< 0.011	0.014		1	< 0.011	-
Total Lead	g/m³	0.0086	0.134)	< 0.0021	-
Total Nickel	g/m³	< 0.011	< 0.011 ○			< 0.011	-
Total Zinc	g/m³	0.109 #1	0.44 #2	-		0.197 #2	-
Sam	ple Name:	B35 HA01 0.10 [3299078.179] [TCLP Extract]	B35 TP 03 0.10 [3299078.28] [SPLP Extract]	B59 TP0 [329907 [SPLP E	8.219]	B66 HA01 [3299078.225] [TCLP Extract]	B66 HA02 [3299078.226] [TCLP Extract]
Lal	b Number:	3325652.30	3325652.31	33256	52.32	3325652.33	3325652.34
Heavy metals, totals, trace As,Cd,C			λ				
Total Arsenic	g/m³	•	0.0034	0.00		-	-
Total Cadmium	g/m³		< 0.000053	< 0.00	0053	-	-
Total Chromium	g/m³	-	0.0021	0.00	117	-	-
Total Copper	g/m³	, O->	0.0045	0.00	196	-	-
Total Lead	g/m³		0.023	0.00)46	-	-
Total Nickel	g/m³	-	0.00076	0.00		-	-
Total Zinc	g/m³	-	0.026 #3	0.012	20 #3	-	-
Heavy metals, totals, screen As,Cd	,Cr,Cu,Ni,Pb,	Zn			_		_
Total Arsenic	g/m³	< 0.021	-	-		< 0.021	< 0.021
Total Cadmium	g/m³	< 0.0011	-	-		0.0019	0.0059
Total Chromium	g/m³	< 0.011	-	-		< 0.011	< 0.011
Total Copper	g/m³	< 0.011	-	-		0.075	0.081
Total Lead	g/m³	0.032	-	-		0.066	0.080
Total Nickel	g/m ³	< 0.011	-	-		0.041	0.019
Total Zinc	g/m³	0.40 #2	-	-		1.26	2.5
Polycyclic Aromatic Hydrocarbons	Screening in V	Vater, By Liq/Liq*					
Acenaphthene*	g/m³	-	-	_		-	< 0.00010
Acenaphthylene*	g/m³	-	-	_		-	< 0.00010
Anthracene*	g/m³	-	-	_		-	< 0.00010
Benzo[a]anthracene*	g/m³	-	-	-		-	< 0.00010
Benzo[a]pyrene (BAP)*	g/m³	-	_	_		_	< 0.00010
Benzo[b]fluoranthene + Benzo[j] fluoranthene*	g/m³	-	-	-		-	< 0.00010
Benzo[g,h,i]perylene*	g/m³	-	-	-		-	< 0.00010
Renzolkifluoranthene*	g/m ³		_	_		_	< 0.00010

g/m³

< 0.00010

Benzo[k]fluoranthene*

San	nple Name:	B35 HA01 0.10	B35 TP 03 0.10			
		[3299078.179] [TCLP Extract]	[3299078.28] [SPLP Extract]	B59 TP04 0.10 [3299078.219] [SPLP Extract]	B66 HA01 [3299078.225] [TCLP Extract]	B66 HA02 [3299078.226] [TCLP Extract]
La	ab Number:	3325652.30	3325652.31	3325652.32	3325652.33	3325652.34
Polycyclic Aromatic Hydrocarbons	Screening in V	Vater, By Liq/Liq*				
Chrysene*	g/m³	-	-	-	-	< 0.00010
Dibenzo[a,h]anthracene*	g/m³	-	-	-	-	< 0.00010
Fluoranthene*	g/m³	-	-	-	-	< 0.00010
Fluorene*	g/m³	-	-	-	-	< 0.0002
Indeno(1,2,3-c,d)pyrene*	g/m³	-	-	-	-	< 0.00010
Naphthalene*	g/m³	-	-	-	-	< 0.0005
Phenanthrene*	g/m ³	-	_	-	-	< 0.0004
Pyrene*	g/m³	-	-	_	-	< 0.0002
San	nple Name:	B67 HA02 0.10 [3299078.229] [TCLP Extract]	B71 TP02 0.10 [3299078.234] [SPLP Extract]	B73 TP01 0.1 [3299078.284] [SPLP Extract]	DIP HA02 0.10 [3299078.239] [TCLP Extract]	DS02 TP03 0.1 [3299078.309] [TCLP Extract]
Li	ab Number:	3325652.35	3325652.36	3325652.37	3325652.38	3325652.39
Heavy metals, totals, trace As,Cd,		1		<u> </u>	N	
Total Arsenic	g/m³	-	< 0.0011	< 0.0011)	-
Total Cadmium	g/m³	-	< 0.000053	< 0.000053	- \	-
Total Chromium	g/m³	-	0.00092	0.00088		-
Total Copper	g/m³	-	0.0028	0.0022	~0	-
Total Lead	g/m³	<u>-</u>	0.00129	0.0034	1 ()	-
Total Nickel	g/m³	-	< 0.00053	< 0.00053	-	-
Total Zinc	g/m³	_	0.0071 #4	0.0121 #5	_	_
Heavy metals, totals, screen As,Co			0.007	0.0121	V	
Total Arsenic		< 0.021		7/4	< 0.021	< 0.021
Total Cadmium	g/m ³		~ (/)	\ (7) ·		
	g/m ³	< 0.0011			< 0.0011	0.0022
Total Chromium	g/m ³	< 0.011	-	-	< 0.011	< 0.011
Total Copper	g/m³	< 0.011	•	-	< 0.011	< 0.011
Total Lead	g/m³	< 0.0021	- 1	-	< 0.0021	0.083
Total Nickel	g/m³	< 0.011	* () ,	-	< 0.011	< 0.011
Total Zinc	g/m³	0.029		-	0.070	0.27
Polycyclic Aromatic Hydrocarbons	Screening in V	Vater, By Liq/Liq*				
Acenaphthene*	g/m³	0.0174	<u> </u>	-	-	-
Acenaphthylene*	g/m³	0.00013	-	-	-	-
Anthracene*	g/m³	0.0058	-	-	-	-
Benzo[a]anthracene*	g/m³	0.00023	-	-	-	-
Benzo[a]pyrene (BAP)*	g/m³	< 0.00010	-	-	-	-
Benzo[b]fluoranthene + Benzo[j] fluoranthene*	g/m³	< 0.00010	-	-	-	-
Benzo[g,h,i]perylene*	g/m³	< 0.00010	-	-	-	-
Benzo[k]fluoranthene*	g/m³	< 0.00010	-	-	-	-
Chrysene*	g/m ³	0.00021	-	-	-	-
Dibenzo[a,h]anthracene*	g/m ³	< 0.00010	-	-	-	-
Fluoranthene*	g/m ³	0.0059	-	-	-	-
Fluorene*	g/m³	0.0101	-	-	-	-
Indeno(1,2,3-c,d)pyrene*	g/m³	< 0.00010	-	-	-	-
Naphthalene*	g/m³	0.0006	-	-	-	-
Phenanthrene*	g/m³	0.025	-	-	-	-
Pyrene*	g/m³	0.0043	-	-	-	-
San	nple Name:	DS02 TP03 0.5 [3299078.310] [TCLP Extract]	DS02 TP05 0.1 [3299078.315] [SPLP Extract]	DS03 TP03 0.1 [3299078.324] [TCLP Extract]	HSP SED 04 0.05 [3299078.370] [SPLP Extract]	HT TP 29 0.10 [3299078.133] [TCLP Extract]
	ab Number:	3325652.40	3325652.41	3325652.42	3325652.43	3325652.44
Heavy metals, totals, trace As,Cd,	Cr,Cu,Ni,Pb,Zr	1				
	Cr,Cu,Ni,Pb,Zr g/m³	-	0.0012	-	0.0025	-
Heavy metals, totals, trace As,Cd,		- -	0.0012 < 0.000053	-	0.0025 < 0.000053	-

Sample Type: Aqueous	5					
	Sample Name:	DS02 TP03 0.5 [3299078.310] [TCLP Extract]	DS02 TP05 0.1 [3299078.315] [SPLP Extract]	DS03 TP03 0.1 [3299078.324] [TCLP Extract]	HSP SED 04 0.05 [3299078.370] [SPLP Extract]	HT TP 29 0.10 [3299078.133] [TCLP Extract]
	Lab Number:	3325652.40	3325652.41	3325652.42	3325652.43	3325652.44
Heavy metals, totals, trace As	s,Cd,Cr,Cu,Ni,Pb,Zr	1		,		
Total Copper	g/m³	-	0.0098	-	0.0023	-
Total Lead	g/m³	-	0.020	-	0.0020	-
Total Nickel	g/m³	-	0.00137	-	0.00056	-
Total Zinc	g/m³	-	0.023	-	0.0114 #5	-
Heavy metals, totals, screen	As,Cd,Cr,Cu,Ni,Pb,	Zn				
Total Arsenic	g/m³	< 0.021	_	< 0.021	_	< 0.021
Total Cadmium	g/m³	0.0017	-	0.0018	-	< 0.0011
Total Chromium	g/m³	< 0.011	-	< 0.011	-	< 0.011
Total Copper	g/m³	0.013	_	< 0.011	-	< 0.011
Total Lead	g/m³	0.035	_	0.116	-	0.082
Total Nickel	g/m³	< 0.011	_	< 0.011	-	< 0.011
Total Zinc	g/m³	1.42	_	0.33	-	0.28
			DAY = 200 - 11			
	Sample Name:	HT TP 30 0.10 [3299078.136] [TCLP Extract]	PAV TP01 0.10 [3299078.211] [SPLP Extract]	STR SED 03 0.3 [3299078,359] [SPLP Extract]	0.10 [3299078.171] [TCLP Extract]	B16 TP04 0.1 [3209697.9] [SPLP Extract]
	Lab Number:	3325652.45	3325652.46	3325652.47	3325652.48	3325652.57
Heavy metals, totals, trace As	s,Cd,Cr,Cu,Ni,Pb,Zr	1		6	10	
Total Arsenic	g/m³	-	< 0.0011	0.0019	-	< 0.0011
Total Cadmium	g/m ³	-	< 0.000053	< 0.000053	-	< 0.000053
Total Chromium	g/m³	-	0.00111	< 0.00053	-	0.00083
Total Copper	g/m³	-	0.0074	0.00093	-	0.0037
Total Lead	g/m³	-	0.0033	0.00110	-	0.0058
Total Nickel	g/m³	-	0.00078	< 0.00053	-	0.00138
Total Zinc	g/m ³	-	0.0135 #6	0.0044 #7	-	0.0133
Heavy metals, totals, screen	As,Cd,Cr,Cu,Ni,Pb,	Zn				
Total Arsenic	g/m³	6-17		-	< 0.021	-
Total Cadmium	g/m³	1(/-)		-	< 0.0011	-
Total Chromium	g/m³		11.	-	< 0.011	-
Total Copper	g/m³	-	· -	-	< 0.011	-
Total Lead	g/m³		_	-	0.0112	-
Total Nickel	g/m³	.4	-	-	< 0.011	-
Total Zinc	g/m ³	-	-	-	0.104	-
Polycyclic Aromatic Hydroca		Vater, By Liq/Liq*				
Acenaphthene*	g/m³	< 0.00010	-	-	-	-
Acenaphthylene*	g/m³	< 0.00010	-	-	-	-
Anthracene*	g/m³	< 0.00010	-	-	-	-
Benzo[a]anthracene*	g/m³	< 0.00010	-	-	-	-
Benzo[a]pyrene (BAP)*	g/m³	< 0.00010	-	-	-	-
Benzo[b]fluoranthene + Benz fluoranthene*	o[j] g/m³	< 0.00010	-	-	-	-
Benzo[g,h,i]perylene*	g/m³	< 0.00010	-	-	-	-
Benzo[k]fluoranthene*	g/m³	< 0.00010	-	-	-	-
Chrysene*	g/m³	< 0.00010	-	-	-	-
Dibenzo[a,h]anthracene*	g/m³	< 0.00010	-	-	-	-
Fluoranthene*	g/m³	< 0.00010	-	-	-	-
Fluorene*	g/m³	< 0.0002	-	-	-	-
Indeno(1,2,3-c,d)pyrene*	g/m³	< 0.00010	-	-	-	-
Naphthalene*	g/m³	< 0.0005	-	-	-	-
Phenanthrene*	g/m³	< 0.0004	-	-	-	-
Pyrene*	g/m³	< 0.0002	_	_	_	_

Sample Type: Aqueous								
Sample Name	B16 TP06 0.1 [3209697.12] [TCLP Extract]	B66 TP01 0.1 [3211645.29] [TCLP Extract]	CHP TP01 0.2 [3209697.5] [TCLP Extract]	CHP TP04 0.2 [3209697.7] [TCLP Extract]	DIP TP03 0.2 [3209697.25] [TCLP Extract]			
Lab Numbe	r: 3325652.58	3325652.59	3325652.60	3325652.61	3325652.62			
Heavy metals, totals, screen As,Cd,Cr,Cu,Ni,F	b,Zn							
Total Arsenic g/n	n ³ < 0.021	< 0.021	< 0.021	< 0.021	< 0.021			
Total Cadmium g/n	n ³ < 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011			
Total Chromium g/n	³ < 0.011	< 0.011	< 0.011	< 0.011	< 0.011			
Total Copper g/n	n ³ < 0.011	< 0.011	< 0.011	0.055	< 0.011			
Total Lead g/n	n ³ < 0.0021	< 0.0021	0.24	0.0022	< 0.0021			
Total Nickel g/n	n ³ 0.017	< 0.011	< 0.011	< 0.011	< 0.011			
Total Zinc g/n	n ³ 0.034	0.034	0.057	0.68	0.049			

	Sample Name:	HSP SED 01 0.1 [3299078.363] [SPLP Extract]	HT TP25 0.2 [3209697.28] [TCLP Extract]
	Lab Number:	3325652.63	3325652.64
Heavy metals, totals, trad	ce As,Cd,Cr,Cu,Ni,Pb,Zn		
Total Arsenic	g/m³	< 0.0011	
Total Cadmium	g/m³	< 0.000053	· · · · · ·
Total Chromium	g/m³	< 0.00053	
Total Copper	g/m³	0.0026	
Total Lead	g/m³	0.0021	
Total Nickel	g/m³	< 0.00053	Q . Q
Total Zinc	g/m³	0.0077	/ 0 -
Heavy metals, totals, scr	een As,Cd,Cr,Cu,Ni,Pb,Z	'n	
Total Arsenic	g/m³		< 0.021
Total Cadmium	g/m³	- 10	< 0.0011
Total Chromium	g/m³		< 0.011
Total Copper	g/m³	<u> </u>	0.018
Total Lead	g/m³	V - 12	< 0.0021
Total Nickel	g/m³	-	< 0.011
Total Zinc	g/m³	17 - (1)	0.038

Analyst's Comments

- #1 It should be noted that the blank TCLP extract contained an elevated level of zinc (0.027g/m3 c.f. detection limit of 0.00.021g/m3). This has been corrected for on the sample TCLP extract concentrations. This should be kept in mind when interpreting these results
- #2 It should be noted that the blank TCLP extract contained an elevated level of zinc (0.028g/m3 c.f. detection limit of 0.00.021g/m3). This has been corrected for on the sample TCLP extract concentrations. This should be kept in mind when interpreting these results
- #3 It should be noted that the blank SPLP extract contained an elevated level of zinc (0.0059g/m3 c.f. detection limit of 0.0011g/m3). This has not been corrected for on the sample SPLP extract concentration. This should be kept in mind when interpreting these results.
- #4 It should be noted that the blank SPLP extract contained an elevated level of zinc (0.0016g/m3 c.f. detection limit of 0.0011g/m3). This has not been corrected for on the sample SPLP extract concentration. This should be kept in mind when interpreting these results.
- #5 It should be noted that the blank SPLP extract contained an elevated level of zinc (0.0044g/m3 c.f. detection limit of 0.0011g/m3). This has not been corrected for on the sample SPLP extract concentration. This should be kept in mind when interpreting these results.
- #6 It should be noted that the blank SPLP extract contained an elevated level of zinc (0.0027g/m3 c.f. detection limit of 0.0011g/m3). This has not been corrected for on the sample SPLP extract concentration. This should be kept in mind when interpreting these results.
- ^{#7} It should be noted that the blank SPLP extract contained an elevated level of zinc (0.0022g/m3 c.f. detection limit of 0.0011g/m3). This has been corrected for on the sample SPLP extract concentrations. This should be kept in mind when interpreting these results

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Labs, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Individual Tests			•
SPLP Profile*	Extraction at 30 +/- 2 rpm for 18 +/- 2 hours, (Ratio 1g sample : 20g extraction fluid). US EPA 1312.	-	3, 5, 7-8, 12-13, 17, 19, 22-23, 49, 55
TCLP Profile*	Extraction at 30 +/- 2 rpm for 18 +/- 2 hours, (Ratio 1g sample : 20g extraction fluid). US EPA 1311.	-	1-2, 4, 6, 9-11, 14-16, 18, 20-21, 24, 50-54, 56
SPLP Profile		1	
SPLP Sample Weight	Gravimetric. US EPA 1312.	0.1 g	3, 5, 7-8, 12-13, 17, 19, 22-23, 49, 55
SPLP Extractant Type*	US EPA 1312 (Modified for New Zealand conditions to use De- ionised Water unless otherwise specified).	9/01	3, 5, 7-8, 12-13, 17, 19, 22-23, 49, 55
SPLP Final pH	pH meter. US EPA 1312.	0.1 pH Units	3, 5, 7-8, 12-13, 17, 19, 22-23, 49, 55
TCLP Profile	N. N		
TCLP Weight of Sample Taken	Gravimetric. US EPA 1311.	0.1 g	1-2, 4, 6, 9-11, 14-16, 18, 20-21, 24, 50-54, 56
TCLP Initial Sample pH	pH meter. US EPA 1311.	0.1 pH Units	1-2, 4, 6, 9-11, 14-16, 18, 20-21, 24, 50-54, 56
TCLP Acid Adjusted Sample pH	pH meter. US EPA 1311	0.1 pH Units	1-2, 4, 6, 9-11, 14-16, 18, 20-21, 24, 50-54, 56
TCLP Extractant Type*	US EPA 1311.	-	1-2, 4, 6, 9-11, 14-16, 18, 20-21, 24, 50-54, 56
TCLP Extraction Fluid pH	pH meter. US EPA 1311.	0.1 pH Units	1-2, 4, 6, 9-11, 14-16, 18, 20-21, 24, 50-54, 56
TCLP Post Extraction Sample pH	pH meter. US EPA 1311.	0.1 pH Units	1-2, 4, 6, 9-11, 14-16, 18, 20-21, 24, 50-54, 56
Sample Type: Aqueous	1		
Test	Method Description	Default Detection Limit	Sample No
Individual Tests	I.m.,	1	
Total Digestion of Extracted Samples*	Nitric acid digestion. APHA 3030 E (modified) 23rd ed. 2017.	-	25-44, 46-48, 57-64
Heavy metals, totals, trace As,Cd,Cr,Cu,Ni,Pb,Zn	Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 23 rd ed. 2017 / US EPA 200.8.	0.000053 - 0.0011 g/m ³	27, 29, 31-32, 36-37, 41, 43, 46-47, 57, 63

Sample Type: Aqueous			
Test	Method Description	Default Detection Limit	Sample No
Heavy metals, totals, screen As,Cd,Cr,Cu,Ni,Pb,Zn	Nitric acid digestion, ICP-MS, screen level. APHA 3125 B 23 rd ed. 2017.	0.0011 - 0.021 g/m ³	25-26, 28, 30, 33-35, 38-40, 42, 44, 48, 58-62, 64
Polycyclic Aromatic Hydrocarbons Screening in Water, By Liq/Liq*	Liquid / liquid extraction, GC-MS/MS analysis. In-house based on US EPA 8270.	0.00010 - 0.0005 g/m ³	34-35, 45

Testing was completed between 02-Aug-2023 and 10-Aug-2023. For completion dates of individual analyses please contact the laboratory.

and information.

And information. Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Kim Harrison MSc

Client Services Manager - Environmental

R J Hill Laboratories Limited 101C Waterloo Road Hornby Christchurch 8042 New Zealand ◆ 0508 HILL LAB (44 555 22)
 ♦ +64 7 858 2000
 ☑ mail@hill-labs.co.nz
 ⊕ www.hill-labs.co.nz

Certificate of Analysis

Page 1 of 4

A2Pv1

Client: Contact: GHD Limited David Jackson C/- GHD Limited PO Box 660

Waikato Mail Centre Hamilton 3240

 Lab No:
 3212697

 Date Received:
 23-Mar-2023

 Date Reported:
 12-Jun-2023

 Quote No:
 124299

 Order No:
 12559090

 Client Reference:
 12559090

 Submitted By:
 David Jackson

Sample Type: Soil						
Sample	Name:	SB2 TP02 0.2	SB2 TP03 0.2	CHP TP01 0.2	CHP TP01 0.5	CHP TP04 0.6
	_	16-Mar-2023	16-Mar-2023	16-Mar-2023	16-Mar-2023	16-Mar-2023
	umber:	3212697.1	3212697.3	3212697.4	3212697.5	3212697.7
Asbestos Presence / Absence		Asbestos NOT detected.	Amosite (Brown Asbestos) and Chrysotile (White Asbestos) detected.	Chrysotile (White Asbestos) detected.	Asbestos NOT detected.	Asbestos NOT detected.
Description of Asbestos Form		-	ACM debris and Loose fibres	Loose fibres	10	-
Asbestos in ACM as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*	% w/w	< 0.001	0.009	< 0.001	< 0.001	< 0.001
Asbestos as Fibrous Asbestos as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Asbestos as Asbestos Fines as % of Total Sample*	% w/w	< 0.001	0.009	< 0.001	< 0.001	< 0.001
As Received Weight	g	1,070.0	822.9	985.2	601.1	646.6
Dry Weight	g	1,029.1	710.2	922.4	449.9	481.4
Moisture*	%	4	14	6	25	26
Sample Fraction >10mm	g dry wt	371.1	167.8	373.4	11.7	< 0.1
Sample Fraction <10mm to >2mm	g dry wt		232.8	336.8	14.4	< 0.1
Sample Fraction <2mm	g dry wt	217.8	309.2	212.2	423.7	481.1
<2mm Subsample Weight	g dry wt	57.5	57.3	54.6	56.1	55.3
Weight of Asbestos in ACM (Non-Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Fibrous Asbestos (Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Asbestos Fines (Friable)*	g dry wt	< 0.00001	0.06124	0.00320	< 0.00001	< 0.00001
Sample	Name: umber:	B16 TP04 0.1 16-Mar-2023 3212697.8	B16 TP06 0.5 A 16-Mar-2023 3212697.10	B16 TP06 0.1 16-Mar-2023 3212697.11	B16 TP07 0.1 17-Mar-2023 3212697.14	HT TP25 0.2 17-Mar-2023 3212697.19
Asbestos Presence / Absence		Asbestos NOT detected.	Asbestos NOT detected.	Chrysotile (White Asbestos) detected.	Asbestos NOT detected.	Asbestos NOT detected.
Description of Asbestos Form		-	-	ACM debris	-	-
Asbestos in ACM as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Asbestos as Fibrous Asbestos as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Asbestos as Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked * or any comments and interpretations, which are not accredited.

Sample Type: Soil						
Samp	le Name:	B16 TP04 0.1 16-Mar-2023	B16 TP06 0.5 A 16-Mar-2023	B16 TP06 0.1 16-Mar-2023	B16 TP07 0.1 17-Mar-2023	HT TP25 0.2 17-Mar-2023
Lab	Number:	3212697.8	3212697.10	3212697.11	3212697.14	3212697.19
As Received Weight	g	854.9	730.3	636.7	676.1	784.5
Dry Weight	g	746.8	566.0	473.5	516.3	669.6
Moisture*	%	13	22	26	24	15
Sample Fraction >10mm	g dry wt	67.4	< 0.1	< 0.1	2.0	216.4
Sample Fraction <10mm to >2mm	g dry wt	379.3	3.7	66.5	34.9	183.0
Sample Fraction <2mm	g dry wt	299.8	562.0	406.5	478.9	269.9
<2mm Subsample Weight	g dry wt	58.8	53.1	54.9	55.9	54.2
Weight of Asbestos in ACM (Non-Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Fibrous Asbestos (Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Asbestos Fines (Friable)*	g dry wt	< 0.00001	< 0.00001	0.00155	< 0.00001	< 0.00001

Sample	Name:	HT TP27 0.1 17-Mar-2023	HT TP28 0.1 17-Mar-2023
Lab N	umber:	3212697.20	3212697.22
Asbestos Presence / Absence		Asbestos NOT detected.	Asbestos NOT detected.
Description of Asbestos Form		-	
Asbestos in ACM as % of Total Sample*	% w/w	< 0.001	€ 0,001
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001
Asbestos as Fibrous Asbestos as % of Total Sample*	% w/w	< 0.001	< 0.001
Asbestos as Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001
As Received Weight	g	606.9	673.6
Dry Weight	g	486.3	522.3
Moisture*	%	20	22
Sample Fraction >10mm	g dry wt	75.3	69.8
Sample Fraction <10mm to >2mm	g dry wt	127.2	111.0
Sample Fraction <2mm	g dry wt	283.6	341.0
<2mm Subsample Weight	g dry wt	53.7	58.8
Weight of Asbestos in ACM (Non-Friable)	g dry wt	< 0.00001	< 0.00001
Weight of Asbestos as Fibrous Asbestos (Friable)	g dry wt	< 0.00001	< 0.00001
Weight of Asbestos as Asbestos Fines (Friable)*	g dry wt	< 0.00001	< 0.00001

Glossary of Terms

- · Loose fibres (Minor) One or two fibres/fibre bundles identified during analysis by stereo microscope/PLM.
- · Loose fibres (Major) Three or more fibres/fibre bundles identified during analysis by stereo microscope/PLM.
- ACM Debris (Minor) One or two small (<2mm) pieces of material attached to fibres identified during analysis by stereo microscope/PLM.
- ACM Debris (Major) Large (>2mm) piece, or more than three small (<2mm) pieces of material attached to fibres identified during analysis by stereo microscope/PLM.
- Unknown Mineral Fibres Mineral fibres of unknown type detected by polarised light microscopy including dispersion staining. The fibres detected may or may not be asbestos fibres. To confirm the identities, another independent analytical technique may be required.
- Trace Trace levels of asbestos, as defined by AS4964-2004.

For further details, please contact the Asbestos Team.

Please refer to the BRANZ New Zealand Guidelines for Assessing and Managing Asbestos in Soil. https://www.branz.co.nz/asbestos

The following assumptions have been made:

- 1. Asbestos Fines in the <2mm fraction, after homogenisation, is evenly distributed throughout the fraction
- 2. The weight of asbestos in the sample is unaffected by the ashing process.

Results are representative of the sample provided to Hill Laboratories only.

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Labs, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
New Zealand Guidelines Semi Quantitati	ve Asbestos in Soil		
As Received Weight	Measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g	1, 3-5, 7-8, 10-11, 14, 19-20, 22
Dry Weight	Sample dried at 100 to 105°C, measurement on balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g	1, 3-5, 7-8, 10-11, 14, 19-20, 22
Moisture*	Sample dried at 100 to 105°C. Calculation = (As received weight - Dry weight) / as received weight x 100.	1 %	1, 3-5, 7-8, 10-11, 14, 19-20, 22
Sample Fraction >10mm	Sample dried at 100 to 105°C, 10mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g dry wt	1, 3-5, 7-8, 10-11, 14, 19-20, 22
Sample Fraction <10mm to >2mm	Sample dried at 100 to 105°C, 10mm and 2mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g dry wt	1, 3-5, 7-8, 10-11, 14, 19-20, 22
Sample Fraction <2mm	Sample dried at 100 to 105°C, 2mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g dry wt	1, 3-5, 7-8, 10-11, 14, 19-20, 22
Asbestos Presence / Absence	Examination using Low Powered Stereomicroscopy followed by 'Polarised Light Microscopy' including 'Dispersion Staining Techniques'. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. AS 4964 (2004) - Method for the Qualitative Identification of Asbestos in Bulk Samples.	0.01%	1, 3-5, 7-8, 10-11, 14, 19-20, 22
Description of Asbestos Form	Description of asbestos form and/or shape if present.	-	1, 3-5, 7-8, 10-11, 14, 19-20, 22
Weight of Asbestos in ACM (Non-Friable)	Measurement on analytical balance, from the >10mm Fraction. Weight of asbestos based on assessment of ACM form. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g dry wt	1, 3-5, 7-8, 10-11, 14, 19-20, 22
Asbestos in ACM as % of Total Sample*	Calculated from weight of asbestos in ACM and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	1, 3-5, 7-8, 10-11, 14, 19-20, 22
Weight of Asbestos as Fibrous Asbestos (Friable)	Measurement on analytical balance, from the >10mm Fraction. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g dry wt	1, 3-5, 7-8, 10-11, 14, 19-20, 22
Asbestos as Fibrous Asbestos as % of Total Sample*	Calculated from weight of fibrous asbestos and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	1, 3-5, 7-8, 10-11, 14, 19-20, 22
Weight of Asbestos as Asbestos Fines (Friable)*	Measurement on analytical balance, from the <10mm Fractions. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g dry wt	1, 3-5, 7-8, 10-11, 14, 19-20, 22
Asbestos as Asbestos Fines as % of Total Sample*	Calculated from weight of asbestos fines and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	1, 3-5, 7-8, 10-11, 14, 19-20, 22
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*	Calculated from weight of fibrous asbestos plus asbestos fines and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	1, 3-5, 7-8, 10-11, 14, 19-20, 22

Testing was completed on 12-Jun-2023. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Rhodri Williams BSc (Hons) Technical Manager - Asbestos

Proactively Released Dy land and Information Relation Against and Information Against a serious proactive of the proactive of

Homby

T 0508 HILL LAB (44 555 22) +64 7 858 2000

E mail@hill-labs.co.nz

Certificate of Analysis

Page 1 of 2

A2Pv1

Client: **GHD** Limited Lab No: 3212716 Contact: David Jackson **Date Received:** 23-Mar-2023 C/- GHD Limited 28-Mar-2023 **Date Reported:** PO Box 660 **Quote No:** 122978 Waikato Mail Centre Order No: 12559090 Hamilton 3240 12559090 **Client Reference:** Submitted By: David Jackson

Sample Type: Soi	Sample Type: Soil								
Sample Name	Lab Number	As Received Weight (g)	Dry Weight (g)	<2mm Subsample Weight (g dry wt)	Asbestos Presence / Absence	Description of Asbestos Form			
CHP TP01 0.2	3212716.4	243.1	227.9	49.3	Asbestos NOT detected.	-			
CHP TP01 0.5	3212716.5	172.8	129.3	59.0	Asbestos NOT detected.	O -			
CHP TP04 0.2	3212716.6	156.8	115.4	55.3	Asbestos NOT detected.	-			
CHP TP04 0.6	3212716.7	161.3	117.2	55.1	Asbestos NOT detected.	-			

Glossary of Terms

- Loose fibres (Minor) One or two fibres/fibre bundles identified during analysis by stereo microscope/PLM
- · Loose fibres (Major) Three or more fibres/fibre bundles identified during analysis by stereo microscope/PLM.
- · ACM Debris (Minor) One or two small (<2mm) pieces of material attached to fibres identified during analysis by stereo microscope/PLM.
- ACM Debris (Major) Large (>2mm) piece, or more than three small (<2mm) pieces of material attached to fibres identified during analysis by stereo microscope/PLM.
- · Unknown Mineral Fibres Mineral fibres of unknown type detected by polarised light microscopy including dispersion staining. The fibres detected may or may not be asbestos fibres. To confirm the identities, another independent analytical technique may be required.
- Trace Trace levels of asbestos, as defined by AS4964-2004.

For further details, please contact the Asbestos Team.

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Asbestos in Soil			•
As Received Weight	Measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g	4-7
Dry Weight	Sample dried at 100 to 105°C, measurement on balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g	4-7
<2mm Subsample Weight	Sample dried at 100 to 105°C, weight of <2mm sample fraction taken for asbestos identification if less than entire fraction. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	-	4-7
Asbestos Presence / Absence	Examination using Low Powered Stereomicroscopy followed by 'Polarised Light Microscopy' including 'Dispersion Staining Techniques'. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. AS 4964 (2004) - Method for the Qualitative Identification of Asbestos in Bulk Samples.	0.01%	4-7
Description of Asbestos Form	Description of asbestos form and/or shape if present.	-	4-7

Testing was completed between 27-Mar-2023 and 28-Mar-2023. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Rhodri Williams BSc (Hons) Technical Manager - Asbestos

Proactively Released Dy alan's and information

Parnell

T 0508 HILL LAB (44 555 22) +64 7 858 2000

mail@hill-labs.co.nz www.hill-laboratories.com

Certificate of Analysis

Page 1 of 2

A2Pv1

Client: **GHD** Limited Lab No: 3212718 Contact: David Jackson **Date Received:** 23-Mar-2023 C/- GHD Limited 28-Mar-2023 **Date Reported:** PO Box 660 **Quote No:** 122978 Waikato Mail Centre Order No: 12559090 Hamilton 3240 12559090 **Client Reference:** Submitted By: David Jackson

Sample Type: Bu	Sample Type: Building Material								
Sample Name	Lab Number	Sample Category	Sample Weight on receipt (g)	Asbestos Presence / Absence	Description of Asbestos in Non Homogeneous Samples				
SB2 TP3 Sheet	3212718.1	Fibre Cement	88.51	Amosite (Brown Asbestos) detected. Chrysotile (White Asbestos) detected. Crocidolite (Blue Asbestos) detected. Organic fibres detected.	N/A				

Glossary of Terms

- Loose fibres (Minor) One or two fibres/fibre bundles identified during analysis by stereo microscope/PLM.
- · Loose fibres (Major) Three or more fibres/fibre bundles identified during analysis by stereo microscope/PLM.
- ACM Debris (Minor) One or two small (<2mm) pieces of material attached to fibres identified during analysis by stereo microscope/PLM.
- · ACM Debris (Major) Large (>2mm) piece, or more than three small (<2mm) pieces of material attached to fibres identified during analysis by stereo microscope/PLM.
- Unknown Mineral Fibres Mineral fibres of unknown type detected by polarised light microscopy including dispersion staining. The fibres detected may or may not be asbestos fibres. To confirm the identities, another independent analytical technique may be required.
- Trace Trace levels of asbestos, as defined by AS4964-2004.

For further details, please contact the Asbestos Team.

Analyst's Comments

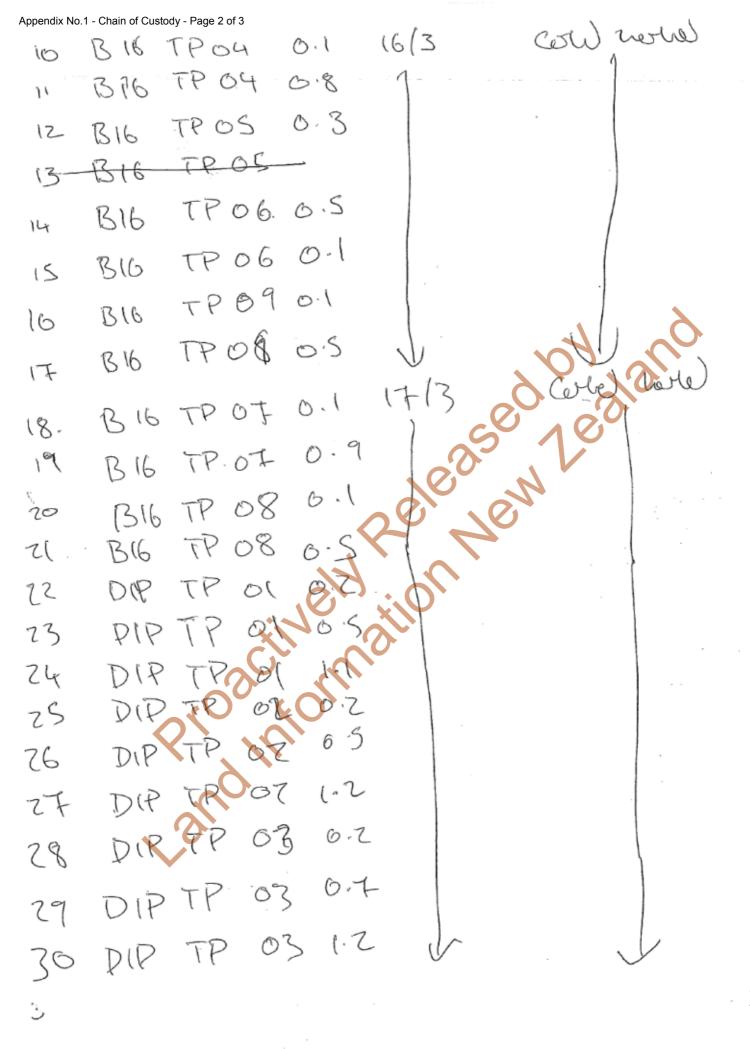
Appendix No.1 - Chain of Custody

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Building Material							
Test	Method Description	Default Detection Limit	Sample No				
Asbestos in Bulk Material							
Sample Category	Assessment of sample type. Analysed at Hill Laboratories - Asbestos; 28 Heather Street, Auckland.	-	1				
Sample Weight on receipt	Sample weight (approximate). Analysed at Hill Laboratories - Asbestos; 28 Heather Street, Auckland.	0.01 g	1				
Asbestos Presence / Absence	Examination using Low Powered Stereomicroscopy followed by 'Polarised Light Microscopy' including 'Dispersion Staining Techniques'. Analysed at Hill Laboratories - Asbestos; 28 Heather Street, Auckland. AS 4964 (2004) - Method for the Qualitative Identification of Asbestos in Bulk Samples.	0.01%	1				
Description of Asbestos in Non Homogeneous Samples	Form, dimensions and/or weight of asbestos fibres present. Analysed at Hill Laboratories - Asbestos; 28 Heather Street, Auckland. AS 4964 (2004) - Method for the Qualitative Identification of Asbestos in Bulk Samples.	-	1				

Testing was completed between 24-Mar-2023 and 28-Mar-2023. For completion dates of individual analyses please contact the laboratory.


Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Danielle Carter BSc, PGDipSci, MSc Laboratory Technician - Asbestos

Proactively Released Lealand
And Information

	AVAVSIS REDUEST
Hill Laboratories	R J Hill Laboratories Limited Date Recv. 23-Mar-23 12:56
TRIED TESTED AND TRUSTED	R J Hill Laboratories Limited 28 Duke Street Hamilton 3204 Private Bag 3205
Quote No (C C TO Lab Order No	Hamilton 3240, New Zealand Received by: Ben Kingston
Primary Contact David Jackson 242155	T +64 7 858 2000
Submitted By David Jackson 242155	E mail@hill-labs.co.nz Www.hill-laboratories.com 3132127182
Client Name CND	CHAIN OF CHECODY DECORD
Address	CHANOFOUSTODY RECORD
Phone 077750 5817 Mobile	Sent to Hill Laboratories Date & Time:
Email desid , Jecksone gud Com.	Name:
Charge To	to be emailed back Signature:
Client Reference (2SS 9090)	Received at Date & Time:
Additional Client Ref	Hill Laboratories Name:
Order No	
Results To Reports will be emailed to Primary Contact by default. Additional Reports will be sent as specified below.	Signature.
Email Primary Contact Email Submitter Email Client	Condition Temp:
Email Other	Room Temp Chilled Frozen /. 5
Other	Sample & Analysis details checked
Dates of testing are not routinely included in the Certificates of Analysis. Please inform the laboratory if you would like this information reported.	Signature:
ADDITIONAL INFORMATION / KNOWN HAZA: OS	Priority Low Normal High
ASO. WOLFD IN SIBZ TP3 SLEET.	Urgent (ASAP, extra charge applies, please contact lab first)
7,500	
	Requested Reporting Date:
Quoted Sample Types	·
000	
No. Sample Name Sample Date/Time Sample Type	Tests Required
1 SB 2 TROZ 16/3 Soil.	(ste) hole
2 SB2TPOZ 07 76/3	. /
3 SB2TP03 02	
4 SBZTP03 0.5	
5 SB2 TP3 Seet asto, booted	MASS. P/A.
6 CHP TOPO1 0-2 Soil.	JASS. P/A. Specilo metals, asso P/A
7 CHP TPOI O.B	
8 CTIP TPO4 0.2	A. J
9 CHPTPO4 0-6	X (
Hill Laboratories Analysis Request Form	Page 1 of 1

R J Hill Laboratories Limited TRIED, TESTED AND TRUSTED 28 Duke Street Hamilton 3204 Private Bag 3205 Hamilton 3240, New Zealand Office use only Quote No Lab Order No (Job No) 0508 HILL LAB (44 555 22) Primary Contact David Jackson 242155 +64 7 858 2000 mail@hill-labs.co.nz Submitted By David Jackson 242155 www.hill-laboratories.com Client Name Address Date & Time: Sent to Hill Laboratories Phone Mobile Name: Email Tick if you require COC to be emailed back Signature: Charge To Date & Time: Received at Client Reference Hill Laboratories Additional Client Ref Name: Order No Signature: Reports will be emailed to Primary Contact by default. Results To Additional Reports will be sent as specified below. Condition Temp: Email Primary Contact Email Submitter Email Client Chilled Frozen Room Temp Email Other Sample & Analysis details checked Other Signature Dates of testing are not routinely included in the Certificates of Analysis Please inform the laboratory if you would like this information reported. Priority ✓ Normal High Low Urgent (ASAP, extra charge applies, please contact lab first) Requested Reporting Date: **Quoted Sample Types** Sample Date/Time Sample Type No. Sample Name Tests Required Corle) 31 3 35 36 37

38

Parnell

T 0508 HILL LAB (44 555 22) +64 7 858 2000

mail@hill-labs.co.nz www.hill-laboratories.com

Certificate of Analysis

Page 1 of 2

A2Pv1

Client: **GHD** Limited Lab No: 3213156 Contact: David Jackson **Date Received:** 23-Mar-2023 C/- GHD Limited 28-Mar-2023 **Date Reported:** PO Box 660 **Quote No:** 122978 Waikato Mail Centre Order No: 12559090 Hamilton 3240 12559090 **Client Reference:**

> Add. Client Ref: Sampled: 21/3/23 Submitted By: David Jackson

Sample Type:	Building Materia	al			
Sample Name	Lab Number	Sample Category	Sample Weight on receipt (g)	Asbestos Presence / Absence	Description of Asbestos in Non Homogeneous Samples
TP03 Pipe	3213156.1	Fibre Cement	59.59	Amosite (Brown Asbestos) detected. Chrysotile (White Asbestos) detected. Crocidolite (Blue Asbestos) detected.	N/A

Glossary of Terms

- Loose fibres (Minor) One or two fibres/fibre bundles identified during analysis by stereo microscope/PLM.
- Loose fibres (Major) Three or more fibres/fibre bundles identified during analysis by stereo microscope/PLM.
- ACM Debris (Minor) One or two small (<2mm) pieces of material attached to fibres identified during analysis by stereo microscope/PLM.
- · ACM Debris (Major) Large (>2mm) piece, or more than three small (<2mm) pieces of material attached to fibres identified during analysis by stereo microscope/PLM.
- · Unknown Mineral Fibres Mineral fibres of unknown type detected by polarised light microscopy including dispersion staining. The fibres detected may or may not be asbestos fibres. To confirm the identities, another independent analytical technique may be required.
- Trace Trace levels of asbestos, as defined by AS4964-2004. For further details, please contact the Asbestos Team.

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available; or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Building Material	C/C		
Test	Method Description	Default Detection Limit	Sample No
Asbestos in Bulk Material			
Sample Category	Assessment of sample type. Analysed at Hill Laboratories - Asbestos, 28 Heather Street, Auckland.	-	1
Sample Weight on receipt	Sample weight (approximate). Analysed at Hill Laboratories - Asbestos; 28 Heather Street, Auckland.	0.01 g	1
Asbestos Presence / Absence	Examination using Low Powered Stereomicroscopy followed by 'Polarised Light Microscopy' including 'Dispersion Staining Techniques'. Analysed at Hill Laboratories - Asbestos; 28 Heather Street, Auckland. AS 4964 (2004) - Method for the Qualitative Identification of Asbestos in Bulk Samples.	0.01%	1
Description of Asbestos in Non Homogeneous Samples	Form, dimensions and/or weight of asbestos fibres present. Analysed at Hill Laboratories - Asbestos; 28 Heather Street, Auckland. AS 4964 (2004) - Method for the Qualitative Identification of Asbestos in Bulk Samples.	-	1

Testing was completed between 27-Mar-2023 and 28-Mar-2023. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Keith Benson HNC Chem

Laboratory Technician - Asbestos

Proactively Released Lealand and Information Revealed Proactively Released Lealand Revenue and Information Revenue Rev

R J Hill Laboratories Limited 101C Waterloo Road Hornby Christchurch 8042 New Zealand

6 0508 HILL LAB (44 555 22) **%** +64 7 858 2000 mail@hill-labs.co.nz www.hill-labs.co.nz

Certificate of Analysis

Page 1 of 4

A2Pv1

Client: Contact:

GHD Limited David Jackson C/- GHD Limited PO Box 660 Waikato Mail Centre

Hamilton 3240

Lab No: 3213233 **Date Received:** 23-Mar-2023 **Date Reported: Quote No:** Order No: **Client Reference:** Submitted By:

13-Jun-2023 124299 12559090 12559090 David Jackson

			Jul	billitted by.	David Jackso	<u> </u>
Sample Type: Soil						
Sample	Name:	SB4 TP01 0.1 20-Mar-2023	SB4 TP02 0.2 20-Mar-2023	SB4 TP02 0.5 20-Mar-2023	SB4 TP03 0.1 20-Mar-2023	B68 TP06 0.1 20-Mar-2023
Lab N	umber:	3213233.1	3213233.3	3213233.4	3213233.5	3213233.7
Asbestos Presence / Absence		Asbestos NOT detected.	Asbestos NOT detected.	Asbestos NOT detected.	Asbestos NOT detected.	Asbestos NOT detected.
Description of Asbestos Form		-	-		-	-
Asbestos in ACM as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Asbestos as Fibrous Asbestos as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Asbestos as Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
As Received Weight	g	646.6	682.5	794.4	731.8	964.2
Dry Weight	g	501.8	495.1	522.9	590.9	886.8
Moisture*	%	22	27	34	19	8
Sample Fraction >10mm	g dry wt	< 0.1	16.1	< 0.1	64.6	359.1
Sample Fraction <10mm to >2mm	g dry wt	84.4	157.4	< 0.1	333.9	233.9
Sample Fraction <2mm	g drywt	416.4	320.8	522.0	192.2	293.3
<2mm Subsample Weight	g dry wt	50.8	53.6	51.5	55.7	58.0
Weight of Asbestos in ACM (Non- Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Fibrous Asbestos (Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Asbestos Fines (Friable)*	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Sample	Name:	B68 TP07 0.1 20-Mar-2023	B68 TP08 0.2 20-Mar-2023	B66 TP01 0.1 21-Mar-2023	B66 TP01 0.9 21-Mar-2023	B66 TP01 1.1 21-Mar-2023
Lab N	umber:	3213233.10	3213233.12	3213233.22	3213233.23	3213233.24
Asbestos Presence / Absence	<i>-</i>	Asbestos NOT detected.	Asbestos NOT detected.	Asbestos NOT detected.	Asbestos NOT detected.	Asbestos NOT detected.
Description of Asbestos Form		-	-	-	-	-
Asbestos in ACM as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Asbestos as Fibrous Asbestos as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Asbestos as Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
As Received Weight	g	894.3	891.1	915.9	815.2	742.7
Dry Weight	g	823.9	810.9	842.7	549.3	462.0

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked * or any comments and interpretations, which are not accredited.

Sample Type: Soil						
Samp	le Name:	B68 TP07 0.1 20-Mar-2023	B68 TP08 0.2 20-Mar-2023	B66 TP01 0.1 21-Mar-2023	B66 TP01 0.9 21-Mar-2023	B66 TP01 1.1 21-Mar-2023
Lab	Number:	3213233.10	3213233.12	3213233.22	3213233.23	3213233.24
Sample Fraction >10mm	g dry wt	332.1	81.8	177.0	< 0.1	< 0.1
Sample Fraction <10mm to >2mm	g dry wt	155.2	96.0	168.8	< 0.1	57.6
Sample Fraction <2mm	g dry wt	336.4	611.8	496.8	547.4	402.7
<2mm Subsample Weight	g dry wt	56.3	59.3	59.0	53.0	54.9
Weight of Asbestos in ACM (Non-Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Fibrous Asbestos (Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Asbestos Fines (Friable)*	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001

Sample Name:		B63 TP03 0.1 21-Mar-2023	B63 TP04 0.2 21-Mar-2023
Lab N	umber:	3213233.25	3213233.27
Asbestos Presence / Absence		Asbestos NOT detected.	Asbestos NOT detected.
Description of Asbestos Form		-	-
Asbestos in ACM as % of Total Sample*	% w/w	< 0.001	< 0.001
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*	% w/w	< 0.001	<0.001
Asbestos as Fibrous Asbestos as % of Total Sample*	% w/w	< 0.001	< 0.001
Asbestos as Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001
As Received Weight	g	1,041.2	745.7
Dry Weight	g	944.9	548.1
Moisture*	%	9	26
Sample Fraction >10mm	g dry wt	153.9	165.4
Sample Fraction <10mm to >2mm	g dry wt	242.2	246.2
Sample Fraction <2mm	g dry wt	548.6	135.6
<2mm Subsample Weight	g dry wt	53.7	50.2
Weight of Asbestos in ACM (Non-Friable)	g dry wt	< 0,00001	< 0.00001
Weight of Asbestos as Fibrous Asbestos (Friable)	g dry wt	< 0.00001	< 0.00001
Weight of Asbestos as Asbestos Fines (Friable)*	g dry wt	< 0.00001	< 0.00001

- Loose fibres (Minor) One or two fibres/fibre bundles identified during analysis by stereo microscope/PLM.
- Loose fibres (Major) Three or more fibres/fibre bundles identified during analysis by stereo microscope/PLM.
- ACM Debris (Minor) One or two small (<2mm) pieces of material attached to fibres identified during analysis by stereo microscope/PLM.
- · ACM Debris (Majon) Large (>2mm) piece, or more than three small (<2mm) pieces of material attached to fibres identified during analysis by stereo microscope/PLM.
- · Unknown Mineral Fibres Mineral fibres of unknown type detected by polarised light microscopy including dispersion staining. The fibres detected may or may not be asbestos fibres. To confirm the identities, another independent analytical technique may be required.
- Trace Trace levels of asbestos, as defined by AS4964-2004. For further details, please contact the Asbestos Team.

Please refer to the BRANZ New Zealand Guidelines for Assessing and Managing Asbestos in Soil. https://www.branz.co.nz/asbestos

The following assumptions have been made:

- 1. Asbestos Fines in the <2mm fraction, after homogenisation, is evenly distributed throughout the fraction
- 2. The weight of asbestos in the sample is unaffected by the ashing process.

Results are representative of the sample provided to Hill Laboratories only.

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Labs, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
New Zealand Guidelines Semi Quantitati	ve Asbestos in Soil	1	
As Received Weight	Measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g	1, 3-5, 7, 10, 12, 22-25, 27
Dry Weight	Sample dried at 100 to 105°C, measurement on balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g	1, 3-5, 7, 10, 12, 22-25, 27
Moisture*	Sample dried at 100 to 105°C. Calculation = (As received weight - Dry weight) / as received weight x 100.	1 %	1, 3-5, 7, 10, 12, 22-25, 27
Sample Fraction >10mm	Sample dried at 100 to 105°C, 10mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g dry wt	1, 3-5, 7, 10, 12, 22-25, 27
Sample Fraction <10mm to >2mm	Sample dried at 100 to 105°C, 10mm and 2mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g dry wt	1, 3-5, 7, 10, 12, 22-25, 27
Sample Fraction <2mm	Sample dried at 100 to 105°C, 2mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g dry wt	1, 3-5, 7, 10, 12, 22-25, 27
Asbestos Presence / Absence	Examination using Low Powered Stereomicroscopy followed by 'Polarised Light Microscopy' including 'Dispersion Staining Techniques'. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. AS 4964 (2004) - Method for the Qualitative Identification of Asbestos in Bulk Samples.	0.01%	1, 3-5, 7, 10, 12, 22-25, 27
Description of Asbestos Form	Description of asbestos form and/or shape if present.	-	1, 3-5, 7, 10, 12, 22-25, 27
Weight of Asbestos in ACM (Non-Friable)	Measurement on analytical balance, from the >10mm Fraction. Weight of asbestos based on assessment of ACM form. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g dry wt	1, 3-5, 7, 10, 12, 22-25, 27
Asbestos in ACM as % of Total Sample*	Calculated from weight of asbestos in ACM and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	1, 3-5, 7, 10, 12, 22-25, 27
Weight of Asbestos as Fibrous Asbestos (Friable)	Measurement on analytical balance, from the >10mm Fraction. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g dry wt	1, 3-5, 7, 10, 12, 22-25, 27
Asbestos as Fibrous Asbestos as % of Total Sample*	Calculated from weight of fibrous asbestos and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	1, 3-5, 7, 10, 12, 22-25, 27
Weight of Asbestos as Asbestos Fines (Friable)*	Measurement on analytical balance, from the <10mm Fractions. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g dry wt	1, 3-5, 7, 10, 12, 22-25, 27
Asbestos as Asbestos Fines as % of Total Sample*	Calculated from weight of asbestos fines and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	1, 3-5, 7, 10, 12, 22-25, 27
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*	Calculated from weight of fibrous asbestos plus asbestos fines and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	1, 3-5, 7, 10, 12, 22-25, 27

Testing was completed between 12-Jun-2023 and 13-Jun-2023. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Rhodri Williams BSc (Hons) Technical Manager - Asbestos

Proactively Released Dy alan's and information agine Aew Lealan's and information and informat

R J Hill Laboratories Limited 101C Waterloo Road Hornby Christchurch 8042 New Zealand ♦ 0508 HILL LAB (44 555 22)
 ♦ +64 7 858 2000
 ☑ mail@hill-labs.co.nz
 ⊕ www.hill-labs.co.nz

Certificate of Analysis

Page 1 of 3

A2Pv1

Client: Contact: GHD Limited
David Jackson
C/- GHD Limited
PO Box 660

Waikato Mail Centre Hamilton 3240

 Lab No:
 3216641

 Date Received:
 27-Mar-2023

 Date Reported:
 14-Jun-2023

 Quote No:
 124299

 Order No:
 12559090

 Client Reference:
 12559090

 Submitted By:
 David Jackson

Sample Type: Soil						
Sample I	Name:	WD2 TP09 0.1 [NZG] 22-Mar-2023	WD2 TP08 0.2 [NZG] 22-Mar-2023	WD2 TP07 0.1 [NZG] 22-Mar-2023	WD2 TP06 0.1 [NZG] 22-Mar-2023	WD TP01 0.1 [NZG] 22-Mar-2023
Lab Nu	ımber:	3216641.37	3216641.40	3216641.42	3216641.44	3216641.64
Asbestos Presence / Absence		Asbestos NOT detected.				
Description of Asbestos Form		-	-			-
Asbestos in ACM as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001	0.001	< 0.001	< 0.001
Asbestos as Fibrous Asbestos as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Asbestos as Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
As Received Weight	g	636.4	577.0	613.8	597.9	687.4
Dry Weight	g	443.4	396.9	429.9	403.2	505.3
Moisture*	%	30	31	30	33	26
Sample Fraction >10mm	g dry wt	< 0:1	< 0.1	8.0	1.5	< 0.1
Sample Fraction <10mm to >2mm	g dry wt	93.2	70.7	99.3	83.0	188.5
Sample Fraction <2mm	g dry wt	349.2	324.9	321.7	317.8	315.2
<2mm Subsample Weight	g dry wt	54.0	57.5	51.0	52.8	50.8
Weight of Asbestos in ACM (Non-Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Fibrous Asbestos (Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Asbestos Fines (Friable)*	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001

Sample I	Name:	WD TP02 0.1 [NZG] 22-Mar-2023	WD TP03 0.1 [NZG] 22-Mar-2023	WD TP04 0.1 [NZG] 22-Mar-2023	WD TP05 0.1 [NZG] 22-Mar-2023
Lab Nu	mber:	3216641.66	3216641.68	3216641.71	3216641.73
Asbestos Presence / Absence		Asbestos NOT detected.	Asbestos NOT detected.	Asbestos NOT detected.	Asbestos NOT detected.
Description of Asbestos Form		-	-	-	-
Asbestos in ACM as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001
Asbestos as Fibrous Asbestos as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001
Asbestos as Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001
As Received Weight	g	681.8	627.7	638.0	645.6
Dry Weight	g	508.7	455.0	459.8	467.9
Moisture*	%	25	28	28	28

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked * or any comments and interpretations, which are not accredited.

Sample Type: Soil					
Samp	ole Name:	WD TP02 0.1 [NZG] 22-Mar-2023	WD TP03 0.1 [NZG] 22-Mar-2023	WD TP04 0.1 [NZG] 22-Mar-2023	WD TP05 0.1 [NZG] 22-Mar-2023
Lab	Number:	3216641.66	3216641.68	3216641.71	3216641.73
Sample Fraction >10mm	g dry wt	11.1	18.3	< 0.1	5.3
Sample Fraction <10mm to >2mm	g dry wt	169.5	157.9	137.2	148.9
Sample Fraction <2mm	g dry wt	325.8	278.4	321.6	311.8
<2mm Subsample Weight	g dry wt	57.4	51.8	54.9	50.9
Weight of Asbestos in ACM (Non-Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Fibrous Asbestos (Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Asbestos Fines (Friable)*	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001

Glossary of Terms

- Loose fibres (Minor) One or two fibres/fibre bundles identified during analysis by stereo microscope/PLM.
- Loose fibres (Major) Three or more fibres/fibre bundles identified during analysis by stereo microscope/PLM.
- ACM Debris (Minor) One or two small (<2mm) pieces of material attached to fibres identified during analysis by stereo microscope/PLM.
- ACM Debris (Major) Large (>2mm) piece, or more than three small (<2mm) pieces of material attached to fibres identified during analysis by stereo microscope/PLM.
- Unknown Mineral Fibres Mineral fibres of unknown type detected by polarised light microscopy including dispersion staining. The fibres detected may or may not be asbestos fibres. To confirm the identities, another independent analytical technique may be required.
- Trace Trace levels of asbestos, as defined by AS4964-2004.

For further details, please contact the Asbestos Team.

Please refer to the BRANZ New Zealand Guidelines for Assessing and Managing Asbestos in Soil. https://www.branz.co.nz/asbestos

The following assumptions have been made:

- 1. Asbestos Fines in the <2mm fraction, after homogenisation, is evenly distributed throughout the fraction
- 2. The weight of asbestos in the sample is unaffected by the ashing process.

Results are representative of the sample provided to Hill Laboratories only.

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Labs, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil	XI		
Test	Method Description	Default Detection Limit	Sample No
New Zealand Guidelines Semi Quantitati	ve Asbestos in Soil		
As Received Weight	Measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g	37, 40, 42, 44, 64, 66, 68, 71, 73
Dry Weight	Sample dried at 100 to 105°C, measurement on balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g	37, 40, 42, 44, 64, 66, 68, 71, 73
Moisture*	Sample dried at 100 to 105°C. Calculation = (As received weight - Dry weight) / as received weight x 100.	1 %	37, 40, 42, 44, 64, 66, 68, 71, 73
Sample Fraction >10mm	Sample dried at 100 to 105°C, 10mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g dry wt	37, 40, 42, 44, 64, 66, 68, 71, 73
Sample Fraction <10mm to >2mm	Sample dried at 100 to 105°C, 10mm and 2mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g dry wt	37, 40, 42, 44, 64, 66, 68, 71, 73
Sample Fraction <2mm	Sample dried at 100 to 105°C, 2mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g dry wt	37, 40, 42, 44, 64, 66, 68, 71, 73
Asbestos Presence / Absence	Examination using Low Powered Stereomicroscopy followed by 'Polarised Light Microscopy' including 'Dispersion Staining Techniques'. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. AS 4964 (2004) - Method for the Qualitative Identification of Asbestos in Bulk Samples.	0.01%	37, 40, 42, 44, 64, 66, 68, 71, 73
Description of Asbestos Form	Description of asbestos form and/or shape if present.	-	37, 40, 42, 44, 64, 66, 68, 71, 73

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Weight of Asbestos in ACM (Non-Friable)	Measurement on analytical balance, from the >10mm Fraction. Weight of asbestos based on assessment of ACM form. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g dry wt	37, 40, 42, 44, 64, 66, 68, 71, 73
Asbestos in ACM as % of Total Sample*	Calculated from weight of asbestos in ACM and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	37, 40, 42, 44, 64, 66, 68, 71, 73
Weight of Asbestos as Fibrous Asbestos (Friable)	Measurement on analytical balance, from the >10mm Fraction. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g dry wt	37, 40, 42, 44, 64, 66, 68, 71, 73
Asbestos as Fibrous Asbestos as % of Total Sample*	Calculated from weight of fibrous asbestos and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	37, 40, 42, 44, 64, 66, 68, 71, 73
Weight of Asbestos as Asbestos Fines (Friable)*	Measurement on analytical balance, from the <10mm Fractions. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g dry wt	37, 40, 42, 44, 64, 66, 68, 71, 73
Asbestos as Asbestos Fines as % of Total Sample*	Calculated from weight of asbestos fines and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	37, 40, 42, 44, 64, 66, 68, 71, 73
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*	Calculated from weight of fibrous asbestos plus asbestos fines and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	37, 40, 42, 44, 64, 66, 68, 71, 73

Testing was completed between 13-Jun-2023 and 14-Jun-2023. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges. without the

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Rhodri Williams BSc (Hons) Technical Manager - Asbestos

R J Hill Laboratories Limited 101C Waterloo Road Hornby Christchurch 8042 New Zealand ♦ 0508 HILL LAB (44 555 22)
 ♦ +64 7 858 2000
 ☑ mail@hill-labs.co.nz
 ⊕ www.hill-labs.co.nz

Certificate of Analysis

Page 1 of 13

Client: GHD Limited Adam Gray

C/- GHD Limited PO Box 1746 Wellington 6140 Lab No: Date Received: Date Reported: 3299080 09-Jun-2023 05-Jul-2023

(Amended)

A2Pv3

Quote No: 124299
Order No: 12559090
Client Reference: 12559090
Submitted By: David Jackson

Sample Type: Soil						
Sample	Name:	B34 TP 03 0.10	B34 TP 04 0.10	B35 TP 02 0.10	B35 TP 02 0.50	B35 TP 03 0.10
		07-Jun-2023	07-Jun-2023	07-Jun-2023	07-Jun-2023	07-Jun-2023
	lumber:	3299080.7	3299080.10	3299080.19	3299080.20	3299080.22
Asbestos Presence / Absence		Asbestos NOT detected.	Asbestos NOT detected.	Asbestos NOT detected.	Asbestos NOT detected.	Amosite (Brown Asbestos) and Chrysotile (White Asbestos) detected.
Description of Asbestos Form		-	-	7	1 01	ACM debris
Asbestos in ACM as % of Total Sample*	% w/w	< 0.001	< 0.001	₹ 0.001	< 0.001	< 0.001
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Asbestos as Fibrous Asbestos as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Asbestos as Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
As Received Weight	g	772.3	792.8	820.7	695.6	759.0
Dry Weight	g	555.1	614.9	721.8	480.4	640.7
Moisture*	%	28	22	12	31	16
		10				
Sample Fraction >10mm	g dry wt	103.1	23.2	15.5	< 0.1	59.0
Sample Fraction <10mm to >2mm	g dry wt	51.9	46.1	408.6	17.1	322.9
Sample Fraction <2mm	g dry wt	399.5	545.0	297.5	462.4	258.7
<2mm Subsample Weight	g dry wt	57.8	55.5	57.6	56.7	56.1
Weight of Asbestos in ACM (Non-Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Fibrous Asbestos (Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Asbestos Fines (Friable)*	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	0.00211
Sample	Name:	B35 TP 04 0.10	B35 TP 04 0.50	B35 TP 05 0.10	HT TP 29 0.10	WWTP TP01
Sample		07-Jun-2023	07-Jun-2023	07-Jun-2023	08-Jun-2023	0.10 13-Jun-2023
Lab N	lumber:	3299080.25	3299080.26	3299080.28	3299080.31	3299080.33
Asbestos Presence / Absence		Asbestos NOT detected.	Asbestos NOT detected.	Asbestos NOT detected.	Asbestos NOT detected.	Asbestos NOT detected.
Description of Asbestos Form		-	-	-	-	-
Asbestos in ACM as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Asbestos as Fibrous Asbestos as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Asbestos as Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
As Received Weight	g	619.1	633.0	681.8	743.7	697.1
Dry Weight	g	474.1	460.0	606.1	611.8	505.4

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked * or any comments and interpretations, which are not accredited.

Sample Type: Soil						
Sample	Name:	B35 TP 04 0.10 07-Jun-2023	B35 TP 04 0.50 07-Jun-2023	B35 TP 05 0.10 07-Jun-2023	HT TP 29 0.10 08-Jun-2023	WWTP TP01 0.10 13-Jun-2023
Lab N	lumber:	3299080.25	3299080.26	3299080.28	3299080.31	3299080.33
Moisture*	%	23	27	11	18	27
Sample Fraction >10mm	g dry wt	16.2	< 0.1	1.2	165.0	7.2
Sample Fraction <10mm to >2mm	g dry wt	30.6	28.2	70.3	213.3	50.0
Sample Fraction <2mm	g dry wt	427.0	431.2	534.6	233.5	447.7
<2mm Subsample Weight	g dry wt	53.2	54.2	54.0	50.6	51.8
Weight of Asbestos in ACM (Non-Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Fibrous Asbestos (Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Asbestos Fines (Friable)*	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Sample	Name:	WWTP TP01	WWTP TP02	WWTP TP02	WWTP TP03	WWTP TP03
1 - 5. N		0.50 13-Jun-2023 3299080.34		0.50 13-Jun-2023		
Asbestos Presence / Absence	lumber:	Asbestos NOT	3299080.36 Asbestos NOT	3299080.37 Asbestos NOT	3299080.39 Asbestos NOT	3299080.40 Asbestos NOT
		detected.	detected.	detected.	detected.	detected.
Description of Asbestos Form Asbestos in ACM as % of Total	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	- < 0.001
Sample*					< 0.001	
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001		< 0.001
Asbestos as Fibrous Asbestos as % of Total Sample*		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Asbestos as Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
As Received Weight	g	800.3	693.3	755.7	725.9	783.2
Dry Weight	g	552.6	508.5	482.1	555.3	589.1
Moisture*	%	31	27	36	24	25
Sample Fraction >10mm	g dry wt	< 0.1	38.5	< 0.1	30.3	3.4
Sample Fraction <10mm to >2mm	g dry wt	1.7	113.6	< 0.1	113.8	105.3
Sample Fraction <2mm	g dry wt	550.7	356.0	481.6	410.4	479.8
<2mm Subsample Weight	g dry wt	53.0	51.2	59.3	56.1	54.5
Weight of Asbestos in ACM (Non-Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Fibrous Asbestos (Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Asbestos Fines (Friable)*	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Sample	Name:	WWTP TP04	WWTP TP04	DS01 TP01 0.10	DS01 TP01 0.50	DS01 TP02 0.10
	1,		0.50 13-Jun-2023	12-Jun-2023	12-Jun-2023	12-Jun-2023
	lumber:	3299080.42	3299080.43	3299080.49	3299080.50	3299080.51
Asbestos Presence / Absence		Asbestos NOT detected.	Asbestos NOT detected.	Asbestos NOT detected.	Asbestos NOT detected.	Asbestos NOT detected.
Description of Ashastas E		detected.	detected.	detected.		
Description of Asbestos Form Asbestos in ACM as % of Total Sample*	% w/w	- < 0.001	- < 0.001	< 0.001	< 0.001	< 0.001
Asbestos in ACM as % of Total Sample* Combined Fibrous Asbestos +	% w/w % w/w	-	-	-	-	< 0.001 < 0.001
Asbestos in ACM as % of Total Sample* Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample* Asbestos as Fibrous Asbestos as % of	% w/w	- < 0.001	- < 0.001	- < 0.001	- < 0.001	
Asbestos in ACM as % of Total Sample* Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*	% w/w	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001
Asbestos in ACM as % of Total Sample* Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample* Asbestos as Fibrous Asbestos as % of Total Sample* Asbestos as Asbestos Fines as % of	% w/w % w/w % w/w	< 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001	< 0.001 < 0.001
Asbestos in ACM as % of Total Sample* Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample* Asbestos as Fibrous Asbestos as % of Total Sample* Asbestos as Asbestos Fines as % of Total Sample* As Received Weight	% w/w % w/w % w/w	- < 0.001 < 0.001 < 0.001 < 0.001	- < 0.001 < 0.001 < 0.001 < 0.001	- < 0.001 < 0.001 < 0.001 < 0.001	- < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001
Asbestos in ACM as % of Total Sample* Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample* Asbestos as Fibrous Asbestos as % of Total Sample* Asbestos as Asbestos Fines as % of Total Sample*	% w/w % w/w % w/w	- < 0.001 < 0.001 < 0.001 < 0.001 881.4	- < 0.001 < 0.001 < 0.001 < 0.001 848.6	- < 0.001 < 0.001 < 0.001 < 0.001 571.9	- < 0.001 < 0.001 < 0.001 < 0.001 705.0	< 0.001 < 0.001 < 0.001 619.1
Asbestos in ACM as % of Total Sample* Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample* Asbestos as Fibrous Asbestos as % of Total Sample* Asbestos as Asbestos Fines as % of Total Sample* As Received Weight Dry Weight Moisture*	% w/w % w/w % w/w g g g	- < 0.001 < 0.001 < 0.001 < 0.001 881.4 778.0 12	- < 0.001 < 0.001 < 0.001 < 0.001 848.6 712.7 16	- < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 571.9 367.7 36	- < 0.001 < 0.001 < 0.001 < 0.001 705.0 468.6 34	< 0.001 < 0.001 < 0.001 619.1 442.9 28
Asbestos in ACM as % of Total Sample* Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample* Asbestos as Fibrous Asbestos as % of Total Sample* Asbestos as Asbestos Fines as % of Total Sample* As Received Weight Dry Weight	% w/w % w/w % w/w g g	- < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 881.4 778.0	- < 0.001 < 0.001 < 0.001 < 0.001 848.6 712.7	- < 0.001 < 0.001 < 0.001 < 0.001 571.9 367.7	- < 0.001 < 0.001 < 0.001 < 0.001 705.0 468.6	< 0.001 < 0.001 < 0.001 619.1 442.9

Sample Type: Soil						
Sample	Name:	WWTP TP04 0.10 13-Jun-2023	WWTP TP04 0.50 13-Jun-2023	DS01 TP01 0.10 12-Jun-2023	DS01 TP01 0.50 12-Jun-2023	DS01 TP02 0.10 12-Jun-2023
Lab N	lumber:	3299080.42	3299080.43	3299080.49	3299080.50	3299080.51
<2mm Subsample Weight	g dry wt	55.9	58.1	56.0	59.5	53.9
Weight of Asbestos in ACM (Non-Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Fibrous Asbestos (Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Asbestos Fines (Friable)*	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
	Name:	DS01 TP03 0.10	DS01 TP03 0.50	DS01 TP04 0.10	DS01 TP05 0.10	DS01 TP05 0.50
Cample	i i i aiii c.	12-Jun-2023	12-Jun-2023	12-Jun-2023	12-Jun-2023	12-Jun-2023
Lab N	lumber:	3299080.54	3299080.55	3299080.57	3299080.60	3299080.61
Asbestos Presence / Absence		Asbestos NOT detected.	Asbestos NOT detected.	Asbestos NOT detected.	Asbestos NOT detected.	Asbestos NOT detected.
Description of Asbestos Form		-	-	-	-	
Asbestos in ACM as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Asbestos as Fibrous Asbestos as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Asbestos as Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
As Received Weight	g	595.7	777.0	628.2	578.2	766.3
Dry Weight	g	374.6	533.1	401.7	375.3	514.8
Moisture*	— 9 %	37	31	36	35	33
Wolstufe	70	37	3101	30	33	33
Sample Fraction >10mm	g dry wt	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Sample Fraction <10mm to >2mm	g dry wt	59.1	< 0.1	93.3	92.4	< 0.1
Sample Fraction < 2mm	• •	314.6	532.6	308.0	282.4	514.3
·	g dry wt	52.9	50.2	58.7	52.7	54.4
<2mm Subsample Weight	g dry wt			< 0.00001		-
Weight of Asbestos in ACM (Non-Friable)	g dry wt	< 0.00001	< 0.00001		< 0.00001	< 0.00001
Weight of Asbestos as Fibrous Asbestos (Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Asbestos Fines (Friable)*	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Sample	Name:	NUR TP01 0.10	NUR TP01 0.50	NUR TP02 0.10	NUR TP03 0.10	NUR TP03 0.50
		13-Jun-2023	13-Jun-2023	13-Jun-2023	13-Jun-2023	13-Jun-2023
	lumber:	3299080.63	3299080.64	3299080.66	3299080.69	3299080.70
Asbestos Presence / Absence		Asbestos NOT detected.	Chrysotile (White Asbestos) detected.	Asbestos NOT detected.	Asbestos NOT detected.	Asbestos NOT detected.
Description of Asbestos Form	11	_	Loose fibres	-	-	-
Asbestos in ACM as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Asbestos as Fibrous Asbestos as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Asbestos as Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
As Received Weight	g	634.2	572.2	825.6	589.6	549.0
Dry Weight	g	447.9	369.6	666.0	415.2	354.2
Moisture*	%	29	35	19	30	35
Sample Fraction >10mm	g dry wt	12.9	3.3	96.3	71.6	16.8
Sample Fraction <10mm to >2mm	g dry wt	127.2	82.0	239.3	96.1	63.0
•						
Sample Fraction <2mm	g dry wt	307.6	283.6	330.3	247.2	273.5
<2mm Subsample Weight	g dry wt	53.0	53.1	51.7	55.0	53.2
Weight of Asbestos in ACM (Non-Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Fibrous Asbestos (Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
1 ab No. 2200000 A2Dv2			Hill Lobo			Dogo 2 of 12

Sample Name: NURT FD4 0.10 PAY FD1 0.10 PAY FD1 0.50 PAY	Sample Type: Soil						
Sample Name: NUR TP04 0.10 0.00001 0.000001 0.	Sample	Name:					
Sample Name: NURT FD4 0.10 PAY FD1 0.10 PAY FD1 0.50 PAY	Lab N	lumber:	3299080.63	3299080.64	3299080.66	3299080.69	3299080.70
13-Jun-2023 12-Jun-2023	Weight of Asbestos as Asbestos Fines (Friable)*	g dry wt	< 0.00001	0.00096	< 0.00001	< 0.00001	< 0.00001
Asbestos Presence / Absence	Sample	Name:					
Description of Asbestos Form	Lab N	lumber:	3299080.72		3299080.76		
Ashestos in ACM as % of Total Sample Focusion in ACM as % of Total Sample Focus Ashestos e * % w/w Ashestos Fires as % of Total Sample* Ashestos Fires as % of Total Sample* Ashestos Fires as % of Total Sample* Ashestos as Firorus Ashestos as % of * w/w Account	Asbestos Presence / Absence						
Cambried Fibrous Abbestos % w/w	'		-	-	-	-	-
Asbestos Fines as % of Total Sample* Asbestos Fines as % of Total Sample* Asbestos Fines as % of Mark	Sample*						
Total Sample* Abbestos as Asbestos Fines as % of % w/w Total Sample* As Received Weight g 581.7 638.4 593.6 593.6 598.9 750.4 Dry Weight g 396.4 476.4 422.7 415.5 647.3 Moisture* % 32 26 29 29 14 Sample Fraction >10mm g dry wt 26.0 95.4 30.2 8.8 176.8 Sample Fraction >20mm g dry wt 108.4 139.5 140.8 65.0 235.8 Sample Fraction >20mm g dry wt 261.7 240.1 250.9 341.4 234.2 20mm g dry wt 261.7 240.1 250.9 341.4 234.2 2.2 20mm g dry wt 261.7 240.1 250.9 341.4 234.2 2.2 20mm Subsample Weight g dry wt 261.7 240.1 250.9 341.4 234.2 2.2 20mm Subsample Weight g dry wt 261.7 240.1 250.9 341.4 234.2 2.2 20mm Subsample Weight g dry wt 261.7 240.1 250.9 341.4 234.2 2.2 20mm Subsample Weight g dry wt 261.7 240.1 250.9 341.4 234.2 2.2 20mm Subsample Weight g dry wt 261.7 240.1 250.9 341.4 234.2 2.2 20mm Subsample Weight g dry wt 261.7 240.1 250.9 341.4 234.2 2.2 20mm Subsample Weight Gabestos in ACM (Non-"g dry wt 54.8 57.2 53.0 50.7 50.4 50.7 50.4 40motor 1 20motor a>	Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*						
Total Sample Sa Received Weight	Asbestos as Fibrous Asbestos as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Dry Weight	Asbestos as Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Moisture	As Received Weight	g					750.4
Sample Fraction >10mm	Dry Weight						,
Sample Fraction <10mm to >2mm	Moisture*	%	32	26		29	14
Sample Fraction < 2mm	Sample Fraction >10mm	g dry wt	26.0	95.4	30.2	8.8	176.8
<2mm Subsample Weight g dry wt 54.8 57.2 53.0 50.7 50.4 Weight of Asbestos in ACM (Non-finate) g dry wt Finate) < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 <t< td=""><td>Sample Fraction <10mm to >2mm</td><td>g dry wt</td><td>108.4</td><td>139.5</td><td>140.8</td><td>65.0</td><td>235.8</td></t<>	Sample Fraction <10mm to >2mm	g dry wt	108.4	139.5	140.8	65.0	235.8
Weight of Asbestos in ACM (Non-Friable)	Sample Fraction <2mm	g dry wt	261.7	240.1	250.9	341.4	234.2
Weight of Asbestos as Fibrous g dry wt	<2mm Subsample Weight	g dry wt	54.8	57.2		50.7	50.4
Asbestos (Friable) Sample Name:	Weight of Asbestos in ACM (Non-Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Sample Name: B59 TP04 0.5 B66 HA01	Weight of Asbestos as Fibrous Asbestos (Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
14-Jun-2023 14-Jun-2023	Weight of Asbestos as Asbestos Fines (Friable)*	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
14-Jun-2023 14-Jun-2023	Sample	Name:	B59 TP04 0.50	B66 HA01	B66 HA02	B67 HA01 0.10	B67 HA01 0.50
Asbestos Asbestos Asbestos Asbestos Asbestos Asbestos Asbestos Asbestos Asbestos Asbestos Asbestos Asbestos Asbestos Asbestos Asbestos Asbestos Asbestos Asbestos Asbestos Activated Asbestos Activated Asbestos Activated Asbestos Activated Ac	•		14-Jun-2023	14-Jun-2023	14-Jun-2023	14-Jun-2023	14-Jun-2023
detected. Asbestos detected. detected. detected. detected. detected. detected. detected. detected. detected. detected. detected. detected. detected. detected. ACM debris and Loose fibres Coose fi		iumber:		-			
Loose fibres Loose fibres	Assestes Presence / Assence			Asbestos)	Asbestos)		
Sample* Combined Fibrous Asbestos + % w/w < 0.001 0.079 0.007 < 0.001 < 0.001 Asbestos Fines as % of Total Sample* < 0.001	Description of Asbestos Form	>				-	-
Asbestos Fines as % of Total Sample* Asbestos as Fibrous Asbestos as % of % w/w Total Sample* Asbestos as Asbestos Fines as % of % w/w Asbestos as Asbestos Fines as % of % w/w Total Sample* As Received Weight g 610.8 321.2 313.6 1,007.3 1,012.5 Dry Weight g 425.5 278.5 263.9 957.2 869.9 Moisture* % 30 13 16 5 14 Sample Fraction >10mm g dry wt 72.2 37.4 59.4 454.5 150.2 Sample Fraction <10mm to >2mm g dry wt 193.8 57.8 82.6 231.6 106.9 Sample Fraction <2mm g dry wt 158.2 182.8 121.7 270.7 611.9 <2mm Subsample Weight g dry wt 52.4 53.9 52.8 59.0 58.9 Weight of Asbestos in ACM (Non- Friable) Weight of Asbestos as Asbestos g dry wt <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001	Asbestos in ACM as % of Total Sample*		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Total Sample* Asbestos as Asbestos Fines as % of	Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*	% w/w	< 0.001	0.079	0.007	< 0.001	< 0.001
Total Sample* As Received Weight	Asbestos as Fibrous Asbestos as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Dry Weight g 425.5 278.5 263.9 957.2 869.9 Moisture* % 30 13 16 5 14 Sample Fraction >10mm g dry wt 72.2 37.4 59.4 454.5 150.2 Sample Fraction <10mm to >2mm g dry wt 193.8 57.8 82.6 231.6 106.9 Sample Fraction <2mm g dry wt 158.2 182.8 121.7 270.7 611.9 <2mm Subsample Weight g dry wt 52.4 53.9 52.8 59.0 58.9 Weight of Asbestos in ACM (Nongright of Asbestos as Fibrous g dry wt 40.00001 <0.00001 <0.00001 <0.00001 <0.00001 Weight of Asbestos as Asbestos g dry wt <0.00001 0.2213 0.01821 <0.00001 <0.00001 <0.00001	Asbestos as Asbestos Fines as % of Total Sample*	% w/w	< 0.001	0.079	0.007	< 0.001	< 0.001
Moisture*	As Received Weight	g	610.8	321.2	313.6	1,007.3	1,012.5
Sample Fraction >10mm	Dry Weight					957.2	
Sample Fraction <10mm to >2mm g dry wt 193.8 57.8 82.6 231.6 106.9 Sample Fraction <2mm	Moisture*	%	30	13	16	5	14
Sample Fraction <2mm g dry wt 158.2 182.8 121.7 270.7 611.9 <2mm Subsample Weight	Sample Fraction >10mm	g dry wt	72.2	37.4	59.4	454.5	150.2
<2mm Subsample Weight	Sample Fraction <10mm to >2mm	g dry wt	193.8	57.8	82.6	231.6	106.9
Weight of Asbestos in ACM (Non- Friable) g dry wt < 0.00001	Sample Fraction <2mm	g dry wt	158.2	182.8	121.7	270.7	611.9
Friable) Weight of Asbestos as Fibrous g dry wt < 0.00001	<2mm Subsample Weight	g dry wt	52.4	53.9	52.8	59.0	58.9
Asbestos (Friable) Uveight of Asbestos as Asbestos g dry wt < 0.00001 0.2213 0.01821 < 0.00001 < 0.00001	Weight of Asbestos in ACM (Non-Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
	Weight of Asbestos as Fibrous Asbestos (Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
	Weight of Asbestos as Asbestos Fines (Friable)*	g dry wt	< 0.00001	0.2213	0.01821	< 0.00001	< 0.00001

		505111000010	50511400055	DID III A A A A	DID 114000 4	515114000
Sample	e Name:	B67 HA02 0.10 14-Jun-2023	B67 HA02 0.50 14-Jun-2023	DIP HA01 0.1 14-Jun-2023	DIP HA02 0.1 14-Jun-2023	DIP HA03 0.1 14-Jun-2023
Lab N	Number:	3299080.94	3299080.95	3299080.96	3299080.97	3299080.98
Asbestos Presence / Absence		Chrysotile (White Asbestos) detected.	Asbestos NOT detected.	Asbestos NOT detected.	Asbestos NOT detected.	Asbestos NOT detected.
Description of Asbestos Form		Loose fibres	-	-	-	-
Asbestos in ACM as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Asbestos as Fibrous Asbestos as % o Total Sample*	f % w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Asbestos as Asbestos Fines as % of Fotal Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
As Received Weight	g	856.2	691.9	559.8	662.8	753.2
Dry Weight	g	791.2	445.4	321.4	488.6	540.5
Moisture*	%	8	36	43	26	28
Sample Fraction >10mm	g dry wt	342.7	23.8	< 0.1	91.4	39.4
Sample Fraction <10mm to >2mm	g dry wt	279.5	146.9	52.4	103.9	106.9
Sample Fraction <2mm	g dry wt	166.5	272.2	267.9	292.4	392.5
<2mm Subsample Weight	g dry wt	55.8	54.2	53.3	53.2	57.1
Weight of Asbestos in ACM (Non- Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Fibrous Asbestos (Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	0.00001	< 0.00001
Weight of Asbestos as Asbestos Fines (Friable)*	g dry wt	0.00009	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Sample Name:		B26 TP01 0.1 19-Jun-2023	B26 TP02 0.1 19-Jun-2023	B26 TP02 0.5 19-Jun-2023	B26 TP03 0.1 19-Jun-2023	DS02 TP01 0.1 20-Jun-2023
Lab N	Number:	3299080.99	3299080.100	3299080.101	3299080.103	3299080.107
Asbestos Presence / Absence		Asbestos NOT detected.	Asbestos NOT detected.	Amosite (Brown Asbestos) detected.	Asbestos NOT detected.	Asbestos NOT detected.
Description of Asbestos Form		1(-)		Loose fibres	-	-
Asbestos in ACM as % of Total	% w/w	-) < 0.001	< 0.001	Loose fibres < 0.001	< 0.001	< 0.001
Asbestos in ACM as % of Total Sample* Combined Fibrous Asbestos +	% w/w	-0.001 < 0.001	< 0.001 < 0.001		< 0.001 < 0.001	- < 0.001 < 0.001
Asbestos in ACM as % of Total Sample* Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample* Asbestos as Fibrous Asbestos as % of	% w/w			< 0.001		
Asbestos in ACM as % of Total Sample* Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample* Asbestos as Fibrous Asbestos as % of Total Sample* Asbestos as Asbestos Fines as % of	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Asbestos in ACM as % of Total Sample* Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample* Asbestos as Fibrous Asbestos as % of Total Sample* Asbestos as Asbestos Fines as % of Total Sample* As Received Weight	% w/w f % w/w	< 0.001 < 0.001 < 0.001 681.4	< 0.001 < 0.001	< 0.001 < 0.001 < 0.001 < 0.001 459.8	< 0.001	< 0.001 < 0.001
Asbestos in ACM as % of Total Sample* Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample* Asbestos as Fibrous Asbestos as % of Total Sample* Asbestos as Asbestos Fines as % of Total Sample* As Received Weight	% w/w f % w/w % w/w	< 0.001 < 0.001 < 0.001 < 0.001 681.4 511.2	< 0.001 < 0.001 < 0.001 698.4 539.3	< 0.001 < 0.001 < 0.001 < 0.001 459.8 318.1	< 0.001 < 0.001 < 0.001 671.1 500.2	< 0.001 < 0.001 < 0.001 441.3 257.1
Asbestos in ACM as % of Total Sample* Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample* Asbestos as Fibrous Asbestos as % of Total Sample* Asbestos as Asbestos Fines as % of Total Sample* As Received Weight Ory Weight	% w/w f % w/w % w/w	< 0.001 < 0.001 < 0.001 681.4	< 0.001 < 0.001 < 0.001 698.4	< 0.001 < 0.001 < 0.001 < 0.001 459.8	< 0.001 < 0.001 < 0.001 671.1	< 0.001 < 0.001 < 0.001 441.3
Asbestos in ACM as % of Total Sample* Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample* Asbestos as Fibrous Asbestos as % of Fotal Sample* Asbestos as Asbestos Fines as % of Fotal Sample* As Received Weight Dry Weight Moisture*	% w/w f % w/w % w/w g g %	< 0.001 < 0.001 < 0.001 681.4 511.2 25	< 0.001 < 0.001 < 0.001 698.4 539.3 23	< 0.001 < 0.001 < 0.001 < 0.001 459.8 318.1 31	< 0.001 < 0.001 < 0.001 671.1 500.2 25	< 0.001 < 0.001 < 0.001 441.3 257.1 42
Asbestos in ACM as % of Total Sample* Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample* Asbestos as Fibrous Asbestos as % of Total Sample* Asbestos as Asbestos Fines as % of Total Sample* As Received Weight Dry Weight Moisture* Sample Fraction >10mm	% w/w f % w/w % w/w g g g g w	< 0.001 < 0.001 < 0.001 681.4 511.2 25	< 0.001 < 0.001 < 0.001 < 0.001 698.4 539.3 23	< 0.001 < 0.001 < 0.001 < 0.001 459.8 318.1 31	< 0.001 < 0.001 < 0.001 671.1 500.2 25 99.0	< 0.001 < 0.001 < 0.001 441.3 257.1 42 < 0.1
Asbestos in ACM as % of Total Sample* Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample* Asbestos as Fibrous Asbestos as % of Total Sample* Asbestos as Asbestos Fines as % of Total Sample* As Received Weight Dry Weight Moisture* Sample Fraction >10mm Sample Fraction <10mm to >2mm	% w/w f % w/w % w/w g g g g dry wt g dry wt	< 0.001 < 0.001 < 0.001 681.4 511.2 25 98.3 177.3	< 0.001 < 0.001 < 0.001 698.4 539.3 23 118.5 195.0	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 459.8 318.1 31 5.0 99.3	< 0.001 < 0.001 < 0.001 < 0.001 671.1 500.2 25 99.0 174.3	< 0.001 < 0.001 < 0.001 < 0.001 441.3 257.1 42 < 0.1 99.4
Asbestos in ACM as % of Total Sample* Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample* Asbestos as Fibrous Asbestos as % of Total Sample* Asbestos as Asbestos Fines as % of Total Sample* As Received Weight Dry Weight Woisture* Sample Fraction >10mm Sample Fraction <2mm	% w/w f % w/w % w/w g g g dry wt g dry wt g dry wt	< 0.001 < 0.001 < 0.001 681.4 511.2 25 98.3 177.3 233.1	< 0.001 < 0.001 < 0.001 < 0.001 698.4 539.3 23 118.5 195.0 224.7	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 459.8 318.1 31 5.0 99.3 212.5	< 0.001 < 0.001 < 0.001 671.1 500.2 25 99.0 174.3 225.4	< 0.001 < 0.001 < 0.001 < 0.001 441.3 257.1 42 < 0.1 99.4 156.3
Asbestos in ACM as % of Total Sample* Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample* Asbestos as Fibrous Asbestos as % of Total Sample* Asbestos as Asbestos Fines as % of Total Sample* As Received Weight Ory Weight Moisture* Sample Fraction >10mm Sample Fraction <10mm to >2mm Sample Fraction <2mm Sample Fraction <2mm Sample Sample Weight	% w/w f % w/w % w/w g g g dry wt g dry wt g dry wt g dry wt	< 0.001 < 0.001 < 0.001 681.4 511.2 25 98.3 177.3 233.1 58.2	< 0.001 < 0.001 < 0.001 < 0.001 698.4 539.3 23 118.5 195.0 224.7 55.9	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 459.8 318.1 31 5.0 99.3 212.5 52.4	< 0.001 < 0.001 < 0.001 < 0.001 671.1 500.2 25 99.0 174.3 225.4 57.3	< 0.001 < 0.001 < 0.001 < 0.001 441.3 257.1 42 < 0.1 99.4 156.3 56.1
Asbestos in ACM as % of Total Sample* Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample* Asbestos as Fibrous Asbestos as % of Total Sample* Asbestos as Asbestos Fines as % of Total Sample* As Received Weight Ory Weight Woisture* Sample Fraction >10mm Sample Fraction <10mm to >2mm Sample Fraction <2mm <2mm Subsample Weight Weight of Asbestos in ACM (Non-Friable)	% w/w f % w/w % w/w g g g dry wt g dry wt g dry wt g dry wt g dry wt	< 0.001 < 0.001 < 0.001 681.4 511.2 25 98.3 177.3 233.1 58.2 < 0.00001	< 0.001 < 0.001 < 0.001 < 0.001 698.4 539.3 23 118.5 195.0 224.7 55.9 < 0.00001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 459.8 318.1 31 5.0 99.3 212.5 52.4 < 0.00001	< 0.001 < 0.001 < 0.001 671.1 500.2 25 99.0 174.3 225.4 57.3 < 0.00001	< 0.001 < 0.001 < 0.001 < 0.001 441.3 257.1 42 < 0.1 99.4 156.3 56.1 < 0.00001
Asbestos in ACM as % of Total Sample* Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample* Asbestos as Fibrous Asbestos as % of Total Sample* Asbestos as Asbestos Fines as % of Total Sample* As Received Weight Dry Weight Woisture* Sample Fraction >10mm Sample Fraction <10mm to >2mm Sample Fraction <2mm <2mm Subsample Weight Weight of Asbestos in ACM (Non-Friable) Weight of Asbestos as Fibrous Asbestos (Friable)	% w/w f % w/w % w/w % w/w g dry wt g dry wt g dry wt g dry wt g dry wt g dry wt	< 0.001 < 0.001 < 0.001 681.4 511.2 25 98.3 177.3 233.1 58.2 < 0.00001	< 0.001 < 0.001 < 0.001 < 0.001 698.4 539.3 23 118.5 195.0 224.7 55.9 < 0.00001 < 0.00001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 459.8 318.1 31 5.0 99.3 212.5 52.4 < 0.00001 < 0.00001	< 0.001 < 0.001 < 0.001 < 0.001 671.1 500.2 25 99.0 174.3 225.4 57.3 < 0.00001 < 0.00001	< 0.001 < 0.001 < 0.001 < 0.001 441.3 257.1 42 < 0.1 99.4 156.3 56.1 < 0.00001 < 0.00001
Asbestos in ACM as % of Total Sample* Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample* Asbestos as Fibrous Asbestos as % of Total Sample* Asbestos as Asbestos Fines as % of Total Sample* As Received Weight Dry Weight Moisture* Sample Fraction >10mm Sample Fraction <10mm to >2mm Sample Fraction <2mm <2mm Subsample Weight Weight of Asbestos in ACM (Non-Friable) Weight of Asbestos as Fibrous Asbestos (Friable) Weight of Asbestos as Asbestos	% w/w f % w/w % w/w g g g dry wt g dry wt g dry wt g dry wt g dry wt	< 0.001 < 0.001 < 0.001 681.4 511.2 25 98.3 177.3 233.1 58.2 < 0.00001	< 0.001 < 0.001 < 0.001 < 0.001 698.4 539.3 23 118.5 195.0 224.7 55.9 < 0.00001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 459.8 318.1 31 5.0 99.3 212.5 52.4 < 0.00001	< 0.001 < 0.001 < 0.001 671.1 500.2 25 99.0 174.3 225.4 57.3 < 0.00001	< 0.001 < 0.001 < 0.001 < 0.001 441.3 257.1 42 < 0.1 99.4 156.3 56.1 < 0.00001
Asbestos in ACM as % of Total Sample* Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample* Asbestos as Fibrous Asbestos as % of Total Sample* Asbestos as Asbestos Fines as % of Total Sample* As Received Weight Dry Weight Moisture* Sample Fraction >10mm Sample Fraction <10mm to >2mm <2mm Subsample Weight Weight of Asbestos in ACM (Non-Friable) Weight of Asbestos as Fibrous Asbestos (Friable) Weight of Asbestos as Asbestos Fines (Friable)*	% w/w f % w/w % w/w % w/w g dry wt g dry wt g dry wt g dry wt g dry wt g dry wt	< 0.001 < 0.001 < 0.001 681.4 511.2 25 98.3 177.3 233.1 58.2 < 0.00001	< 0.001 < 0.001 < 0.001 < 0.001 698.4 539.3 23 118.5 195.0 224.7 55.9 < 0.00001 < 0.00001	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 459.8 318.1 31 5.0 99.3 212.5 52.4 < 0.00001 < 0.00001	< 0.001 < 0.001 < 0.001 < 0.001 671.1 500.2 25 99.0 174.3 225.4 57.3 < 0.00001 < 0.00001	< 0.001 < 0.001 < 0.001 < 0.001 441.3 257.1 42 < 0.1 99.4 156.3 56.1 < 0.00001 < 0.00001
Asbestos in ACM as % of Total Sample* Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample* Asbestos as Fibrous Asbestos as % of Total Sample* Asbestos as Asbestos Fines as % of Total Sample* As Received Weight Dry Weight Moisture* Sample Fraction >10mm Sample Fraction <10mm to >2mm <2mm Subsample Weight Weight of Asbestos in ACM (Non-Friable) Weight of Asbestos as Fibrous Asbestos (Friable) Weight of Asbestos as Asbestos Fines (Friable)* Sample	% w/w f % w/w % w/w % w/w g g g dry wt g dry wt g dry wt g dry wt g dry wt g dry wt g dry wt	< 0.001 < 0.001 < 0.001 < 0.001 < 81.4 511.2 25 98.3 177.3 233.1 58.2 < 0.00001 < 0.00001 < 0.00001	< 0.001 < 0.001 < 0.001 < 0.001 698.4 539.3 23 118.5 195.0 224.7 55.9 < 0.00001 < 0.00001 < 0.00001 DS02 TP02 0.1	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 459.8 318.1 31 5.0 99.3 212.5 52.4 < 0.00001 < 0.00001 0.00005	< 0.001 < 0.001 < 0.001 < 0.001 671.1 500.2 25 99.0 174.3 225.4 57.3 < 0.00001 < 0.00001 < 0.00001	< 0.001 < 0.001 < 0.001 < 0.001 441.3 257.1 42 < 0.1 99.4 156.3 56.1 < 0.00001 < 0.00001 DS02 TP04 0.1
•	% w/w f % w/w % w/w % w/w g g g dry wt g dry wt g dry wt g dry wt g dry wt g dry wt	< 0.001 < 0.001 < 0.001 < 0.001 < 81.4 511.2 25 98.3 177.3 233.1 58.2 < 0.00001 < 0.00001 < 0.00001 DS02 TP01 0.5 20-Jun-2023	< 0.001 < 0.001 < 0.001 < 0.001 698.4 539.3 23 118.5 195.0 224.7 55.9 < 0.00001 < 0.00001 < 0.00001 DS02 TP02 0.1 19-Jun-2023	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 459.8 318.1 31 5.0 99.3 212.5 52.4 < 0.00001 < 0.00001 0.00005 DS02 TP03 0.1 20-Jun-2023	< 0.001 < 0.001 < 0.001 671.1 500.2 25 99.0 174.3 225.4 57.3 < 0.00001 < 0.00001 < 0.00001 DS02 TP03 0.5 20-Jun-2023	< 0.001 < 0.001 < 0.001 441.3 257.1 42 < 0.1 99.4 156.3 56.1 < 0.00001 < 0.00001 DS02 TP04 0.1 20-Jun-2023

Sample Type: Soil

Sample Type: Soil			<u> </u>			
Sample	Name:	DS02 TP01 0.5	DS02 TP02 0.1	DS02 TP03 0.1	DS02 TP03 0.5	DS02 TP04 0.1
I ale N	la	20-Jun-2023	19-Jun-2023	20-Jun-2023	20-Jun-2023	20-Jun-2023
	umber:	3299080.108	3299080.110	3299080.113	3299080.114	3299080.116
Asbestos in ACM as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Asbestos as Fibrous Asbestos as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Asbestos as Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
As Received Weight	g	359.6	626.8	866.1	489.4	473.3
Dry Weight	g	206.2	404.3	601.6	294.0	290.4
Moisture*	%	43	36	31	40	39
Compute Freetien > 10mm	ar almosta	< 0.1	29.0	50.6	2.1	< 0.1
Sample Fraction >10mm	g dry wt					
Sample Fraction <10mm to >2mm	g dry wt	109.1	159.8	99.3	135.8	46.8
Sample Fraction <2mm	g dry wt	94.5	213.6	444.6	154.6	242.1
<2mm Subsample Weight	g dry wt	50.2	55.1	50.6	51.0	50.1
Weight of Asbestos in ACM (Non- Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Fibrous Asbestos (Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Asbestos Fines (Friable)*	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Sample	Name:	DS02 TP05 0.1	DS02 TP05 0.5	DS03 TP01 0.1	DS03 TP01 0.5	DS03 TP02 0.1
Campio	itaiiio.	20-Jun-2023	20-Jun-2023	21-Jun-2023	21-Jun-2023	21-Jun-2023
Lab N	umber:	3299080.119	3299080.120	3299080.122	3299080.123	3299080.125
Asbestos Presence / Absence		Asbestos NOT detected.				
Description of Asbestos Form		-	- 8	-	-	-
Asbestos in ACM as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Asbestos as Fibrous Asbestos as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Asbestos as Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
As Received Weight	g	440.4	371.2	620.7	633.1	611.7
Dry Weight	g	260.2	223.3	437.8	487.5	393.7
Moisture*	%	41	40	29	23	36
Sample Fraction >10mm	g dry wt	16.0	< 0.1	2.7	< 0.1	< 0.1
Sample Fraction <10mm to >2mm	g dry wt	78.2	94.2	119.9	10.6	112.3
Sample Fraction <2mm	g dry wt	165.4	127.8	314.2	476.0	278.3
<2mm Subsample Weight	g dry wt	53.5	55.7	56.6	59.4	52.4
Weight of Asbestos in ACM (Non- Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Fibrous Asbestos (Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Asbestos Fines (Friable)*	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Sample Name: Lab Number:		DS03 TP02 0.5 21-Jun-2023	DS03 TP03 0.1 21-Jun-2023	DS03 TP03 0.5 21-Jun-2023	DS03 TP04 0.1 21-Jun-2023	DS03 TP04 0.5 21-Jun-2023
		3299080.126	3299080.128	3299080.129	3299080.131	3299080.132
Asbestos Presence / Absence	annoer.	Asbestos NOT	Asbestos NOT	Asbestos NOT	Chrysotile (White	Asbestos NOT
AUSSIOS I TOSETICE / AUSSING		detected.	detected.	detected.	Asbestos) detected.	detected.
Description of Asbestos Form		-	_	-	Loose fibres	-
Asbestos in ACM as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Combined Fibrous Asbestos +	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001

Sample Type: Soil						
Sample	Name:	DS03 TP02 0.5 21-Jun-2023	DS03 TP03 0.1 21-Jun-2023	DS03 TP03 0.5 21-Jun-2023	DS03 TP04 0.1 21-Jun-2023	DS03 TP04 0.5 21-Jun-2023
Lab N	lumber:	3299080.126	3299080.128	3299080.129	3299080.131	3299080.132
Asbestos as Fibrous Asbestos as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Asbestos as Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
As Received Weight	g	674.8	658.4	687.4	712.1	653.4
Dry Weight	g	499.8	462.0	500.3	515.7	458.0
Moisture*	%	26	30	27	28	30
Sample Fraction >10mm	g dry wt	< 0.1	< 0.1	< 0.1	24.0	< 0.1
Sample Fraction <10mm to >2mm	g dry wt	98.6	105.1	67.1	147.3	81.5
Sample Fraction <2mm	g dry wt	399.8	355.2	431.9	343.1	375.3
<2mm Subsample Weight	g dry wt	54.7	55.0	53.9	53.8	56.1
Weight of Asbestos in ACM (Non-Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Fibrous Asbestos (Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Asbestos Fines (Friable)*	g dry wt	< 0.00001	< 0.00001	< 0.00001	0.00026	< 0.00001

Glossary of Terms

- Loose fibres (Minor) One or two fibres/fibre bundles identified during analysis by stereo microscope/PLM.
- Loose fibres (Major) Three or more fibres/fibre bundles identified during analysis by stereo microscope/PLM.
- · ACM Debris (Minor) One or two small (<2mm) pieces of material attached to fibres identified during analysis by stereo microscope/PLM.
- ACM Debris (Major) Large (>2mm) piece, or more than three small (<2mm) pieces of material attached to fibres identified during analysis by stereo microscope/PLM.
- Unknown Mineral Fibres Mineral fibres of unknown type detected by polarised light microscopy including dispersion staining. The fibres detected may or may not be asbestos fibres. To confirm the identities, another independent analytical technique may be required.
- Trace Trace levels of asbestos, as defined by AS4964-2004.

For further details, please contact the Asbestos Team.

Please refer to the BRANZ New Zealand Guidelines for Assessing and Managing Asbestos in Soil. https://www.branz.co.nz/asbestos

The following assumptions have been made:

- 1. Asbestos Fines in the <2mm fraction, after homogenisation, is evenly distributed throughout the fraction
- 2. The weight of asbestos in the sample is unaffected by the ashing process.

Results are representative of the sample provided to Hill Laboratories only.

Analyst's Comments

Amended Report: This certificate of analysis replaces report '3299080-A2Pv2' issued on 03-Jul-2023 at 4:19 pm. Reason for amendment: Further testing as per client request

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Labs, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil							
Test	7				Method Description	Default Detection Limit	Sample No
New Zealand Guidelines Semi Quantitative Asbestos in Soil							

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
As Received Weight	Measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g	7, 10, 19-20, 22, 25-26, 28, 31, 33-34, 36-37, 39-40, 42-43, 49-51, 54-55, 57, 60-61, 63-64, 66, 69-70, 72, 75-76, 78, 84-85, 90-101, 103, 107-108, 110, 113-114, 116, 119-120, 122-123, 125-126, 128-129,
Dry Weight	Sample dried at 100 to 105°C, measurement on balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	01g	131-132 7, 10, 19-20, 22, 25-26, 28, 31, 33-34, 36-37, 39-40, 42-43, 49-51, 54-55, 57, 60-61, 63-64, 66, 69-70, 72, 75-76, 78, 84-85, 90-101, 103, 110, 113-114, 116, 119-120, 122-123, 125-126, 128-129,
Moisture*	Sample dried at 100 to 105°C. Calculation = (As received weight - Dry weight) / as received weight x 100.	1 %	131-132 7, 10, 19-20, 22, 25-26, 28, 31, 33-34, 36-37, 39-40, 42-43, 49-51, 54-55, 57, 60-61, 63-64, 66, 69-70, 72, 75-76, 78, 84-85, 90-101, 103, 107-108, 110, 113-114, 116, 119-120, 122-123, 125-126, 128-129, 131-132

Sample Type: Soil			
Test	Method Description	Default Detection Limit	
Sample Fraction >10mm	Sample dried at 100 to 105°C, 10mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g dry wt	7, 10, 19-20, 22, 25-26, 28, 31, 33-34, 36-37, 39-40, 42-43, 49-51, 54-55, 57, 60-61, 63-64, 66, 69-70, 72, 75-76, 78, 84-85, 90-101, 103, 110, 113-114, 116, 119-120, 122-123, 125-126, 128-129, 131-132
Sample Fraction <10mm to >2mm	Sample dried at 100 to 105°C, 10mm and 2mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g dry wt	7, 10, 19-20, 22, 25-26, 28, 31, 33-34, 36-37, 39-40, 42-43, 49-51, 54-55, 57, 60-61, 63-64, 66, 69-70, 72, 75-76, 78, 84-85, 90-101, 103, 107-108, 110, 113-114, 116, 119-120, 122-123, 125-126, 128-129,
Sample Fraction <2mm	Sample dried at 100 to 105°C, 2mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g dry wt	131-132 7, 10, 19-20, 22, 25-26, 28, 31, 33-34, 36-37, 39-40, 42-43, 49-51, 54-55, 57, 60-61, 63-64, 66, 69-70, 72, 75-76, 78, 84-85, 90-101, 103, 107-108, 110, 113-114, 116, 119-120, 122-123, 125-126, 128-129, 131-132

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Asbestos Presence / Absence	Examination using Low Powered Stereomicroscopy followed by 'Polarised Light Microscopy' including 'Dispersion Staining Techniques'. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. AS 4964 (2004) - Method for the Qualitative Identification of Asbestos in Bulk Samples.	0.01%	7, 10, 19-20, 22, 25-26, 28, 31, 33-34, 36-37, 39-40, 42-43, 49-51, 54-55, 57, 60-61, 63-64, 66, 69-70, 72, 75-76, 78, 84-85, 90-101, 103, 107-108, 110, 113-114, 116, 119-120, 122-123, 125-126, 128-129,
			131-132
Description of Asbestos Form	Description of asbestos form and/or shape if present	1.86	7, 10, 19-20, 22, 25-26, 28, 31, 33-34, 36-37, 39-40, 42-43, 49-51, 54-55, 57, 60-61, 63-64, 66, 69-70, 72, 75-76, 78, 84-85, 90-101, 103, 107-108, 110, 113-114, 116, 119-120, 122-123, 125-126, 128-129, 131-132
Weight of Asbestos in ACM (Non-Friable)	Measurement on analytical balance, from the >10mm Fraction. Weight of asbestos based on assessment of ACM form. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g dry wt	7, 10, 19-20, 22, 25-26, 28, 31, 33-34, 36-37, 39-40, 42-43, 49-51, 54-55, 57, 60-61, 63-64, 66, 69-70, 72, 75-76, 78, 84-85, 90-101, 103, 107-108, 110, 113-114, 116, 119-120, 122-123, 125-126, 128-129, 131-132

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Asbestos in ACM as % of Total Sample*	Calculated from weight of asbestos in ACM and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	7, 10, 19-20, 22, 25-26, 28, 31, 33-34, 36-37, 39-40, 42-43, 49-51, 54-55, 57, 60-61, 63-64, 66, 69-70, 72, 75-76, 78, 84-85, 90-101, 103, 107-108, 110, 113-114, 116, 119-120, 122-123, 125-126, 128-129,
Weight of Asbestos as Fibrous Asbestos (Friable)	Measurement on analytical balance, from the >10mm Fraction. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g dry wt	131-132 7, 10, 19-20, 22, 25-26, 28, 31, 33-34, 36-37, 39-40, 42-43, 49-51, 54-55, 57, 60-61, 63-64, 66, 69-70, 72, 75-76, 78, 84-85, 90-101, 103, 107-108, 110, 113-114, 116, 119-120, 122-123, 125-126, 128-129,
Asbestos as Fibrous Asbestos as % of Total Sample*	Calculated from weight of fibrous asbestos and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	131-132 7, 10, 19-20, 22, 25-26, 28, 31, 33-34, 36-37, 39-40, 42-43, 49-51, 54-55, 57, 60-61, 63-64, 66, 69-70, 72, 75-76, 78, 84-85, 90-101, 103, 107-108, 110, 113-114, 116, 119-120, 122-123, 125-126, 128-129, 131-132

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Weight of Asbestos as Asbestos Fines (Friable)*	Measurement on analytical balance, from the <10mm Fractions. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g dry wt	7, 10, 19-20, 22, 25-26, 28, 31, 33-34, 36-37, 39-40, 42-43, 49-51, 54-55, 57, 60-61, 63-64, 66, 69-70, 72, 75-76, 78, 84-85, 90-101, 103, 107-108, 110, 113-114, 116, 119-120, 122-123, 125-126, 128-129, 131-132
Asbestos as Asbestos Fines as % of Total Sample*	Calculated from weight of asbestos fines and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	7, 10, 19-20, 22, 25-26, 28, 31, 33-34, 36-37, 39-40, 42-43, 49-51, 54-55, 57, 60-61, 63-64, 66, 69-70, 72, 75-76, 78, 84-85, 90-101, 103, 107-108, 110, 113-114, 116, 119-120, 122-123, 125-126, 128-129,
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*	Calculated from weight of fibrous asbestos plus asbestos fines and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	131-132 7, 10, 19-20, 22, 25-26, 28, 31, 33-34, 36-37, 39-40, 42-43, 49-51, 54-55, 57, 60-61, 63-64, 66, 69-70, 72, 75-76, 78, 84-85, 90-101, 103, 107-108, 110, 113-114, 116, 119-120, 122-123, 125-126, 128-129, 131-132

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 15-Jun-2023 and 05-Jul-2023. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Rhodri Williams BSc (Hons) Technical Manager - Asbestos

Proactively Released Lealan's and Information

R J Hill Laboratories Limited 101C Waterloo Road Hornby Christchurch 8042 New Zealand ♦ 0508 HILL LAB (44 555 22)
 ♦ +64 7 858 2000
 ☑ mail@hill-labs.co.nz
 ⊕ www.hill-labs.co.nz

Certificate of Analysis

Page 1 of 6

A2Pv1

Client: Contact:

Sample Type: Soil

GHD Limited David Jackson C/- GHD Limited PO Box 660

Waikato Mail Centre Hamilton 3240 Lab No: 3362886 12-Sep-2023 **Date Received:** 26-Sep-2023 **Date Reported: Quote No:** 124299 Order No: 12559090 **Client Reference:** 12559090 3219033 Add. Client Ref: David Jackson Submitted By:

Sample Type: Soil						
Sample	Name:	SB08 HA01 0.1 12-Sep-2023	SB08 HA01 0.5 12-Sep-2023	SB08 HA03 0.1 12-Sep-2023	SB08 HA02 0.1 12-Sep-2023	SB08 HA03 0.5 12-Sep-2023
Lab N	umber:	3362886.1	3362886.2	3362886.3	3362886.4	3362886.5
Asbestos Presence / Absence		Asbestos NOT detected.	Asbestos NOT detected.	Asbestos NOT detected.	Chrysotile (White Asbestos) detected.	Asbestos NOT detected.
Description of Asbestos Form		-	-	60	ACM debris and Loose fibres	-
Asbestos in ACM as % of Total Sample*	% w/w	< 0.001	< 0.001	0.001	< 0.001	< 0.001
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	0.003	< 0.001
Asbestos as Fibrous Asbestos as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Asbestos as Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	0.003	< 0.001
As Received Weight	g	515.2	623.9	541.4	543.1	545.9
Dry Weight	g	328.9	417.4	338.5	324.3	370.5
Moisture*	%	36	33	37	40	32
Sample Fraction >10mm	g dry wt	10.5	6.1	6.4	3.1	5.4
Sample Fraction <10mm to >2mm	g dry wt	51.9	49.1	46.5	30.8	55.9
Sample Fraction <2mm	g dry wt	265.8	361.6	285.2	290.1	308.8
<2mm Subsample Weight	g dry wt	53.5	53.6	52.9	54.9	50.4
Weight of Asbestos in ACM (Non-Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Fibrous Asbestos (Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Asbestos Fines (Friable)*	g dry wt	< 0.00001	< 0.00001	< 0.00001	0.00821	< 0.00001
Sample	Name:	SB08 HA02 0.5 12-Sep-2023	SB08 HA04 0.1 12-Sep-2023	SB08 HA04 0.5 12-Sep-2023	WDH TP01 0.1 12-Sep-2023	WDH TP02 0.1 12-Sep-2023
Lab N	umber:	3362886.6	3362886.7	3362886.8	3362886.9	3362886.12
Asbestos Presence / Absence		Asbestos NOT detected.	Asbestos NOT detected.	Asbestos NOT detected.	Asbestos NOT detected.	Asbestos NOT detected.
Description of Asbestos Form		-	-	-	-	-
Asbestos in ACM as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Asbestos as Fibrous Asbestos as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Asbestos as Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
As Received Weight	g	538.9	471.5	489.5	691.8	891.9

		0000114666	0000114010	0000114010=	MADL! TDC:: 0:	MIDU TESS S
Sam	ple Name:	SB08 HA02 0.5	SB08 HA04 0.1	SB08 HA04 0.5	WDH TP01 0.1	WDH TP02 0.1
	b Number:	12-Sep-2023 3362886.6	12-Sep-2023 3362886.7	12-Sep-2023 3362886.8	12-Sep-2023 3362886.9	12-Sep-2023 3362886.12
∟a Dry Weight		367.2	295.2	325.8	566.0	802.0
· · · · · · · · · · · · · · · · · · ·	g					10
Moisture*	%	32	37	33	18	10
Sample Fraction >10mm	g dry wt	21.2	11.1	< 0.1	190.5	303.2
Sample Fraction <10mm to >2mm	g dry wt	34.2	39.4	63.7	156.2	283.0
Sample Fraction <2mm	g dry wt	311.6	244.5	261.9	219.2	215.5
<2mm Subsample Weight	g dry wt	52.7	52.0	53.3	58.3	57.3
Weight of Asbestos in ACM (Non- Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Fibrous Asbestos (Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Asbestos Fines (Friable)*	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Sam	ple Name:	WDH TP03 0.1	WDH TP03 0.5	WDG TP01 0.1	WDG TP02 0.1	WDG TP03 0.1
		12-Sep-2023	12-Sep-2023	11-Sep-2023	11-Sep-2023	11-Sep-2023
	b Number:	3362886.15	3362886.16	3362886.18	3362886.21	3362886.24
Asbestos Presence / Absence		Asbestos NOT detected.	Asbestos NOT detected.	Asbestos NOT detected.	Asbestos NOT detected.	Asbestos NOT detected.
Description of Asbestos Form		-	-			-
Asbestos in ACM as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sam	% w/w ole*	< 0.001	< 0.001	0.001	< 0.001	< 0.001
Asbestos as Fibrous Asbestos as º Total Sample*	% of % w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Asbestos as Asbestos Fines as % Total Sample*	of % w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
As Received Weight	g	655.3	545.4	577.6	503.4	585.8
Dry Weight	g	495.0	366.5	416.1	305.0	410.6
Moisture*	%	24	33.	28	39	30
		-14				
Sample Fraction >10mm	g dry wt	180.0	45.5	13.4	2.8	15.3
Sample Fraction <10mm to >2mm	g dry wt	90.0	83.5	126.7	15.7	82.4
Sample Fraction <2mm	g dry wt	224.5	237.0	275.7	286.1	312.7
<2mm Subsample Weight	g dry wt	59.9	55.4	50.6	54.6	56.6
Weight of Asbestos in ACM (Non- Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Fibrous Asbestos (Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Asbestos Fines (Friable)*	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Sam	ple Name:	WDG TP03 0.5	WDF TP01 0.1	WDF TP02 0.1	WDF TP03 0.1	WDF TP03 0.5
Ju		11-Sep-2023	11-Sep-2023	11-Sep-2023	11-Sep-2023	11-Sep-2023
La	b Number:	3362886.25	3362886.27	3362886.30	3362886.33	3362886.34
Asbestos Presence / Absence		Asbestos NOT detected.	Asbestos NOT detected.	Asbestos NOT detected.	Asbestos NOT detected.	Asbestos NOT detected.
Description of Asbestos Form		-	-	-	-	-
Asbestos in ACM as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sam _l	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Asbestos as Fibrous Asbestos as 9 Total Sample*	% of % w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Asbestos as Asbestos Fines as % Total Sample*	of % w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
As Received Weight	g	549.8	792.2	596.9	563.6	565.3
Dry Weight	g	316.9	607.3	403.8	337.2	328.8
Moisture*	%	42	23	32	40	42
Sample Fraction >10mm	g dry wt	< 0.1	219.9	28.9	< 0.1	21.8
Sample Fraction <10mm to >2mm	g dry wt	77.1	190.1	159.8	200.2	123.1

Sample Type: Soil						
Sample	Name:	WDG TP03 0.5 11-Sep-2023	WDF TP01 0.1 11-Sep-2023	WDF TP02 0.1 11-Sep-2023	WDF TP03 0.1 11-Sep-2023	WDF TP03 0.5 11-Sep-2023
Lab N	umber:	3362886.25	3362886.27	3362886.30	3362886.33	3362886.34
Sample Fraction <2mm	g dry wt	238.9	196.6	213.5	136.6	183.3
<2mm Subsample Weight	g dry wt	56.5	58.6	56.6	55.3	58.7
Weight of Asbestos in ACM (Non-Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Fibrous Asbestos (Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Asbestos Fines (Friable)*	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Sample	Name:	NW FILL TP01 0.1 11-Sep-2023	NW FILL TP01 0.5 11-Sep-2023	NW FILL TP02 0.1 11-Sep-2023	NW FILL TP03 0.1 11-Sep-2023	NW FILL TP03 0.5 11-Sep-2023
I ah N	umber:	3362886.36	3362886.37	3362886.39	3362886.42	3362886.43
Asbestos Presence / Absence		Asbestos NOT detected.	Asbestos NOT detected.	Asbestos NOT detected.	Asbestos NOT detected.	Asbestos NOT detected.
Description of Asbestos Form		-	-	-	_	\
Asbestos in ACM as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Asbestos as Fibrous Asbestos as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Asbestos as Asbestos Fines as % of Total Sample*	% w/w	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
As Received Weight	g	459.4	497.5	584.6	472.2	506.9
Dry Weight	g	292.3	320.6	419.0	305.4	352.6
Moisture*	%	36	36	28	35	30
Sample Fraction >10mm	g dry wt	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Sample Fraction <10mm to >2mm	g dry wt	21.5	42.0	97.3	32.3	66.7
Sample Fraction <2mm	g dry wt	269.3	277.8	320.5	271.8	284.9
<2mm Subsample Weight	g dry wt	56.1	53.2	59.7	56.1	55.3
Weight of Asbestos in ACM (Non-Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Fibrous Asbestos (Friable)	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Weight of Asbestos as Asbestos Fines (Friable)*	g dry wt	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Sample	Nome	NIM FILL T	P04 0.1 11-Sep-20	23 N	IW FILL TP04 0.5 1	1-Sen-2023
- 7	umber:		1 04 0.1 11-3ер-20. 3362886.44	25	3362886.4	•
Asbestos Presence / Absence	umber.		os NOT detected.		Asbestos NOT d	
Description of Asbestos Form		Asbest	-		-	ciccicu.
Asbestos in ACM as % of Total Sample*	% w/w		< 0.001		< 0.001	
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*	% w/w		< 0.001		< 0.001	
Asbestos as Fibrous Asbestos as % of Total Sample*	% w/w		< 0.001		< 0.001	
Asbestos as Asbestos Fines as % of Total Sample*	% w/w		< 0.001		< 0.001	
As Received Weight	g		573.2		590.1	
Dry Weight	g		379.5		403.4	
Moisture*	%					
Sample Fraction >10mm	g dry wt		< 0.1		< 0.1	
Sample Fraction <10mm to >2mm	g dry wt		53.6		173.0	
Sample Fraction <2mm	g dry wt		324.7		228.0	
<2mm Subsample Weight	g dry wt		53.2		55.6	
Weight of Asbestos in ACM (Non-Friable)	g dry wt		< 0.00001		< 0.0000	1

Sample Type: Soil			
Sample	Name:	NW FILL TP04 0.1 11-Sep-2023	NW FILL TP04 0.5 11-Sep-2023
Lab Number:		3362886.44	3362886.45
Weight of Asbestos as Asbestos Fines (Friable)*	g dry wt	< 0.00001	< 0.00001

Glossary of Terms

- · Loose fibres (Minor) One or two fibres/fibre bundles identified during analysis by stereo microscope/PLM.
- · Loose fibres (Major) Three or more fibres/fibre bundles identified during analysis by stereo microscope/PLM.
- ACM Debris (Minor) One or two small (<2mm) pieces of material attached to fibres identified during analysis by stereo microscope/PLM.
- ACM Debris (Major) Large (>2mm) piece, or more than three small (<2mm) pieces of material attached to fibres identified during analysis by stereo microscope/PLM.
- Unknown Mineral Fibres Mineral fibres of unknown type detected by polarised light microscopy including dispersion staining. The fibres detected may or may not be asbestos fibres. To confirm the identities, another independent analytical technique may be required.
- Trace Trace levels of asbestos, as defined by AS4964-2004.

For further details, please contact the Asbestos Team.

Please refer to the BRANZ New Zealand Guidelines for Assessing and Managing Asbestos in Soil. https://www.branz.co.nz/asbestos

The following assumptions have been made:

- 1. Asbestos Fines in the <2mm fraction, after homogenisation, is evenly distributed throughout the fraction
- 2. The weight of asbestos in the sample is unaffected by the ashing process.

Results are representative of the sample provided to Hill Laboratories only.

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Labs, 28 Duke Street, Frankton, Hamilton 3204

Sample Type: Soil	N. 01		
Test	Method Description	Default Detection Limit	Sample No
New Zealand Guidelines Semi Quantitati	ve Asbestos in Soil		
As Received Weight	Measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g	1-9, 12, 15-16, 18, 21, 24-25, 27, 30, 33-34, 36-37, 39, 42-45
Dry Weight	Sample dried at 100 to 105°C, measurement on balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g	1-9, 12, 15-16, 18, 21, 24-25, 27, 30, 33-34, 36-37, 39, 42-45
Moisture*	Sample dried at 100 to 105°C. Calculation = (As received weight - Dry weight) / as received weight x 100.	1 %	1-9, 12, 15-16, 18, 21, 24-25, 27, 30, 33-34, 36-37, 39, 42-45
Sample Fraction >10mm	Sample dried at 100 to 105°C, 10mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g dry wt	1-9, 12, 15-16, 18, 21, 24-25, 27, 30, 33-34, 36-37, 39, 42-45
Sample Fraction <10mm to >2mm	Sample dried at 100 to 105°C, 10mm and 2mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g dry wt	1-9, 12, 15-16, 18, 21, 24-25, 27, 30, 33-34, 36-37, 39, 42-45

Sample Type: Soil					
Test	Method Description	Default Detection Limit	Sample No		
Sample Fraction <2mm	Sample dried at 100 to 105°C, 2mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g dry wt	1-9, 12, 15-16, 18, 21, 24-25, 27, 30, 33-34, 36-37, 39, 42-45		
Asbestos Presence / Absence	Examination using Low Powered Stereomicroscopy followed by 'Polarised Light Microscopy' including 'Dispersion Staining Techniques'. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. AS 4964 (2004) - Method for the Qualitative Identification of Asbestos in Bulk Samples.	0.01%	1-9, 12, 15-16, 18, 21, 24-25, 27, 30, 33-34, 36-37, 39, 42-45		
Description of Asbestos Form	Description of asbestos form and/or shape if present.	~ K	1-9, 12, 15-16, 18, 21, 24-25, 27, 30, 33-34, 36-37, 39, 42-45		
Weight of Asbestos in ACM (Non-Friable)	Measurement on analytical balance, from the >10mm Fraction. Weight of asbestos based on assessment of ACM form. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g dry wt	1-9, 12, 15-16, 18, 21, 24-25, 27, 30, 33-34, 36-37, 39, 42-45		
Asbestos in ACM as % of Total Sample*	Calculated from weight of asbestos in ACM and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	1-9, 12, 15-16, 18, 21, 24-25, 27, 30, 33-34, 36-37, 39, 42-45		
Weight of Asbestos as Fibrous Asbestos (Friable)	Measurement on analytical balance, from the >10mm Fraction. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g dry wt	1-9, 12, 15-16, 18, 21, 24-25, 27, 30, 33-34, 36-37, 39, 42-45		
Asbestos as Fibrous Asbestos as % of Total Sample*	Calculated from weight of fibrous asbestos and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	1-9, 12, 15-16, 18, 21, 24-25, 27, 30, 33-34, 36-37, 39, 42-45		
Weight of Asbestos as Asbestos Fines (Friable)*	Measurement on analytical balance, from the <10mm Fractions. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g dry wt	1-9, 12, 15-16, 18, 21, 24-25, 27, 30, 33-34, 36-37, 39, 42-45		
Asbestos as Asbestos Fines as % of Total Sample*	Calculated from weight of asbestos fines and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	1-9, 12, 15-16, 18, 21, 24-25, 27, 30, 33-34, 36-37, 39, 42-45		
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*	Calculated from weight of fibrous asbestos plus asbestos fines and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	1-9, 12, 15-16, 18, 21, 24-25, 27, 30, 33-34, 36-37, 39, 42-45		

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 22-Sep-2023 and 26-Sep-2023. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Rhodri Williams BSc (Hons) Technical Manager - Asbestos

Proactively Released Dy alan's and information with the proactive of the p

R J Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205 Hamilton 3240 New Zealand

Submitted By:

♦ 0508 HILL LAB (44 555 22)
 ♦ +64 7 858 2000 ★ mail@hill-labs.co.nz
 ★ www.hill-labs.co.nz

Alex Lucas

Certificate of Analysis

Page 1 of 2

A2Pv1

Client: **GHD Limited** Lab No: 3220337 Contact: David Jackson **Date Received:** 29-Mar-2023 C/- GHD Limited 13-Dec-2023 **Date Reported:** PO Box 660 **Quote No:** 123194 Waikato Mail Centre Order No: 12559090 Hamilton 3240 12559090 **Client Reference:**

Sample Type: Soi	I					
Sample Name	Lab Number	As Received Weight Presence / Absence Testing (g)	Absence	<2mm Subsample Weight Presence / Absence Testing (g dry wt)	Asbestos Presence / Absence from Presence / Absence Testing	Description of Asbestos Form Presence / Absence Testing
SCH TP01 0.1	3220337.5	164.1	111.9	51.4	Asbestos NOT detected.	-
SCH TP01 0.3	3220337.6	159.5	88.1	15.6	Asbestos NOT detected.	-
SCH TP02 0.1	3220337.7	125.6	86.0	54.8	Asbestos NOT detected.	-
SCH TP03 0.1	3220337.9	124.6	81.0	55.8	Asbestos NOT detected.	-
SCH TP03 0.7	3220337.10	153.1	93.2	33.7	Asbestos NOT detected.	-
SCH TP04 0.1	3220337.11	160.8	116.7	46.4	Asbestos NOT detected.	-

Glossary of Terms

- · Loose fibres (Minor) One or two fibres/fibre bundles identified during analysis by stereo microscope/PLM.
- · Loose fibres (Major) Three or more fibres/fibre bundles identified during analysis by stereo microscope/PLM.
- · ACM Debris (Minor) One or two small (<2mm) pieces of material attached to fibres identified during analysis by stereo microscope/PLM.
- ACM Debris (Major) Large (>2mm) piece, or more than three small (<2mm) pieces of material attached to fibres identified during analysis by stereo microscope/PLM.
- Unknown Mineral Fibres Mineral fibres of unknown type detected by polarised light microscopy including dispersion staining. The fibres detected may or may not be asbestos fibres. To confirm the identities, another independent analytical technique may be required.
- Trace Trace levels of asbestos, as defined by AS4964-2004.

For further details, please contact the Asbestos Team.

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Labs, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Asbestos in Soil			•
As Received Weight Presence / Absence Testing	Measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; Unit 1, 17 Print Place, Middleton, Christchurch.	0.1 g	5-7, 9-11
Dry Weight Presence / Absence Testing	Sample dried at 100 to 105°C, measurement on balance. Analysed at Hill Laboratories - Asbestos; Unit 1, 17 Print Place, Middleton, Christchurch.	0.1 g	5-7, 9-11
<2mm Subsample Weight Presence / Absence Testing	Sample dried at 100 to 105°C, weight of <2mm sample fraction taken for asbestos identification if less than entire fraction. Analysed at Hill Laboratories - Asbestos; Unit 1, 17 Print Place, Middleton, Christchurch.	-	5-7, 9-11
Asbestos Presence / Absence from Presence / Absence Testing	Examination using Low Powered Stereomicroscopy followed by 'Polarised Light Microscopy' including 'Dispersion Staining Techniques'. Analysed at Hill Laboratories - Asbestos; Unit 1, 17 Print Place, Middleton, Christchurch. AS 4964 (2004) - Method for the Qualitative Identification of Asbestos in Bulk Samples.	0.01%	5-7, 9-11
Description of Asbestos Form Presence / Absence Testing	Description of asbestos form and/or shape if present.	-	5-7, 9-11

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked * or any comments and interpretations, which are not accredited.

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed on 13-Dec-2023. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Rhodri Williams BSc (Hons) Technical Manager - Asbestos

Proactively Released Lealant and Information Lealant and Information

R J Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205 Hamilton 3240 New Zealand

♦ 0508 HILL LAB (44 555 22)
 ♦ +64 7 858 2000
 ☑ mail@hill-labs.co.nz
 ⊕ www.hill-labs.co.nz

Certificate of Analysis

Page 1 of 2

A2Pv1

Client: GH
Contact: Day

GHD Limited David Jackson C/- GHD Limited PO Box 660

Waikato Mail Centre Hamilton 3240

 Lab No:
 3223323

 Date Received:
 31-Mar-2023

 Date Reported:
 12-Dec-2023

 Quote No:
 122978

 Order No:
 12559090

 Client Reference:
 12559090

 Submitted By:
 David Jackson

Sample Type: Soil		
Sample Name:	TRF TP01 0.1 29-Mar-2023	TRF TP03 0.1 29-Mar-2023
Lab Number:	3223323.12	3223323.14
Asbestos Presence / Absence	Asbestos NOT detected.	Asbestos NOT detected.
Description of Asbestos Form	-	
Asbestos in ACM as % of Total % w/w Sample*	< 0.001	< 0.001
Combined Fibrous Asbestos + % w/w Asbestos Fines as % of Total Sample*	< 0.001	₹0.001
Asbestos as Fibrous Asbestos as % of % w/w Total Sample*	< 0.001	< 0.001
Asbestos as Asbestos Fines as % of % w/w Total Sample*	< 0.001	< 0.001
As Received Weight g	631.6	586.6
Dry Weight g	383.9	399.3
Moisture* %	39	32
Sample Fraction >10mm g dry wt	5.4	< 0.1
Sample Fraction <10mm to >2mm g dry wt	49.0	92.6
Sample Fraction <2mm g dry wt	328.6	306.3
<2mm Subsample Weight g dry wt	50.0	50.8
Weight of Asbestos in ACM (Nong dry wt Friable)	< 0.00001	< 0.00001
Weight of Asbestos as Fibrous g dry wt Asbestos (Friable)		< 0.00001
Weight of Asbestos as Asbestos g dry wt Fines (Friable)*	< 0.00001	< 0.00001

Glossary of Terms

- · Loose fibres (Minor) One or two fibres/fibre bundles identified during analysis by stereo microscope/PLM.
- · Loose fibres (Major) Three or more fibres/fibre bundles identified during analysis by stereo microscope/PLM.
- ACM Debris (Minor) One or two small (<2mm) pieces of material attached to fibres identified during analysis by stereo microscope/PLM.
- ACM Debris (Major) Large (>2mm) piece, or more than three small (<2mm) pieces of material attached to fibres identified during analysis by stereo microscope/PLM.
- Unknown Mineral Fibres Mineral fibres of unknown type detected by polarised light microscopy including dispersion staining. The fibres detected may or may not be asbestos fibres. To confirm the identities, another independent analytical technique may be required.
- Trace Trace levels of asbestos, as defined by AS4964-2004.

For further details, please contact the Asbestos Team.

Please refer to the BRANZ New Zealand Guidelines for Assessing and Managing Asbestos in Soil. https://www.branz.co.nz/asbestos

The following assumptions have been made:

- 1. Asbestos Fines in the <2mm fraction, after homogenisation, is evenly distributed throughout the fraction
- 2. The weight of asbestos in the sample is unaffected by the ashing process.

Results are representative of the sample provided to Hill Laboratories only.

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Labs, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
New Zealand Guidelines Semi Quantitat	ive Asbestos in Soil		
As Received Weight	Measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; Unit 1, 17 Print Place, Middleton, Christchurch.	0.1 g	12, 14
Dry Weight	Sample dried at 100 to 105°C, measurement on balance. Analysed at Hill Laboratories - Asbestos; Unit 1, 17 Print Place, Middleton, Christchurch.	0.1 g	12, 14
Moisture*	Sample dried at 100 to 105°C. Calculation = (As received weight - Dry weight) / as received weight x 100.	1 %	12, 14
Sample Fraction >10mm	Sample dried at 100 to 105°C, 10mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; Unit 1, 17 Print Place, Middleton, Christchurch.	0.1 g dry wt	12, 14
Sample Fraction <10mm to >2mm	Sample dried at 100 to 105°C, 10mm and 2mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; Unit 1, 17 Print Place, Middleton, Christchurch.	0.1 g dry wt	12, 14
Sample Fraction <2mm	Sample dried at 100 to 105°C, 2mm sieve, measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; Unit 1, 17 Print Place, Middleton, Christchurch.	0.1 g dry wt	12, 14
Asbestos Presence / Absence	Examination using Low Powered Stereomicroscopy followed by 'Polarised Light Microscopy' including 'Dispersion Staining Techniques'. Analysed at Hill Laboratories - Asbestos; Unit 1, 17 Print Place, Middleton, Christchurch. AS 4964 (2004) - Method for the Qualitative Identification of Asbestos in Bulk Samples.	0.01%	12, 14
Description of Asbestos Form	Description of asbestos form and/or shape if present.	-	12, 14
Weight of Asbestos in ACM (Non-Friable)	Measurement on analytical balance, from the >10mm Fraction. Weight of asbestos based on assessment of ACM form. Analysed at Hill Laboratories - Asbestos; Unit 1, 17 Print Place, Middleton, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g dry wt	12, 14
Asbestos in ACM as % of Total Sample*	Calculated from weight of asbestos in ACM and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	12, 14
Weight of Asbestos as Fibrous Asbestos (Friable)	Measurement on analytical balance, from the >10mm Fraction. Analysed at Hill Laboratories - Asbestos; Unit 1, 17 Print Place, Middleton, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g dry wt	12, 14
Asbestos as Fibrous Asbestos as % of Total Sample*	Calculated from weight of fibrous asbestos and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	12, 14
Weight of Asbestos as Asbestos Fines (Friable)*	Measurement on analytical balance, from the <10mm Fractions. Analysed at Hill Laboratories - Asbestos; Unit 1, 17 Print Place, Middleton, Christchurch. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.00001 g dry wt	12, 14
Asbestos as Asbestos Fines as % of Total Sample*	Calculated from weight of asbestos fines and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	12, 14
Combined Fibrous Asbestos + Asbestos Fines as % of Total Sample*	Calculated from weight of fibrous asbestos plus asbestos fines and sample dry weight. New Zealand Guidelines for Assessing and Managing Asbestos in Soil, November 2017.	0.001 % w/w	12, 14

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed on 12-Dec-2023. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

 $This \ certificate \ of \ analysis \ must \ not \ be \ reproduced, \ except \ in \ full, \ without \ the \ written \ consent \ of \ the \ signatory.$

Rhodri Williams BSc (Hons) Technical Manager - Asbestos

Analytica Laboratories Limited Ruakura Research Centre 10 Bisley Road Hamilton sales@analytica.co.nz www.analytica.co.nz

Certificate of Analysis

GHD I td

103 Tristram Street

Hamilton

Attention: David Jackson Phone: +64 4 495 5817

Email: david.jackson@ghd.com

Sampling Site:

Lab Reference: 23-27152

Submitted by:

Date Received: 12/09/2023 Testing Initiated: 13/09/2023 Date Completed: 19/09/2023

Order Number:

Reference: 1259090

Report Comments

Samples were collected by yourselves (or your agent) and analysed as received at Analytica Laboratories. Samples were in yuca L acceptable condition unless otherwise noted on this report.

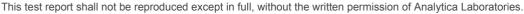
Specific testing dates are available on request.

Heavy Metals in Soil

	Client	t Sample ID	Trip A	Trip B
	Da	te Sampled		
Analyte	Unit	Reporting Limit	23-27152-1	23-27152-2
Arsenic	mg/kg dry wt	0.125	4.2	4.5
Beryllium	mg/kg dry wt	0.013	0.56	1.2
Boron	mg/kg dry wt	1.25	9.1	16
Cadmium	mg/kg dry wt	0.005	0.086	0.30
Chromium	mg/kg dry wt	0.125	18.3	13.9
Copper	mg/kg dry wt	0.075	68.3	48.7
Lead	mg/kg dry wt	0.25	24.7	198
Mercury	mg/kg dry wt	0.025	0.034	0.11
Nickel	mg/kg dry wt	0.05	10.4	10.6
Zinc	mg/kg dry wt	0.05	75.0	189

Method Summary

Elements in Soil


Samples dried and passed through a 2 mm sieve followed by acid digestion and analysis by ICP-MS. In accordance with in-house procedure based on US EPA method 200.8.

Thara Samarasinghe, B.Sc.

Technician

Elizabeth Gardner Lab Tech Sample Prep

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation with the exception of tests marked *, which are not accredited.

Analytica Laboratories Limited Ruakura Research Centre 10 Bisley Road Hamilton sales@analytica.co.nz www.analytica.co.nz

Certificate of Analysis

GHD I td

103 Tristram Street

Hamilton

Attention: David Jackson Phone: +64 4 495 5871

Email: david.jackson@ghd.com

Sampling Site:

Lab Reference: 23-28470

Submitted by:

Date Received: 25/09/2023 Testing Initiated: 25/09/2023 Date Completed: 28/09/2023

Order Number:

Reference: 12559090

Samples were collected by yourselves (or your agent) and analysed as received at Analytica Laboratories. Samples were in acceptable condition unless otherwise noted on this report.

Heavy Metals in Soil

Report Comments

Report Comn Samples were co acceptable condi Specific testing d Heavy Metals in	ollected by yours tion unless othe ates are availab	rwise note	d on this report.	analysed as rece	ived at Analytica Labo
	Clien	t Sample ID	Trip D	Trip E	70
	Da	te Sampled			
Analyte	Unit	Reporting Limit	23-28470-1	23-28470-2	
Arsenic	mg/kg dry wt	0.125	6.8	3.7	
Beryllium	mg/kg dry wt	0.013	1.0	0.94	
Boron	mg/kg dry wt	1.25	1.9	2.3	
Cadmium	mg/kg dry wt	0.005	0.099	0.11	
Chromium	mg/kg dry wt	0.125	14.2	14.6	
Copper	mg/kg dry wt	0.075	25.0	29.6	
Lead	mg/kg dry wt	0.25	18.8	30.0	
Mercury	mg/kg dry wt	0.025	0.14	0.094	
Nickel	mg/kg dry wt	0.05	7.24	9.48	
Zinc	mg/kg dry wt	0.05	41.0	75.0	

Polycyclic Aromatic Hydrocarbons - Soil

	Trip D		
	Da	te Sampled	
Analyte	Unit	Reporting Limit	23-28470-1
1-Methylnaphthalene	mg/kg dry wt	0.01	<0.010
2-Methylnaphthalene	mg/kg dry wt	0.01	<0.010
Acenaphthene	mg/kg dry wt	0.01	<0.010
Acenaphthylene	mg/kg dry wt	0.01	<0.010
Anthracene	mg/kg dry wt	0.01	<0.010
Benz[a]anthracene	mg/kg dry wt	0.02	<0.020

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation with the exception of tests marked *, which are not accredited.

This test report shall not be reproduced except in full, without the written permission of Analytica Laboratories.

Polycyclic Aromatic Hydrocarbons - Soil

	Trip D		
	Da	te Sampled	
Benzo[a]pyrene	mg/kg dry wt	0.01	<0.010
Benzo[b]&[j] fluoranthene	mg/kg dry wt	0.02	<0.020
Benzo[g,h,i]perylene	mg/kg dry wt	0.02	<0.020
Benzo[k]fluoranthene	mg/kg dry wt	0.01	<0.010
Chrysene	mg/kg dry wt	0.01	<0.010
Dibenz(a,h)anthracene	mg/kg dry wt	0.01	<0.010
Fluoranthene	mg/kg dry wt	0.02	<0.020
Fluorene	mg/kg dry wt	0.01	<0.010
Indeno(1,2,3-cd)pyrene	mg/kg dry wt	0.01	<0.010
Naphthalene	mg/kg dry wt	0.01	<0.010
Phenanthrene	mg/kg dry wt	0.01	<0.010
Pyrene	mg/kg dry wt	0.02	<0.020
Benzo[a]pyrene TEQ (LOR)	mg/kg dry wt	0.03	0.030
Benzo[a]pyrene TEQ (Zero)	mg/kg dry wt	0.01	<0.010
Anthracene-d10 (Surrogate)	%	1	120

Moisture Content

	Client	Trip D	
	Da	te Sampled	
Analyte	Unit	Reporting Limit	23-28470-1
Moisture Content	%	1	36

Method Summary

Elements in Soil Samples dried and passed through a 2 mm sieve followed by acid digestion and analysis by ICP-

MS. In accordance with in-house procedure based on US EPA method 200.8.

PAH in Soil Solvent extraction, silica cleanup, followed by GC-MS analysis.

Benzo[a]pyrene TEQ (LOR): The most conservative TEQ estimate, where a result is reported as less than the limit of reporting (LOR) the LOR value is used to calculate the TEQ for that PAH. **Benzo[a]pyrene TEQ (Zero)**: The least conservative TEQ estimate, PAHs reported as less than

leased by alan

the limit of reporting (LOR) are not included in the TEQ calculation.

Benzo[a]pyrene toxic equivalence (TEQ) is calculated according to 'Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health'. Ministry for the Environment. 2011.

(In accordance with in-house procedure).

Moisture Moisture content is determined gravimetrically by drying at 103 °C.

Sharelle Frank, B.Sc. (Tech)

Technologist

Divya Goundar DipSciTech

Technician

Astra Southerwood,

Sample Preparation Team Leader

T 0508 HILL LAB (44 555 22) +64 7 858 2000 mail@hill-labs.co.nz www.hill-laboratories.com

Certificate of Analysis

Page 1 of 1

Client: Hail Environmental

Contact: Dave Bull

C/- Hail Environmental

PO Box 13113 Tauranga Central Tauranga 3141

Date Received: Date Reported:

> **Quote No:** Order No:

Lab No:

72619

3194967

08-Mar-2023

10-Mar-2023

1090A **Client Reference:** Submitted By: Anna Carter

Sample Type: Soil						
	Sample Name:	1090A B2/1 A 0.0	1090A B2/1 A 0.4	1090A B2/1 O 0.0	1090A B5/1 A 0.1	1090A B5/1 B 0.0
	<u>.</u>	06-Mar-2023	06-Mar-2023	06-Mar-2023	07-Mar-2023	07-Mar-2023
	Lab Number:	3194967.1	3194967.2	3194967.3	3194967.4	3194967.5
Total Recoverable Lead	mg/kg dry wt	2,100	20	110	181	99

	Sample Name:	1090A B8/1 B 0.0 07-Mar-2023
	Lab Number:	3194967.6
Total Recoverable Lead	mg/kg dry wt	450

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Environmental Solids Sample Drying*	Air dried at 35°C Used for sample preparation. May contain a residual moisture content of 2-5%.	-	1-6
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation May contain a residual moisture content of 2-5%.	-	1-6
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.	-	1-6
Total Recoverable Lead	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.4 mg/kg dry wt	1-6

These samples were collected by your selves (or your agent) and analysed as received at the laboratory.

Testing was completed between 08-Mar-2023 and 10-Mar-2023. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Graham Corban MSc Tech (Hons) Client Services Manager - Environmental

0508 HILL LAB (44 555 22) +64 7 858 2000 E mail@hill-labs.co.nz W www.hill-laboratories.com

Quality Assurance Report

Page 1 of 1

QCPv1

Contact:

Hail Environmental

Dave Bull

C/- Hail Environmental PO Box 13113

Tauranga Central Tauranga 3141

Lab No: **Date Received:** 3194967 08-Mar-2023

Date Reported:

10-Mar-2023

Quote No: Order No:

72619

Client Reference:

1090A

Submitted By:

Anna Carter

an		Cs

Digest Blank 1 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8363.16

Results **Control Limits** Total Recoverable Lead mg/kg dry wt $< 0.4 \pm 0.26$ -0.40 - 0.40

Outside Limit (Yes/No)

No

Digest Blank 2 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR) 8363.66 Control Limits Outside Limit (Yes/No) Results

-0.40 - 0.40 Total Recoverable Lead $< 0.4 \pm 0.26$ mg/kg dry wt

50x Manual Dilution Digest Blank PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8363.78

Control Limits Outside Limit (Yes/No) Results Total Recoverable Lead $< 0.4 \pm 0.26$ -0.40 - 0.40mg/kg dry wt Nο

100x Manual Dilution Digest Blank PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8363.82

Results **Control Limits** Outside Limit (Yes/No) Total Recoverable Lead $< 0.8 \pm 0.26$ -0.80 - 0.80mg/kg dry wt No

Reference Material QCs

QC A6 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8363.17

Results **Control Limits** Outside Limit (Yes/No) Total Recoverable Lead mg/kg dry wt 21.2 ± 3.2 13.2 - 30No

QC A6 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8363.33

Results **Control Limits** Outside Limit (Yes/No) 24.4 ± 3.7 Total Recoverable Lead mg/kg dry wt 13.2 - 30No

WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8363.70 QC A6 PrepWS esDig

Control Limits Results Outside Limit (Yes/No) Total Recoverable Lead 22.3 ± 3.4 13.2 - 30mg/kg dry wt No

High Volume Environmental Soils by ICP-MS (HVesTR): 8363.79 QC A6 PrepWS esDig - WS:

Results **Control Limits** Outside Limit (Yes/No) Total Recoverable Lead 20.0 ± 3.0 13.2 - 30mg/kg dry wt

QC A6 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8363.83

Control Limits Outside Limit (Yes/No) Results Total Recoverable Lead mg/kg dry wt 20.2 ± 3.1 13.2 - 30

Replicates

WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8363.27

Replicate 1 Replicate 2 Pass/Fail Total Recoverable Lead 110 ± 17 100 ± 15 Pass mg/kg dry wt

0508 HILL LAB (44 555 22) +64 7 858 2000 mail@hill-labs.co.nz www.hill-laboratories.com

Certificate of Analysis

Page 1 of 1

Client: Hail Environmental

Contact: Dave Bull

C/- Hail Environmental

PO Box 13113 Tauranga Central Tauranga 3141

Lab No: **Date Received: Date Reported:** 3197666 10-Mar-2023

15-Mar-2023 72619

Quote No: Order No:

Client Reference: Submitted By:

1090A Anna Carter

Sample Type: Soil						
	Sample Name:	1090A B1/1 A 0.1 09-Mar-2023	1090A B2/2 A 0.1 1090A B2/2 A 0.0 09-Mar-2023 07-Mar-2023		1090A B2/2 C 0.3 09-Mar-2023	1090A B4/1 A 0.2 09-Mar-2023
	Lab Number:	3197666.1	3197666.2	3197666.3	3197666.4	3197666.5
Total Recoverable Lead	mg/kg dry wt	31	1,340	2,100	640	71
	Sample Name:	1090A B10/1 A 0.1 09-Mar-2023	1090A B11/1 A 0.2 09-Mar-2023	1090A B11/1 A 0.0 09-Mar-2023	1090A B11/2 A 0.1 09-Mar-2023	1090A B15/1 A 0.0 09-Mar-2023
	Lab Number:	3197666.6	3197666.7	3197666.8	3197666.9	3197666.10
Total Recoverable Lead	mg/kg dry wt	47	390	560	210	770
	Sample Name:	1090A B15/2 A 0.1 09-Mar-2023	1090A B17/1 A 0.2 09-Mar-2023	1090A B17/2 A 0.2 09-Mar-2023	1090A B19/1 A 0.1 09-Mar-2023	1090A B21/1 A 0.0 09-Mar-2023
	Lab Number:	3197666.11	3197666.12	3197666.13	3197666.14	3197666.15
Total Recoverable Lead	mg/kg dry wt	880	108	34	290	1,180

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Environmental Solids Sample Drying*	Air dried at 35°C Used for sample preparation. May contain a residual moisture content of 2-5%.	-	1-15
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation May contain a residual moisture content of 2-5%.	-	1-15
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.	-	1-15
Total Recoverable Lead	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.4 mg/kg dry wt	1-15

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 13-Mar-2023 and 15-Mar-2023. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Kim Harrison MSc

Client Services Manager - Environmental

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked * or any comments and interpretations, which are not accredited.

T 0508 HILL LAB (44 555 22) +64 7 858 2000 E mail@hill-labs.co.nz W www.hill-laboratories.com

Quality Assurance Report

Page 1 of 2

QCPv1

Client: Contact:

Hail Environmental

Dave Bull

PO Box 13113

Tauranga Central

C/- Hail Environmental

Tauranga 3141

Lab No: **Date Received:** 3197666 10-Mar-2023

Date Reported: 15-Mar-2023

Quote No: Order No:

72619

Client Reference: | 1090A Submitted By:

Anna Carter

В	an	k (0	Cs

Digest Blank 1 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8379.16

		Results	Control Limits	Outside Limit (Yes/No)
Total Recoverable Lead	mg/kg dry wt	< 0.4 ± 0.26	-0.40 - 0.40	No

Digest Blank 2 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8379.40							
		Results	Control Limits	Outside Limit (Yes/No)			
Total Recoverable Lead	mg/kg dry wt	< 0.4 ± 0.26	-0.40 - 0.40	No			

Digest Blank 1 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8380.16							
		Results		7	Control Limits		Outside Limit (Yes/No)
Total Recoverable Lead	mg/kg dry wt	< 0.4 ± 0.26	10		-0.40 - 0.40		No

Digest Blank 2 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8380.23						
Results Control Limits Outside Limit (Yes/No)						
Total Recoverable Lead	mg/kg dry wt	< 0.4 ± 0.26	-0.40 - 0.40	No		

Digest Blank 1 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8381.16							
Results Control Limits Outside Limit (Yes/No)							
Total Recoverable Lead	mg/kg dry wt	IK	< 0.4 ± 0.26	V	-0.40 - 0.40	No	

Digest Blank 2 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8381.70							
Results Control Limits Outside Limit (Yes/No)							
Total Recoverable Lead	mg/kg dry wt	< 0.4 ± 0.26	-0.40 - 0.40	No			

	_				1		
к	ΔТ	erer	ICA I	VI 🛌	TAY	ıaı	
				46.	1101		

QC A6 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8379.17

		Results	Control Limits	Outside Limit (Yes/No)
Total Recoverable Lead	mg/kg dry wt	22.5 ± 3.4	13.2 – 30	No

QC A6 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8379.36				
Results Control Limits Outside Limit (Yes/No)				
Total Recoverable Lead mg/kg dry wt	21.4 ± 3.3	13.2 – 30	No	

QC A6 PrepWS esDig WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8379.63				
		Results	Control Limits	Outside Limit (Yes/No)
Total Recoverable Lead	mg/kg dry wt	23.3 ± 3.5	13.2 – 30	No

QC A6 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8380.17				
Results Control Limits Outside Limit (Yes/N				Outside Limit (Yes/No)
Total Recoverable Lead	mg/kg dry wt	22.0 ± 3.4	13.2 – 30	No

QC A6 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8380.65				
		Results	Control Limits	Outside Limit (Yes/No)
Total Recoverable Lead	mg/kg dry wt	20.8 ± 3.2	13.2 – 30	No

QC A6 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8380.67				
		Results	Control Limits	Outside Limit (Yes/No)
Total Recoverable Lead	mg/kg dry wt	20.9 ± 3.2	13.2 – 30	No

QC A6 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8381.17				
		Results	Control Limits	Outside Limit (Yes/No)
Total Recoverable Lead	mg/kg dry wt	22.5 ± 3.4	13.2 – 30	No

QC A6 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8381.35				
Results Control Limits Outside Limit (Yes/				Outside Limit (Yes/No)
Total Recoverable Lead	mg/kg dry wt	20.7 ± 3.1	13.2 – 30	No

QC A6 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8381.66				
Results Control Limits Outside Limit (Yes/				Outside Limit (Yes/No)
Total Recoverable Lead	mg/kg dry wt	24.6 ± 3.7	13.2 – 30	No

T 0508 HILL LAB (44 555 22) +64 7 858 2000 E mail@hill-labs.co.nz W www.hill-laboratories.com

Certificate of Analysis

Page 1 of 2

Client:

Hail Environmental

Contact: Dave Bull

C/- Hail Environmental

PO Box 13113 Tauranga Central Tauranga 3141

Lab No: **Date Received: Date Reported:**

3203831 16-Mar-2023

21-Mar-2023 72619

Quote No: Order No:

Client Reference: 1090A Submitted By: Anna Carter

			- Jul	omitted by.	7 tilla Gartor	
Sample Type: Soil						
	Sample Name:	1090A B21/2 A 0.0	1090A B23/1 B 0.1	1090A B27/1 A 0.1	1090A B28/1 A 0.0	1090A B28/2 A 0.0
	Lab Number:	3203831.1	3203831.2	3203831.3	3203831.4	3203831.5
Total Recoverable Lead	mg/kg dry wt	810	160	23	99	104
	Sample Name:	1090A B30/1 A 0.0	1090A B32/2 A 0.1	1090A B35/1 A 0.0	1090A B36/1 A 0.1	1090A B37/1 A 0.0
	Lab Number:	3203831.6	3203831.7	3203831.8	3203831.9	3203831.10
Total Recoverable Lead	mg/kg dry wt	69	58	470	33	116
	Sample Name:	1090A B38/1 A 0.0	1090A B42/1 A 0.1	1090A B42/2 A 0.1	1090A B44/1 A0.0	1090A B44/2 A 0.1
	Lab Number:	3203831.11	3203831.12	3203831.13	3203831.14	3203831.15
Total Recoverable Lead	mg/kg dry wt	280	39	71	49	27
	Sample Name:	1090A B45/1 A 0.0	1090A B45/2 A 0.1	1090A B46/1 A 0.0	1090A B46/2 A 0.1	1090A B47/1 A 0.0
	Lab Number:	3203831.16	3203831.17	3203831.18	3203831.19	3203831.20
Total Recoverable Lead	mg/kg dry wt	56	40	49	34	49
	Sample Name:	1090A B47/2 A 0.1	1090A B48/1 A 0.0	1090A B48/2 A 0.1	1090A B50/1 A 0.0	1090A B51/1 A 0.1
	Lab Number:	3203831.21	3203831.22	3203831.23	3203831.24	3203831.25
Total Recoverable Lead	mg/kg dry wt	70	65	53	38	22
	Sample Name:	1090A B52/1 A 0.0	1090A B52/2 A 0.1	1090A B53/1 A 0.0	1090A B55/1 A 0.0	1090A B55/2 A 0.1
	Lab Number:	3203831.26	3203831.27	3203831.28	3203831.29	3203831.30
Total Recoverable Lead	mg/kg dry wt	65	250	26	101	117
0	Sample Name:	1090A B56/1 A 0.1	1090A B56/2 A 0.0	1090A B59/1 A 0.0	1090A B65/1 A 0.1	1090A B65/2 A 0.0
	Lab Number:	3203831.31	3203831.32	3203831.33	3203831.34	3203831.35
Total Recoverable Lead	mg/kg dry wt	55	111	1,970	79	67
	Sample Name:	1090A B69/1 A 0.1	1090A B75/1 A 0.0	1090A S3/1 A 0.1	1090A S4/1 A 0.0	1090A S5/1 A 0.1
	Lab Number:	3203831.36	3203831.37	3203831.38	3203831.39	3203831.40
Total Recoverable Lead	mg/kg dry wt	75	260	62	28	34
	Sample Name:	1090A S8/1 A 0.1	1090A Nurses Home/1 A 0.0	1090A Pavilion/1 A 0.1	1090A Ward F/1 A 0.0	1090A Ward F/2 A 0.1
	Lab Number:	3203831.41	3203831.42	3203831.43	3203831.44	3203831.45
Total Recoverable Lead	mg/kg dry wt	34	36	22	47	64

Sample Type: Soil			
	Sample Name:	1090A Ward H/1 A 0.0	1090A Ward H/2 A 0.1
	Lab Number:	3203831.46	3203831.47
Total Recoverable Lead	mg/kg dry wt	51	37

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Environmental Solids Sample Drying*	Air dried at 35°C Used for sample preparation. May contain a residual moisture content of 2-5%.	-	1-47
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation May contain a residual moisture content of 2-5%.	-	1-47
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.	-	1-47
Total Recoverable Lead	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.4 mg/kg dry wt	1-47

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 17-Mar-2023 and 21-Mar-2023. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

.ne writter This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Kim Harrison MSc

Client Services Manager - Environmental

0508 HILL LAB (44 555 22) +64 7 858 2000 mail@hill-labs.co.nz www.hill-laboratories.com

No

Quality Assurance Report

Page 1 of 3

QCPv1

Hail Environmental

Contact: Dave Bull

C/- Hail Environmental

PO Box 13113 Tauranga Central Tauranga 3141

Lab No: **Date Received:** 3203831 16-Mar-2023

Date Reported: Quote No:

21-Mar-2023

Order No:

72619

Client Reference:

1090A

Submitted By: Anna Carter

В	lan	k	O	Cs
_				

Digest Blank 1 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8403.16

Results **Control Limits** Outside Limit (Yes/No) Total Recoverable Lead $< 0.4 \pm 0.26$ -0.40 - 0.40mg/kg dry wt

Digest Blank 2 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR 8403.51 Control Limits Outside Limit (Yes/No) Results Total Recoverable Lead $< 0.4 \pm 0.26$ -0.40 - 0.40mg/kg dry wt No

Digest Blank 1 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR) Results **Control Limits** Outside Limit (Yes/No) Total Recoverable Lead $< 0.4 \pm 0.27$ -0.40 - 0.40mg/kg dry wt Nο

Digest Blank 2 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8404.36 Results **Control Limits** Outside Limit (Yes/No) Total Recoverable Lead $< 0.4 \pm 0.26$ -0.40 - 0.40mg/kg dry wt

Digest Blank 1 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8405.16 Results **Control Limits** Outside Limit (Yes/No) Total Recoverable Lead < 0.4 ± 0.26 -0.40 - 0.40mg/kg dry wt No

Digest Blank 2 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8405.26 Results **Control Limits** Outside Limit (Yes/No) < 0.4 ± 0.26 -0.40 - 0.40Total Recoverable Lead mg/kg dry wt

50x Manual Dilution Digest Blank PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8405.64 Outside Limit (Yes/No) Results **Control Limits** Total Recoverable Lead mg/kg dry wt $< 0.4 \pm 0.26$ -0.40 - 0.40

Digest Blank 1 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8408.64 **Control Limits** Outside Limit (Yes/No) Results Total Recoverable Lead $< 0.4 \pm 0.26$ -0.40 - 0.40mg/kg dry wt

Digest Blank 1 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8409.16 Outside Limit (Yes/No) Results **Control Limits** Total Recoverable Lead $< 0.4 \pm 0.26$ -0.40 - 0.40mg/kg dry wt Nο

Digest Blank 2 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8409.58 Results **Control Limits** Outside Limit (Yes/No) Total Recoverable Lead $< 0.4 \pm 0.26$ -0.40 - 0.40mg/kg dry wt

50x Manual Dilution Digest Blank PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8409.78				
Results Control Limits Outside Limits				Outside Limit (Yes/No)
Total Recoverable Lead	mg/kg dry wt	< 0.4 ± 0.26	-0.40 - 0.40	No

Reference Material QCs					
QC A6 PrepWS esDig	- WS: High Volume	Environmental Soils by ICP-	-MS (HVesTR): 8403.17		
		Results	Control Limits	Outside Limit (Yes/No)	
Total Recoverable Lead	mg/kg dry wt	20.0 ± 3.0	13.2 – 30	No	
QC A6 PrepWS esDig	- WS: High Volume	Environmental Soils by ICP-	-MS (HVesTR): 8403.29		
		Results	Control Limits	Outside Limit (Yes/No)	
Total Recoverable Lead	mg/kg dry wt	21.7 ± 3.3	13.2 – 30	No	
QC A6 PrepWS esDig	- WS: High Volume	Environmental Soils by ICP-	-MS (HVesTR): 8403.67		
		Results	Control Limits	Outside Limit (Yes/No)	
Total Recoverable Lead	mg/kg dry wt	22.1 ± 3.4	13.2 – 30	No	
QC A6 PrepWS esDig	- WS: High Volume	Environmental Soils by ICP	-MS (HVesTR): 8404.17		
		Results	Control Limits	Outside Limit (Yes/No)	
Total Recoverable Lead	mg/kg dry wt	22.4 ± 3.4	13.2 – 30	No	
QC A6 PrepWS esDig	- WS: High Volume	Environmental Soils by ICP	-MS (HVesTR): 8404.26		
		Results	Control Limits	Outside Limit (Yes/No)	
Total Recoverable Lead	mg/kg dry wt	20.8 ± 3.2	13.2 – 30	No	
QC A6 PrepWS esDig	- WS: High Volume	Environmental Soils by ICP-	-MS (HVesTR): 8404.68		
	<u> </u>	Results	Control Limits	Outside Limit (Yes/No)	
Total Recoverable Lead	mg/kg dry wt	21.5 ± 3.3	13.2 – 30	No	
QC A6 PrepWS esDig	- WS: High Volume	Environmental Soils by ICP	-MS (HVesTR): 8405 17		
QO / ICT TOP WO CODING	vvo. riigir volumo	Results	Control Limits	Outside Limit (Yes/No)	
Total Recoverable Lead	mg/kg dry wt	20.1 ± 3.1	13.2 – 30	No	
OC A6 PrenWS esDig	- WS: High Volume	Environmental Soils by ICP-	MS (HVocTP): 8405.20		
QC AOT TepWo esblg	- wo. riigir volume	Results	Control Limits	Outside Limit (Yes/No)	
Total Recoverable Lead	mg/kg dry wt	20.6 ± 3.1	13.2 – 30	No No	
OC AS PropIMS as Dia	Wet High Volume	Environmental Soils by ICP	MC (H)/coTD): 9405 42		
QC A6 Prepws esbig	- ws: High volume	Results	Control Limits	Outside Limit (Yes/No)	
Total Recoverable Lead	mg/kg dry wt	19.2 ± 2.9	13.2 – 30	No	
00.40.0 140.0					
QC A6 PrepWS esDig	- WS: High Volume	Environmental Soils by ICP- Results	Control Limits	Outside Limit (Yes/No)	
Total Recoverable Lead	mg/kg dry wt	19.9 ± 3.0	13.2 – 30	No	
Total Necoverable Lead	mg/kg dry wt	19.9 ± 3.0	13.2 – 30	INO	
QC A6 PrepWS esDig	- WS: High Volume	Environmental Soils by ICP	,		
		Results	Control Limits	Outside Limit (Yes/No)	
Total Recoverable Lead	mg/kg dry wt	20.9 ± 3.2	13.2 – 30	No	
QC A6 PrepWS esDig	- WS: High Volume	Environmental Soils by ICP	,		
	~	Results	Control Limits	Outside Limit (Yes/No)	
Total Recoverable Lead	mg/kg dry wt	23.4 ± 3.6	13.2 – 30	No	
QC A6 PrepWS esDig	-WS: High Volume	Environmental Soils by ICP	-MS (HVesTR): 8409.33		
		Results	Control Limits	Outside Limit (Yes/No)	
Total Recoverable Lead	mg/kg dry wt	21.1 ± 3.2	13.2 – 30	No	
QC A6 PrepWS esDig	- WS: High Volume	Environmental Soils by ICP	-MS (HVesTR): 8409.66		
		Results	Control Limits	Outside Limit (Yes/No)	
Total Recoverable Lead	mg/kg dry wt	18.6 ± 2.8	13.2 – 30	No	
QC A6 PrepWS esDig	- WS: High Volume	Environmental Soils by ICP-	-MS (HVesTR): 8409.70		
		Results	Control Limits	Outside Limit (Yes/No)	
Total Recoverable Lead	mg/kg dry wt	22.6 ± 3.4	13.2 – 30	No	
				•	

QC A6 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8409.79				
		Results	Control Limits	Outside Limit (Yes/No)
Total Recoverable Lead	mg/kg dry wt	22.3 ± 3.4	13.2 – 30	No

T 0508 HILL LAB (44 555 22) +64 7 858 2000 E mail@hill-labs.co.nz W www.hill-laboratories.com

Certificate of Analysis

Page 1 of 3

Client: Contact: Hail Environmental

Dave Bull

C/- Hail Environmental PO Box 13113

Tauranga Central Tauranga 3141

Lab No: 3192159

Date Received: 07-Mar-2023 **Date Reported:** 14-Mar-2023

Quote No: 72619 Order No: 1090A **Client Reference:** 1090A Submitted By: Anna Carter

Sample Type: Soil						
	Sample Name:	COMP 01	COMP 02	COMP 03	COMP 04	COMP 05
		06-Mar-2023	06-Mar-2023	06-Mar-2023	06-Mar-2023	06-Mar-2023
	Lab Number:	3192159.1	3192159.2	3192159.3	3192159.4	3192159.5
Individual Tests						
Dry Matter	g/100g as rcvd	58	65	65	83	63
pH*	pH Units	5.4	5.4	5.8	6.0	5.9
Heavy Metals, Screen Level				0,	~'0	
Total Recoverable Arsenic	mg/kg dry wt	4	4	6	5	5
Total Recoverable Cadmium	mg/kg dry wt	0.46	0.29	0.27	0.60	0.32
Total Recoverable Chromium	mg/kg dry wt	6	6	9	13	8
Total Recoverable Copper	mg/kg dry wt	16	15	28	36	26
Total Recoverable Lead	mg/kg dry wt	18.7	18.1	26	41	71
Total Recoverable Nickel	mg/kg dry wt	2	3	5	7	4
Total Recoverable Zinc	mg/kg dry wt	63	64	95	135	120
Organochlorine Pesticides Scr	reening in Soil					
Aldrin	mg/kg dry wt	< 0.017	< 0.015	< 0.015	< 0.012	< 0.016
alpha-BHC	mg/kg dry wt	< 0.017	< 0.015	< 0.015	< 0.012	< 0.016
beta-BHC	mg/kg dry wt	< 0.017	< 0.015	< 0.015	< 0.012	< 0.016
delta-BHC	mg/kg dry wt	< 0.017	< 0.015	< 0.015	< 0.012	< 0.016
gamma-BHC (Lindane)	mg/kg dry wt	< 0.017	< 0.015	< 0.015	< 0.012	< 0.016
cis-Chlordane	mg/kg dry wt	< 0.017	< 0.015	< 0.015	< 0.012	< 0.016
trans-Chlordane	mg/kg dry wt	< 0.017	< 0.015	< 0.015	< 0.012	< 0.016
2,4'-DDD	mg/kg dry wt	< 0.017	< 0.015	< 0.015	< 0.012	< 0.016
4,4'-DDD	mg/kg dry wt	< 0.017	< 0.015	< 0.015	< 0.012	< 0.016
2,4'-DDE	mg/kg dry wt	< 0.017	< 0.015	< 0.015	< 0.012	< 0.016
4,4'-DDE	mg/kg dry wt	< 0.017	0.016	< 0.015	< 0.012	< 0.016
2,4'-DDT	mg/kg dry wt	< 0.017	< 0.015	< 0.015	< 0.012	< 0.016
4,4'-DDT	mg/kg dry wt	< 0.017	< 0.015	< 0.015	< 0.012	< 0.016
Total DDT Isomers	mg/kg dry wt	< 0.11	< 0.09	< 0.09	< 0.07	< 0.10
Dieldrin	mg/kg dry wt	< 0.017	< 0.015	< 0.015	< 0.012	< 0.016
Endosulfan I	mg/kg dry wt	< 0.017	< 0.015	< 0.015	< 0.012	< 0.016
Endosulfan II	mg/kg dry wt	< 0.017	< 0.015	< 0.015	< 0.012	< 0.016
Endosulfan sulphate	mg/kg dry wt	< 0.017	< 0.015	< 0.015	< 0.012	< 0.016
Endrin	mg/kg dry wt	< 0.017	< 0.015	< 0.015	< 0.012	< 0.016
Endrin aldehyde	mg/kg dry wt	< 0.017	< 0.015	< 0.015	< 0.012	< 0.016
Endrin ketone	mg/kg dry wt	< 0.017	< 0.015	< 0.015	< 0.012	< 0.016
Heptachlor	mg/kg dry wt	< 0.017	< 0.015	< 0.015	< 0.012	< 0.016
Heptachlor epoxide	mg/kg dry wt	< 0.017	< 0.015	< 0.015	< 0.012	< 0.016
Hexachlorobenzene	mg/kg dry wt	< 0.017	< 0.015	< 0.015	< 0.012	< 0.016
Methoxychlor	mg/kg dry wt	< 0.017	< 0.015	< 0.015	< 0.012	< 0.016

Sample Type: Soil						
	Sample Name:	COMP 06 06-Mar-2023	COMP 07 06-Mar-2023	COMP 08 06-Mar-2023	COMP 09 06-Mar-2023	COMP 10 06-Mar-2023
	Lab Number:	3192159.6	3192159.7	3192159.8	3192159.9	3192159.10
Individual Tests	Lab Number.	3132133.0	3132133.1	3132133.0	3132133.3	3132133.10
Dry Matter	g/100g as rcvd	58	64	60	68	58
pH*	pH Units	5.9	5.9	5.7	6.0	5.9
<u>. </u>	prionis	5.9	3.9	5.7	0.0	3.9
Heavy Metals, Screen Level	, , ,	2				T
Total Recoverable Arsenic	mg/kg dry wt	6	5	6	6	-
Total Recoverable Cadmium	mg/kg dry wt	0.40	0.28	0.52	0.57	-
Total Recoverable Chromium	3 3 7	11	8	11	10	-
Total Recoverable Copper	mg/kg dry wt	26	23	30	38	-
Total Recoverable Lead	mg/kg dry wt	17.0	14.9	16.7	18.1	-
Total Recoverable Nickel	mg/kg dry wt	8	4	5	5	-
Total Recoverable Zinc	mg/kg dry wt	104	79	96	104	-
Heavy Metals with Mercury, S	Screen Level					
Total Recoverable Arsenic	mg/kg dry wt	-	-	-	-	5
Total Recoverable Cadmium	mg/kg dry wt	-	-	-	N -	0.31
Total Recoverable Chromium	mg/kg dry wt	-	-	-))-	7
Total Recoverable Copper	mg/kg dry wt	-	-	-	\	30
Total Recoverable Lead	mg/kg dry wt	-	-	-()		65
Total Recoverable Mercury	mg/kg dry wt	-	-		~0	0.11
Total Recoverable Nickel	mg/kg dry wt	-	-		1 (1)	5
Total Recoverable Zinc	mg/kg dry wt	-	-	9 - /	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	142
Organochlorine Pesticides S	creening in Soil)		
Aldrin	mg/kg dry wt	< 0.017	< 0.016	< 0.017	< 0.015	< 0.017
alpha-BHC	mg/kg dry wt	< 0.017	< 0.016	< 0.017	< 0.015	< 0.017
beta-BHC	mg/kg dry wt	< 0.017	< 0.016	< 0.017	< 0.015	< 0.017
delta-BHC	mg/kg dry wt	< 0.017	< 0.016	< 0.017	< 0.015	< 0.017
gamma-BHC (Lindane)	mg/kg dry wt	< 0.017	< 0.016	< 0.017	< 0.015	< 0.017
cis-Chlordane	mg/kg dry wt	< 0.017	< 0.016	< 0.017	< 0.015	< 0.017
trans-Chlordane	mg/kg dry wt	< 0.017	< 0.016	< 0.017	< 0.015	< 0.017
2,4'-DDD	mg/kg dry wt	< 0.017	< 0.016	< 0.017	< 0.015	< 0.017
4,4'-DDD	mg/kg dry wt	< 0.017	< 0.016	< 0.017	< 0.015	< 0.017
2,4'-DDE	mg/kg dry wt	< 0.017	< 0.016	< 0.017	< 0.015	< 0.017
4,4'-DDE	mg/kg dry wt	< 0.017	< 0.016	< 0.017	< 0.015	< 0.017
2,4'-DDT	mg/kg dry wt	< 0.017	< 0.016	< 0.017	< 0.015	< 0.017
4,4'-DDT	mg/kg dry wt	< 0.017	< 0.016	< 0.017	< 0.015	< 0.017
Total DDT Isomers	mg/kg dry wt	< 0.10	< 0.10	< 0.10	< 0.09	< 0.11
Dieldrin	mg/kg dry wt	< 0.017	< 0.016	< 0.017	< 0.015	< 0.017
Endosulfan I	mg/kg dry wt	< 0.017	< 0.016	< 0.017	< 0.015	< 0.017
Endosulfan II	mg/kg dry wt	< 0.017	< 0.016	< 0.017	< 0.015	< 0.017
Endosulfan sulphate	mg/kg dry wt	< 0.017	< 0.016	< 0.017	< 0.015	< 0.017
Endrin	mg/kg dry wt	< 0.017	< 0.016	< 0.017	< 0.015	< 0.017
Endrin aldehyde	mg/kg dry wt	< 0.017	< 0.016	< 0.017	< 0.015	< 0.017
Endrin ketone	mg/kg dry wt	< 0.017	< 0.016	< 0.017	< 0.015	< 0.017
Heptachlor	mg/kg dry wt	< 0.017	< 0.016	< 0.017	< 0.015	< 0.017
Heptachlor epoxide	mg/kg dry wt	< 0.017	< 0.016	< 0.017	< 0.015	< 0.017
Hexachlorobenzene	mg/kg dry wt	< 0.017	< 0.016	< 0.017	< 0.015	< 0.017
Methoxychlor	mg/kg dry wt	< 0.017	< 0.016	< 0.017	< 0.015	< 0.017
- INCLIDAÇONON	mg/kg dry Wt	- 0.017	- 0.010	7 0.017	- 0.013	7 0.017

Summary of Methods

Sample Type: Soil

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil				
Test	Method Description	Default Detection Limit	Sample No	
Environmental Solids Sample Drying*	Air dried at 35°C Used for sample preparation. May contain a residual moisture content of 2-5%.	-	1-10	

Sample Type: Soil						
Test	Method Description	Default Detection Limit	Sample No			
Soil Prep Dry & Sieve for Agriculture	Air dried at 35°C and sieved, <2mm fraction.	-	1-10			
Heavy Metals, Screen Level	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP-MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 4 mg/kg dry wt	1-9			
Heavy Metals with Mercury, Screen Level	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP-MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 4 mg/kg dry wt	10			
Organochlorine Pesticides Screening in Soil	Sonication extraction, GC-ECD analysis. Tested on as received sample. In-house based on US EPA 8081.	0.010 - 0.06 mg/kg dry wt	1-10			
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. (Free water removed before analysis, non-soil objects such as sticks, leaves, grass and stones also removed). US EPA 3550.	0.10 g/100g as rcvd	1-10			
pH*	1:2 (v/v) soil : water slurry followed by potentiometric determination of pH. In-house.	0.1 pH Units	1-10			

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 08-Mar-2023 and 14-Mar-2023. For completion dates of individual analyses please contact the laboratory.

al

the sample.

a. the sample.

a. en consent of the signal. Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech)

Client Services Manager - Environmental

T 0508 HILL LAB (44 555 22) +64 7 858 2000 E mail@hill-labs.co.nz www.hill-laboratories.com

Quality Assurance Report

Page 1 of 8

QCPv1

Client:

Hail Environmental

Contact:

Dave Bull

C/- Hail Environmental PO Box 13113 Tauranga Central Tauranga 3141

Lab No: **Date Received: Date Reported:**

07-Mar-2023 14-Mar-2023

Quote No: Order No: **Client Reference:**

Submitted By:

72619 1090A 1090A

3192159

Anna Carter

Samp	le Spe	cific	QCs
^			

Organochlorine Pesticides Scre	ening in Soil

3192159.1 2,4,5,6-tetrachloro-m-xylene % 115

Control Limits Outside Limit (Yes/No) 40 - 120No

Organochlorine Pesticides Screening in Soil

	3192159.2	Control Limits	Outside Limit (Yes/No)
2,4,5,6-tetrachloro-m-xylene %	118	40 – 120	No

Organochlorine Pesticides Screening in Soil

Outside Limit (Yes/No) 3192159.3 **Control Limits** 116 40 - 120No

2,4,5,6-tetrachloro-m-xylene %

Organochionne Pesticides Screi	ening in Soil			
		3192159.4	Control Limits	Outside Limit (Yes/No)
2.4.5.6-tetrachloro-m-xylene	0/2	116	10 – 120	No

Organochlorine Pesticides Screening in Soil

				3192159.5		Control Limits	Outside Limit (Yes
2,4,5,6-tetrachloro-m-xylene	%	1	V	113	$\overline{\mathbf{Z}}$	40 – 120	No

Organochlorine Pesticides Screening in Soi

			31921	59.6	Control Limits	Outside Limit (Yes/No)
2 4 5 6-tetrachloro-m-xylene		%	12	0	40 – 120	No

Organochlorine Pesticides Screening in So

	1		3192159.7	Control Limits	Outside Limit (Yes/No)
2,4,5,6-tetrachloro-m-xylen	е	%	117	40 – 120	No

Organochlorine Pesticides Screening in Soil

			3192159.8	Control Limits	Outside Limit (Yes/No)
2,4,5,6-tetrachloro-m-xylene	1	%	96	40 – 120	No

Organochlorine Pesticides Screening in Soil

		3192159.9	Control Limits	Outside Limit (Yes/No)
2,4,5,6-tetrachloro-m-xylen	ne %	112	40 – 120	No

Organochlorine Pesticides Screening in Soil

	3192159.10	Control Limits	Outside Limit (Yes/No)
2,4,5,6-tetrachloro-m-xylene	6 116	40 – 120	No

Blank QCs

Digest Blank 1 PrepWS esDig	- WS: High Volume Environmental Soils by	/ ICP-MS (HVesTR): 8362.16

Digest blank 1 Prepwo esdig - wo. High volume Environmental Solls by ICP-ivio (Hvestk). 6362.16							
		Results	Control Limits	Outside Limit (Yes/No)			
Total Recoverable Arsenic	mg/kg dry wt	< 2 ± 1.3	-2.0 – 2.0	No			
Total Recoverable Cadmium	mg/kg dry wt	< 0.10 ± 0.066	-0.100 – 0.100	No			
Total Recoverable Chromium	mg/kg dry wt	< 2 ± 1.3	-2.0 – 2.0	No			

Digest Blank 1 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8362.16							
		Results	Control Limits	Outside Limit (Yes/No)			
Total Recoverable Copper	mg/kg dry wt	< 2 ± 1.4	-2.0 – 2.0	No			
Total Recoverable Lead	mg/kg dry wt	< 0.4 ± 0.26	-0.40 - 0.40	No			
Total Recoverable Nickel	mg/kg dry wt	< 2 ± 1.4	-2.0 – 2.0	No			
Total Recoverable Zinc	mg/kg dry wt	< 4 ± 2.7	-4.0 – 4.0	No			

Digest Blank 2 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8362.59							
		Results	Control Limits	Outside Limit (Yes/No)			
Total Recoverable Arsenic	mg/kg dry wt	< 2 ± 1.3	-2.0 – 2.0	No			
Total Recoverable Cadmium	mg/kg dry wt	< 0.10 ± 0.066	-0.100 – 0.100	No			
Total Recoverable Chromium	mg/kg dry wt	< 2 ± 1.3	-2.0 – 2.0	No			
Total Recoverable Copper	mg/kg dry wt	< 2 ± 1.4	-2.0 – 2.0	No			
Total Recoverable Lead	mg/kg dry wt	< 0.4 ± 0.27	-0.40 - 0.40	No			
Total Recoverable Nickel	mg/kg dry wt	< 2 ± 1.4	-2.0 – 2.0	No			
Total Recoverable Zinc	mg/kg dry wt	< 4 ± 2.7	-4.0 – 4.0	No			

50x Manual Dilution Digest Blank PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8362.78							
		Results	Control Limits	Outside Limit (Yes/No)			
Total Recoverable Arsenic	mg/kg dry wt	< 2 ± 1.3	-2.0 - 2.0	No			
Total Recoverable Cadmium	mg/kg dry wt	< 0.10 ± 0.066	-0.100 - 0.100	No			
Total Recoverable Chromium	mg/kg dry wt	< 2 ± 1.3	-2.0 – 2.0	No			
Total Recoverable Copper	mg/kg dry wt	< 2 ± 1.4	-2.0 – 2.0	No			
Total Recoverable Lead	mg/kg dry wt	< 0.4 ± 0.26	-0.40 - 0.40	No			
Total Recoverable Nickel	mg/kg dry wt	< 2 ± 1.4	-2.0 – 2.0	No			
Total Recoverable Zinc	mg/kg dry wt	< 4 ± 2.7	-4.0 – 4.0	No			

Blank 1 PrepWS xsSHOC	Blank 1 PrepWS xsSHOC - Organochlorine Pesticides Soil Analysis: 7152.1							
		Results	Control Limits	Outside Limit (Yes/No)				
Aldrin	mg/kg dry wt	< 0.010 ± 0.0030	0.0 – 0.0100	No				
alpha-BHC	mg/kg dry wt	< 0.010 ± 0.0030	0.0 – 0.0100	No				
beta-BHC	mg/kg dry wt	< 0.010 ± 0.0028	0.0 – 0.0100	No				
delta-BHC	mg/kg dry wt	< 0.010 ± 0.0029	0.0 – 0.0100	No				
gamma-BHC (Lindane)	mg/kg dry wt	< 0.010 ± 0.0031	0.0 – 0.0100	No				
cis-Chlordane	mg/kg dry wt	< 0.010 ± 0.0030	0.0 – 0.0100	No				
trans-Chlordane	mg/kg dry wt	< 0.010 ± 0.0030	0.0 – 0.0100	No				
2,4'-DDD	mg/kg dry wt	< 0.010 ± 0.0029	0.0 – 0.0100	No				
4,4'-DDD	mg/kg dry wt	< 0.010 ± 0.0024	0.0 – 0.0100	No				
2,4'-DDE	mg/kg dry wt	< 0.010 ± 0.0030	0.0 – 0.0100	No				
4,4'-DDE	mg/kg dry wt	< 0.010 ± 0.0023	0.0 – 0.0100	No				
2,4'-DDT	mg/kg dry wt	< 0.010 ± 0.0021	0.0 – 0.0100	No				
4,4'-DDT	mg/kg dry wt	< 0.010 ± 0.0017	0.0 – 0.0100	No				
Dieldrin	mg/kg dry wt	< 0.010 ± 0.0026	0.0 – 0.0100	No				
Endosulfan I	mg/kg dry wt	< 0.010 ± 0.0029	0.0 – 0.0100	No				
Endosulfan II	mg/kg dry wt	< 0.010 ± 0.0026	0.0 – 0.0100	No				
Endosulfan sulphate	mg/kg dry wt	< 0.010 ± 0.0013	0.0 – 0.0100	No				
Endrin	mg/kg dry wt	< 0.010 ± 0.00048	0.0 – 0.0100	No				
Endrin aldehyde	mg/kg dry wt	< 0.010 ± 0.0019	0.0 – 0.0100	No				
Endrin ketone	mg/kg dry wt	< 0.010 ± 0.0024	0.0 – 0.0100	No				
Heptachlor	mg/kg dry wt	< 0.010 ± 0.0029	0.0 – 0.0100	No				

Blank 1 PrepWS xsSHOC - Organochlorine Pesticides Soil Analysis: 7152.1				
		Results	Control Limits	Outside Limit (Yes/No)
Heptachlor epoxide	mg/kg dry wt	< 0.010 ± 0.0031	0.0 – 0.0100	No
Hexachlorobenzene	mg/kg dry wt	< 0.010 ± 0.0029	0.0 – 0.0100	No
Methoxychlor	mg/kg dry wt	< 0.010 ± 0.00048	0.0 - 0.0100	No

Digest Blank 1 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8364.16				
		Results	Control Limits	Outside Limit (Yes/No)
Total Recoverable Arsenic	mg/kg dry wt	< 2 ± 1.3	-2.0 – 2.0	No
Total Recoverable Cadmium	mg/kg dry wt	< 0.10 ± 0.066	-0.100 – 0.100	No
Total Recoverable Chromium	mg/kg dry wt	< 2 ± 1.3	-2.0 – 2.0	No
Total Recoverable Copper	mg/kg dry wt	< 2 ± 1.4	-2.0 – 2.0	No
Total Recoverable Lead	mg/kg dry wt	< 0.4 ± 0.26	-0.40 - 0.40	No
Total Recoverable Mercury	mg/kg dry wt	< 0.10 ± 0.065	-0.100 – 0.100	No
Total Recoverable Nickel	mg/kg dry wt	< 2 ± 1.4	-2.0 – 2.0	No
Total Recoverable Zinc	mg/kg dry wt	< 4 ± 2.7	-4.0 – 4.0	No

Digest Blank 2 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8364.28				
		Results	Control Limits	Outside Limit (Yes/No)
Total Recoverable Arsenic	mg/kg dry wt	< 2 ± 1.3	-2.0 - 2.0	No
Total Recoverable Cadmium	mg/kg dry wt	< 0.10 ± 0.066	-0.100 - 0.100	No
Total Recoverable Chromium	mg/kg dry wt	< 2 ± 1.3	-2.0 – 2.0	No
Total Recoverable Copper	mg/kg dry wt	< 2 ± 1.4	-2.0 – 2.0	No
Total Recoverable Lead	mg/kg dry wt	< 0.4 ± 0.26	-0.40 - 0.40	No
Total Recoverable Mercury	mg/kg dry wt	< 0.10 ± 0.065	-0.100 - 0.100	No
Total Recoverable Nickel	mg/kg dry wt	< 2 ± 1.4	-2.0 – 2.0	No
Total Recoverable Zinc	mg/kg dry wt	<4 ± 2.7	-4.0 – 4.0	No

50x Manual Dilution Digest Blank PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8364.81				
		Results	Control Limits	Outside Limit (Yes/No)
Total Recoverable Arsenic	mg/kg dry wt	< 2 ± 1.3	-2.0 – 2.0	No
Total Recoverable Cadmium	mg/kg dry wt	< 0.10 ± 0.066	-0.100 – 0.100	No
Total Recoverable Chromium	mg/kg dry wt	< 2 ± 1.3	-2.0 – 2.0	No
Total Recoverable Copper	mg/kg dry wt	< 2 ± 1.4	-2.0 – 2.0	No
Total Recoverable Lead	mg/kg dry wt	< 0.4 ± 0.26	-0.40 - 0.40	No
Total Recoverable Mercury	mg/kg dry wt	< 0.10 ± 0.065	-0.100 – 0.100	No
Total Recoverable Nickel	mg/kg dry wt	< 2 ± 1.4	-2.0 – 2.0	No
Total Recoverable Zinc	mg/kg dry wt	< 4 ± 2.7	-4.0 – 4.0	No

Blank 1 PrepWS xsSHOC - Organochlorine Pesticides Soil Analysis: 7153.1				
. '0'		Results	Control Limits	Outside Limit (Yes/No)
Aldrin	mg/kg dry wt	< 0.010 ± 0.0030	0.0 – 0.0100	No
alpha-BHC	mg/kg dry wt	< 0.010 ± 0.0030	0.0 - 0.0100	No
beta-BHC	mg/kg dry wt	< 0.010 ± 0.0028	0.0 - 0.0100	No
delta-BHC	mg/kg dry wt	< 0.010 ± 0.0029	0.0 - 0.0100	No
gamma-BHC (Lindane)	mg/kg dry wt	< 0.010 ± 0.0031	0.0 - 0.0100	No
cis-Chlordane	mg/kg dry wt	< 0.010 ± 0.0030	0.0 - 0.0100	No
trans-Chlordane	mg/kg dry wt	< 0.010 ± 0.0030	0.0 - 0.0100	No
2,4'-DDD	mg/kg dry wt	< 0.010 ± 0.0029	0.0 - 0.0100	No
4,4'-DDD	mg/kg dry wt	< 0.010 ± 0.0024	0.0 - 0.0100	No
2,4'-DDE	mg/kg dry wt	< 0.010 ± 0.0030	0.0 - 0.0100	No

Blank 1 PrepWS xsSHOC - Organochlorine Pesticides Soil Analysis: 7153.1				
		Results	Control Limits	Outside Limit (Yes/No)
4,4'-DDE	mg/kg dry wt	< 0.010 ± 0.0023	0.0 - 0.0100	No
2,4'-DDT	mg/kg dry wt	< 0.010 ± 0.0021	0.0 – 0.0100	No
4,4'-DDT	mg/kg dry wt	< 0.010 ± 0.0017	0.0 – 0.0100	No
Dieldrin	mg/kg dry wt	< 0.010 ± 0.0026	0.0 – 0.0100	No
Endosulfan I	mg/kg dry wt	< 0.010 ± 0.0029	0.0 – 0.0100	No
Endosulfan II	mg/kg dry wt	< 0.010 ± 0.0026	0.0 – 0.0100	No
Endosulfan sulphate	mg/kg dry wt	< 0.010 ± 0.0013	0.0 – 0.0100	No
Endrin	mg/kg dry wt	< 0.010 ± 0.00048	0.0 – 0.0100	No
Endrin aldehyde	mg/kg dry wt	< 0.010 ± 0.0019	0.0 – 0.0100	No
Endrin ketone	mg/kg dry wt	< 0.010 ± 0.0024	0.0 - 0.0100	No
Heptachlor	mg/kg dry wt	< 0.010 ± 0.0029	0.0 - 0.0100	No
Heptachlor epoxide	mg/kg dry wt	< 0.010 ± 0.0031	0.0 – 0.0100	No
Hexachlorobenzene	mg/kg dry wt	< 0.010 ± 0.0029	0.0 - 0.0100	No
Methoxychlor	mg/kg dry wt	< 0.010 ± 0.00048	0.0 - 0.0100	No

Digest Blank 1 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8374.62				
		Results	Control Limits	Outside Limit (Yes/No)
Total Recoverable Arsenic	mg/kg dry wt	< 2 ± 1.3	-2 .0 – 2.0	No
Total Recoverable Cadmium	mg/kg dry wt	< 0.10 ± 0.066	-0.100 – 0.100	No
Total Recoverable Chromium	mg/kg dry wt	< 2 ± 1.3	-2.0 – 2.0	No
Total Recoverable Copper	mg/kg dry wt	< 2 ± 1.4	-2.0 – 2.0	No
Total Recoverable Lead	mg/kg dry wt	< 0.4 ± 0.26	-0.40 – 0.40	No
Total Recoverable Nickel	mg/kg dry wt	< 2 ± 1.4	-2.0 – 2.0	No
Total Recoverable Zinc	mg/kg dry wt	<4 ± 2.7	-4.0 – 4.0	No

QC Spike QCs				
LCS OC/PAH PrepWS xsSHOC -	- Organochlo	rine Pesticides Soil Analy	/sis: 7152.2	
	X	Results	Control Limits	Outside Limit (Yes/No)
Aldrin	%	100 ± 31	86 – 115	No
alpha-BHC	%	96 ± 29	82 – 111	No
beta-BHC	%	93 ± 36	72 – 109	No
delta-BHC	%	92 ± 32	81 – 108	No
gamma-BHC (Lindane)	%	92 ± 26	81 – 110	No
cis-Chlordane	%	86 ± 28	84 – 114	No
trans-Chlordane	%	96 ± 29	80 – 115	No
2,4'-DDD	%	96 ± 35	85 – 116	No
4,4'-DDD	%	101 ± 49	88 – 122	No
2,4'-DDE	%	94 ± 31	86 – 118	No
4,4'-DDE	%	94 ± 48	62 – 120	No
2,4'-DDT	%	91 ± 48	87 – 125	No
4,4'-DDT	%	83 ± 49	71 – 124	No
Dieldrin	%	103 ± 46	83 – 114	No
Endosulfan I	%	94 ± 34	85 – 116	No
Endosulfan II	%	93 ± 41	83 – 126	No
Endosulfan sulphate	%	96 ± 60	83 – 120	No
Endrin	%	101 ± 67	81 – 118	No
Endrin aldehyde	%	105 ± 59	81 – 115	No

LCS OC/PAH PrepWS xsSHOC - Organochlorine Pesticides Soil Analysis: 7152.2				
		Results	Control Limits	Outside Limit (Yes/No)
Endrin ketone	%	91 ± 44	79 – 117	No
Heptachlor	%	98 ± 34	82 – 114	No
Heptachlor epoxide	%	99 ± 28	86 – 115	No
Hexachlorobenzene	%	93 ± 32	86 – 118	No
Methoxychlor	%	96 ± 64	76 – 128	No

LCS OC/PAH PrepWS xsSHOC - Organ	ochlorine Pesticides Soil Ana	lysis: 7153.2	
	Results	Control Limits	Outside Limit (Yes/No)
Aldrin	% 105 ± 32	86 – 115	No
alpha-BHC	% 102 ± 31	82 – 111	No
beta-BHC	% 97 ± 37	72 – 109	No
delta-BHC	% 105 ± 36	81 – 108	No
gamma-BHC (Lindane)	% 99 ± 28	81 – 110	No
cis-Chlordane	% 98 ± 32	84 – 114	No
trans-Chlordane	% 108 ± 33	80 – 115	No
2,4'-DDD	% 96 ± 35	85 – 116	No
4,4'-DDD	% 99 ± 48	88 – 122	No
2,4'-DDE	% 99 ± 32	86 – 118	No
4,4'-DDE	% 100 ± 51	62 – 120	No
2,4'-DDT	% 98 ± 51	87 – 125	No
4,4'-DDT	% 97 ± 57	71 – 124	No
Dieldrin	% 110 ± 49	83 – 114	No
Endosulfan I	% 105 ± 38	85 – 116	No
Endosulfan II	% 95 ± 42	83 – 126	No
Endosulfan sulphate	% 101 ± 63	83 – 120	No
Endrin	% 105 ± 70	81 – 118	No
Endrin aldehyde	% 104 ± 59	81 – 115	No
Endrin ketone	% 97 ± 47	79 – 117	No
Heptachlor	% 110 ± 38	82 – 114	No
Heptachlor epoxide	% 106 ± 30	86 – 115	No
Hexachlorobenzene	% 100 ± 35	86 – 118	No
Methoxychlor	% 103 ± 68	76 – 128	No

Sample Spike QCs				
Spike OC/PAH PrepWS xsSHOC - Organochlorine Pesticides Soil Analysis: 7152.21				
	Results	Control Limits	Outside Limit (Yes/No)	
Aldrin %	99 ± 30	85 – 118	No	
alpha-BHC %	95 ± 29	83 – 115	No	
beta-BHC %	94 ± 36	73 – 113	No	
delta-BHC %	91 ± 31	75 – 116	No	
gamma-BHC (Lindane) %	91 ± 26	80 – 113	No	
cis-Chlordane %	88 ± 29	82 – 117	No	
trans-Chlordane %	98 ± 30	80 – 120	No	
2,4'-DDD %	96 ± 35	84 – 119	No	
4,4'-DDD %	102 ± 49	87 – 125	No	
2,4'-DDE %	93 ± 30	84 – 118	No	
4,4'-DDE %	97 ± 49	68 – 123	No	

Spike OC/PAH PrepWS xsSHOC - Organochlorine Pesticides Soil Analysis: 7152.21				
		Results	Control Limits	Outside Limit (Yes/No)
2,4'-DDT	%	87 ± 46	85 – 126	No
4,4'-DDT	%	81 ± 47	72 – 123	No
Dieldrin	%	102 ± 45	82 – 116	No
Endosulfan I	%	98 ± 36	84 – 118	No
Endosulfan II	%	92 ± 41	77 – 118	No
Endosulfan sulphate	%	97 ± 61	79 – 125	No
Endrin	%	101 ± 67	80 – 121	No
Endrin aldehyde	%	104 ± 59	79 – 117	No
Endrin ketone	%	89 ± 43	76 – 119	No
Heptachlor	%	96 ± 33	82 – 119	No
Heptachlor epoxide	%	98 ± 28	83 – 116	No
Hexachlorobenzene	%	93 ± 32	84 – 121	No
Methoxychlor	%	96 ± 64	77 – 130	No

Spike OC/PAH PrepWS xsSHOC - Organ	ochlorine Pesticides Soil Ana	llysis: 7153.27	\' O'
	Results	Control Limits	Outside Limit (Yes/No)
Aldrin %	101 ± 31	85 – 118	No
alpha-BHC %	100 ± 31	83 – 115	No
beta-BHC %	97 ± 37	73 – 113	No
delta-BHC %	102 ± 35	75 – 116	No
gamma-BHC (Lindane) %	95 ± 27	80 – 113	No
cis-Chlordane %	95 ± 31	82 – 117	No
trans-Chlordane %	105 ± 32	80 – 120	No
2,4'-DDD %	110 ± 40	84 – 119	No
4,4'-DDD %	116 ± 56	87 – 125	No
2,4'-DDE	98 ± 32	84 – 118	No
4,4'-DDE %	100 ± 51	68 – 123	No
2,4'-DDT	60 ± 32	85 – 126	Yes #1
4,4'-DDT %	43 ± 25	72 – 123	Yes #1
Dieldrin %	107 ± 48	82 – 116	No
Endosulfan I	102 ± 37	84 – 118	No
Endosulfan II	93 ± 41	77 – 118	No
Endosulfan sulphate %	97 ± 61	79 – 125	No
Endrin %	103 ± 68	80 – 121	No
Endrin aldehyde %	105 ± 59	79 – 117	No
Endrin ketone %	89 ± 43	76 – 119	No
Heptachlor %	101 ± 35	82 – 119	No
Heptachlor epoxide %	102 ± 29	83 – 116	No
Hexachlorobenzene %	98 ± 34	84 – 121	No
Methoxychlor %	56 ± 37	77 – 130	Yes #1

Reference Material QCs					
QC A6 PrepWS esDig - WS	QC A6 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8362.17				
		Results	Control Limits	Outside Limit (Yes/No)	
Total Recoverable Arsenic	mg/kg dry wt	5.8 ± 1.6	4.2 – 6.1	No	
Total Recoverable Cadmium	mg/kg dry wt	0.298 ± 0.078	0.25 - 0.37	No	
Total Recoverable Chromium	mg/kg dry wt	9.0 ± 2.0	7.0 – 10.8	No	

QC A6 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8362.17				
		Results	Control Limits	Outside Limit (Yes/No)
Total Recoverable Copper	mg/kg dry wt	12.3 ± 2.2	10.5 – 14.5	No
Total Recoverable Lead	mg/kg dry wt	23.4 ± 3.6	13.2 – 30	No
Total Recoverable Nickel	mg/kg dry wt	3.8 ± 1.4	2.8 – 5.1	No
Total Recoverable Zinc	mg/kg dry wt	61.3 ± 5.1	48 – 72	No

QC A6 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8362.28				
		Results	Control Limits	Outside Limit (Yes/No)
Total Recoverable Arsenic	mg/kg dry wt	5.7 ± 1.6	4.2 – 6.1	No
Total Recoverable Cadmium	mg/kg dry wt	0.324 ± 0.080	0.25 - 0.37	No
Total Recoverable Chromium	mg/kg dry wt	9.2 ± 2.0	7.0 – 10.8	No
Total Recoverable Copper	mg/kg dry wt	13.6 ± 2.3	10.5 – 14.5	No
Total Recoverable Lead	mg/kg dry wt	22.9 ± 3.5	13.2 – 30	No
Total Recoverable Nickel	mg/kg dry wt	4.1 ± 1.5	2.8 – 5.1	No
Total Recoverable Zinc	mg/kg dry wt	63.7 ± 5.3	48 – 72	No

QC A6 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8362.69				
		Results	Control Limits	Outside Limit (Yes/No)
Total Recoverable Arsenic	mg/kg dry wt	5.3 ± 1.6	4.2 – 6.1	No
Total Recoverable Cadmium	mg/kg dry wt	0.302 ± 0.078	0.25 - 0.37	No
Total Recoverable Chromium	mg/kg dry wt	9.3 ± 2.0	7.0 – 10.8	No
Total Recoverable Copper	mg/kg dry wt	12.8 ± 2.2	10.5 – 14.5	No
Total Recoverable Lead	mg/kg dry wt	21.5 ± 3.3	13.2 – 30	No
Total Recoverable Nickel	mg/kg dry wt	3.8 ± 1.4	2.8 – 5.1	No
Total Recoverable Zinc	mg/kg dry wt	60.3 ± 5.0	48 – 72	No

QC A6 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8362.79						
		Results	Control Limits	Outside Limit (Yes/No)		
Total Recoverable Arsenic	mg/kg dry wt	5.6 ± 1.6	4.2 – 6.1	No		
Total Recoverable Cadmium	mg/kg dry wt	0.293 ± 0.077	0.25 – 0.37	No		
Total Recoverable Chromium	mg/kg dry wt	9.1 ± 2.0	7.0 – 10.8	No		
Total Recoverable Copper	mg/kg dry wt	12.2 ± 2.2	10.5 – 14.5	No		
Total Recoverable Lead	mg/kg dry wt	24.0 ± 3.6	13.2 – 30	No		
Total Recoverable Nickel	mg/kg dry wt	3.9 ± 1.4	2.8 – 5.1	No		
Total Recoverable Zinc	mg/kg dry wt	58.2 ± 4.9	48 – 72	No		

QC A6 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8364.17						
	5	Results	Control Limits	Outside Limit (Yes/No)		
Total Recoverable Arsenic	mg/kg dry wt	5.8 ± 1.6	4.2 – 6.1	No		
Total Recoverable Cadmium	mg/kg dry wt	0.319 ± 0.079	0.25 – 0.37	No		
Total Recoverable Chromium	mg/kg dry wt	9.1 ± 2.0	7.0 – 10.8	No		
Total Recoverable Copper	mg/kg dry wt	12.9 ± 2.2	10.5 – 14.5	No		
Total Recoverable Lead	mg/kg dry wt	23.3 ± 3.5	13.2 – 30	No		
Total Recoverable Mercury	mg/kg dry wt	0.108 ± 0.067	0.060 - 0.160	No		
Total Recoverable Nickel	mg/kg dry wt	4.0 ± 1.5	2.8 – 5.1	No		
Total Recoverable Zinc	mg/kg dry wt	63.8 ± 5.3	48 – 72	No		

QC A6 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8364.33						
		Results	Control Limits	Outside Limit (Yes/No)		
Total Recoverable Arsenic	mg/kg dry wt	5.2 ± 1.6	4.2 – 6.1	No		
Total Recoverable Cadmium	mg/kg dry wt	0.319 ± 0.079	0.25 - 0.37	No		

QC A6 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8364.33						
		Results	Control Limits	Outside Limit (Yes/No)		
Total Recoverable Chromium	mg/kg dry wt	7.6 ± 1.8	7.0 – 10.8	No		
Total Recoverable Copper	mg/kg dry wt	11.6 ± 2.1	10.5 – 14.5	No		
Total Recoverable Lead	mg/kg dry wt	21.7 ± 3.3	13.2 – 30	No		
Total Recoverable Mercury	mg/kg dry wt	0.120 ± 0.068	0.060 - 0.160	No		
Total Recoverable Nickel	mg/kg dry wt	3.3 ± 1.4	2.8 – 5.1	No		
Total Recoverable Zinc	mg/kg dry wt	56.5 ± 4.8	48 – 72	No		

QC A6 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8364.71							
		Results	Control Limits	Outside Limit (Yes/No)			
Total Recoverable Arsenic	mg/kg dry wt	4.5 ± 1.5	4.2 – 6.1	No			
Total Recoverable Cadmium	mg/kg dry wt	0.279 ± 0.076	0.25 – 0.37	No			
Total Recoverable Chromium	mg/kg dry wt	7.6 ± 1.8	7.0 – 10.8	No			
Total Recoverable Copper	mg/kg dry wt	10.0 ± 1.9	10.5 – 14.5	Yes #2			
Total Recoverable Lead	mg/kg dry wt	21.1 ± 3.2	13.2 – 30	No			
Total Recoverable Mercury	mg/kg dry wt	0.100 ± 0.067	0.060 - 0.160	Nó			
Total Recoverable Nickel	mg/kg dry wt	3.6 ± 1.4	2.8 – 5.1	No			
Total Recoverable Zinc	mg/kg dry wt	51.3 ± 4.5	48 – 72	No			

QC A6 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8364.82							
		Results	Control Limits	Outside Limit (Yes/No)			
Total Recoverable Arsenic	mg/kg dry wt	5.5 ± 1.6	4.2 – 6.1	No			
Total Recoverable Cadmium	mg/kg dry wt	0.326 ± 0.080	0.25 – 0.37	No			
Total Recoverable Chromium	mg/kg dry wt	8.7 ± 1.9	7.0 – 10.8	No			
Total Recoverable Copper	mg/kg dry wt	12.5 ± 2.2	10.5 – 14.5	No			
Total Recoverable Lead	mg/kg dry wt	22.7 ± 3.5	13.2 – 30	No			
Total Recoverable Mercury	mg/kg dry wt	0.135 ± 0.069	0.060 - 0.160	No			
Total Recoverable Nickel	mg/kg dry wt	3.7 ± 1.4	2.8 – 5.1	No			
Total Recoverable Zinc	mg/kg dry wt	62.5 ± 5.2	48 – 72	No			

QC A6 PrepWS esDig - WS: High Volume Environmental Soils by ICP-MS (HVesTR): 8374.63						
		Results	Control Limits	Outside Limit (Yes/No)		
Total Recoverable Arsenic	mg/kg dry wt	5.5 ± 1.6	4.2 – 6.1	No		
Total Recoverable Cadmium	mg/kg dry wt	0.329 ± 0.080	0.25 – 0.37	No		
Total Recoverable Chromium	mg/kg dry wt	9.3 ± 2.0	7.0 – 10.8	No		
Total Recoverable Copper	mg/kg dry wt	13.6 ± 2.3	10.5 – 14.5	No		
Total Recoverable Lead	mg/kg dry wt	22.5 ± 3.4	13.2 – 30	No		
Total Recoverable Nickel	mg/kg dry wt	4.1 ± 1.5	2.8 – 5.1	No		
Total Recoverable Zinc	mg/kg dry wt	64.2 ± 5.3	48 – 72	No		

Analyst's Comments

^{#1} The sample spike recovery for this analyte was below the acceptable recovery range of the method. The affected sample was repeated for reinjection. The remaining sample results were accepted because the Laboratory Control Sample (LCS) spike recovery was within the expected ranges.

^{#2} The recovery for this analyte was outside the acceptable recovery range of the method. The corresponding sample result was accepted because the related recovery in the other QC material analysed was within the expected range.

R J Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205 Hamilton 3240 New Zealand

6 0508 HILL LAB (44 555 22) **%** +64 7 858 2000 www.hill-labs.co.nz

Certificate of Analysis

Page 1 of 2

4.800

SPv1

Client: Contact: Hail Environmental

Dave Bull

Total Recoverable Lead

mg/kg dry wt

C/- Hail Environmental PO Box 13113

Tauranga Central Tauranga 3141

Lab No: 3351767 **Date Received:**

28-Aug-2023

05-Sep-2023 **Date Reported:**

Quote No: Order No: **Client Reference:**

1.030

Submitted By:

72619 1090A Tokanui

Anna Carter

640

Sample Type: Soil						
Sar	mple Name:	B2/3 A 0.0 28-Aug-2023	B2/3 A 0.1 28-Aug-2023	B2/3 A 0.2 28-Aug-2023	B2/3 A 0.3 28-Aug-2023	B2/3 A 0.4 28-Aug-2023
La	ab Number:	3351767.1	3351767.2	3351767.3	3351767.4	3351767.5
TCLP Weight of Sample Taken	g	51	50	50	50	50
TCLP Initial Sample pH	pH Units	6.5	6.1	6.0	5.9	6.1
TCLP Acid Adjusted Sample pH	pH Units	1.6	1.7	1.6	1.7	1.6
TCLP Extractant Type*		NaOH/Acetic acid at pH 4.93 +/- 0.05		NaOH/Acetic acid at pH 4.93 +/- 0.05		
TCLP Extraction Fluid pH	pH Units	5.0	5.0	5.0	5.0	5.0
TCLP Post Extraction Sample pH	pH Units	5.0	5.0	5.0	5.0	5.0
Total Recoverable Lead	mg/kg dry wt	1,860	730	620	340	210
Sar	nple Name:	B2/3 B 0.0 28-Aug-2023	DUP01 28-Aug-2023	B11/3 A 0.0 28-Aug-2023	B11/3 A 0.1 28-Aug-2023	B59/3 A 0.0 28-Aug-2023
Li	ab Number:	3351767.6	3351767.7	3351767.8	3351767.9	3351767.10
TCLP Weight of Sample Taken	g	50	50	50	50	50
TCLP Initial Sample pH	pH Units	5.6	6.5	7.1	7.1	6.6
TCLP Acid Adjusted Sample pH	pH Units	1.6	1.6	1.8	1.8	1.7
TCLP Extractant Type*		NaOH/Acetic acid at pH 4.93 +/- 0.05		NaOH/Acetic acid at pH 4.93 +/- 0.05		
TCLP Extraction Fluid pH	pH Units	5.0	5.0	5.0	5.0	5.0
TCLP Post Extraction Sample pH	pH Units	4.9	5.0	5.0	5.0	5.0

Sar	nple Name:	B59/3 A 0.1 28-Aug-2023	B59/3 A 0.2 28-Aug-2023	B59/3 A 0.3 28-Aug-2023
<u>Je</u>	ab Number:	3351767.11	3351767.12	3351767.13
TCLP Weight of Sample Taken	g	50	50	50
TCLP Initial Sample pH	pH Units	6.2	6.1	6.1
TCLP Acid Adjusted Sample pH	pH Units	1.6	1.6	1.6
TCLP Extractant Type*	7 //	NaOH/Acetic acid at pH 4.93 +/- 0.05	NaOH/Acetic acid at pH 4.93 +/- 0.05	NaOH/Acetic acid at pH 4.93 +/- 0.05
TCLP Extraction Fluid pH	pH Units	5.0	5.0	5.0
TCLP Post Extraction Sample pH	pH Units	4.9	4.9	4.9
Total Recoverable Lead	mg/kg dry wt	1,040	1,370	96

1.690

Sample Type: Aqueou	S					
	Sample Name:	B2/3 A 0.0 [TCLP Extract]	B2/3 A 0.1 [TCLP Extract]	B2/3 A 0.2 [TCLP Extract]	B2/3 A 0.3 [TCLP Extract]	B2/3 A 0.4 [TCLP Extract]
	Lab Number:	3351767.14	3351767.15	3351767.16	3351767.17	3351767.18
Total Lead	g/m³	2.4	0.83	1.18	0.41	0.20

Sample Type: Aqueous								
Sample N	lame:	B2/3 B 0.0 [TCLP Extract]	DUP01 [To Extract		B11/3 A 0.0 [TCLP Extract]		1/3 A 0.1 .P Extract]	B59/3 A 0.0 [TCLP Extract]
Lab Nui	mber:	3351767.19	3351767.	20	3351767.21	335	51767.22	3351767.23
Total Lead	g/m³	0.164	2.1		0.164	0.042		6.9
Sample N	lame:	B59/3 A 0.1 [TCLP Extract]		B59	B59/3 A 0.2 [TCLP Extract]		B59/3 A 0.3 [TCLP Extract]	
Lab Nui	mber:			3351767.25		3351767.26		

0.58

0.026

Summary of Methods

g/m³

Total Lead

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Labs, 28 Duke Street, Frankton, Hamilton 3204.

1.55

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Individual Tests		•	
Environmental Solids Sample Drying*	Air dried at 35°C Used for sample preparation. May contain a residual moisture content of 2-5%.	10 K	1-13
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation May contain a residual moisture content of 2-5%.	0,101	1-13
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.		1-13
Total Recoverable Lead	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.4 mg/kg dry wt	1-13
TCLP Profile*	Extraction at 30 +/- 2 rpm for 18 +/- 2 hours, (Ratio 1g sample : 20g extraction fluid). US EPA 1311.	-	1-13
TCLP Profile			
TCLP Weight of Sample Taken	Gravimetric. US EPA 1311.	0.1 g	1-13
TCLP Initial Sample pH	pH meter. US EPA 1311.	0.1 pH Units	1-13
TCLP Acid Adjusted Sample pH	pH meter. US EPA 1311.	0.1 pH Units	1-13
TCLP Extractant Type*	US EPA 1311.	-	1-13
TCLP Extraction Fluid pH	pH meter. US EPA 1311.	0.1 pH Units	1-13
TCLP Post Extraction Sample pH	pH meter, US EPA 1311.	0.1 pH Units	1-13

Sample Type: Aqueous			
Test	Method Description	Default Detection Limit	Sample No
Individual Tests			
Total Digestion of Extracted Samples*	Nitric acid digestion. APHA 3030 E (modified) 23 rd ed. 2017.	-	14-26
Total Lead	Nitric acid digestion, ICP-MS, screen level. APHA 3125 B 23 rd ed. 2017.	0.0021 g/m ³	14-26

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 30-Aug-2023 and 05-Sep-2023. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech)

Client Services Manager - Environmental

Sample ID	Reading	Test Type Date	Time Method ID	Method Name	Cu Concentration	Cu Error1s	Zn Concentration	Zn Error1s	As Concentration	As Error1s	Pb Concentration	Pb Error1s	Project No.	Sample Type	Operator	Notes	Serial No.	Model
Blank	1	NORMAL 6/03/2023	9:54:28 soil-VMW	Soil	<lod< td=""><td>0.00036</td><td><lod< td=""><td>0.00022</td><td><lod< td=""><td>0.00015</td><td><lod< td=""><td>0.00019</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<></td></lod<></td></lod<>	0.00036	<lod< td=""><td>0.00022</td><td><lod< td=""><td>0.00015</td><td><lod< td=""><td>0.00019</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<></td></lod<>	0.00022	<lod< td=""><td>0.00015</td><td><lod< td=""><td>0.00019</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<>	0.00015	<lod< td=""><td>0.00019</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00019	1090A	In Situ	AC	Tokanui	800224	VMW
Std	2	NORMAL 6/03/2023	9:56:25 soil-VMW	Soil	0.01324	0.00031	0.0368	0.00043	0.00744	0.00054	0.13169	0.00082	1090A	In Situ	AC	Tokanui	800224	VMW
Std	3	NORMAL 6/03/2023	9:57:56 soil-VMW	Soil	0.32189	0.00205	0.41073	0.00237	0.15006	0.00146	0.51728	0.00269	1090A	In Situ	AC	Tokanui	800224	VMW
S2 door paint	4	NORMAL 6/03/2023	10:05:15 soil-VMW	Soil	0.00243	0.0003	0.06656	0.00079	<lod< td=""><td>0.00841</td><td>2.55909</td><td>0.01379</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00841	2.55909	0.01379	1090A	In Situ	AC	Tokanui	800224	VMW
S2 wall paint	5	NORMAL 6/03/2023	10:07:22 soil-VMW	Soil	0.00087	0.00022	0.11043	0.00094	0.00165	0.00014	0.00266	0.00015	1090A	In Situ	AC	Tokanui	800224	VMW
S2 wall paint	6	NORMAL 6/03/2023	10:28:40 soil-VMW	Soil	0.00245	0.00017	0.01083	0.00022	0.00067	0.00011	0.00495	0.00014	1090A	In Situ	AC	Tokanui	800224	VMW
XRF7	7	NORMAL 6/03/2023	10:30:10 soil-VMW	Soil	0.00277	0.00015	0.02043	0.00025	0.00069	0.00009	0.00459	0.00011	1090A	▲ In Situ	AC	Tokanui	800224	VMW
XRF8	8	NORMAL 6/03/2023	10:31:35 soil-VMW	Soil	0.00272	0.00017	0.01263	0.00022	0.00071	0.00011	0.00434	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
XRF9	9	NORMAL 6/03/2023	10:33:29 soil-VMW	Soil	0.00218	0.00016	0.00889	0.00018	0.00072	0.0001	0.00401	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
XRF10	10	NORMAL 6/03/2023	10:36:16 soil-VMW	Soil	0.00176	0.00015	0.01805	0.00025	0.00035	0.00009	0.00346	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
XRF11	11	NORMAL 6/03/2023	10:39:26 soil-VMW	Soil	0.00238	0.00016	0.00945	0.00019	0.00053	0.00011	0.00511	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
XRF12	12	NORMAL 6/03/2023	10:41:17 soil-VMW	Soil	0.00333	0.0002	0.011	0.00023	0.00106	0.00011	0.00375	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
XRF13	13	NORMAL 6/03/2023	10:44:42 soil-VMW	Soil	0.00854	0.00025	0.02223	0.00031	0.00625	0.00026	0.03073	0.00031	1090A	In Situ	AC	Tokanui	800224	VMW
XRF14	14	NORMAL 6/03/2023	10:48:52 soil-VMW	Soil	0.00262	0.0002	0.01219	0.00025	0.00158	0.00019	0.014	0.00023	1090A	In Situ	AC	Tokanui	800224	VMW
XRF15	15	NORMAL 6/03/2023	10:51:59 soil-VMW	Soil	0.00371	0.00021	0.01234	0.00025	0.00059	0.00014	0.00685	0.00017	1090A	In Situ	AC	Tokanui	800224	VMW
XRF16	16	NORMAL 6/03/2023	10:53:56 soil-VMW	Soil	0.00329	0.00018	0.01427	0.00023	0.00083	0.0001	0.00429	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
XRF17	17	NORMAL 6/03/2023	13:46:41 soil-VMW	Soil	0.00274	0.00017	0.01043	0.0002	<lod< td=""><td>0.0006</td><td>0.02329</td><td>0.00025</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.0006	0.02329	0.00025	1090A	In Situ	AC	Tokanui	800224	VMW
XRF18	18	NORMAL 6/03/2023	13:48:37 soil-VMW	Soil	0.00265	0.00016	0.00992	0.00019	<lod< td=""><td>0.00059</td><td>0.02515</td><td>0.00025</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00059	0.02515	0.00025	1090A	In Situ	AC	Tokanui	800224	VMW
XRF19	19	NORMAL 6/03/2023	13:51:31 soil-VMW	Soil	0.00249	0.00016	0.01036	0.0002	<lod_< td=""><td>0.00056</td><td>0.02001</td><td>0.00023</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod_<>	0.00056	0.02001	0.00023	1090A	In Situ	AC	Tokanui	800224	VMW
XRF20	20	NORMAL 6/03/2023	13:53:20 soil-VMW	Soil	0.00242	0.00015	0.01050	0.00019	<lod< td=""><td>0.0005</td><td>0.01864</td><td>0.00021</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.0005	0.01864	0.00021	1090A	In Situ	AC	Tokanui	800224	VMW
XRF21	21	NORMAL 6/03/2023	13:54:48 soil-VMW	Soil	0.00162	0.00014	0.00942	0.00018	0.00042	0.00012	0.00913	0.00015	1090A	In Situ	AC	Tokanui	800224	VMW
XRF22	22	NORMAL 6/03/2023	13:56:09 soil-VMW	Soil	0.00327	0.00017	0.0139	0.00023	<lod< td=""><td>0.00063</td><td>0.02787</td><td>0.00027</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00063	0.02787	0.00027	1090A	In Situ	AC	Tokanui	800224	VMW
XRF23	23	NORMAL 6/03/2023	13:58:20 soil-VMW	Soil	0.00245	0.00016	0.00868	0.00019	<lod< td=""><td>0.00036</td><td>0.00755</td><td>0.00015</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00036	0.00755	0.00015	1090A	In Situ	AC	Tokanui	800224	VMW
XRF24	24	NORMAL 6/03/2023	14:00:20 soil-VMW	Soil	0.00171	0.00014	0.00814	0.00017	<lod< td=""><td>0.00031</td><td>0.00595</td><td>0.00013</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00031	0.00595	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
XRF25	25	NORMAL 6/03/2023	14:02:19 soil-VMW	Soil	0.00229	0.00014	0.0069	0.00016	<lod< td=""><td>0.00031</td><td>0.01098</td><td>0.00017</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00031	0.01098	0.00017	1090A	In Situ	AC	Tokanui	800224	VMW
XRF26	26	NORMAL 6/03/2023	14:04:00 soil-VMW	Soil	0.00198	0.00016	0.00755	0.00018	<lod< td=""><td>0.00055</td><td>0.01797</td><td>0.00023</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00055	0.01797	0.00023	1090A	In Situ	AC	Tokanui	800224	VMW
XRF27	27	NORMAL 6/03/2023	14:05:39 soil-VMW	Soil	0.00169	0.00012	0.0061	0.00013	<lod< td=""><td>0.00045</td><td>0.02028</td><td>0.00019</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00045	0.02028	0.00019	1090A	In Situ	AC	Tokanui	800224	VMW
XRF28	28	NORMAL 6/03/2023	14:08:17 soil-VMW	Soil	0.00093	0.00011	0.00828	0.00015	0.00117	0.00018	0.02602	0.00022	1090A	In Situ	AC	Tokanui	800224	VMW
XRF29	29	NORMAL 6/03/2023	14:10:13 soil-VMW	Soil	0.00252	0.00014	0.01164	0.00018	<lod< td=""><td>0.0007</td><td>0.04553</td><td>0.00031</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.0007	0.04553	0.00031	1090A	In Situ	AC	Tokanui	800224	VMW
XRF30	30	NORMAL 6/03/2023	14:11:41 soil-VMW	Soil	0.00097	0.0001	0.00847	0.00014	<lod< td=""><td>0.00048</td><td>0.02541</td><td>0.0002</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00048	0.02541	0.0002	1090A	In Situ	AC	Tokanui	800224	VMW
B2/1 A 0.0	31	NORMAL 6/03/2023	17:05:40 soil-VMW	Soil	0.03627	0.00045	0.19237	0.00109	<lod< td=""><td>0.00172</td><td>0.18603</td><td>0.00097</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00172	0.18603	0.00097	1090A	In Situ	AC	Tokanui	800224	VMW
B2/1 A 0.0	32	NORMAL 6/03/2023	17:07:25 soil-VMW	Soil	0.05047	0.00053	0.31256	0.00157	<lod< td=""><td>0.00176</td><td>0.18909</td><td>0.00098</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00176	0.18909	0.00098	1090A	In Situ	AC	Tokanui	800224	VMW
B2/1 A 0.0	33	NORMAL 6/03/2023	17:08:45 soil-VMW	Soil	0.0293	0.00048	0.32568	0.0019	<lod< td=""><td>0.00314</td><td>0.45075</td><td>0.00232</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00314	0.45075	0.00232	1090A	In Situ	AC	Tokanui	800224	VMW
B2/1 A 0.0	34	NORMAL 6/03/2023	17:10:19 soil-VMW	Soil	0.0165	0.00032	0.2801	0.00143	<lod< td=""><td>0.00172</td><td>0.1847</td><td>0.00096</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00172	0.1847	0.00096	1090A	In Situ	AC	Tokanui	800224	VMW
B2/1 A 0.0	35	NORMAL 6/03/2023	17:11:15 soil-VMW	Soil	0.03106	0.00039	0.45154	0.00196	<lod< td=""><td>0.00179</td><td>0.22498</td><td>0.00105</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00179	0.22498	0.00105	1090A	In Situ	AC	Tokanui	800224	VMW
B2/1 A 0.0	36	NORMAL 6/03/2023	17:12:20 soil-VMW	Soil	0.02157	0.00034	0.19041	0.00104	<lod< td=""><td>0.00136</td><td>0.1247</td><td>0.0007</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00136	0.1247	0.0007	1090A	In Situ	AC	Tokanui	800224	VMW
B2/1 A 0.0	37	NORMAL 6/03/2023		Soil	0.02617	0.00038	0.34906	0.00165	<lod< td=""><td>0.00163</td><td>0.17273</td><td>0.00089</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00163	0.17273	0.00089	1090A	In Situ	AC	Tokanui	800224	VMW
B2/1 A 0.4	38	NORMAL 6/03/2023	17:22:03 soil-VMW	Soil	0.00212	0.00015	0.00918	0.00018	0.00061	0.00008	0.00288	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B2/1 A 0.3	39	NORMAL 6/03/2023	17:26:00 soil-VMW	Soil	0.00212	0.00015	0.0157	0.00022	0.00112	0.00012	0.00902	0.00015	1090A	In Situ	AC	Tokanui	800224	VMW
B2/1 A 0.2	40	NORMAL 6/03/2023	17:28:06 soil-VMW	Soil	0.01537	0.0003	0.16154	0.00095	<lod< td=""><td>0.00136</td><td>0.11849</td><td>0.00069</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00136	0.11849	0.00069	1090A	In Situ	AC	Tokanui	800224	VMW
B2/1 A 0.1	41	NORMAL 6/03/2023	17:29:27 soil-VMW	Soil	0.00602	0.00022	0.06114	0.00052	<lod< td=""><td>0.00098</td><td>0.05905</td><td>0.00045</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00098	0.05905	0.00045	1090A	In Situ	AC	Tokanui	800224	VMW
B2/1 B 0.0	42	NORMAL 6/03/2023	17:31:09 soil-VMW	Soil	0.00375	0.0002	0.05578	0.00052	<lod< td=""><td>0.00089</td><td>0.04408</td><td>0.00039</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00089	0.04408	0.00039	1090A	In Situ	AC	Tokanui	800224	VMW
B2/1 C 0.0	43	NORMAL 6/03/2023	17:37:05 soil-VMW	Soil	0.00145	0.00012	0.01041	0.00016	<lod< td=""><td>0.00032</td><td>0.00903</td><td>0.00013</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00032	0.00903	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
B2/1 D 0.0	44	NORMAL 6/03/2023	17:40:22 soil-VMW	Soil	0.00174	0.00014	0.0083	0.00017	<lod< td=""><td>0.00035</td><td>0.00847</td><td>0.00014</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00035	0.00847	0.00014	1090A	In Situ	AC	Tokanui	800224	VMW
B2/1 O 0.0	45	NORMAL 6/03/2023	17:44:06 soil-VMW	Soil	0.00164	0.00013	0.01868	0.00023	<lod< td=""><td>0.00033</td><td>0.00743</td><td>0.00013</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00033	0.00743	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
B2/1 O 0.0	46	NORMAL 6/03/2023	17:47:22 soil-VMW	Soil	0.00136	0.00014	0.02402	0.00028	<lod< td=""><td>0.00033</td><td>0.00708</td><td>0.00014</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00033	0.00708	0.00014	1090A	In Situ	AC	Tokanui	800224	VMW
B2/1 O 0.0	47	NORMAL 6/03/2023	17:49:20 soil-VMW	Soil	0.00130	0.00014	0.0182	0.00024	<lod< td=""><td>0.00033</td><td>0.0069</td><td>0.00014</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00033	0.0069	0.00014	1090A	In Situ	AC	Tokanui	800224	VMW
Blank	48	NORMAL 6/03/2023	18:00:14 soil-VMW	Soil	<lod< td=""><td>0.00037</td><td><lod< td=""><td>0.00024</td><td><lod< td=""><td>0.00035</td><td><lod< td=""><td>0.0002</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<></td></lod<></td></lod<>	0.00037	<lod< td=""><td>0.00024</td><td><lod< td=""><td>0.00035</td><td><lod< td=""><td>0.0002</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<></td></lod<>	0.00024	<lod< td=""><td>0.00035</td><td><lod< td=""><td>0.0002</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<>	0.00035	<lod< td=""><td>0.0002</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.0002	1090A	In Situ	AC	Tokanui	800224	VMW
Std	49	NORMAL 6/03/2023	18:01:28 soil-VMW	Soil	0.01554	0.00037	0.03863	0.00045	0.00668	0.00015	0.1364	0.0002	1090A	In Situ	AC	Tokanui	800224	VMW
Std	50	NORMAL 6/03/2023	18:02:42 soil-VMW	Soil	0.32619	0.00213	0.41003	0.00243	0.14829	0.0015	0.52011	0.00278	1090A	In Situ	AC	Tokanui	800224	VMW
Blank	1	NORMAL 7/03/2023	9:21:55 soil-VMW	Soil	<lod< td=""><td>0.00213</td><td><lod< td=""><td>0.00243</td><td><lod< td=""><td>0.0015</td><td><lod< td=""><td>0.00278</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<></td></lod<></td></lod<>	0.00213	<lod< td=""><td>0.00243</td><td><lod< td=""><td>0.0015</td><td><lod< td=""><td>0.00278</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<></td></lod<>	0.00243	<lod< td=""><td>0.0015</td><td><lod< td=""><td>0.00278</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<>	0.0015	<lod< td=""><td>0.00278</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00278	1090A	In Situ	AC	Tokanui	800224	VMW
Std	2	NORMAL 7/03/2023	9:22:59 soil-VMW	Soil	0.01039	0.00036	0.02684	0.00034	0.00697	0.00042	0.09257	0.0002	1090A	In Situ	AC	Tokanui	800224	VMW
Std	3	NORMAL 7/03/2023	9:24:34 soil-VMW	Soil	0.32888	0.00208	0.41014	0.00235	0.15026	0.00146	0.52033	0.0027	1090A	In Situ	AC	Tokanui	800224	VMW
B3 green paint	4	NORMAL 7/03/2023	9:26:25 soil-VMW	Soil	0.01427	0.00208	0.01317	0.00233	0.00134	0.00140	0.00585	0.0027	1090A	In Situ	AC	Tokanui	800224	VMW
B3 yellow paint	5	NORMAL 7/03/2023	9:28:50 soil-VMW	Soil	0.00167	0.00033	0.01854	0.00032	0.00134	0.00017	0.00383	0.00015	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B1 white paint	6	NORMAL 7/03/2023	10:00:25 soil-VMW	Soil	0.00167	0.00023	0.14501	0.00037	0.00083	0.00013	0.0022	0.00015	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B5 white paint	7	NORMAL 7/03/2023	10:16:58 soil-VMW	Soil	0.00231	0.00024	0.37346	0.00112	<lod< td=""><td>0.00014</td><td>2.25505</td><td>0.01038</td><td>1090A 1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00014	2.25505	0.01038	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B6 white paint	8	NORMAL 7/03/2023	10:16:58 SOII-VMW	Soil	<lod< td=""><td>0.00027</td><td>0.37346</td><td>0.00217</td><td><lod <lod< td=""><td>0.00709</td><td>0.56576</td><td>0.01038</td><td>1090A 1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></lod </td></lod<>	0.00027	0.37346	0.00217	<lod <lod< td=""><td>0.00709</td><td>0.56576</td><td>0.01038</td><td>1090A 1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></lod 	0.00709	0.56576	0.01038	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B5/1 A 0.0	9	NORMAL 7/03/2023	10:31:32 soil-VMW	Soil	0.01025	0.00073	0.39459	0.00147	0.0011	0.000330	0.02216	0.000342	1090A	In Situ	AC	Tokanui	800224	VMW
B5/1 A 0.0	10	NORMAL 7/03/2023	10:31:32 SOII-VMW	Soil	0.01025	0.00027	0.3426	0.00189	<lod< td=""><td>0.00021</td><td>0.02572</td><td>0.00026</td><td>1090A 1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00021	0.02572	0.00026	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B5/1 A 0.0 B5/1 A 0.0	11	NORMAL 7/03/2023 NORMAL 7/03/2023	10:33:56 SOII-VMW	Soil	0.0087	0.00023	0.3426	0.00157	<lod <lod< td=""><td>0.00062</td><td>0.02572</td><td>0.00026</td><td>1090A 1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></lod 	0.00062	0.02572	0.00026	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B5/1 A 0.0	12	NORMAL 7/03/2023	10:36:24 soil-VMW	Soil	0.01095	0.00024	0.38702	0.00162	<lod< td=""><td>0.00065</td><td>0.0329</td><td>0.00028</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00065	0.0329	0.00028	1090A	In Situ	AC	Tokanui	800224	VMW
B5/1 A 0.0	13	NORMAL 7/03/2023	10:37:42 soil-VMW	Soil	0.01196	0.00027	0.26835	0.00136	<lod< td=""><td>0.00053</td><td>0.01619</td><td>0.00022</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00053	0.01619	0.00022	1090A	In Situ	AC	Tokanui	800224	VMW
B5/1 A 0.0	14	NORMAL 7/03/2023	10:38:46 soil-VMW	Soil	0.00761	0.00025	0.31816	0.00163	<lod< td=""><td>0.00086</td><td>0.04455</td><td>0.00039</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00086	0.04455	0.00039	1090A	In Situ	AC	Tokanui	800224	VMW
Blank	15	NORMAL 7/03/2023	10:42:17 soil-VMW	Soil	<lod< td=""><td>0.00038</td><td><lod< td=""><td>0.00022</td><td><lod< td=""><td>0.00015</td><td><lod< td=""><td>0.0002</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<></td></lod<></td></lod<>	0.00038	<lod< td=""><td>0.00022</td><td><lod< td=""><td>0.00015</td><td><lod< td=""><td>0.0002</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<></td></lod<>	0.00022	<lod< td=""><td>0.00015</td><td><lod< td=""><td>0.0002</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<>	0.00015	<lod< td=""><td>0.0002</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.0002	1090A	In Situ	AC	Tokanui	800224	VMW
Std	16	NORMAL 7/03/2023	10:43:38 soil-VMW	Soil	0.01357	0.00033	0.03662	0.00045	0.00708	0.00056	0.13213	0.00085	1090A	In Situ	AC	Tokanui	800224	VMW

CFT	17	NORMAL 7/03/2023	10.44.25	C=:I	0.32741	0.00213	0.41389	0.00244	0.14985	0.00151	0.52595	0.0028	10004	In Cit.	100	Talianii	800224	VMW
Std B5/1 A 0.1	18	NORMAL 7/03/2023 NORMAL 7/03/2023		Soil Soil	0.32741	0.00213	0.41389	0.00244	0.14985 <lod< td=""><td>0.00151</td><td>0.52595</td><td>0.0028</td><td>1090A 1090A</td><td>In Situ In Situ</td><td>AC AC</td><td>Tokanui Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00151	0.52595	0.0028	1090A 1090A	In Situ In Situ	AC AC	Tokanui Tokanui	800224	VMW
B5/1 A 0.2	19	NORMAL 7/03/2023		Soil	0.00767	0.00017	0.04773	0.00034	<lod< td=""><td>0.00048</td><td>0.11251</td><td>0.0002</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00048	0.11251	0.0002	1090A	In Situ	AC	Tokanui	800224	VMW
B5/1 A 0.3	20	NORMAL 7/03/2023	11:02:44 soil-VMW	Soil	0.00767	0.00021	0.05184	0.00041	<lod <lod< td=""><td>0.0012</td><td>0.02161</td><td>0.00001</td><td>1090A 1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></lod 	0.0012	0.02161	0.00001	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B5/1 A 0.2	21	NORMAL 7/03/2023	11:04:05 soil-VMW	Soil	0.00558	0.00019	0.03184	0.00044	<lod <lod< td=""><td>0.00092</td><td>0.06232</td><td>0.00024</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></lod 	0.00092	0.06232	0.00024	1090A	In Situ	AC	Tokanui	800224	VMW
B5/1 A 0.3	22	NORMAL 7/03/2023	11:05:33 soil-VMW	Soil	0.00338	0.00017	0.03213	0.00035	<lod< td=""><td>0.0005</td><td>0.0154</td><td>0.00042</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.0005	0.0154	0.00042	1090A	In Situ	AC	Tokanui	800224	VMW
B5/1 A 0.2	23	NORMAL 7/03/2023	11:08:59 soil-VMW	Soil	0.00675	0.00022	0.04325	0.00041	<lod< td=""><td>0.00083</td><td>0.04484</td><td>0.00036</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00083	0.04484	0.00036	1090A	In Situ	AC	Tokanui	800224	VMW
B5/1 A 0.3	24	NORMAL 7/03/2023		Soil	0.0051	0.0002	0.05158	0.00046	<lod< td=""><td>0.0006</td><td>0.02203</td><td>0.00025</td><td>1090A</td><td>▲ In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.0006	0.02203	0.00025	1090A	▲ In Situ	AC	Tokanui	800224	VMW
B5/1 A 0.3	25	NORMAL 7/03/2023		Soil	0.00353	0.00028	0.03389	0.00054	<lod< td=""><td>0.00076</td><td>0.01659</td><td>0.00032</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00076	0.01659	0.00032	1090A	In Situ	AC	Tokanui	800224	VMW
B5/1 A 0.4	26	NORMAL 7/03/2023		Soil	0.00241	0.00021	0.01386	0.00029	0.00031	0.00009	0.00161	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
B5/1 A 0.4	27	NORMAL 7/03/2023	11:18:04 soil-VMW	Soil	0.00164	0.00021	0.01286	0.0003	0.00065	0.0001	0.00144	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
B5/1 B 0.0	28	NORMAL 7/03/2023	11:33:13 soil-VMW	Soil	0.00283	0.00016	0.02424	0.00029	<lod< td=""><td>0.00034</td><td>0.0067</td><td>0.00014</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00034	0.0067	0.00014	1090A	In Situ	AC	Tokanui	800224	VMW
B5/1 C 0.0	29	NORMAL 7/03/2023	11:34:13 soil-VMW	Soil	0.00248	0.00016	0.0179	0.00025	<lod< td=""><td>0.00033</td><td>0.00668</td><td>0.00014</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00033	0.00668	0.00014	1090A	In Situ	AC	Tokanui	800224	VMW
B5/1 D 0.0	30	NORMAL 7/03/2023	11:35:27 soil-VMW	Soil	0.00193	0.00014	0.01472	0.00022	0.00037	0.0001	0.005	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
B6/1 A 0.0	31	NORMAL 7/03/2023		Soil	0.00216	0.00015	0.02554	0.0003	<lod< td=""><td>0.0004</td><td>0.00998</td><td>0.00016</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.0004	0.00998	0.00016	1090A	In Situ	AC	Tokanui	800224	VMW
B6/1 A 0.1	32	NORMAL 7/03/2023	11:49:04 soil-VMW	Soil	0.00249	0.00014	0.02445	0.00027	<lod< td=""><td>0.00039</td><td>0.01158</td><td>0.00016</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00039	0.01158	0.00016	1090A	In Situ	AC	Tokanui	800224	VMW
B6/1 A 0.2	33	NORMAL 7/03/2023	11:51:16 soil-VMW	Soil	0.00139	0.00013	0.00796	0.00016	<lod< td=""><td>0.00027</td><td>0.00452</td><td>0.00011</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00027	0.00452	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B6/1 A 0.3	34	NORMAL 7/03/2023		Soil	0.00149	0.00013	0.00781	0.00016	<lod< td=""><td>0.00029</td><td>0.00536</td><td>0.00012</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00029	0.00536	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
B6/1 A 0.4	35	NORMAL 7/03/2023		Soil	0.00148	0.00014	0.00907	0.00018	<lod< td=""><td>0.00032</td><td>0.00651</td><td>0.00013</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00032	0.00651	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
B6/1 B 0.0	36	NORMAL 7/03/2023	12:00:22 soil-VMW	Soil	0.00093	0.00013	0.01144	0.00019	<lod< td=""><td>0.00027</td><td>0.00419</td><td>0.00011</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00027	0.00419	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B6/1 C 0.0	37	NORMAL 7/03/2023		Soil	0.00219	0.00016	0.01798	0.00026	<lod< td=""><td>0.00032</td><td>0.00515</td><td>0.00013</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00032	0.00515	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
B6/1 D 0.0	38	NORMAL 7/03/2023		Soil	0.00151	0.00016	0.01298	0.00023	<lod< td=""><td>0.00031</td><td>0.00418</td><td>0.00013</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00031	0.00418	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
B7 green paint	39	NORMAL 7/03/2023		Soil	<lod< td=""><td>0.0028</td><td>2.07973</td><td>0.02161</td><td><lod< td=""><td>0.0331</td><td>12.39555</td><td>0.12292</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<>	0.0028	2.07973	0.02161	<lod< td=""><td>0.0331</td><td>12.39555</td><td>0.12292</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.0331	12.39555	0.12292	1090A	In Situ	AC	Tokanui	800224	VMW
B7/1 A 0.0	40 41	NORMAL 7/03/2023 NORMAL 7/03/2023	12:27:49 soil-VMW 12:34:58 soil-VMW	Soil	0.00262 0.00545	0.00024	0.06221 0.0461	0.00069	<lod 0.00172</lod 	0.00077	0.01971 0.02271	0.00032 0.00027	1090A 1090A	In Situ In Situ	AC AC	Tokanui	800224 800224	VMW
B7/1 A 0.1 B7/1 B 0.0	41	NORMAL 7/03/2023 NORMAL 7/03/2023	12:34:58 SOII-VMW 12:37:11 SOII-VMW	Soil Soil	0.00545	0.00022	0.0461	0.00045	0.001/2	0.00022	0.02271	0.00027	1090A 1090A	In Situ	AC	Tokanui Tokanui	800224	VMW
B7/1 B 0.0	43	NORMAL 7/03/2023	12:37:11 SOII-VMW	Soil	0.00543	0.00026	0.0394	0.00058	0.000113	0.00024	0.01915	0.00029	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B7/1 C 0.0	44	NORMAL 7/03/2023		Soil	0.00375	0.00021	0.05681	0.00052	<lod< td=""><td>0.00056</td><td>0.01642</td><td>0.00023</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00056	0.01642	0.00023	1090A	In Situ	AC	Tokanui	800224	VMW
B7/1 D 0.0	45	NORMAL 7/03/2023	12:41:29 soil-VMW	Soil	0.00373	0.00018	0.03694	0.00037	0.00062	0.00017	0.01638	0.00023	1090A	In Situ	AC	Tokanui	800224	VMW
B8/1 A 0.0	46	NORMAL 7/03/2023	12:53:40 soil-VMW	Soil	0.0035	0.0002	0.03137	0.00038	0.00152	0.00032	0.05026	0.00043	1090A	In Situ	AC	Tokanui	800224	VMW
B8/1 A 0.1	47	NORMAL 7/03/2023	12:59:00 soil-VMW	Soil	0.00224	0.00018	0.00528	0.00017	0.00067	0.0001	0.00301	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
B8/1 A 0.2	48	NORMAL 7/03/2023		Soil	0.00123	0.00016	0.0036	0.00014	0.00048	0.00008	0.00163	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B8/1 A 0.3	49	NORMAL 7/03/2023	13:04:13 soil-VMW	Soil	0.00131	0.00016	0.00387	0.00015	0.00052	0.00008	0.00163	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B8/1 B 0.0	50	NORMAL 7/03/2023	13:11:19 soil-VMW	Soil	0.00685	0.00026	0.03187	0.00042	<lod< td=""><td>0.00092</td><td>0.03853</td><td>0.0004</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00092	0.03853	0.0004	1090A	In Situ	AC	Tokanui	800224	VMW
B8/1 C 0.0	51	NORMAL 7/03/2023	13:12:57 soil-VMW	Soil	0.00528	0.00025	0.02259	0.00036	<lod< td=""><td>0.00072</td><td>0.02145</td><td>0.0003</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00072	0.02145	0.0003	1090A	In Situ	AC	Tokanui	800224	VMW
B8/1 D 0.0	52	NORMAL 7/03/2023	13:14:05 soil-VMW	Soil	0.00436	0.0002	0.01769	0.00027	0.00061	0.00018	0.01611	0.00022	1090A	In Situ	AC	Tokanui	800224	VMW
B8/1 O 0.0	53	NORMAL 7/03/2023		Soil	0.00194	0.00022	0.00965	0.00026	<lod< td=""><td>0.00048</td><td>0.00703</td><td>0.0002</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00048	0.00703	0.0002	1090A	In Situ	AC	Tokanui	800224	VMW
B8/1 B 0.1	54			Soil	0.00869	0.00023	0.03011	0.00034	<lod< td=""><td>0.00076</td><td>0.03922</td><td>0.00033</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00076	0.03922	0.00033	1090A	In Situ	AC	Tokanui	800224	VMW
B8/1 B 0.2	55	NORMAL 7/03/2023	13:25:01 soil-VMW	Soil	0.00206	0.00016	0.00698	0.00017	0.00133	0.0001	0.00314	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
B8/1 C 0.1	56	NORMAL 7/03/2023		Soil	0.00506	0.0002	0.01728	0.00026	<lod< td=""><td>0.0005</td><td>0.01442</td><td>0.00021</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.0005	0.01442	0.00021	1090A	In Situ	AC	Tokanui	800224	VMW
B8/1 C 0.2	57	NORMAL 7/03/2023		Soil	0.00347	0.00019	0.01169	0.00022	<lod< td=""><td>0.00042</td><td>0.00903</td><td>0.00017</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00042	0.00903	0.00017	1090A	In Situ	AC	Tokanui	800224	VMW
B8/2 A 0.0	58 59	NORMAL 7/03/2023 NORMAL 7/03/2023		Soil	0.00174	0.00015	0.02699	0.00031	<lod< td=""><td>0.00047</td><td>0.01437</td><td>0.0002</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00047	0.01437	0.0002	1090A	In Situ	AC	Tokanui	800224	VMW
B8/2 A 0.1 B8/2 A 0.2	60	NORMAL 7/03/2023 NORMAL 7/03/2023	13:49:32 soil-VMW 13:50:36 soil-VMW	Soil	0.00183 0.00147	0.00015 0.00016	0.02898	0.00032 0.00027	0.0004 0.00038	0.00008	0.00223 0.00218	0.0001	1090A	In Situ In Situ	AC	Tokanui Tokanui	800224 800224	VMW
B8/2 A 0.3	61	NORMAL 7/03/2023	13:50:36 SOII-VWW 13:52:02 SOII-VWW	Soil Soil	0.00147	0.00018	0.01945	0.00027	<lod< td=""><td>0.00008</td><td>0.00218</td><td>0.0001</td><td>1090A 1090A</td><td>In Situ</td><td>AC AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00008	0.00218	0.0001	1090A 1090A	In Situ	AC AC	Tokanui	800224	VMW
B8/2 B 0.0	62	NORMAL 7/03/2023	13:54:11 soil-VMW	Soil	0.00143	0.00018	0.02347	0.00034	<lod <lod< td=""><td>0.00029</td><td>0.00269</td><td>0.00012</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></lod 	0.00029	0.00269	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
B8/2 C 0.0	63	NORMAL 7/03/2023	13:55:13 soil-VMW	Soil	0.00197	0.00015	0.01964	0.0003	0.00057	0.00033	0.00653	0.00014	1090A	In Situ	AC	Tokanui	800224	VMW
B8/2 D 0.0	64	NORMAL 7/03/2023		Soil	0.00209	0.00015	0.0142	0.00027	0.00051	0.00012	0.0069	0.00014	1090A	In Situ	AC	Tokanui	800224	VMW
B8/2 O 0.0	65	NORMAL 7/03/2023	13:57:57 soil-VMW	Soil	0.00159	0.00016	0.01018	0.00021	<lod< td=""><td>0.00035</td><td>0.0059</td><td>0.00014</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00035	0.0059	0.00014	1090A	In Situ	AC	Tokanui	800224	VMW
S2/1 A 0.0	66	NORMAL 7/03/2023	14:11:10 soil-VMW	Soil	0.00082	0.00015	0.00793	0.00019	<lod< td=""><td>0.00037</td><td>0.00653</td><td>0.00015</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00037	0.00653	0.00015	1090A	In Situ	AC	Tokanui	800224	VMW
S2/1 A 0.1	67	NORMAL 7/03/2023	14:13:27 soil-VMW	Soil	0.00218	0.00015	0.00909	0.00018	0.00067	0.0001	0.00522	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
S2/1 A 0.2	68	NORMAL 7/03/2023	14:14:29 soil-VMW	Soil	0.00209	0.00017	0.00874	0.0002	0.00075	0.00012	0.00556	0.00014	1090A	In Situ	AC	Tokanui	800224	VMW
S2/1 A 0.3	69	NORMAL 7/03/2023		Soil	0.00204	0.00015	0.00981	0.00018	0.00079	0.00011	0.00694	0.00014	1090A	In Situ	AC	Tokanui	800224	VMW
S2/1 B 0.0	70	NORMAL 7/03/2023	14:17:14 soil-VMW	Soil	0.00224	0.00015	0.00627	0.00015	0.00043	0.00008	0.00274	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
S2/1 C 0.0	71	NORMAL 7/03/2023	14:18:43 soil-VMW	Soil	0.00164	0.00016	0.00603	0.00017	0.00053	0.00009	0.00208	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
S2/1 D 0.0	72	NORMAL 7/03/2023		Soil	0.00155	0.00023	0.00516	0.00022	0.00034	0.00011	0.00185	0.00014	1090A	In Situ	AC	Tokanui	800224	VMW
S2/1 O 0.0	73	NORMAL 7/03/2023		Soil	0.00189	0.00015	0.0059	0.00015	0.00056	0.00008	0.00227	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B2/2 A 0.0	74	NORMAL 7/03/2023		Soil	0.00491	0.0002	0.04407	0.00043	<lod< td=""><td>0.00159</td><td>0.16584</td><td>0.00087</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00159	0.16584	0.00087	1090A	In Situ	AC	Tokanui	800224	VMW
B2/2 A 0.0	75 76	NORMAL 7/03/2023	14:48:55 soil-VMW	Soil	0.00514	0.00021	0.04429	0.00044	<lod< td=""><td>0.00162</td><td>0.16332</td><td>0.00088</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00162	0.16332	0.00088	1090A	In Situ	AC	Tokanui	800224	VMW
B2/2 A 0.0	76	NORMAL 7/03/2023	14:50:44 soil-VMW	Soil	0.00421	0.00019	0.03791	0.0004	<lod< td=""><td>0.00147</td><td>0.14104</td><td>0.00078</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00147	0.14104	0.00078	1090A	In Situ	AC	Tokanui	800224	VMW
B2/2 A 0.0	77 78	NORMAL 7/03/2023		Soil	0.00589	0.00021	0.04669	0.00043	<lod< td=""><td>0.00157</td><td>0.1709</td><td>0.00086</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00157	0.1709	0.00086	1090A	In Situ	AC	Tokanui	800224	VMW
B2/2 A 0.0 B2/2 A 0.0	78 79	NORMAL 7/03/2023 NORMAL 7/03/2023	14:53:04 soil-VMW 14:54:04 soil-VMW	Soil Soil	0.00499 0.00504	0.0002 0.00021	0.04632 0.04384	0.00044	<lod <lod< td=""><td>0.00162 0.00163</td><td>0.17113 0.17045</td><td>0.00089</td><td>1090A 1090A</td><td>In Situ</td><td>AC AC</td><td>Tokanui Tokanui</td><td>800224 800224</td><td>VMW</td></lod<></lod 	0.00162 0.00163	0.17113 0.17045	0.00089	1090A 1090A	In Situ	AC AC	Tokanui Tokanui	800224 800224	VMW
B2/2 B 0.0	80	NORMAL 7/03/2023 NORMAL 7/03/2023	14:54:04 SOII-VMW	Soil	0.00504	0.00021	0.02727	0.00043	0.00074	0.00163	0.17045	0.0009	1090A 1090A	In Situ In Situ	AC AC	Tokanui	800224	VMW
B2/2 C 0.0	81	NORMAL 7/03/2023	14:57:30 soil-VMW	Soil	0.00121	0.00012	0.02727	0.00028	<lod< td=""><td>0.00017</td><td>0.02093</td><td>0.00021</td><td>1090A 1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00017	0.02093	0.00021	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B2/2 C 0.0	82	NORMAL 7/03/2023		Soil	0.00250	0.00016	0.01387	0.00025	<lod <lod< td=""><td>0.00063</td><td>0.02861</td><td>0.00032</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></lod 	0.00063	0.02861	0.00032	1090A	In Situ	AC	Tokanui	800224	VMW
B2/2 D 0.0	83	NORMAL 7/03/2023		Soil	0.00231	0.00016	0.01738	0.00023	<lod <lod< td=""><td>0.00036</td><td>0.02801</td><td>0.00027</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></lod 	0.00036	0.02801	0.00027	1090A	In Situ	AC	Tokanui	800224	VMW
.,	- 55	1 7,00,2025	1			1		1		1 2.23000		,		5.00		1		

na/a o o o	0.4	NODA441 7/02/2022	45.00.22	6.3	0.00226	0.00045	0.0443	0.0003	0.00022	0.00044	0.005.00	0.00043	40004	1. 61.	1.0	T-1	000004	1/2 414/
B2/2 O 0.0	84		15:00:33 soil-VMW 15:02:34 soil-VMW	Soil	0.00226	0.00015	0.0113	0.0002	0.00033 <lod< td=""><td>0.00011</td><td>0.00568</td><td>0.00013</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui Tokanui</td><td>800224 800224</td><td>VMW</td></lod<>	0.00011	0.00568	0.00013	1090A	In Situ	AC	Tokanui Tokanui	800224 800224	VMW
B2/2 C 0.0	85			Soil	0.00253	0.00016	0.01582	0.00023			0.02713	0.0000	1090A	In Situ	AC			
Blank	1	11011111112 3/03/2023	8:48:31 soil-VMW	Soil	<lod< td=""><td>0.00038</td><td><lod< td=""><td>0.00023</td><td><lod< td=""><td>0.00015</td><td><lod< td=""><td>0.0002</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<></td></lod<></td></lod<>	0.00038	<lod< td=""><td>0.00023</td><td><lod< td=""><td>0.00015</td><td><lod< td=""><td>0.0002</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<></td></lod<>	0.00023	<lod< td=""><td>0.00015</td><td><lod< td=""><td>0.0002</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<>	0.00015	<lod< td=""><td>0.0002</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.0002	1090A	In Situ	AC	Tokanui	800224	VMW
Std	2	NORMAL 9/03/2023	8:49:50 soil-VMW	Soil	0.01353	0.00032	0.03838	0.00044	0.00734	0.00055	0.13586	0.00084	1090A	In Situ	AC	Tokanui	800224	VMW
Std	3	NORMAL 9/03/2023	8:50:57 soil-VMW	Soil	0.31184	0.00199	0.39347	0.00227	0.14354	0.00141	0.48568	0.00253	1090A	In Situ	AC	Tokanui	800224	VMW
B2/2 A 0.1	4	NORMAL 9/03/2023	8:53:56 soil-VMW	Soil	0.00553	0.00024	0.03384	0.00043	<lod< td=""><td>0.00148</td><td>0.10573</td><td>0.00073</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00148	0.10573	0.00073	1090A	In Situ	AC	Tokanui	800224	VMW
B2/2 A 0.4	5	NORMAL 9/03/2023	9:00:18 soil-VMW	Soil	0.00265	0.00016	0.01169	0.0002	0.00039	0.00008	0.00237	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B2/2 A 0.3	6	NORMAL 9/03/2023	9:03:23 soil-VMW	Soil	0.00386	0.00018	0.01577	0.00024	<lod< td=""><td>0.00136</td><td>0.13273</td><td>0.00071</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00136	0.13273	0.00071	1090A	In Situ	AC	Tokanui	800224	VMW
B2/2 A 0.2	7	NORMAL 9/03/2023	9:04:26 soil-VMW	Soil	0.00398	0.00018	0.02885	0.00033	<lod< td=""><td>0.00113</td><td>0.08871</td><td>0.00054</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00113	0.08871	0.00054	1090A	In Situ	AC	Tokanui	800224	VMW
B2/2 A 0.3	8	NORMAL 9/03/2023	9:05:44 soil-VMW	Soil	0.00295	0.00017	0.03056	0.00033	<lod< td=""><td>0.00044</td><td>0.01188</td><td>0.00018</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00044	0.01188	0.00018	1090A	In Situ	AC	Tokanui	800224	VMW
B2/2 A 0.3	9	NORMAL 9/03/2023	9:07:12 soil-VMW	Soil	0.00282	0.00016	0.02162	0.00027	<lod< td=""><td>0.00073</td><td>0.04041</td><td>0.00032</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00073	0.04041	0.00032	1090A	In Situ	AC	Tokanui	800224	VMW
B2/2 A 0.3	10	NORMAL 9/03/2023	9:09:38 soil-VMW	Soil	0.0024	0.00016	0.02762	0.00031	<lod< td=""><td>0.00061</td><td>0.02641</td><td>0.00026</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00061	0.02641	0.00026	1090A	In Situ	AC	Tokanui	800224	VMW
B2/2 C 0.1	11	NORMAL 9/03/2023	9:11:30 soil-VMW	Soil	0.00364	0.00018	0.02268	0.0003	<lod< td=""><td>0.0009</td><td>0.05224</td><td>0.0004</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.0009	0.05224	0.0004	1090A	In Situ	AC	Tokanui	800224	VMW
B2/2 C 0.2	12	NORMAL 9/03/2023	9:13:37 soil-VMW	Soil	0.00358	0.0002	0.02261	0.00032	<lod< td=""><td>0.00124</td><td>0.08617</td><td>0.00059</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00124	0.08617	0.00059	1090A	In Situ	AC	Tokanui	800224	VMW
B2/2 C 0.3	13	NORMAL 9/03/2023	9:14:41 soil-VMW	Soil	0.00361	0.00018	0.02742	0.00032	0.0013	0.00035	0.07525	0.00049	1090A	In Situ	AC	Tokanui	800224	VMW
B2/2 C 0.4	14	NORMAL 9/03/2023	9:18:44 soil-VMW	Soil	0.00235	0.00015	0.01127	0.00019	<lod< td=""><td>0.00033</td><td>0.00706</td><td>0.00014</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00033	0.00706	0.00014	1090A	In Situ	AC	Tokanui	800224	VMW
B2/2 C 0.4	15	NORMAL 9/03/2023	9:20:04 soil-VMW	Soil	0.00238	0.00015	0.01024	0.00019	0.0005	0.00009	0.00388	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B4/1 A 0.0	16	NORMAL 9/03/2023	9:31:08 soil-VMW	Soil	0.00312	0.00018	0.01551	0.00025	<lod< td=""><td>0.00032</td><td>0.00466</td><td>0.00013</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00032	0.00466	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
B4/1 B 0.0	17	NORMAL 9/03/2023	9:35:03 soil-VMW	Soil	0.00231	0.00015	0.01081	0.00019	<lod< td=""><td>0.00027</td><td>0.00387</td><td>0.00011</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00027	0.00387	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B4/1 C 0.0	18	NORMAL 9/03/2023	9:36:08 soil-VMW	Soil	0.00355	0.00017	0.0181	0.00025	0.00032	0.00009	0.00392	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B4/1 D 0.0	19	NORMAL 9/03/2023	9:37:06 soil-VMW	Soil	0.00211	0.00019	0.012	0.00025	0.00044	0.00011	0.00347	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
B4/1 O 0.0	20	NORMAL 9/03/2023	9:38:24 soil-VMW	Soil	0.00236	0.00017	0.01361	0.00024	0.00029	0.00009	0.0028	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B4/1 A 0.1	21	NORMAL 9/03/2023	9:40:38 soil-VMW	Soil	0.00385	0.0002	0.01266	0.00025	0.00036	0.00011	0.00442	0.00014	1090A	In Situ	AC	Tokanui	800224	VMW
B4/1 A 0.2	22	NORMAL 9/03/2023	9:42:19 soil-VMW	Soil	0.00523	0.00019	0.01613	0.00024	0.00036	0.00011	0.00601	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
B4/1 A 0.3	23	NORMAL 9/03/2023	9:43:44 soil-VMW	Soil	0.00415	0.00021	0.0125	0.00024	<lod< td=""><td>0.00034</td><td>0.00475</td><td>0.00014</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00034	0.00475	0.00014	1090A	In Situ	AC	Tokanui	800224	VMW
B4/1 A 0.4	24	NORMAL 9/03/2023	9:44:50 soil-VMW	Soil	0.00405	0.00019	0.01238	0.00023	<lod< td=""><td>0.00033</td><td>0.00468</td><td>0.00013</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00033	0.00468	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
B1/1 A 0.0	25	NORMAL 9/03/2023	9:53:12 soil-VMW	Soil	<lod< td=""><td>0.1342</td><td>0.13768</td><td>0.03594</td><td><lod< td=""><td>0.03293</td><td><lod< td=""><td>0.03678</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<></td></lod<>	0.1342	0.13768	0.03594	<lod< td=""><td>0.03293</td><td><lod< td=""><td>0.03678</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<>	0.03293	<lod< td=""><td>0.03678</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.03678	1090A	In Situ	AC	Tokanui	800224	VMW
B1/1 A 0.0	26	NORMAL 9/03/2023	9:54:24 soil-VMW	Soil	0.0025	0.00015	0.01261	0.00021	0.0006	0.00009	0.00318	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B1/1 B 0.0	27	NORMAL 9/03/2023	9:55:52 soil-VMW	Soil	0.00127	0.00013	0.00642	0.00015	0.00058	0.00007	0.00166	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B1/1 C 0.0	28	NORMAL 9/03/2023	9:57:03 soil-VMW	Soil	0.00097	0.00013	0.00542	0.00014	0.00063	0.00007	0.00162	0.00008	1090A	In Situ	AC	Tokanui	800224	VMW
B1/1 D 0.0	29	NORMAL 9/03/2023	9:58:19 soil-VMW	Soil	0.00158	0.00014	0.00587	0.00015	0.00093	0.00008	0.00188	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B1/1 O 0.0	30	NORMAL 9/03/2023	10:00:24 soil-VMW	Soil	0.00148	0.00015	0.00649	0.00016	0.00064	0.00008	0.00214	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B1/1 A 0.1	31	NORMAL 9/03/2023	10:01:50 soil-VMW	Soil	0.00134	0.00014	0.00667	0.00016	0.00071	0.00008	0.00171	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B1/1 A 0.2	32	NORMAL 9/03/2023	10:03:15 soil-VMW	Soil	0.00242	0.00016	0.00819	0.00018	0.00076	0.00009	0.0026	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B1/1 A 0.3	33	NORMAL 9/03/2023	10:06:29 soil-VMW	Soil	0.00225	0.00015	0.0082	0.00017	0.00089	0.00008	0.0019	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B1/1 A 0.0	34	NORMAL 9/03/2023	10:10:55 soil-VMW	Soil	0.00262	0.00016	0.00938	0.00018	0.00072	0.00009	0.00294	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B1/1 A 0.0	35	NORMAL 9/03/2023	10:12:02 soil-VMW	Soil	0.00162	0.00015	0.00903	0.00018	0.00037	0.00008	0.00248	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B10/1 A 0.0	36	NORMAL 9/03/2023	10:34:42 soil-VMW	Soil	0.00863	0.00021	0.01043	0.00019	0.00191	0.0001	0.00448	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B10/1 A 0.0	37	NORMAL 9/03/2023	10:36:27 soil-VMW	Soil	0.00707	0.0002	0.00925	0.00018	0.00127	0.0001	0.00516	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
B10/1 A 0.0	38	NORMAL 9/03/2023	10:37:34 soil-VMW	Soil	0.00684	0.00022	0.00901	0.0002	0.00148	0.00011	0.0043	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
B10/1 B 0.0	39	NORMAL 9/03/2023	10:38:51 soil-VMW	Soil	0.00158	0.00014	0.00656	0.00015	0.00077	0.00009	0.00377	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B10/1 C 0.0	40	NORMAL 9/03/2023	10:40:12 soil-VMW	Soil	0.0015	0.00014	0.00765	0.00017	0.00043	0.0001	0.00406	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
B10/1 D 0.0	41	NORMAL 9/03/2023	10:41:15 soil-VMW	Soil	0.00184	0.00016	0.01019	0.0002	<lod< td=""><td>0.00036</td><td>0.00643</td><td>0.00015</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00036	0.00643	0.00015	1090A	In Situ	AC	Tokanui	800224	VMW
B10/1 O 0.0	42	NORMAL 9/03/2023	10:42:53 soil-VMW	Soil	0.00184	0.00014	0.00947	0.00018	0.00049	0.00011	0.00656	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
B10/1 A 0.1	43	NORMAL 9/03/2023	10:44:45 soil-VMW	Soil	0.00579	0.0002	0.00837	0.00018	0.00188	0.00011	0.00407	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
B10/1 A 0.2	44	NORMAL 9/03/2023	10:47:31 soil-VMW	Soil	0.00428	0.00018	0.00782	0.00017	0.0009	0.0001	0.00421	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
B10/1 A 0.3	45	NORMAL 9/03/2023	10:48:49 soil-VMW	Soil	0.00521	0.00018	0.01242	0.0002	0.00061	0.00011	0.00589	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
B11/1 A 0.0	46	NORMAL 9/03/2023	10:56:03 soil-VMW	Soil	0.00207	0.00016	0.01789	0.00026	<lod< td=""><td>0.0008</td><td>0.04396</td><td>0.00036</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.0008	0.04396	0.00036	1090A	In Situ	AC	Tokanui	800224	VMW
B11/1 A 0.0	47	NORMAL 9/03/2023	10:57:28 soil-VMW	Soil	0.00205	0.00015	0.01814	0.00025	<lod< td=""><td>0.0007</td><td>0.03673</td><td>0.00031</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.0007	0.03673	0.00031	1090A	In Situ	AC	Tokanui	800224	VMW
B11/1 A 0.0	48	NORMAL 9/03/2023	10:58:38 soil-VMW	Soil	0.00191	0.00017	0.01989	0.0003	<lod< td=""><td>0.00083</td><td>0.03867</td><td>0.00036</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00083	0.03867	0.00036	1090A	In Situ	AC	Tokanui	800224	VMW
B11/1 B 0.0	49	NORMAL 9/03/2023	11:01:05 soil-VMW	Soil	0.00152	0.00015	0.01681	0.00025	<lod< td=""><td>0.00054</td><td>0.01904</td><td>0.00023</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00054	0.01904	0.00023	1090A	In Situ	AC	Tokanui	800224	VMW
B11/1 C 0.0	50	NORMAL 9/03/2023	11:02:43 soil-VMW	Soil	0.00134	0.00014	0.00908	0.00018	<lod< td=""><td>0.00035</td><td>0.00771</td><td>0.00015</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00035	0.00771	0.00015	1090A	In Situ	AC	Tokanui	800224	VMW
B11/1 D 0.0	51	NORMAL 9/03/2023	11:04:56 soil-VMW	Soil	0.00139	0.00021	0.01048	0.00027	<lod< td=""><td>0.00049</td><td>0.00769</td><td>0.0002</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00049	0.00769	0.0002	1090A	In Situ	AC	Tokanui	800224	VMW
B11/1 O 0.0	52	NORMAL 9/03/2023	11:07:25 soil-VMW	Soil	0.00144	0.00016	0.00847	0.00019	<lod< td=""><td>0.00027</td><td>0.00277</td><td>0.00011</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00027	0.00277	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B11/1 O 0.0	53	NORMAL 9/03/2023	11:09:29 soil-VMW	Soil	0.00128	0.00015	0.00822	0.00019	<lod< td=""><td>0.00027</td><td>0.00279</td><td>0.00011</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00027	0.00279	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B11/1 O 0.0	54	NORMAL 9/03/2023	11:11:57 soil-VMW	Soil	0.00109	0.00014	0.00842	0.00018	0.00029	0.00008	0.00226	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B11/1 A 0.1	55	NORMAL 9/03/2023	11:13:09 soil-VMW	Soil	0.00196	0.00017	0.01395	0.00024	<lod< td=""><td>0.00052</td><td>0.01566</td><td>0.00022</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00052	0.01566	0.00022	1090A	In Situ	AC	Tokanui	800224	VMW
B11/1 A 0.2	56	NORMAL 9/03/2023	11:15:44 soil-VMW	Soil	0.00386	0.00017	0.02235	0.00028	<lod< td=""><td>0.00063</td><td>0.02803</td><td>0.00027</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00063	0.02803	0.00027	1090A	In Situ	AC	Tokanui	800224	VMW
B11/1 A 0.3	57	NORMAL 9/03/2023	11:17:27 soil-VMW	Soil	0.00171	0.00015	0.01047	0.0002	<lod< td=""><td>0.00035</td><td>0.00684</td><td>0.00027</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00035	0.00684	0.00027	1090A	In Situ	AC	Tokanui	800224	VMW
B11/1 A 0.4	58	NORMAL 9/03/2023	11:19:44 soil-VMW	Soil	0.00189	0.00016	0.01107	0.00021	<lod< td=""><td>0.00034</td><td>0.00643</td><td>0.00014</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00034	0.00643	0.00014	1090A	In Situ	AC	Tokanui	800224	VMW
B11/1 A 0.2	59	NORMAL 9/03/2023	11:23:02 soil-VMW	Soil	0.0032	0.00017	0.02616	0.00031	<lod< td=""><td>0.00069</td><td>0.03241</td><td>0.0003</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00069	0.03241	0.0003	1090A	In Situ	AC	Tokanui	800224	VMW
B11/1 A 0.2	60		11:27:11 soil-VMW	Soil	0.0032	0.00017	0.01796	0.00031	<lod< td=""><td>0.0006</td><td>0.03241</td><td>0.0003</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.0006	0.03241	0.0003	1090A	In Situ	AC	Tokanui	800224	VMW
B11/2 A 0.0	61	NORMAL 9/03/2023	11:49:02 soil-VMW	Soil	0.0025	0.00015	0.04356	0.00023	<lod< td=""><td>0.00077</td><td>0.04373</td><td>0.00020</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00077	0.04373	0.00020	1090A	In Situ	AC	Tokanui	800224	VMW
B11/2 A 0.0	62	NORMAL 9/03/2023	11:51:06 soil-VMW	Soil	0.0013	0.00013	0.04341	0.0004	<lod <lod< td=""><td>0.00077</td><td>0.04596</td><td>0.00034</td><td>1090A 1090A</td><td>In Situ</td><td>AC.</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></lod 	0.00077	0.04596	0.00034	1090A 1090A	In Situ	AC.	Tokanui	800224	VMW
B11/2 A 0.0	63	NORMAL 9/03/2023	11:51:06 SOII-VMW	Soil	0.00161	0.00014	0.03348	0.00038	<lod <lod< td=""><td>0.00076</td><td>0.04596</td><td>0.00034</td><td>1090A 1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></lod 	0.00076	0.04596	0.00034	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B11/2 B 0.0	64		11:53:23 soil-VMW	Soil	0.00172	0.00014	0.01852	0.00033	<lod <lod< td=""><td>0.00033</td><td>0.01379</td><td>0.00023</td><td>1090A 1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></lod 	0.00033	0.01379	0.00023	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B11/2 C 0.0	65	NORMAL 9/03/2023		Soil	0.00133	0.00014	0.01522	0.00024	<lod <lod< td=""><td>0.00043</td><td>0.01026</td><td>0.00018</td><td>1090A 1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></lod 	0.00043	0.01026	0.00018	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
ID11/4 C U.U	כס ן	INUNIVIAL 9/03/2023	11.34.40 SUII-VIVIW	3011	0.00146	0.00015	0.01522	0.00024	\LUD	0.00042	0.01026	0.0001/	TORUM	III SILU	AC	Loranul	000224	VIVIVV

244/2222																		
B11/2 D 0.0	66 67	NORMAL 9/03/2023 NORMAL 9/03/2023		Soil Soil	0.00091 0.00329	0.00016	0.02224 0.01405	0.00031	<lod 0.00054</lod 	0.00037 0.00015	0.00601 0.00863	0.00015	1090A 1090A	In Situ	AC AC	Tokanui Tokanui	800224 800224	VMW
B11/2 O 0.0						0.000		0.00026				0.00018		In Situ				
B11/2 A 0.0	68	11011111112 3/03/2023		Soil	0.00176	0.00014	0.04898	0.0004	<lod< td=""><td>0.00074</td><td>0.04426</td><td>0.00033</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00074	0.04426	0.00033	1090A	In Situ	AC	Tokanui	800224	VMW
B11/2 A 0.0	69	NORMAL 9/03/2023	12:01:10 soil-VMW	Soil	0.00178	0.00014	0.04691	0.00039	<lod< td=""><td>0.00073</td><td>0.04503</td><td>0.00033</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00073	0.04503	0.00033	1090A	In Situ	AC	Tokanui	800224	VMW
B11/2 A 0.0	70	NORMAL 9/03/2023	12:02:16 soil-VMW	Soil	0.00154	0.00015	0.04921	0.00043	<lod< td=""><td>0.00081</td><td>0.04627</td><td>0.00036</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00081	0.04627	0.00036	1090A	In Situ	AC	Tokanui	800224	VMW
B11/2 A 0.1	71	NORMAL 9/03/2023	12:03:30 soil-VMW	Soil	0.00246	0.00019	0.01794	0.00029	<lod< td=""><td>0.00045</td><td>0.00922</td><td>0.00018</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00045	0.00922	0.00018	1090A	In Situ	AC	Tokanui	800224	VMW
B11/2 A 0.2	72	NORMAL 9/03/2023	12:05:16 soil-VMW	Soil	0.00231	0.00016	0.01455	0.00023	<lod< td=""><td>0.00055</td><td>0.01891</td><td>0.00023</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00055	0.01891	0.00023	1090A	In Situ	AC	Tokanui	800224	VMW
B11/2 A 0.4	73	NORMAL 9/03/2023	12:08:39 soil-VMW	Soil	0.00094	0.00013	0.00929	0.00018	0.00051	0.00008	0.00308	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B11/2 A 0.3	74	NORMAL 9/03/2023	12:09:35 soil-VMW	Soil	0.00104	0.00014	0.01255	0.00021	<lod< td=""><td>0.00042</td><td>0.01099</td><td>0.00017</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00042	0.01099	0.00017	1090A	In Situ	AC	Tokanui	800224	VMW
B15/1 A 0.0	75	NORMAL 9/03/2023	12:23:52 soil-VMW	Soil	0.00235	0.00017	0.03699	0.00039	<lod< td=""><td>0.00093</td><td>0.05532</td><td>0.00042</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00093	0.05532	0.00042	1090A	In Situ	AC	Tokanui	800224	VMW
B15/1 B 0.0	76	NORMAL 9/03/2023	12:25:25 soil-VMW	Soil	0.00089	0.00014	0.00933	0.00019	<lod< td=""><td>0.00034</td><td>0.00669</td><td>0.00014</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00034	0.00669	0.00014	1090A	In Situ	AC	Tokanui	800224	VMW
B15/1 C 0.0	77	NORMAL 9/03/2023	12:26:32 soil-VMW	Soil	0.00173	0.00016	0.00776	0.00019	<lod< td=""><td>0.00036</td><td>0.00621</td><td>0.00015</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00036	0.00621	0.00015	1090A	In Situ	AC	Tokanui	800224	VMW
B15/1 D 0.0	78	NORMAL 9/03/2023	12:27:36 soil-VMW	Soil	0.00209	0.00017	0.00806	0.00019	0.00066	0.00012	0.00643	0.00015	1090A	In Situ	AC	Tokanui	800224	VMW
B15/1 A 0.0	79	NORMAL 9/03/2023	12:29:39 soil-VMW	Soil	0.00172	0.00017	0.03193	0.00037	<lod< td=""><td>0.00093</td><td>0.05315</td><td>0.00042</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00093	0.05315	0.00042	1090A	In Situ	AC	Tokanui	800224	VMW
B15/1 A 0.0	80	NORMAL 9/03/2023	12:30:55 soil-VMW	Soil	0.00182	0.00016	0.03807	0.00038	<lod< td=""><td>0.00089</td><td>0.05425</td><td>0.0004</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00089	0.05425	0.0004	1090A	In Situ	AC	Tokanui	800224	VMW
B15/1 A 0.1	81	NORMAL 9/03/2023	12:35:02 soil-VMW	Soil	0.0026	0.00017	0.01505	0.00024	<lod< td=""><td>0.00097</td><td>0.06521</td><td>0.00045</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00097	0.06521	0.00045	1090A	In Situ	AC	Tokanui	800224	VMW
B15/1 A 0.2	82	NORMAL 9/03/2023	12:36:47 soil-VMW	Soil	0.001	0.00015	0.00788	0.00018	0.00075	0.00013	0.00763	0.00016	1090A	In Situ	AC	Tokanui	800224	VMW
B15/1 A 0.3	83	NORMAL 9/03/2023	12:38:25 soil-VMW	Soil	0.00162	0.00015	0.0079	0.00018	0.00044	0.00008	0.00205	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
Blank	84	NORMAL 9/03/2023	12:43:07 soil-VMW	Soil	<lod< td=""><td>0.00037</td><td><lod< td=""><td>0.00022</td><td><lod< td=""><td>0.00015</td><td><lod< td=""><td>0.0002</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<></td></lod<></td></lod<>	0.00037	<lod< td=""><td>0.00022</td><td><lod< td=""><td>0.00015</td><td><lod< td=""><td>0.0002</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<></td></lod<>	0.00022	<lod< td=""><td>0.00015</td><td><lod< td=""><td>0.0002</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<>	0.00015	<lod< td=""><td>0.0002</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.0002	1090A	In Situ	AC	Tokanui	800224	VMW
Std	85	NORMAL 9/03/2023	12:44:09 soil-VMW	Soil	0.01465	0.00033	0.03836	0.00045	0.0064	0.00056	0.13748	0.00086	1090A	In Situ	AC	Tokanui	800224	VMW
Std	86	NORMAL 9/03/2023	12:45:07 soil-VMW	Soil	0.33441	0.00213	0.4213	0.00244	0.15549	0.00151	0.53361	0.0028	1090A	In Situ	AC	Tokanui	800224	VMW
B15/2 A 0.0	87	NORMAL 9/03/2023	12:57:51 soil-VMW	Soil	0.00239	0.00019	0.02163	0.00033	0.00066	0.00021	0.01842	0.00026	1090A	In Situ	AC	Tokanui	800224	VMW
B15/2 B 0.0	88	NORMAL 9/03/2023	12:59:25 soil-VMW	Soil	0.00192	0.00016	0.01267	0.00022	<lod< td=""><td>0.00043</td><td>0.01047</td><td>0.00018</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00043	0.01047	0.00018	1090A	In Situ	AC	Tokanui	800224	VMW
B15/2 C 0.0	89 90	NORMAL 9/03/2023 NORMAL 9/03/2023	13:01:03 soil-VMW 13:02:19 soil-VMW	Soil	0.00281 0.00217	0.00019 0.00018	0.01051 0.00832	0.00023	<lod <lod< td=""><td>0.00047</td><td>0.0<mark>1069</mark> 0.00597</td><td>0.0002 0.00015</td><td>1090A 1090A</td><td>In Situ</td><td>AC AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></lod 	0.00047	0.0 <mark>1069</mark> 0.00597	0.0002 0.00015	1090A 1090A	In Situ	AC AC	Tokanui	800224	VMW
B15/2 D 0.0 B15/2 A 0.1	90	NORMAL 9/03/2023 NORMAL 9/03/2023	13:02:19 SOII-VMW 13:04:12 SOII-VMW	Soil Soil	0.00217	0.00018	0.00832	0.0002	<lod< td=""><td>0.00037</td><td>0.00597</td><td>0.00015</td><td>1090A 1090A</td><td>In Situ In Situ</td><td>AC</td><td>Tokanui Tokanui</td><td>800224 800224</td><td>VMW</td></lod<>	0.00037	0.00597	0.00015	1090A 1090A	In Situ In Situ	AC	Tokanui Tokanui	800224 800224	VMW
B15/2 A 0.1	92	NORMAL 9/03/2023	13:04:12 SOII-VMW	Soil	0.00359	0.0002	0.0174	0.0003	<lod <lod< td=""><td>0.00078</td><td>0.03311</td><td>0.00034</td><td>1090A 1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></lod 	0.00078	0.03311	0.00034	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B15/2 A 0.1	93	NORMAL 9/03/2023	13:06:14 soil-VMW	Soil	0.00339	0.0002	0.0174	0.00029	<lod <lod< td=""><td>0.00078</td><td>0.03324</td><td>0.00034</td><td>1090A 1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></lod 	0.00078	0.03324	0.00034	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B15/2 A 0.2	94	NORMAL 9/03/2023	13:09:04 soil-VMW	Soil	0.00284	0.00016	0.00592	0.00027	0.00063	0.00009	0.00343	0.00030	1090A	In Situ	AC	Tokanui	800224	VMW
B15/2 A 0.3	95	NORMAL 9/03/2023	13:10:56 soil-VMW	Soil	0.00234	0.00017	0.00603	0.00015	0.00051	0.00003	0.00343	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B17/1 A 0.0	96	NORMAL 9/03/2023	13:22:54 soil-VMW	Soil	0.04545	0.00017	0.4017	0.00222	0.00295	0.00026	0.02431	0.0003	1090A	In Situ	AC	Tokanui	800224	VMW
B17/1 B 0.0	97	NORMAL 9/03/2023	13:24:46 soil-VMW	Soil	0.01082	0.00035	0.08297	0.00061	0.00052	0.00017	0.01483	0.00032	1090A	In Situ	AC	Tokanui	800224	VMW
B17/1 C 0.0	98	NORMAL 9/03/2023	13:26:11 soil-VMW	Soil	0.00495	0.00023	0.07668	0.00065	0.00078	0.00015	0.00855	0.00018	1090A	In Situ	AC	Tokanui	800224	VMW
B17/1 D 0.0	99	NORMAL 9/03/2023	13:27:26 soil-VMW	Soil	0.00293	0.00019	0.04622	0.00044	0.00096	0.00012	0.00591	0.00015	1090A	In Situ	AC	Tokanui	800224	VMW
B17/1 O 0.0	100	NORMAL 9/03/2023	13:29:04 soil-VMW	Soil	0.00149	0.00018	0.01355	0.00025	0.00054	0.00014	0.00736	0.00017	1090A	In Situ	AC	Tokanui	800224	VMW
B17/1 A 0.1	101	NORMAL 9/03/2023	13:33:49 soil-VMW	Soil	0.00255	0.00018	0.01474	0.00024	0.00055	0.00017	0.01546	0.00021	1090A	In Situ	AC	Tokanui	800224	VMW
B17/1 A 0.2	102	NORMAL 9/03/2023	13:36:02 soil-VMW	Soil	0.00251	0.00018	0.01225	0.00023	<lod< td=""><td>0.00046</td><td>0.01087</td><td>0.00019</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00046	0.01087	0.00019	1090A	In Situ	AC	Tokanui	800224	VMW
B17/1 A 0.2	103	NORMAL 9/03/2023	13:38:28 soil-VMW	Soil	0.00207	0.00018	0.01145	0.00023	0.00047	0.00013	0.00691	0.00016	1090A	In Situ	AC	Tokanui	800224	VMW
B17/1 A 0.2	104	NORMAL 9/03/2023	13:40:08 soil-VMW	Soil	0.00218	0.00017	0.01325	0.00023	0.00059	0.00013	0.0082	0.00016	1090A	In Situ	AC	Tokanui	800224	VMW
B17/1 A 0.3	105	NORMAL 9/03/2023	13:41:43 soil-VMW	Soil	0.00255	0.00018	0.01137	0.00022	0.00043	0.00014	0.00849	0.00017	1090A	In Situ	AC	Tokanui	800224	VMW
B17/2 A 0.0	106	NORMAL 9/03/2023	13:49:55 soil-VMW	Soil	0.00266	0.0002	0.03372	0.0004	<lod< td=""><td>0.00052</td><td>0.01226</td><td>0.00021</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00052	0.01226	0.00021	1090A	In Situ	AC	Tokanui	800224	VMW
B17/2 A 0.0	107	NORMAL 9/03/2023	13:50:57 soil-VMW	Soil	0.00341	0.00022	0.03434	0.00042	0.00126	0.0002	0.01497	0.00024	1090A	In Situ	AC	Tokanui	800224	VMW
B17/2 A 0.0	108	NORMAL 9/03/2023	13:52:03 soil-VMW	Soil	0.00239	0.00017	0.03732	0.00038	0.00052	0.00016	0.01392	0.0002	1090A	In Situ	AC	Tokanui	800224	VMW
B17/2 B 0.0	109	NORMAL 9/03/2023	13:53:37 soil-VMW	Soil	0.00316	0.00022	0.01811	0.00032	<lod< td=""><td>0.00055</td><td>0.01205</td><td>0.00023</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00055	0.01205	0.00023	1090A	In Situ	AC	Tokanui	800224	VMW
B17/2 C 0.0	110	NORMAL 9/03/2023	13:54:55 soil-VMW	Soil	0.00335	0.00021	0.02659	0.00037	0.00063	0.0002	0.01575	0.00024	1090A	In Situ	AC	Tokanui	800224	VMW
B17/2 D 0.0	111	NORMAL 9/03/2023	13:56:50 soil-VMW	Soil	0.00352	0.00023	0.01468	0.0003	0.0006	0.00017	0.00892	0.00021	1090A	In Situ	AC	Tokanui	800224	VMW
B17/2 O 0.0	112	NORMAL 9/03/2023	13:58:00 soil-VMW	Soil	0.00359	0.00021	0.0152	0.00028	0.00078	0.00015	0.00772	0.00018	1090A	In Situ	AC	Tokanui	800224	VMW
B17/2 A 0.1	113	NORMAL 9/03/2023	13:59:45 soil-VMW	Soil	0.00305	0.00024	0.01639	0.00031	0.00139	0.00013	0.00218	0.00015	1090A	In Situ	AC	Tokanui	800224	VMW
B17/2 A 0.2	114	NORMAL 9/03/2023	14:01:12 soil-VMW	Soil	0.00158	0.00017	0.01423	0.00026	0.00055	0.00009	0.00184	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B17/2 A 0.3	115	NORMAL 9/03/2023	14:04:47 soil-VMW	Soil	0.00173	0.00014	0.0077	0.00016	0.00039	0.00007	0.00137	0.00008	1090A	In Situ	AC	Tokanui	800224	VMW
B19/1 A 0.0	116	NORMAL 9/03/2023	14:10:55 soil-VMW	Soil	0.00251	0.00018	0.0208	0.00029	<lod< td=""><td>0.00058</td><td>0.0193</td><td>0.00024</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00058	0.0193	0.00024	1090A	In Situ	AC	Tokanui	800224	VMW
B19/1 B 0.0	117	NORMAL 9/03/2023	14:12:20 soil-VMW	Soil	0.00316	0.00023	0.02529	0.00039	<lod< td=""><td>0.00065</td><td>0.01642</td><td>0.00027</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00065	0.01642	0.00027	1090A	In Situ	AC	Tokanui	800224	VMW
B19/1 C 0.0	118	NORMAL 9/03/2023	14:14:04 soil-VMW	Soil	0.0027	0.00022	0.01439	0.0003	0.00078	0.0002	0.01233	0.00024	1090A	In Situ	AC	Tokanui	800224	VMW
B19/1 D 0.0	119	NORMAL 9/03/2023	14:15:24 soil-VMW	Soil	0.00183	0.00019	0.01113	0.00024	<lod< td=""><td>0.00049</td><td>0.01051</td><td>0.0002</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00049	0.01051	0.0002	1090A	In Situ	AC	Tokanui	800224	VMW
B19/1 O 0.0	120	NORMAL 9/03/2023	14:16:47 soil-VMW	Soil	0.00355	0.00022	0.01556	0.00029	0.00064	0.00016	0.00824	0.00019	1090A	In Situ	AC	Tokanui	800224	VMW
B19/1 A 0.1	121	NORMAL 9/03/2023	14:20:24 soil-VMW	Soil	0.00362	0.00023	0.02663	0.00039	0.00081	0.00025	0.02404	0.00032	1090A	In Situ	AC	Tokanui	800224	VMW
B19/1 A 0.1	122	NORMAL 9/03/2023	14:21:45 soil-VMW	Soil	0.00343	0.00021	0.0261	0.00037	0.00148	0.00025	0.0252	0.00031	1090A	In Situ	AC	Tokanui	800224	VMW
B19/1 A 0.1	123	NORMAL 9/03/2023	14:22:37 soil-VMW	Soil	0.00307	0.00021	0.0268	0.00038	0.00092	0.00025	0.02582	0.00031	1090A	In Situ	AC	Tokanui	800224	VMW
B19/1 A 0.2	124	NORMAL 9/03/2023	14:24:14 soil-VMW	Soil	0.00169	0.00015	0.00744	0.00017	<lod< td=""><td>0.00026</td><td>0.00328</td><td>0.00011</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00026	0.00328	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B19/1 A 0.3	125	NORMAL 9/03/2023	14:25:46 soil-VMW	Soil	0.00192	0.00015	0.00817	0.00018	0.00048	0.00009	0.0026	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B20 yellow paint	126	NORMAL 9/03/2023	14:41:03 soil-VMW	Soil	0.00159	0.00021	0.05107	0.00056	0.0006	0.0001	0.0009	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B21/1 A 0.0	127	NORMAL 9/03/2023	14:51:32 soil-VMW	Soil	0.05538	0.00067	0.434	0.00244	0.00292	0.00053	0.10683	0.00078	1090A	In Situ	AC	Tokanui	800224	VMW
B21/1 A 0.0	128 129	NORMAL 9/03/2023 NORMAL 9/03/2023	14:52:54 soil-VMW	Soil	0.06572	0.00072	0.37083	0.0021	0.00389	0.0005	0.09832	0.00073	1090A	In Situ	AC AC	Tokanui	800224	VMW
B21/1 A 0.0 B21/1 B 0.0	130	NORMAL 9/03/2023 NORMAL 9/03/2023	14:54:46 SOII-VMW	Soil Soil	0.03412 0.03121	0.0005 0.0004	0.38114 0.10206	0.00206 0.0007	<lod 0.00123</lod 	0.00138	0.09174 0.01759	0.00067 0.00023	1090A 1090A	In Situ In Situ	AC	Tokanui Tokanui	800224 800224	VMW
B21/1 B 0.0 B21/1 C 0.0	130	NORMAL 9/03/2023	14:55:53 SOII-VMW	Soil	0.003121	0.0004	0.10206	0.0007	0.00123 <lod< td=""><td>0.00019</td><td>0.01759</td><td>0.00023</td><td>1090A 1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00019	0.01759	0.00023	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B21/1 C 0.0 B21/1 D 0.0	132	NORMAL 9/03/2023		Soil	0.00838	0.00024	0.04003	0.00041	<lod <lod< td=""><td>0.00033</td><td>0.00821</td><td>0.00015</td><td>1090A 1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></lod 	0.00033	0.00821	0.00015	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
DZ 1/ 1 D U.U	132	140/101ML 3/05/2023	14.30.10 2011-AIAIAA	3011	0.00233	0.00022	0.01200	0.00028	\LUD	0.00037	0.00373	0.00012	TORON	III SILU	AC	IUKanul	000224	A IAI AA

B21/1 O 0.0	133	NORMAL 9/03/2023	14:59:36 soil-VMV	/ Soil	0.00236	0.00018	0.01339	0.00025	0.00059	0.00012	0.00436	0.00014	1090A	In Situ	AC	Tokanui	800224	VMW
B21/1 A 0.1	134	NORMAL 9/03/2023			0.00236	0.00018	0.01339	0.00023	0.00039	0.00012	0.01947	0.00014	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B21/1 A 0.2	135	NORMAL 9/03/2023			0.00126	0.00015	0.00419	0.00014	0.00029	0.00007	0.00148	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B21/1 A 0.3	136	NORMAL 9/03/2023	15:08:18 soil-VMV		0.00145	0.00016	0.00444	0.00015	0.00064	0.00009	0.00238	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B21/1 B 0.1	137	NORMAL 9/03/2023	15:10:47 soil-VMV		0.00765	0.00026	0.04519	0.0005	0.00066	0.00014	0.00643	0.00017	1090A	In Situ	AC	Tokanui	800224	VMW
Blank	1	NORMAL 13/03/2023	8:36:55 soil-VMV		<lod< td=""><td>0.00039</td><td><lod< td=""><td>0.00022</td><td><lod< td=""><td>0.00015</td><td><lod< td=""><td>0.0002</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<></td></lod<></td></lod<>	0.00039	<lod< td=""><td>0.00022</td><td><lod< td=""><td>0.00015</td><td><lod< td=""><td>0.0002</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<></td></lod<>	0.00022	<lod< td=""><td>0.00015</td><td><lod< td=""><td>0.0002</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<>	0.00015	<lod< td=""><td>0.0002</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.0002	1090A	In Situ	AC	Tokanui	800224	VMW
Std	2	NORMAL 13/03/2023	8:38:23 soil-VMV		0.01375	0.00033	0.03814	0.00045	0.00675	0.00056	0.13595	0.00086	1090A	In Situ	AC	Tokanui	800224	VMW
Std	3	NORMAL 13/03/2023			0.32759	0.00207	0.40873	0.00235	0.15085	0.00147	0.52056	0.0027	1090A	▲ In Situ	AC	Tokanui	800224	VMW
B22/1 A 0.0	4	NORMAL 13/03/2023	8:43:28 soil-VMV		0.00105	0.00016	0.07869	0.00062	0.00035	0.00009	0.00203	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B22/1 B 0.0	5	NORMAL 13/03/2023	8:44:26 soil-VMV	/ Soil	<lod< td=""><td>0.0003</td><td>0.03329</td><td>0.00029</td><td><lod< td=""><td>0.00016</td><td>0.00107</td><td>0.00007</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<>	0.0003	0.03329	0.00029	<lod< td=""><td>0.00016</td><td>0.00107</td><td>0.00007</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00016	0.00107	0.00007	1090A	In Situ	AC	Tokanui	800224	VMW
B22/1 C 0.0	6	NORMAL 13/03/2023	8:45:37 soil-VMV	/ Soil	0.00118	0.00014	0.01064	0.0002	0.00025	0.00007	0.00181	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B22/1 D 0.0	7	NORMAL 13/03/2023	8:47:00 soil-VMV	/ Soil	0.00126	0.00014	0.01206	0.0002	<lod< td=""><td>0.00024</td><td>0.00261</td><td>0.0001</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00024	0.00261	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B22/1 A 0.1	8	NORMAL 13/03/2023	8:49:57 soil-VMV	/ Soil	0.00217	0.00016	0.01748	0.00026	0.00034	0.00008	0.00243	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B22/1 A 0.2	9	NORMAL 13/03/2023	8:52:15 soil-VMV	/ Soil	0.00161	0.00016	0.01071	0.00021	0.00041	0.00008	0.00163	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B21/2 A 0.0	10	NORMAL 13/03/2023	8:59:56 soil-VMV	/ Soil	0.00977	0.00022	0.36495	0.0015	0.00084	0.00025	0.0462	0.00033	1090A	In Situ	AC	Tokanui	800224	VMW
B21/2 A 0.0	11	NORMAL 13/03/2023	9:01:22 soil-VMV	/ Soil	0.00883	0.00021	0.39939	0.00157	0.00133	0.00024	0.04253	0.00031	1090A	In Situ	AC	Tokanui	800224	VMW
B21/2 A 0.0	12	NORMAL 13/03/2023	9:02:42 soil-VMV	/ Soil	0.00777	0.0002	0.38207	0.00151	0.00162	0.00031	0.07736	0.00044	1090A	In Situ	AC	Tokanui	800224	VMW
B21/2 A 0.0	13	NORMAL 13/03/2023	9:03:37 soil-VMV	/ Soil	0.0069	0.00019	0.38538	0.0015	0.001	0.00023	0.04169	0.0003	1090A	In Situ	AC	Tokanui	800224	VMW
B21/2 B 0.0	14	NORMAL 13/03/2023	9:05:08 soil-VMV		0.01385	0.00025	0.02249	0.00027	0.00053	0.00011	0.00675	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
B21/2 C 0.0	15	NORMAL 13/03/2023	9:06:43 soil-VMV		0.00252	0.00013	0.01083	0.00017	0.00025	0.00007	0.00288	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B21/2 D 0.0	16	NORMAL 13/03/2023	9:08:19 soil-VMV		0.00116	0.00012	0.00631	0.00014	0.00034	0.00006	0.00148	0.00008	1090A	In Situ	AC	Tokanui	800224	VMW
B21/2 O 0.0	17	NORMAL 13/03/2023	9:09:25 soil-VMV		<lod< td=""><td>0.00034</td><td>0.00417</td><td>0.00012</td><td>0.00027</td><td>0.00006</td><td>0.0011</td><td>0.00008</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00034	0.00417	0.00012	0.00027	0.00006	0.0011	0.00008	1090A	In Situ	AC	Tokanui	800224	VMW
B21/2 A 0.1	18	NORMAL 13/03/2023	9:10:41 soil-VMV		0.00532	0.00027	0.0585	0.00064	0.00095	0.00021	0.01356	0.00026	1090A	In Situ	AC	Tokanui	800224	VMW
B21/2 A 0.2	19	NORMAL 13/03/2023	9:13:53 soil-VMV		0.00427	0.00019	0.01747	0.00027	0.00053	0.00011	0.00498	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
B23/1 B 0.0	20	NORMAL 13/03/2023	9:26:14 soil-VMV		0.00153	0.00015	0.11585	0.00073	<lod< td=""><td>0.00063</td><td>0.02641</td><td>0.00027</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00063	0.02641	0.00027	1090A	In Situ	AC	Tokanui	800224	VMW
B23/1 C 0.0	21	NORMAL 13/03/2023	9:28:22 soil-VMV		0.00111	0.00014	0.01728	0.00025	<lod< td=""><td>0.00029</td><td>0.00405</td><td>0.00012</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00029	0.00405	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
B23/1 D 0.0	22	NORMAL 13/03/2023	9:30:16 soil-VMV		0.00063	0.00014	0.00938	0.00019	<lod< td=""><td>0.00024</td><td>0.0022</td><td>0.0001</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00024	0.0022	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B23/1 O 0.0	23	11011111111 23/03/2023	9:31:23 soil-VMV		0.001	0.00014	0.01012	0.00019	0.00027	0.00008	0.00216	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B23/1 B 0.1	24	NORMAL 13/03/2023 NORMAL 13/03/2023	9:32:40 soil-VMV 9:34:29 soil-VMV		0.00199	0.00017	0.04266	0.00042	<lod< td=""><td>0.00047</td><td>0.01306</td><td>0.0002</td><td>1090A 1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00047	0.01306	0.0002	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B23/1 B 0.2	25 26	,,			0.00184	0.00017	0.01075 0.0355	0.00022	<lod< td=""><td>0.00044</td><td>0.00987 0.02353</td><td>0.00018</td><td></td><td>In Situ</td><td>AC AC</td><td>Tokanui</td><td>800224</td><td></td></lod<>	0.00044	0.00987 0.02353	0.00018		In Situ	AC AC	Tokanui	800224	
B25 paint B26/1 A 0.0	26	NORMAL 13/03/2023 NORMAL 13/03/2023	9:42:09 soil-VMV 9:53:47 soil-VMV		0.00262 0.00203	0.00027 0.00013	0.0353	0.00054	<lod 0.00284</lod 	0.00081	0.02353	0.00037	1090A 1090A	In Situ In Situ	AC	Tokanui Tokanui	800224 800224	VMW
B26/1 B 0.0	28	NORMAL 13/03/2023			0.00203	0.00013	0.00682	0.0002	0.00284	0.00021	0.00395	0.00026	1090A 1090A	1	AC	Tokanui	800224	VMW
B26/1 C 0.0	29	NORMAL 13/03/2023	9:59:30 soil-VMV		0.00276	0.00013	0.00987	0.00014	0.0011	0.00008	0.0054	0.0001	1090A 1090A	In Situ In Situ	AC	Tokanui	800224	VMW
B26/1 D 0.0	30	NORMAL 13/03/2023	10:02:13 soil-VMV		0.00434	0.00013	0.00387	0.00014	0.00111	0.00012	0.00183	0.00014	1090A	In Situ	AC	Tokanui	800224	VMW
B26/1 O 0.0	31	NORMAL 13/03/2023	10:02:13 30II-VIVV		0.00191	0.00014	0.00517	0.00014	0.00042	0.00007	0.00183	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B26/2 A 0.0	32	NORMAL 13/03/2023			0.00464	0.00023	0.01647	0.00019	0.00209	0.00025	0.02388	0.0003	1090A	In Situ	AC	Tokanui	800224	VMW
B26/2 B 0.0	33	NORMAL 13/03/2023			0.00315	0.00017	0.00819	0.00018	<lod< td=""><td>0.00023</td><td>0.00421</td><td>0.0003</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00023	0.00421	0.0003	1090A	In Situ	AC	Tokanui	800224	VMW
B26/2 C 0.0	34	NORMAL 13/03/2023	10:14:12 soil-VMV		0.00289	0.00018	0.00953	0.00021	0.00032	0.0001	0.00386	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
B26/2 D 0.0	35	NORMAL 13/03/2023			0.0033	0.00017	0.00964	0.00019	0.00049	0.00012	0.00682	0.00014	1090A	In Situ	AC	Tokanui	800224	VMW
B26/2 O 0.0	36	NORMAL 13/03/2023			0.00247	0.00017	0.00726	0.00018	<lod< td=""><td>0.00028</td><td>0.003</td><td>0.00011</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00028	0.003	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
S3	37	NORMAL 13/03/2023	10:29:20 soil-VMV		0.0014	0.00021	0.12202	0.00095	0.00071	0.00011	0.00183	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
S3/1 A 0.0	38	NORMAL 13/03/2023	10:33:37 soil-VMV	/ Soil	0.00171	0.00017	0.01606	0.00027	<lod< td=""><td>0.00029</td><td>0.00311</td><td>0.00012</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00029	0.00311	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
S3/1 A 0.0	39	NORMAL 13/03/2023	10:34:38 soil-VMV	/ Soil	0.00251	0.00017	0.02119	0.00029	<lod< td=""><td>0.00029</td><td>0.00389</td><td>0.00012</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00029	0.00389	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
S3/1 A 0.0	40	NORMAL 13/03/2023	10:35:47 soil-VMV	/ Soil	0.00276	0.0002	0.0214	0.00033	<lod< td=""><td>0.00034</td><td>0.00419</td><td>0.00014</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00034	0.00419	0.00014	1090A	In Situ	AC	Tokanui	800224	VMW
S3/1 B 0.0	41	NORMAL 13/03/2023	10:38:32 soil-VMV	/ Soil	0.02116	0.00031	0.02548	0.0003	0.00046	0.00009	0.00372	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
S3/1 C 0.0	42	NORMAL 13/03/2023	10:39:58 soil-VMV	/ Soil	0.00201	0.00016	0.01479	0.00024	0.0003	0.00008	0.00239	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
S3/1 D 0.0	43	NORMAL 13/03/2023	10:41:08 soil-VMV	/ Soil	0.00184	0.00015	0.01047	0.00019	0.00025	0.00008	0.00236	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
S3/1 O 0.0	44	NORMAL 13/03/2023	10:42:47 soil-VMV		0.00167	0.00018	0.00895	0.00022	0.00031	0.00009	0.00217	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
S3/1 A 0.1	45	NORMAL 13/03/2023			0.00564	0.00022	0.02881	0.00036	0.00082	0.00013	0.00648	0.00016	1090A	In Situ	AC	Tokanui	800224	VMW
S3/1 A 0.2	46	NORMAL 13/03/2023			0.00457	0.00019	0.02426	0.0003	0.00062	0.0001	0.00449	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
S27/1 A 0.0	47	NORMAL 13/03/2023			0.00266	0.00019	0.31665	0.00154	<lod< td=""><td>0.00101</td><td>0.06518</td><td>0.00047</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00101	0.06518	0.00047	1090A	In Situ	AC	Tokanui	800224	VMW
S27/1 A 0.0	48	NORMAL 13/03/2023			0.00316	0.00019	0.38031	0.00174	0.00139	0.00031	0.05488	0.00041	1090A	In Situ	AC	Tokanui	800224	VMW
S27/1 A 0.0	49	NORMAL 13/03/2023	11:02:32 soil-VMV		0.00266	0.00019	0.3475	0.00166	<lod< td=""><td>0.00182</td><td>0.22212</td><td>0.00108</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00182	0.22212	0.00108	1090A	In Situ	AC	Tokanui	800224	VMW
S27/1 A 0.0	50	NORMAL 13/03/2023			0.00344	0.00019	0.38271	0.00173	0.00261	0.00046	0.12822	0.0007	1090A	In Situ	AC	Tokanui	800224	VMW
S27/1 A 0.0	51	NORMAL 13/03/2023			0.00347	0.00019	0.32587	0.00155	<lod< td=""><td>0.001</td><td>0.06556</td><td>0.00046</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.001	0.06556	0.00046	1090A	In Situ	AC	Tokanui	800224	VMW
S27/1 B 0.0	52	NORMAL 13/03/2023			0.00133	0.00014	0.01617	0.00024	<lod< td=""><td>0.00028</td><td>0.00407</td><td>0.00012</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00028	0.00407	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
S27/1 C 0.0	53	NORMAL 13/03/2023			0.00162	0.00018	0.00884	0.00021	0.00035	0.00009	0.002	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
S27/1 D 0.0	54	NORMAL 13/03/2023			0.00134	0.00015	0.01019	0.00021	0.00047	0.00009	0.00221	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
S27/1 O 0.0	55	NORMAL 13/03/2023			0.00103	0.00017	0.01644	0.00027	0.0003	0.0001	0.00301	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
S27/1 A 0.1	56	NORMAL 13/03/2023			0.00214	0.00018	0.02915	0.00037	0.00035	0.0001	0.00305	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
S27/1 A 0.2	57	NORMAL 13/03/2023		-	0.00128	0.00016	0.01119	0.00022	0.00029	0.00008	0.00156	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
S27 paint	58	NORMAL 13/03/2023		_	<lod< td=""><td>0.00055</td><td>0.00187</td><td>0.00014</td><td><lod< td=""><td>0.00023</td><td><lod< td=""><td>0.00029</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<></td></lod<>	0.00055	0.00187	0.00014	<lod< td=""><td>0.00023</td><td><lod< td=""><td>0.00029</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<>	0.00023	<lod< td=""><td>0.00029</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00029	1090A	In Situ	AC	Tokanui	800224	VMW
S28/1 A 0.0	59	NORMAL 13/03/2023			0.00759	0.00022	0.02677	0.00032	<lod< td=""><td>0.0012</td><td>0.10556</td><td>0.00062</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.0012	0.10556	0.00062	1090A	In Situ	AC	Tokanui	800224	VMW
S28/1 A 0.0 S28/1 A 0.0	60 61	NORMAL 13/03/2023 NORMAL 13/03/2023			0.00737 0.00721	0.00022	0.01516 0.01377	0.00025 0.00025	<lod< td=""><td>0.0004 0.00041</td><td>0.00878 0.0081</td><td>0.00016 0.00017</td><td>1090A</td><td>In Situ</td><td>AC AC</td><td>Tokanui</td><td>800224 800224</td><td>VMW</td></lod<>	0.0004 0.00041	0.00878 0.0081	0.00016 0.00017	1090A	In Situ	AC AC	Tokanui	800224 800224	VMW
	62	NORMAL 13/03/2023 NORMAL 13/03/2023			0.00721		1		<lod <lod< td=""><td>0.00041</td><td>0.0081</td><td>0.00017</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td></td><td>VMW</td></lod<></lod 	0.00041	0.0081	0.00017	1090A	In Situ	AC	Tokanui		VMW
S28/1 A 0.0	62	INUKIVIAL 13/U3/2023	11:34:59 soil-VMV	/ Soil	0.00729	0.00022	0.01415	0.00024	< LUD	U.UUU39	U.00/9/	0.00016	1090A	In Situ	AC	Tokanui	800224	VIVIVV

S28/1 B 0.0	63	NORMAL 13/03/2023	11:36:29 soil-VMV	/ Soil	0.00337	0.00017	0.0096	0.00019	0.00037	0.00009	0.00328	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
S28/1 C 0.0	64	NORMAL 13/03/2023			0.00505	0.00017	0.00898	0.00019	<i.od< td=""><td>0.00003</td><td>0.00328</td><td>0.00011</td><td>1090A 1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></i.od<>	0.00003	0.00328	0.00011	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
S28/1 D 0.0	65	NORMAL 13/03/2023			0.00381	0.00023	0.00838	0.00023	<lod< td=""><td>0.00031</td><td>0.0024</td><td>0.00013</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00031	0.0024	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
S28/1 O 0.0	66	NORMAL 13/03/2023			0.00167	0.00014	0.00784	0.00017	0.00035	0.00007	0.00194	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
S28/1 A 0.1	67	NORMAL 13/03/2023			0.00549	0.00024	0.01034	0.00024	<lod< td=""><td>0.00038</td><td>0.00522</td><td>0.00016</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00038	0.00522	0.00016	1090A	In Situ	AC	Tokanui	800224	VMW
S28/1 A 0.2	68	NORMAL 13/03/2023			0.00259	0.00016	0.00869	0.00018	0.00029	0.00007	0.00175	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
S28/2 A 0.0	69	NORMAL 13/03/2023			0.01806	0.0003	0.01169	0.00021	<lod< td=""><td>0.00034</td><td>0.00678</td><td>0.00014</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00034	0.00678	0.00014	1090A	In Situ	AC	Tokanui	800224	VMW
S28/2 A 0.0	70	NORMAL 13/03/2023			0.01445	0.00027	0.01328	0.00022	<lod< td=""><td>0.00051</td><td>0.01904</td><td>0.00022</td><td>1090A</td><td>▲ In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00051	0.01904	0.00022	1090A	▲ In Situ	AC	Tokanui	800224	VMW
S28/2 A 0.0	71	NORMAL 13/03/2023			0.0186	0.00029	0.01221	0.00021	<lod< td=""><td>0.00034</td><td>0.00691</td><td>0.00014</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00034	0.00691	0.00014	1090A	In Situ	AC	Tokanui	800224	VMW
S28/2 A 0.0	72	NORMAL 13/03/2023	11:53:06 soil-VMV	/ Soil	0.01774	0.00029	0.0118	0.00021	<lod< td=""><td>0.00034</td><td>0.00692</td><td>0.00014</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00034	0.00692	0.00014	1090A	In Situ	AC	Tokanui	800224	VMW
S28/2 A 0.0	73	NORMAL 13/03/2023	11:54:05 soil-VMV	/ Soil	0.01363	0.00026	0.01158	0.00021	0.00034	0.00011	0.0057	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
S28/2 A 0.0	74	NORMAL 13/03/2023	11:55:14 soil-VMV	/ Soil	0.01452	0.00027	0.01161	0.00021	<lod< td=""><td>0.00032</td><td>0.00608</td><td>0.00013</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00032	0.00608	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
S28/2 B 0.0	75	NORMAL 13/03/2023	11:56:15 soil-VMV	/ Soil	0.01173	0.00024	0.00845	0.00017	0.00032	0.00008	0.00245	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
S28/2 C 0.0	76	NORMAL 13/03/2023	11:57:38 soil-VMV	/ Soil	0.00143	0.00013	0.00559	0.00013	0.00027	0.00006	0.0013	0.00008	1090A	In Situ	AC	Tokanui	800224	VMW
S28/2 D 0.0	77	NORMAL 13/03/2023	11:58:50 soil-VMV	/ Soil	0.00209	0.00015	0.0086	0.00018	<lod< td=""><td>0.00024</td><td>0.00234</td><td>0.0001</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00024	0.00234	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
S28/2 O 0.0	78	NORMAL 13/03/2023		/ Soil	0.00184	0.00015	0.00811	0.00018	0.00036	0.00007	0.00145	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
S28/2 A 0.1	79	NORMAL 13/03/2023		/ Soil	0.01202	0.00025	0.0131	0.00022	0.00038	0.0001	0.00409	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
S28/2 A 0.2	80	NORMAL 13/03/2023	12:03:15 soil-VMV	/ Soil	0.00117	0.00015	0.00654	0.00016	0.00047	0.00008	0.00172	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
Blank	81	NORMAL 13/03/2023			<lod< td=""><td>0.00039</td><td><lod< td=""><td>0.00023</td><td><lod< td=""><td>0.00015</td><td><lod< td=""><td>0.0002</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<></td></lod<></td></lod<>	0.00039	<lod< td=""><td>0.00023</td><td><lod< td=""><td>0.00015</td><td><lod< td=""><td>0.0002</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<></td></lod<>	0.00023	<lod< td=""><td>0.00015</td><td><lod< td=""><td>0.0002</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<>	0.00015	<lod< td=""><td>0.0002</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.0002	1090A	In Situ	AC	Tokanui	800224	VMW
Std	82	NORMAL 13/03/2023			0.01452	0.00033	0.03866	0.00045	0.00779	0.00057	0.13841	0.00087	1090A	In Situ	AC	Tokanui	800224	VMW
Std	83	NORMAL 13/03/2023			0.33128	0.00211	0.41605	0.00241	0.15296	0.00149	0.52594	0.00275	1090A	In Situ	AC	Tokanui	800224	VMW
B30/1 A 0.0	84	NORMAL 13/03/2023			0.00116	0.00014	0.00847	0.00018	0.0026	0.00012	0.00453	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
B30/1 A 0.0	85	NORMAL 13/03/2023			0.00133	0.00014	0.00965	0.00018	0.00292	0.00011	0.00513	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
B30/1 A 0.0	86	NORMAL 13/03/2023			0.00101	0.00013	0.00941	0.00017	0.00265	0.00011	0.00488	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B30/1 B 0.0	87	NORMAL 13/03/2023			0.00106	0.00013	0.00766	0.00016	0.00036	0.00007	0.00234	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B30/1 C 0.0	88	NORMAL 13/03/2023			0.00087	0.00012	0.00683	0.00015	0.00035	0.00007	0.00176	0.00008	1090A	In Situ	AC	Tokanui	800224	VMW
B30/1 D 0.0	89 90				0.00116 0.00131	0.00014 0.00014	0.00867 0.00604	0.00018	0.00031 0.0003	0.00008	0.00229 0.00174	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B30/1 O 0.0	90	11011111111 23/03/2023						0.00015					1090A	In Situ	AC	Tokanui	800224	
B30/1 A 0.1 B30/1 A 0.2	92	NORMAL 13/03/2023 NORMAL 13/03/2023			0.0013 0.00167	0.00014	0.00694	0.00016	0.00288 0.00052	0.0001 0.00007	0.00324 0.00135	0.0001	1090A 1090A	In Situ In Situ	AC AC	Tokanui Tokanui	800224 800224	VMW
B30/2 A 0.0	93	NORMAL 13/03/2023			0.00167	0.00014	0.0388	0.00014	0.00032	0.00007	0.00721	0.00003	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B30/2 A 0.0	94	NORMAL 13/03/2023			0.00217	0.00013	0.03458	0.00036	0.00074	0.00011	0.00721	0.00014	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B30/2 A 0.0	95	NORMAL 13/03/2023			0.00202	0.00013	0.03621	0.00031	0.00064	0.0001	0.00549	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B30/2 B 0.0	96	NORMAL 13/03/2023			0.00202	0.00014	0.00946	0.00033	0.00078	0.00009	0.00349	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
B30/2 C 0.0	97	NORMAL 13/03/2023			0.00172	0.0002	0.00705	0.00022	0.00076	0.0001	0.00230	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B30/2 D 0.0	98	NORMAL 13/03/2023			0.00223	0.00014	0.00805	0.00016	0.00097	0.00008	0.00239	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B30/2 O 0.0	99	NORMAL 13/03/2023			0.00183	0.00019	0.0068	0.0002	0.00074	0.0001	0.00193	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
B30/2 A 0.1	100	NORMAL 13/03/2023			0.00307	0.00016	0.02529	0.00029	0.00093	0.0001	0.00449	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
B30/2 A 0.2	101	NORMAL 13/03/2023			0.00296	0.00016	0.00727	0.00016	0.00108	0.00008	0.00219	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B33/1 A 0.0	102	NORMAL 13/03/2023			0,00312	0.00021	0.0292	0.0004	<lod< td=""><td>0.0006</td><td>0.01545</td><td>0.00025</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.0006	0.01545	0.00025	1090A	In Situ	AC	Tokanui	800224	VMW
B33/1 A 0.0	103	NORMAL 13/03/2023		/ Soil	0.00257	0.00019	0.03002	0.00038	0.00079	0.00018	0.01389	0.00022	1090A	In Situ	AC	Tokanui	800224	VMW
B33/1 A 0.0	104	NORMAL 13/03/2023	13:22:24 soil-VMV	/ Soil	0.00302	0.00016	0.04762	0.00042	0.0005	0.00016	0.01603	0.0002	1090A	In Situ	AC	Tokanui	800224	VMW
B33/1 B 0.0	105	NORMAL 13/03/2023	13:24:36 soil-VMV	/ Soil	0.00145	0.00016	0.01182	0.00022	<lod< td=""><td>0.00036</td><td>0.00648</td><td>0.00015</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00036	0.00648	0.00015	1090A	In Situ	AC	Tokanui	800224	VMW
B33/1 C 0.0	106	NORMAL 13/03/2023	13:25:55 soil-VMV	/ Soil	0.00211	0.0002	0.01037	0.00024	0.00055	0.00011	0.00303	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
B33/1 D 0.0	107	NORMAL 13/03/2023	13:27:29 soil-VMV	/ Soil	0.00258	0.00015	0.00923	0.00018	0.00049	0.00008	0.00294	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B33/1 O 0.0	108	NORMAL 13/03/2023	13:28:38 soil-VMV	/ Soil	0.00229	0.00015	0.00615	0.00015	0.00044	0.00007	0.00155	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B33/1 A 0.1	109	NORMAL 13/03/2023			0.00377	0.00017	0.01696	0.00024	0.00079	0.00015	0.01298	0.00018	1090A	In Situ	AC	Tokanui	800224	VMW
B33/1 A 0.2	110	NORMAL 13/03/2023			0.00353	0.00016	0.00835	0.00017	0.00074	0.00007	0.00153	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B33/2 A 0.0	111	NORMAL 13/03/2023			0.00399	0.00016	0.01708	0.00023	<lod< td=""><td>0.00041</td><td>0.01196</td><td>0.00017</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00041	0.01196	0.00017	1090A	In Situ	AC	Tokanui	800224	VMW
B33/2 B 0.0	112	NORMAL 13/03/2023			0.00372	0.00017	0.01675	0.00024	0.00054	0.00012	0.00844	0.00015	1090A	In Situ	AC	Tokanui	800224	VMW
B33/2 C 0.0	113	NORMAL 13/03/2023			0.00226	0.00016	0.01129	0.00021	0.00064	0.00009	0.00318	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B33/2 C 0.0	114	NORMAL 13/03/2023			0.00306	0.00017	0.01139	0.00021	0.00074	0.0001	0.00378	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
B33/2 C 0.0	115	NORMAL 13/03/2023			0.00257	0.00014	0.01081	0.00018	0.00066	0.00008	0.00366	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B33/2 D 0.0	116	NORMAL 13/03/2023			0.00271	0.00016	0.01003	0.0002	0.00052	0.00009	0.00294	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B33/2 O 0.0	117	NORMAL 13/03/2023			0.00215	0.00016	0.01319	0.00022	0.00057	0.00009	0.00269	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B33/2 A 0.1	118	NORMAL 13/03/2023			0.00436	0.00018	0.01609	0.00024	0.00071	0.00014	0.0103	0.00017	1090A	In Situ	AC	Tokanui	800224	VMW
B33/2 A 0.2	119	NORMAL 13/03/2023			0.00328	0.00016	0.01057	0.00019	0.00074	0.00012	0.00832	0.00015	1090A	In Situ	AC	Tokanui	800224	VMW
B36/1 A 0.0	120	NORMAL 13/03/2023			0.00317	0.00017	0.0152	0.00024	0.00075	0.00009	0.00306	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B36/1 A 0.0	121	NORMAL 13/03/2023	14:03:08 soil-VMV		0.00309	0.00017	0.01661	0.00025	0.00071	0.00009	0.00308	0.00011 0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
B36/1 A 0.0	122	NORMAL 13/03/2023			0.00323	0.00019	0.01798	0.00028	0.00083	0.0001	0.00301		1090A	In Situ	AC	Tokanui	800224	VMW
B36/1 A 0.0	123	NORMAL 13/03/2023			0.00271	0.00019	0.01893	0.0003	0.0009	0.00011	0.00343	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
B36/1 B 0.0	124	NORMAL 13/03/2023			0.00162	0.00014	0.00571	0.00014	0.00047	0.00007	0.00188	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B36/1 C 0.0	125	NORMAL 13/03/2023		_	0.00237	0.00018	0.00565	0.00018	0.00045	0.00009	0.00171	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B36/1 D 0.0	126	NORMAL 13/03/2023			0.0016	0.00014	0.00501	0.00014	0.00047	0.00007	0.00153	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B36/1 O 0.0	127	NORMAL 13/03/2023			0.00176	0.00016	0.0061	0.00017	0.00056	0.00008	0.00135	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B36/1 A 0.1	128	NORMAL 13/03/2023			0.00277	0.00016	0.00983	0.00019	0.0009	0.00009	0.00228	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B36/1 A 0.2	129	NORMAL 13/03/2023	14:17:47 soil-VMV	/ Soil	0.00341	0.00017	0.00901	0.00019	0.00069	0.00009	0.00235	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW

D27/1 A O O	130	NORMAL	13/03/2023	14.22.20	soil-VMW	Soil	0.00247	0.00016	0.00055	0.00010	0.00179	0.00013	0.00735	0.00014	10004	In City	AC	Tokanui	800224	VMW
B37/1 A 0.0 B37/1 A 0.0	130	NORMAL	13/03/2023	14:22:29 14:23:33		Soil	0.00247	0.00016	0.00955 0.01084	0.00019 0.00021	0.00179	0.00012 0.00014	0.00725 0.00864	0.00014	1090A 1090A	In Situ In Situ	AC AC	Tokanui	800224	VMW
B37/1 A 0.0	132	NORMAL	13/03/2023	14:24:39		Soil	0.0028	0.00017	0.01084	0.00021	0.00198	0.00014	0.00847	0.00016	1090A 1090A	In Situ	AC AC	Tokanui	800224	VMW
B37/1 B 0.0	133	NORMAL	13/03/2023	14:25:50		Soil	0.00298	0.00018	0.00518	0.00021	0.00203	0.00014	0.00131	0.00010	1090A	In Situ	AC	Tokanui	800224	VMW
B37/1 C 0.0	134	NORMAL	13/03/2023	14:26:45		Soil	0.00093	0.00012	0.00518	0.00013	0.00051	0.00007	0.00131	0.00008	1090A	In Situ	AC	Tokanui	800224	VMW
B37/1 D 0.0	135	NORMAL	13/03/2023	14:28:25	-	Soil	0.00204	0.00015	0.00534	0.00015	0.00031	0.00007	0.00149	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B37/1 O 0.0	136	NORMAL	13/03/2023	14:30:20		Soil	0.00157	0.00013	0.00487	0.00013	0.00039	0.00006	0.00145	0.00008	1090A	In Situ	AC	Tokanui	800224	VMW
B37/1 A 0.1	137	NORMAL	13/03/2023	14:33:07		Soil	0.00313	0.00014	0.00676	0.00018	0.00085	0.0001	0.00263	0.00011	1090A	▲ In Situ	AC	Tokanui	800224	VMW
B37/1 A 0.2	138	NORMAL	13/03/2023	14:34:17		Soil	0.00223	0.00016	0.00705	0.00017	0.00106	0.0001	0.00377	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
B37/1 A 0.2	139	NORMAL	13/03/2023	14:36:21		Soil	<lod< td=""><td>0.01928</td><td>0.02949</td><td>0.00389</td><td><lod< td=""><td>0.00253</td><td><lod< td=""><td>0.00265</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<></td></lod<>	0.01928	0.02949	0.00389	<lod< td=""><td>0.00253</td><td><lod< td=""><td>0.00265</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<>	0.00253	<lod< td=""><td>0.00265</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00265	1090A	In Situ	AC	Tokanui	800224	VMW
B39/1 A 0.0	140	NORMAL	13/03/2023	14:41:34		Soil	0.00141	0.00013	0.0072	0.00015	0.00032	0.00006	0.00141	0.00008	1090A	In Situ	AC	Tokanui	800224	VMW
B39/1 A 0.0	141	NORMAL	13/03/2023	14:43:57	soil-VMW	Soil	0.00146	0.00013	0.00835	0.00016	0.00042	0.00006	0.00136	0.00008	1090A	In Situ	AC	Tokanui	800224	VMW
B39/1 A 0.0	142	NORMAL	13/03/2023	14:44:49	soil-VMW	Soil	0.00146	0.00014	0.007	0.00016	0.00033	0.00006	0.00119	0.00008	1090A	In Situ	AC	Tokanui	800224	VMW
B39/1 B 0.0	143	NORMAL	13/03/2023	14:46:15	soil-VMW	Soil	0.00149	0.00014	0.00564	0.00014	0.00044	0.00007	0.00152	0.00008	1090A	In Situ	AC	Tokanui	800224	VMW
B39/1 C 0.0	144	NORMAL	13/03/2023	14:48:29	soil-VMW	Soil	0.00143	0.00014	0.00663	0.00015	0.00045	0.00007	0.00109	0.00008	1090A	In Situ	AC	Tokanui	800224	VMW
B39/1 D 0.0	145	NORMAL	13/03/2023	14:49:42	soil-VMW	Soil	0.00141	0.00014	0.00668	0.00015	0.00053	0.00006	0.00095	0.00008	1090A	In Situ	AC	Tokanui	800224	VMW
B39/1 O 0.0	146	NORMAL	13/03/2023	14:50:47	soil-VMW	Soil	0.00159	0.00014	0.00671	0.00015	0.00037	0.00007	0.00123	0.00008	1090A	In Situ	AC	Tokanui	800224	VMW
B39/1 A 0.1	147	NORMAL	13/03/2023	14:52:42	soil-VMW	Soil	0.00257	0.00015	0.00665	0.00015	0.00057	0.00007	0.00146	0.00008	1090A	In Situ	AC	Tokanui	800224	VMW
B39/1 A 0.2	148	NORMAL	13/03/2023	14:53:56	soil-VMW	Soil	0.00287	0.00017	0.0068	0.00017	0.00043	0.00008	0.00166	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B38/1 A 0.0	149	NORMAL	13/03/2023	14:58:25	soil-VMW	Soil	0.00177	0.00014	0.07617	0.00051	0.00093	0.00016	0.01691	0.0002	1090A	In Situ	AC	Tokanui	800224	VMW
B38/1 A 0.0	150	NORMAL	13/03/2023	14:59:53		Soil	0.00176	0.00014	0.07673	0.00051	0.0009	0.00016	0.01702	0.0002	1090A	In Situ	AC	Tokanui	800224	VMW
B38/1 A 0.0	151	NORMAL	13/03/2023	15:00:57	soil-VMW	Soil	0.00185	0.00015	0.05551	0.00045	<lod< td=""><td>0.00046</td><td>0.01467</td><td>0.00019</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00046	0.01467	0.00019	1090A	In Situ	AC	Tokanui	800224	VMW
B38/1 B 0.0	152	NORMAL	13/03/2023	15:02:39		Soil	0.00173	0.00014	0.00942	0.00017	0.00028	0.00009	0.00392	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B38/1 C 0.0	153	NORMAL	13/03/2023	15:03:42		Soil	0.00194	0.00016	0.00702	0.00018	0.00047	0.00009	0.00242	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B38/1 D 0.0	154	NORMAL	13/03/2023	15:05:05		Soil	0.00124	0.00014	0.00608	0.00015	0.0003	0.00007	0.00195	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B38/1 O 0.0	155	NORMAL	13/03/2023	15:06:48		Soil	0.00132	0.00016	0.00553	0.00017	0.00036	0.00008	0.00181	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B38/1 A 0.1	156	NORMAL	13/03/2023	15:09:26		Soil	0.00395	0.0002	0.01227	0.00023	0.00082	0.00013	0.00692	0.00016	1090A	In Situ	AC	Tokanui	800224	VMW
B38/1 A 0.2	157	NORMAL	13/03/2023	15:10:38		Soil	0.00452	0.00019	0.0073	0.00017	0.00048	0.00008	0.00155	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B42/1 A 0.0	158	NORMAL	13/03/2023	15:22:34		Soil	0.00265	0.00017	0.01725	0.00026	0.00076	0.00011	0.00452	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
B42/1 B 0.0	159	NORMAL	13/03/2023	15:23:34	soil-VMW	Soil	0.00176	0.00014	0.00597	0.00015	0.00056	0.00008	0.00221	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B42/1 C 0.0	160	NORMAL	13/03/2023	15:25:02		Soil	0.00117	0.00013	0.0051	0.00013	0.00025	0.00006	0.00132	0.00008	1090A	In Situ	AC	Tokanui	800224	VMW
B42/1 D 0.0	161	NORMAL	13/03/2023	15:26:37		Soil	0.00245	0.00017	0.00543	0.00016	0.00051	0.00008	0.00192	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B42/1 O 0.0	162	NORMAL	13/03/2023	15:28:12		Soil	0.00218	0.00018	0.00499	0.00016	0.00032	0.00008	0.00172	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B42/1 A 0.1	163	NORMAL	13/03/2023	15:29:25		Soil	0.00361	0.0002	0.00664	0.00019	0.00079	0.0001	0.00274	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
B42/1 A 0.1	164 165	NORMAL	13/03/2023 13/03/2023	15:30:21		Soil	0.00299 0.00359	0.00018	0.00801 0.00703	0.00019 0.00017	0.0009 0.00084	0.0001	0.00314	0.00012	1090A	In Situ	AC	Tokanui	800224 800224	VMW
B42/1 A 0.1 B42/1 A 0.2	166	NORMAL	13/03/2023	15:31:16	-	Soil	0.00359	0.00018	0.00703	0.00017	0.00084	0.00009	0.00252 0.00158	0.00011	1090A 1090A	In Situ In Situ	AC AC	Tokanui Tokanui	800224	VMW
B42/1 A 0.2 B42/2 A 0.0	167	NORMAL	13/03/2023	15:32:43	 	Soil	0.00106	0.00013	0.00838	0.00014	0.00043	0.00008	0.00138	0.00009	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B42/2 A 0.0	168	NORMAL	13/03/2023	15:37:47		Soil	0.00203	0.00028	0.00838	0.0003	0.00062	0.00018	0.00519	0.00021	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B42/2 A 0.0	169	NORMAL	13/03/2023	15:39:39		Soil	0.00348	0.00022	0.01275	0.00027	<lod< td=""><td>0.00013</td><td>0.00856</td><td>0.00018</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00013	0.00856	0.00018	1090A	In Situ	AC	Tokanui	800224	VMW
B42/2 B 0.0	170	NORMAL	13/03/2023	15:40:38		Soil	0.00223	0.00016	0.01122	0.00023	0.00052	0.00009	0.00322	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B42/2 C 0.0	171	NORMAL	13/03/2023	15:41:45		Soil	0.00142	0.00016	0.0065	0.00021	<lod< td=""><td>0.00024</td><td>0.00322</td><td>0.00011</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00024	0.00322	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B42/2 D 0.0	172	NORMAL	13/03/2023	15:42:44		Soil	0.00211	0.00016	0.00767	0.00017	0.00029	0.00024	0.00283	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B42/2 O 0.0	173	NORMAL	13/03/2023	15:43:46	 	Soil	<lod< td=""><td>0.00475</td><td>0.01042</td><td>0.00083</td><td><lod< td=""><td>0.00103</td><td>0.00203</td><td>0.00036</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<>	0.00475	0.01042	0.00083	<lod< td=""><td>0.00103</td><td>0.00203</td><td>0.00036</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00103	0.00203	0.00036	1090A	In Situ	AC	Tokanui	800224	VMW
Blank	1	NORMAL	14/03/2023	8:46:01	soil-VMW	Soil	<lod< td=""><td>0.00038</td><td><lod< td=""><td>0.00022</td><td><lod< td=""><td>0.00015</td><td><lod< td=""><td>0.0002</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<></td></lod<></td></lod<>	0.00038	<lod< td=""><td>0.00022</td><td><lod< td=""><td>0.00015</td><td><lod< td=""><td>0.0002</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<></td></lod<>	0.00022	<lod< td=""><td>0.00015</td><td><lod< td=""><td>0.0002</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<>	0.00015	<lod< td=""><td>0.0002</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.0002	1090A	In Situ	AC	Tokanui	800224	VMW
Std	2	NORMAL	14/03/2023	8:47:52	soil-VMW	Soil	0.01411	0.00033	0.03859	0.00046	0.00732	0.00056	0.1359	0.00086	1090A	In Situ	AC	Tokanui	800224	VMW
Std	3	NORMAL	14/03/2023	8:49:15	soil-VMW	Soil	0.32357	0.00208	0.41077	0.00238	0.14699	0.00147	0.51967	0.00273	1090A	In Situ	AC	Tokanui	800224	VMW
B42/2 A 0.1	4	NORMAL	14/03/2023	9:01:34	soil-VMW	Soil	0.00264	0.00017	0.0089	0.00019	0.00072	0.00011	0.00475	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
B42/2 A 0.2	5	NORMAL	14/03/2023	9:03:00	soil-VMW	Soil	0.00202	0.00015	0.00654	0.00016	0.00058	0.00009	0.0027	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B44/1 A 0.0	6	NORMAL	14/03/2023	9:20:39	soil-VMW	Soil	0.00245	0.00015	0.02165	0.00027	0.00056	0.00009	0.00332	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B44/1 A 0.0	7	NORMAL	14/03/2023	9:22:26	soil-VMW	Soil	0.00213	0.00016	0.01594	0.00025	0.00071	0.0001	0.00316	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B44/1 A 0.0	8	NORMAL	14/03/2023	9:23:23	soil-VMW	Soil	0.00162	0.00014	0.01978	0.00026	0.00032	0.00009	0.00416	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
B44/1 B 0.0	9	NORMAL	14/03/2023	9:25:17	soil-VMW	Soil	0.00231	0.00016	0.01167	0.00021	0.00051	0.00008	0.0025	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B44/1 C 0.0	10	NORMAL	14/03/2023	9:26:24	soil-VMW	Soil	0.00234	0.00017	0.01434	0.00025	0.00032	0.00009	0.00232	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B44/1 D 0.0	11	NORMAL	14/03/2023	9:27:24		Soil	0.00207	0.00014	0.00937	0.00017	0.00049	0.00007	0.00185	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B44/1 O 0.0	12	NORMAL	14/03/2023	9:29:22	soil-VMW	Soil	0.00139	0.00014	0.00782	0.00017	0.00052	0.00007	0.0015	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B44/1 A 0.1	13	NORMAL	14/03/2023	9:30:57	soil-VMW	Soil	0.00314	0.00019	0.01285	0.00024	0.00075	0.00011	0.0037	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
B44/1 A 0.2	14	NORMAL	14/03/2023	9:32:32	soil-VMW	Soil	0.00269	0.00017	0.00881	0.00019	0.00069	0.00009	0.00253	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B44/2 A 0.0	15	NORMAL	14/03/2023	9:35:54	soil-VMW	Soil	0.00167	0.00017	0.01266	0.00025	0.00082	0.00012	0.00524	0.00015	1090A	In Situ	AC	Tokanui	800224	VMW
B44/2 B 0.0	16	NORMAL	14/03/2023	9:38:16	soil-VMW	Soil	0.00195	0.00016	0.0075	0.00017	0.00048	0.00008	0.00212	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B44/2 C 0.0	17	NORMAL	14/03/2023	9:39:56	soil-VMW	Soil	0.00172	0.00014	0.0075	0.00016	0.00056	0.00007	0.00177	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B44/2 D 0.0	18	NORMAL	14/03/2023	9:41:03	soil-VMW	Soil	0.00157	0.00015	0.00582	0.00016	0.00033	0.00008	0.00157	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B44/2 O 0.0	19	NORMAL	14/03/2023	9:42:08	soil-VMW	Soil	0.00233	0.00015	0.00733	0.00016	0.00054	0.00007	0.00163	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B44/2 A 0.1	20	NORMAL	14/03/2023	9:43:25	soil-VMW	Soil	0.00293	0.00018	0.01119	0.00022	0.0006	0.0001	0.00304	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
	21	NORMAL	14/03/2023	9:44:37	soil-VMW	Soil	0.00281	0.00017	0.01239	0.00022	0.00077	0.0001	0.0036	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
B44/2 A 0.1																				
B44/2 A 0.1 B44/2 A 0.1 B45/1 A 0.0	22 23	NORMAL	14/03/2023	9:45:42 9:52:11	soil-VMW	Soil	0.00303 0.00194	0.00017 0.00015	0.01127 0.00979	0.00021 0.00019	0.00084 0.00067	0.0001 0.0001	0.00324 0.00398	0.00012 0.00011	1090A 1090A	In Situ In Situ	AC AC	Tokanui Tokanui	800224 800224	VMW

B45/1 A 0.0	24	NORMAL	14/03/2023	9:54:07	soil-VMW	Soil	0.0017	0.00015	0.00815	0.00018	0.0006	0.00009	0.00335	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B45/1 A 0.0	25	NORMAL	14/03/2023	9:55:04	soil-VMW	Soil	0.0017	0.00013	0.00815	0.00018	0.00059	0.00009	0.00335	0.00011	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B45/1 B 0.0	26	NORMAL	14/03/2023	9:56:41	soil-VMW	Soil	0.00224	0.00014	0.00447	0.00014	0.00027	0.00007	0.00128	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B45/1 C 0.0	27	NORMAL	14/03/2023	9:58:45	soil-VMW	Soil	0.00192	0.00014	0.0065	0.00014	0.00027	0.00007	0.00128	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B45/1 A 0.1	28	NORMAL	14/03/2023	10:01:24	soil-VMW	Soil	0.00132	0.00015	0.00761	0.00017	<lod< td=""><td>0.00036</td><td>0.00776</td><td>0.00015</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00036	0.00776	0.00015	1090A	In Situ	AC	Tokanui	800224	VMW
B45/1 A 0.2	29	NORMAL	14/03/2023	10:03:18		Soil	0.00236	0.00016	0.00577	0.00015	0.00058	0.00007	0.00143	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B45/2 A 0.0	30	NORMAL	14/03/2023	10:06:58		Soil	0.00219	0.00017	0.00972	0.0002	0.00084	0.00011	0.00419	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
B45/2 B 0.0	31	NORMAL	14/03/2023	10:08:30		Soil	0.00167	0.00015	0.0058	0.00015	0.00044	0.00008	0.00195	0.0001	1090A	▲ In Situ	AC	Tokanui	800224	VMW
B45/2 C 0.0	32	NORMAL	14/03/2023	10:09:36	soil-VMW	Soil	0.00175	0.00015	0.00549	0.00016	0.00039	0.00008	0.00155	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B45/2 D 0.0	33	NORMAL	14/03/2023	10:11:18	soil-VMW	Soil	0.00201	0.00014	0.00526	0.00014	0.00046	0.00007	0.00147	0.00008	1090A	In Situ	AC	Tokanui	800224	VMW
B45/2 A 0.1	34	NORMAL	14/03/2023	10:12:58		Soil	0.00194	0.00016	0.00692	0.00017	0.00054	0.00009	0.00333	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B45/2 A 0.1	35	NORMAL	14/03/2023	10:14:19	soil-VMW	Soil	0.00174	0.00015	0.00676	0.00016	0.00056	0.00009	0.00318	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B45/2 A 0.1	36	NORMAL	14/03/2023	10:15:34	soil-VMW	Soil	0.00258	0.00018	0.00814	0.0002	0.00089	0.00011	0.00373	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
B45/2 A 0.2	37	NORMAL	14/03/2023	10:18:11	soil-VMW	Soil	0.00233	0.00018	0.00513	0.00017	0.00073	0.00009	0.00158	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B46/1 A 0.0	38	NORMAL	14/03/2023	10:25:33	soil-VMW	Soil	0.0027	0.00018	0.02068	0.0003	0.0006	0.00011	0.00431	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
B46/1 A 0.0	39	NORMAL	14/03/2023	10:26:25	soil-VMW	Soil	0.0021	0.00017	0.01493	0.00026	0.0005	0.00011	0.00417	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
B46/1 A 0.0	40	NORMAL	14/03/2023	10:27:41	soil-VMW	Soil	0.00217	0.00017	0.02047	0.00029	0.00077	0.00011	0.00434	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
B46/1 B 0.0	41	NORMAL	14/03/2023	10:28:55	soil-VMW	Soil	0.00156	0.00016	0.01153	0.00022	0.00038	0.00008	0.00197	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B46/1 C 0.0	42	NORMAL	14/03/2023	10:30:18	soil-VMW	Soil	0.00068	0.00011	0.00999	0.00017	0.00031	0.00006	0.00117	0.00007	1090A	In Situ	AC	Tokanui	800224	VMW
B46/1 D 0.0	43	NORMAL	14/03/2023	10:31:26	soil-VMW	Soil	0.00068	0.00011	0.0099	0.00017	0.00045	0.00006	0.00118	0.00007	1090A	In Situ	AC	Tokanui	800224	VMW
B46/1 O 0.0	44	NORMAL	14/03/2023	10:33:26		Soil	0.00173	0.00015	0.01189	0.00021	0.00053	0.00008	0.00195	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B46/1 A 0.1	45	NORMAL	14/03/2023	10:35:18		Soil	0.00239	0.00017	0.01424	0.00024	0.00057	0.0001	0.00367	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
B46/1 A 0.2	46	NORMAL	14/03/2023	10:37:03		Soil	0.00349	0.00019	0.00798	0.00019	0.00078	0.00009	0.00212	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B46/2 A 0.0	47	NORMAL	14/03/2023	10:40:57	soil-VMW	Soil	0.00139	0.00017	0.00591	0.00018	0.00043	0.00009	0.00225	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B46/2 B 0.0	48	NORMAL	14/03/2023	10:44:56		Soil	0.00188	0.00014	0.00625	0.00015	0.00035	0.00007	0.00176	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B46/2 C 0.0	49	NORMAL	14/03/2023	10:46:41		Soil	0.00144	0.00014	0.00551	0.00014	0.00032	0.00007	0.00134	0.00008	1090A	In Situ	AC	Tokanui	800224	VMW
B46/2 D 0.0	50	NORMAL	14/03/2023	10:47:45	soil-VMW	Soil	0.00243	0.00016	0.00647	0.00016	0.00035	0.00008	0.00181	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B46/2 O 0.0	51	NORMAL	14/03/2023	10:49:25		Soil	0.00179	0.00015	0.00587	0.00015	0.00041	0.00007	0.00162	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B46/2 A 0.1	52	NORMAL	14/03/2023	10:50:48		Soil	0.00172	0.00015	0.00598	0.00016	0.00065	0.00008	0.00232	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B46/2 A 0.1	53	NORMAL	14/03/2023	10:51:44	soil-VMW	Soil	0.00143	0.00017	0.00562	0.00017	0.00047	0.00009	0.00216	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B46/2 A 0.1	54	NORMAL	14/03/2023	10:53:31	soil-VMW	Soil	0.00163	0.00015	0.00654	0.00016	0.0006	0.00008	0.00223	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B46/2 A 0.2	55	NORMAL	14/03/2023	10:55:31		Soil	0.00166	0.00014	0.00593	0.00015	0.00045	0.00008	0.00217	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B47/1 A 0.0	56	NORMAL	14/03/2023	10:58:26		Soil	0.005	0.00024	0.01101	0.00026	0.00094	0.00012	0.0031	0.00014	1090A	In Situ	AC	Tokanui	800224	VMW
B47/1 A 0.0	57	NORMAL	14/03/2023	10:59:19		Soil	0.00399	0.0003	0.0109	0.00032	0.00054	0.00014	0.00304	0.00017	1090A	In Situ	AC	Tokanui	800224	VMW
B47/1 A 0.0	58	NORMAL	14/03/2023	11:00:19		Soil	0.00261	0.00021	0.00983	0.00024	0.00059	0.00011	0.00269	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
B47/1 B 0.0	59	NORMAL	14/03/2023	11:01:53	soil-VMW	Soil	0.00287	0.00017	0.01068	0.0002	0.00056	0.00011	0.00533	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
B47/1 C 0.0	60	NORMAL	14/03/2023	11:03:09		Soil	0.00135	0.00016	0.00597	0.00017	0.00046	0.00009	0.00281	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B47/1 D 0.0	61	NORMAL	14/03/2023	11:04:18	soil-VMW	Soil	0.00116	0.00014	0.00417	0.00013	0.00022	0.00007	0.00168	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B47/1 O 0.0	62	NORMAL	14/03/2023	11:05:26		Soil	0.00181	0.00018	0.00485	0.00017	0.00049 0.00084	0.00009	0.0019	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B47/1 A 0.1	63	1101111111111111	14/03/2023	11:06:44		Soil	0.00494	0.00022	0.01125	0.00024			0.00281	0.00013	1090A	In Situ	AC	Tokanui	800224	******
B47/1 A 0.2 B47/2 A 0.0	64 65	NORMAL NORMAL	14/03/2023	11:07:49 11:13:56	soil-VMW soil-VMW	Soil Soil	0.00535	0.00023	0.01448 0.01586	0.00027 0.00025	0.00076 0.00057	0.00012	0.00437 0.0069	0.00014	1090A 1090A	In Situ	AC AC	Tokanui Tokanui	800224 800224	VMW
B47/2 B 0.0	66	NORMAL	14/03/2023	11:13:56		Soil	0.00218	0.00016	0.01334	0.00023	0.00065	0.00012	0.00638	0.00013	1090A 1090A	In Situ	AC		800224	VMW
B47/2 B 0.0 B47/2 C 0.0	67	NORMAL	14/03/2023	11:15:19		Soil	0.00322	0.00017	0.00902	0.00023	0.00058	0.00012	0.00638	0.00014	1090A 1090A	In Situ	AC	Tokanui Tokanui	800224	VMW
B47/2 C 0.0	68	NORMAL	14/03/2023	11:17:45		Soil	0.00228	0.00016	0.00302	0.00018	0.00037	0.0001	0.00525	0.00011	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B47/2 D 0.0	69	NORMAL	14/03/2023	11:17:45		Soil	0.00283	0.00017	0.01139	0.0002	0.00037	0.0001	0.00325	0.00013	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B47/2 O 0.0 B47/2 A 0.1	70	NORMAL	14/03/2023	11:20:21		Soil	0.00196	0.00017	0.00777	0.00019	0.00033	0.0001	0.00363	0.00012	1090A	In Situ	AC AC	Tokanui	800224	VMW
B47/2 A 0.1	71	NORMAL	14/03/2023	11:21:32	soil-VMW	Soil	0.00191	0.00017	0.01004	0.00013	0.00058	0.0001	0.0052	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
B47/2 A 0.1	72	NORMAL	14/03/2023	11:22:56		Soil	0.0028	0.00015	0.00983	0.00018	0.00038	0.0001	0.0032	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
B47/2 A 0.2	73	NORMAL	14/03/2023	11:24:57		Soil	0.0028	0.00010	0.00619	0.00018	0.00066	0.0001	0.00247	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
B48/1 A 0.0	74	NORMAL	14/03/2023	11:34:13		Soil	0.00255	0.00017	0.00933	0.00019	0.0007	0.00011	0.00406	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
B48/1 A 0.0	75	NORMAL	14/03/2023	11:35:29		Soil	0.00242	0.00017	0.0075	0.00013	0.00062	0.0001	0.0046	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
B48/1 A 0.0	76	NORMAL	14/03/2023	11:37:04		Soil	0.00258	0.00017	0.00814	0.00019	0.00049	0.00011	0.0051	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
B48/1 B 0.0	77	NORMAL	14/03/2023	11:38:31		Soil	0.00165	0.00017	0.00689	0.00018	0.00046	0.00009	0.0022	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B48/1 C 0.0	78	NORMAL	14/03/2023	11:39:50		Soil	0.00155	0.00017	0.00618	0.00018	0.00043	0.00009	0.00194	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B48/1 D 0.0	79	NORMAL	14/03/2023	11:40:49		Soil	0.00087	0.00014	0.00373	0.00013	0.00036	0.00007	0.00133	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B48/1 A 0.1	80	NORMAL	14/03/2023	11:43:18		Soil	0.00314	0.00019	0.00827	0.0002	0.00074	0.0001	0.0034	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
B48/1 A 0.2	81	NORMAL	14/03/2023	11:44:31		Soil	0.00369	0.0002	0.00693	0.00018	0.0007	0.0001	0.00252	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
B48/2 A 0.0	82	NORMAL	14/03/2023	11:50:20		Soil	0.0023	0.00015	0.00897	0.00017	0.00066	0.00008	0.00309	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B48/2 B 0.0	83	NORMAL	14/03/2023	11:51:37		Soil	0.00126	0.00013	0.00577	0.00014	0.0003	0.00006	0.00148	0.00008	1090A	In Situ	AC	Tokanui	800224	VMW
B48/2 C 0.0	84	NORMAL	14/03/2023	11:52:42		Soil	0.00167	0.00015	0.00469	0.00015	0.00022	0.00007	0.00159	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B48/2 D 0.0	85	NORMAL	14/03/2023	11:53:43		Soil	0.00091	0.00015	0.00462	0.00015	0.00032	0.00007	0.00134	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B48/2 A 0.1	86	NORMAL	14/03/2023	11:55:39	soil-VMW	Soil	0.00216	0.00015	0.00801	0.00017	0.00037	0.00008	0.00323	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B48/2 A 0.1	87	NORMAL	14/03/2023	11:56:45	soil-VMW	Soil	0.00184	0.00014	0.00675	0.00016	0.00037	0.00008	0.00272	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
ID40/ Z A U.1				_		Soil	0.0016	0.00014	0.00676	0.00016	0.0005	0.00008	0.00246	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
	88	NORMAL	14/03/2023	11:57:50	soil-VMW	3011	0.0010													
B48/2 A 0.1 B48/2 A 0.2	88 89	NORMAL NORMAL	14/03/2023	11:57:50 11:59:42		Soil	0.0010	0.00014	0.00321	0.00010	0.0003	0.00009	0.00269	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW

B50/1 A 0.0	01	NORMAL 14/03/2023	12:00:11	coil \/NA\A/	Soil	0.0013	0.00013	0.01065	0.00018	0.00048	0.00008	0.00279	0.0001	10004	In Citu	۸۲	Tokanui	800224	VMW
B50/1 A 0.0	91 92	NORMAL 14/03/2023		soil-VMW	Soil Soil	0.0013	0.00013	0.01065	0.00018	0.00048	0.00008	0.00279	0.0001	1090A 1090A	In Situ In Situ	AC AC	Tokanui Tokanui	800224	VMW
B50/1 B 0.0	93	NORMAL 14/03/2023		soil-VMW	Soil	0.0001	0.00012	0.00179	0.00018	0.00039	0.00007	0.00246	0.00008	1090A	In Situ	AC	Tokanui	800224	VMW
Blank	94	NORMAL 14/03/2023		soil-VMW	Soil	<lod< td=""><td>0.00014</td><td><lod< td=""><td>0.00014</td><td><lod< td=""><td>0.00007</td><td><lod< td=""><td>0.00008</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<></td></lod<></td></lod<>	0.00014	<lod< td=""><td>0.00014</td><td><lod< td=""><td>0.00007</td><td><lod< td=""><td>0.00008</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<></td></lod<>	0.00014	<lod< td=""><td>0.00007</td><td><lod< td=""><td>0.00008</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<>	0.00007	<lod< td=""><td>0.00008</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00008	1090A	In Situ	AC	Tokanui	800224	VMW
Std	95	NORMAL 14/03/2023		soil-VMW	Soil	0.01343	0.00038	0.03899	0.00023	0.008	0.00013	0.13713	0.0002	1090A	In Situ	AC	Tokanui	800224	VMW
Std	96	NORMAL 14/03/2023		soil-VMW	Soil	0.33241	0.00032	0.42116	0.00040	0.15057	0.00037	0.53292	0.00087	1090A	In Situ	AC	Tokanui	800224	VMW
B50/1 C 0.0	97	NORMAL 14/03/2023		soil-VMW	Soil	0.00062	0.00212	0.00684	0.00244	<lod< td=""><td>0.00149</td><td>0.00132</td><td>0.00279</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00149	0.00132	0.00279	1090A	In Situ	AC	Tokanui	800224	VMW
B50/1 D 0.0	98	NORMAL 14/03/2023		soil-VMW	Soil	0.00082	0.00012	0.00528	0.00015	0.00039	0.00013	0.00132	0.00008	1090A	▲ In Situ	AC	Tokanui	800224	VMW
B50/1 O 0.0	99	NORMAL 14/03/2023		soil-VMW	Soil	0.00133	0.00015	0.00528	0.00013	0.00037	0.00007	0.00147	0.0003	1090A	In Situ	AC	Tokanui	800224	VMW
B50/1 A 0.1	100	NORMAL 14/03/2023		soil-VMW	Soil	0.00354	0.00013	0.00333	0.00017	0.00057	0.00008	0.00132	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B50/1 A 0.2	100	NORMAL 14/03/2023		soil-VMW	Soil	0.00064	0.00017	0.00247	0.00018	0.00037	0.00008	0.00223	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B50/2 A 0.0	102	NORMAL 14/03/2023		soil-VMW	Soil	0.00167	0.00013	0.00247	0.00013	0.00032	0.00008	0.00179	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B50/2 B 0.0	102	NORMAL 14/03/2023		soil-VMW	Soil	0.00107	0.00018	0.00582	0.00021	0.00103	0.00003	0.00179	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B50/2 C 0.0	103	NORMAL 14/03/2023		soil-VMW	Soil	0.00102	0.00013	0.00563	0.00014	0.00048	0.00007	0.00089	0.00008	1090A	In Situ	AC	Tokanui	800224	VMW
B50/2 D 0.0	104	NORMAL 14/03/2023		soil-VMW	Soil	0.00089	0.00012	0.00678	0.00014	0.00031	0.00007	0.00089	0.00007	1090A	In Situ	AC	Tokanui	800224	VMW
B50/2 O 0.0	105	NORMAL 14/03/2023		soil-VMW	Soil	0.00219	0.00013	0.0047	0.00018	0.00033	0.00007	0.00074	0.00007	1090A	In Situ	AC	Tokanui	800224	VMW
B50/2 A 0.1	107	NORMAL 14/03/2023		soil-VMW	Soil	0.00111	0.00013	0.0047	0.00015	0.00037	0.00009	0.0018	0.00007	1090A	In Situ	AC	Tokanui	800224	VMW
B50/2 A 0.2	107	NORMAL 14/03/2023		soil-VMW	Soil	0.0016	0.00017	0.00423	0.00013	0.00087	0.00003	0.0018	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B51/1 A 0.0	108	NORMAL 14/03/2023		soil-VMW	Soil	0.00152	0.00017	0.04084	0.00014	0.0003	0.00007	0.00181	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B51/1 B 0.0	110	NORMAL 14/03/2023		soil-VMW	Soil	0.00132	0.00014	0.0068	0.00037	0.00043	0.00007	0.00181	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B51/1 C 0.0	111	NORMAL 14/03/2023		soil-VMW	Soil	0.0016	0.00014	0.00685	0.00018	0.00034	0.00008	0.00181	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B51/1 D 0.0	112	NORMAL 14/03/2023		soil-VMW	Soil	0.00204	0.00010	0.00667	0.00017	0.00057	0.00006	0.00093	0.00003	1090A	In Situ	AC	Tokanui	800224	VMW
B51/1 O 0.0	113	NORMAL 14/03/2023		soil-VMW	Soil	0.00174	0.00014	0.0164	0.00013	0.00037	0.00007	0.00093	0.00008	1090A		AC	Tokanui	800224	VMW
B51/1 A 0.1	114	NORMAL 14/03/2023		soil-VMW	Soil	0.00174	0.00013	0.0164	0.00024	0.00048	0.00007	0.00122	0.00009	1090A	In Situ In Situ	AC	Tokanui	800224	VMW
B51/1 A 0.1	114	NORMAL 14/03/2023	12:47:35	soil-VMW	Soil	0.00439	0.00018	0.00774	0.00018	0.00051	0.00008	0.00157	0.00009	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B51/1 A 0.1	116	NORMAL 14/03/2023		soil-VMW	Soil	0.00337	0.00019	0.00691	0.00018	0.00057	0.00008	0.00137	0.0001	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B51/1 A 0.2	117	NORMAL 14/03/2023	12:49:44	soil-VMW	Soil	0.00377	0.00019	0.0064	0.00017	0.00057	0.00008	0.00143	0.0001	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B51/2 A 0.0	117	NORMAL 14/03/2023		soil-VMW	Soil	0.00333	0.00018	0.01206	0.00018	0.0005	0.00008	0.00128	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B51/2 B 0.0	119	NORMAL 14/03/2023	12:55:56	soil-VMW	Soil	0.00233	0.00015	0.00701	0.0002	0.0003	0.00008	0.00219	0.0003	1090A	In Situ	AC	Tokanui	800224	VMW
B51/2 C 0.0	120	NORMAL 14/03/2023		soil-VMW	Soil	0.00168	0.00015	0.00691	0.00017	0.00044	0.00007	0.00182	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B51/2 D 0.0	121	NORMAL 14/03/2023		soil-VMW	Soil	0.00296	0.00013	0.0085	0.00018	0.00047	0.00007	0.00183	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B51/2 A 0.1	122	NORMAL 14/03/2023		soil-VMW	Soil	0.00296	0.00017	0.0083	0.00018	0.00043	0.00008	0.00228	0.0003	1090A	In Situ	AC	Tokanui	800224	VMW
	123	NORMAL 14/03/2023		soil-VMW		0.00264	0.00017	0.00604	0.00019	0.00039	0.00003	0.00228	0.0001	1090A					VMW
B51/2 A 0.2 S5/1 A 0.0	123	NORMAL 14/03/2023	13:00:51	soil-VMW	Soil Soil	0.00361	0.00018	0.06922	0.00018	0.00044	0.00008	0.00172	0.0001	1090A 1090A	In Situ In Situ	AC AC	Tokanui Tokanui	800224 800224	VMW
S5/1 B 0.0	125	NORMAL 14/03/2023		soil-VMW	Soil	0.00243	0.00010	0.00322	0.00032	0.0003	0.00013	0.00342	0.00010	1090A	In Situ	AC	Tokanui	800224	VMW
S5/1 C 0.0	126	NORMAL 14/03/2023		soil-VMW	Soil	0.00158	0.00014	0.01192	0.0002	0.0003	0.00008	0.00219	0.0003	1090A	In Situ	AC	Tokanui	800224	VMW
S5/1 D 0.0	127	NORMAL 14/03/2023		soil-VMW	Soil	0.00251	0.00013	0.00773	0.00021	0.00033	0.00006	0.00212	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
S5/1 A 0.1	128	NORMAL 14/03/2023		soil-VMW	Soil	0.00137	0.00016	0.03363	0.00015	0.00022	0.0001	0.00134	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
S5/1 A 0.1	129	NORMAL 14/03/2023	13:11:03	soil-VMW	Soil	0.00249	0.00016	0.02966	0.00033	0.0007	0.0001	0.00475	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
S5/1 A 0.1	130	NORMAL 14/03/2023		soil-VMW	Soil	0.00249	0.00017	0.02366	0.00032	0.00033	0.0001	0.00416	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
S5/1 A 0.2	131	NORMAL 14/03/2023		soil-VMW	Soil	0.00508	0.00017	0.00896	0.00030	0.00040	0.00001	0.00188	0.00014	1090A	In Situ	AC	Tokanui	800224	VMW
Blank	1	NORMAL 15/03/2023		soil-VMW	Soil	<lod< td=""><td>0.00038</td><td><lod< td=""><td>0.0002</td><td><lod< td=""><td>0.00003</td><td><lod< td=""><td>0.00011</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<></td></lod<></td></lod<>	0.00038	<lod< td=""><td>0.0002</td><td><lod< td=""><td>0.00003</td><td><lod< td=""><td>0.00011</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<></td></lod<>	0.0002	<lod< td=""><td>0.00003</td><td><lod< td=""><td>0.00011</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<>	0.00003	<lod< td=""><td>0.00011</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
Std	2	NORMAL 15/03/2023		soil-VMW	Soil	0.01418	0.00038	0.03792	0.00025	0.00667	0.00013	0.13598	0.0002	1090A	In Situ	AC	Tokanui	800224	VMW
Std	3	NORMAL 15/03/2023	7:46:23	soil-VMW	Soil	0.3383	0.00033	0.42124	0.00043	0.15294	0.00050	0.53235	0.00283	1090A	In Situ	AC	Tokanui	800224	VMW
B52/1 A 0.0	4	NORMAL 15/03/2023	7:49:20	soil-VMW	Soil	0.00365	0.00218	0.0124	0.00248	0.00046	0.00132	0.00496	0.00283	1090A	In Situ	AC	Tokanui	800224	VMW
B52/1 A 0.0	5	NORMAL 15/03/2023	7:50:12	soil-VMW	Soil	0.00363	0.00022	0.0124	0.00027	0.00048	0.00013	0.00595	0.00018	1090A	In Situ	AC	Tokanui	800224	VMW
B52/1 A 0.0	6	NORMAL 15/03/2023	7:51:09	soil-VMW	Soil	0.00354	0.00018	0.01027	0.00025	<lod< td=""><td>0.00011</td><td>0.00547</td><td>0.00013</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00011	0.00547	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
B52/1 B 0.0	7	NORMAL 15/03/2023	7:52:15	soil-VMW	Soil	0.00334	0.00018	0.02056	0.00023	0.00041	0.00034	0.00347	0.00014	1090A	In Situ	AC	Tokanui	800224	VMW
B52/1 C 0.0	8	NORMAL 15/03/2023	7:52:15	soil-VMW	Soil	0.00331	0.00019	0.02056	0.0003	0.00041	0.00011	0.00436	0.00013	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B52/1 C 0.0	9	NORMAL 15/03/2023	7:54:56	soil-VMW	Soil	0.00303	0.00018	0.01411	0.00024	<lod< td=""><td>0.00011</td><td>0.0048</td><td>0.00013</td><td>1090A 1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00011	0.0048	0.00013	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B52/1 O 0.0	10	NORMAL 15/03/2023	7:56:08	soil-VMW	Soil	0.00313	0.00018	0.01336	0.00024	0.00052	0.00032	0.00437	0.00013	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B52/1 A 0.1	11	NORMAL 15/03/2023	7:55:08	soil-VMW	Soil	0.00261	0.00021	0.00688	0.00028	0.00032	0.00012	0.00391	0.00015	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B52/2 A 0.0	12	NORMAL 15/03/2023	8:00:09	soil-VMW	Soil	0.0023	0.00021	0.38821	0.00019	0.00043	0.0003	0.05578	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B52/2 B 0.0	13	NORMAL 15/03/2023	8:01:26	soil-VMW	Soil	0.0023	0.00017	0.01777	0.00174	<lod< td=""><td>0.0003</td><td>0.00503</td><td>0.00041</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.0003	0.00503	0.00041	1090A	In Situ	AC	Tokanui	800224	VMW
B52/2 C 0.0	14	NORMAL 15/03/2023	8:01:26	soil-VMW	Soil	0.0017	0.00014	0.01777	0.00023	0.00036	0.00028	0.00503	0.00012	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B52/2 C 0.0 B52/2 D 0.0	15	NORMAL 15/03/2023	8:02:43	soil-VMW	Soil	0.00169	0.00014	0.01411	0.00021	0.00036	0.00008	0.00257	0.0001	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B52/2 O 0.0	16	NORMAL 15/03/2023	8:03:45	soil-VMW	Soil	0.00286	0.00016	0.01389	0.00021	0.00044	0.00008	0.00274	0.0001	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B52/2 O 0.0 B52/2 A 0.1	16	NORMAL 15/03/2023	8:04:54	soil-VMW	Soil	0.00205	0.00017	0.01058	0.00021		0.00008	0.00177	0.0001	1090A 1090A		AC		800224	VMW
B52/2 A 0.1	18	NORMAL 15/03/2023	8:06:30	soil-VMW	Soil	0.00294	0.0002	0.07939	0.00065	<lod <lod< td=""><td>0.00052</td><td>0.01319</td><td>0.00022</td><td>1090A 1090A</td><td>In Situ In Situ</td><td>AC</td><td>Tokanui Tokanui</td><td>800224</td><td>VMW</td></lod<></lod 	0.00052	0.01319	0.00022	1090A 1090A	In Situ In Situ	AC	Tokanui Tokanui	800224	VMW
B52/2 A 0.1	19	NORMAL 15/03/2023	8:07:24	soil-VMW	Soil	0.00294	0.00018	0.06031	0.00065	0.00074	0.00031	0.01547	0.00021	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B52/2 A 0.1 B52/2 A 0.2	20	-, -,			Soil		0.00022	0.06031	0.0006	0.00074 <lod< td=""><td>0.00021</td><td>0.01591</td><td>0.00026</td><td>1090A 1090A</td><td></td><td>AC</td><td></td><td>800224</td><td>VMW</td></lod<>	0.00021	0.01591	0.00026	1090A 1090A		AC		800224	VMW
	20		8:10:20	soil-VMW		0.00361		0.03116		0.00042	0.00033				In Situ	1	Tokanui		
B53 paint		NORMAL 15/03/2023	8:19:44	soil-VMW	Soil	<lod< td=""><td>0.00054</td><td></td><td>0.00055</td><td></td><td></td><td>0.0006</td><td>0.0001</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00054		0.00055			0.0006	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B53/1 A 0.0	22	NORMAL 15/03/2023	8:23:34	soil-VMW	Soil	0.00277	0.00018	0.00655	0.00018	0.00044	0.00009	0.00173	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B53/1 B 0.0	23	NORMAL 15/03/2023	8:24:59	soil-VMW	Soil	0.0027	0.00016	0.00615	0.00016	0.00053	0.00007	0.00148	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B53/1 C 0.0	24	NORMAL 15/03/2023	8:26:17	soil-VMW	Soil	0.00239	0.00016	0.00623	0.00016	0.00033	0.00007	0.00173	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
B53/1 D 0.0	25	NORMAL 15/03/2023	8:28:06	soil-VMW	Soil	0.00246 0.00247	0.00015 0.00016	0.00767 0.00727	0.00017 0.00017	0.00055 0.00052	0.00007	0.00146	0.00009	1090A	In Situ	AC AC	Tokanui	800224 800224	VMW
B53/1 O 0.0	26	NORMAL 15/03/2023	8:29:07	soil-VMW	Soil							0.00159	0.00009	1090A	In Situ		Tokanui		VMW

DE2/4 A 0.4	27	NODAAN 45 (02 (2022	0.20.42	(a.n.) C-11	0.00262	0.00024	0.005.00	0.00040	0.00076	0.0004	0.00403	0.00043	40004	1	1 46	T.1	000004	
B53/1 A 0.1	27 28	NORMAL 15/03/2023	8:30:42 soil-1		0.00363 0.00446	0.00021	0.00569	0.00019	0.00076 0.00057	0.0001	0.00183 0.00191	0.00012	1090A	In Situ	AC AC	Tokanui Tokanui	800224	VMW
B53/1 A 0.1		NORMAL 15/03/2023	0.02			0.00021						0.000	1090A	In Situ		Tokanui	800224	
B53/1 A 0.1	29	NORMAL 15/03/2023			0.00291	0.00018	0.00656	0.00018	0.00057	0.00009	0.00187	0.0001	1090A	In Situ	AC		800224	VMW
B55/1 A 0.0 B55/1 A 0.0	30	NORMAL 15/03/2023 NORMAL 15/03/2023	8:44:22 soil-1 8:45:15 soil-1		0.00807 0.00421	0.00023	0.02049 0.01847	0.00028	<lod 0.00094</lod 	0.00073	0.0348 0.01131	0.00032	1090A 1090A	In Situ	AC AC	Tokanui Tokanui	800224 800224	VMW
B55/1 A 0.0	31 32	NORMAL 15/03/2023	8:45:15 SOII-		0.00421	0.00017	0.01847	0.00024	0.00094	0.00014	0.01131	0.00018	1090A 1090A	In Situ In Situ	AC	Tokanui	800224	VMW
B55/1 A 0.0	33	NORMAL 15/03/2023		MW Soil	0.00342	0.00021	0.01932	0.00029	<lod< td=""><td>0.00013</td><td>0.01044</td><td>0.00018</td><td>1090A 1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00013	0.01044	0.00018	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
	34	NORMAL 15/03/2023					0.01635		0.00048	0.00064	0.01115	0.00026		+	AC	Tokanui		VMW
B55/1 A 0.0 B55/1 B 0.0	35	NORMAL 15/03/2023		MW Soil MW Soil	0.00579 0.00138	0.0002	0.01708	0.00026	<lod< td=""><td>0.00013</td><td>0.01178</td><td>0.00018</td><td>1090A 1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224 800224</td><td>VMW</td></lod<>	0.00013	0.01178	0.00018	1090A 1090A	In Situ	AC	Tokanui	800224 800224	VMW
B55/1 C 0.0	36	NORMAL 15/03/2023	8:49:32 SOII-		0.00138	0.00013	0.00927	0.00017	<lod <lod< td=""><td>0.00024</td><td>0.00319</td><td>0.0001</td><td>1090A 1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></lod 	0.00024	0.00319	0.0001	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B55/1 D 0.0	37	-, -,	8:50:34 Soil-1		0.00089	0.00012	0.01088	0.00018	<lod <lod< td=""><td>0.00023</td><td>0.0029</td><td>0.0001</td><td>1090A 1090A</td><td>In Situ</td><td>AC</td><td></td><td>800224</td><td>VMW</td></lod<></lod 	0.00023	0.0029	0.0001	1090A 1090A	In Situ	AC		800224	VMW
B55/1 O 0.0	38	NORMAL 15/03/2023 NORMAL 15/03/2023		MW Soil	0.00629	0.00011	0.01015	0.00014	<lod <lod< td=""><td>0.00019</td><td>0.00202</td><td>0.00008</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui Tokanui</td><td>800224</td><td>VMW</td></lod<></lod 	0.00019	0.00202	0.00008	1090A	In Situ	AC	Tokanui Tokanui	800224	VMW
	39									-								
B55/1 O 0.0	40	NORMAL 15/03/2023 NORMAL 15/03/2023	8:53:41 soil-1		0.00066	0.00011	0.00572	0.00013	0.00024	0.00006	0.00166	0.00008	1090A	In Situ	AC	Tokanui	800224	VMW
B55/1 A 0.1 B55/1 A 0.2	40	NORMAL 15/03/2023 NORMAL 15/03/2023	8:56:30 soil-1		0.00384 0.00406	0.00018	0.00741 0.00721	0.00018	0.00077	0.0001	0.00333	0.00011	1090A 1090A	In Situ In Situ	AC AC	Tokanui Tokanui	800224 800224	VMW
B55/2 A 0.0	42	NORMAL 15/03/2023	9:01:14 soil-		0.00408	0.00018	0.03956	0.00017	<lod< td=""><td>0.0006</td><td>0.03561</td><td>0.00011</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.0006	0.03561	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B55/2 A 0.0	42	NORMAL 15/03/2023		MW Soil	0.00133	0.00012	0.03936	0.00033	<lod <lod< td=""><td>0.00051</td><td>0.03361</td><td>0.00027</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></lod 	0.00051	0.03361	0.00027	1090A	In Situ	AC	Tokanui	800224	VMW
	43				0.00162	0.00013	+	0.0003	0.00499	0.00031	0.02308	0.00022	1090A 1090A	1	AC	-	800224	VMW
B55/2 A 0.0	44	-, -,				0.00014	0.03525		0.00499			+	1090A 1090A	In Situ		Tokanui Tokanui		VMW
B55/2 B 0.0 B55/2 C 0.0	45	NORMAL 15/03/2023 NORMAL 15/03/2023	9:04:38 SOII-		0.00235 0.00113	0.00013	0.02969 0.01405	0.00031	0.00113 <lod< td=""><td>0.00021</td><td>0.02991</td><td>0.00027</td><td>1090A 1090A</td><td>In Situ</td><td>AC AC</td><td>Tokanui</td><td>800224 800224</td><td>VMW</td></lod<>	0.00021	0.02991	0.00027	1090A 1090A	In Situ	AC AC	Tokanui	800224 800224	VMW
B55/2 C 0.0 B55/2 D 0.0	46	NORMAL 15/03/2023					0.01405	0.00019	<lod <lod< td=""><td>0.00027</td><td>0.01074</td><td></td><td></td><td>In Situ</td><td>AC</td><td></td><td></td><td>VMW</td></lod<></lod 	0.00027	0.01074			In Situ	AC			VMW
	47		9:07:44 soil-		0.00257 0.00462	0.00016		0.00021	0.00035	0.00041	0.01074	0.00017	1090A 1090A	In Situ		Tokanui	800224	-
B55/2 O 0.0	48		9:09:19 soil-1	/MW Soil		0.00017	0.01016	0.00018		0.00009		0.00011		In Situ	AC	Tokanui Tokanui	800224	VMW
B55/2 A 0.1		-, -,			0.00221	0.00015	0.01152		<lod< td=""><td></td><td>0.0139</td><td>0.00019</td><td>1090A</td><td>In Situ</td><td>AC</td><td></td><td>800224</td><td>VMW</td></lod<>		0.0139	0.00019	1090A	In Situ	AC		800224	VMW
B55/2 A 0.2	50	NORMAL 15/03/2023 NORMAL 15/03/2023	9:12:02 soil-1 9:28:00 soil-1		0.00134 0.00331	0.00015	0.00409 0.01254	0.00014	0.00073 <lod< td=""><td>0.00009</td><td>0.00204</td><td>0.0001</td><td>1090A 1090A</td><td>In Situ</td><td>AC AC</td><td>Tokanui</td><td>800224 800224</td><td>VMW</td></lod<>	0.00009	0.00204	0.0001	1090A 1090A	In Situ	AC AC	Tokanui	800224 800224	VMW
B56/1 A 0.0	51	-, -,												In Situ		Tokanui		
B56/1 B 0.0	52 53	NORMAL 15/03/2023 NORMAL 15/03/2023	9:29:03 soil-1		0.00304 0.00283	0.00019	0.0106 0.00951	0.00023	<lod 0.00043</lod 	0.00028	0.00248 0.0018	0.00011	1090A	In Situ	AC AC	Tokanui	800224	VMW
B56/1 C 0.0	54	NORMAL 15/03/2023	9:30:30 soil- 9:31:34 soil-		0.00283	0.00017	0.00951	0.00019	0.00043	0.00008	~	0.0001	1090A 1090A	In Situ	AC	Tokanui Tokanui	800224 800224	VMW
B56/1 D 0.0	55							0.00022			0.0021			In Situ		-		
B56/1 O 0.0 B56/1 A 0.1	56	NORMAL 15/03/2023 NORMAL 15/03/2023	9:33:29 soil-1		0.00312 0.00443	0.00018	0.00883	0.0002	0.00056 0.00045	0.00008	0.00152 0.0051	0.0001	1090A 1090A	In Situ In Situ	AC AC	Tokanui Tokanui	800224 800224	VMW
		,,					0.01575								+			
B56/1 A 0.1	57 58	NORMAL 15/03/2023	9:36:02 soil-		0.00385	0.00017	0.0147	0.00023	0.00046	0.0001	0.00486	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
B56/1 A 0.1	58	NORMAL 15/03/2023		MW Soil	0.00453	0.00019		0.00023	0.00046	0.00011	0.005	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
B56/1 A 0.2 B56/2 A 0.0	60	NORMAL 15/03/2023 NORMAL 15/03/2023	9:38:22 soil- 9:41:11 soil-		0.00268 0.00225	0.00017	0.02175 0.26395	0.00029	0.00051 <lod< td=""><td>0.0001</td><td>0.00388</td><td>0.00012 0.00016</td><td>1090A 1090A</td><td>In Situ In Situ</td><td>AC AC</td><td>Tokanui Tokanui</td><td>800224 800224</td><td>VMW</td></lod<>	0.0001	0.00388	0.00012 0.00016	1090A 1090A	In Situ In Situ	AC AC	Tokanui Tokanui	800224 800224	VMW
B56/2 A 0.0	61	NORMAL 15/03/2023	9:42:02 soil-		0.00223	0.0002	0.30407	0.0013	0.00069	0.00039	0.00383	0.00016	1090A	In Situ	AC	Tokanui	800224	VMW
B56/2 A 0.0	62	NORMAL 15/03/2023	9:43:04 soil-		0.00371	0.00019	0.27744	0.00147	<lod< td=""><td>0.00013</td><td>0.00641</td><td>0.00016</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00013	0.00641	0.00016	1090A	In Situ	AC	Tokanui	800224	VMW
B56/2 B 0.0	63	NORMAL 15/03/2023		MW Soil	0.00231	0.00019	0.01296	0.00148	<lod <lod< td=""><td>0.00038</td><td>0.00641</td><td>0.00015</td><td>1090A 1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></lod 	0.00038	0.00641	0.00015	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B56/2 C 0.0	64	NORMAL 15/03/2023	9:44:24 soil-		0.00081	0.00014	0.01296	0.00022	0.00046	0.00002	0.0011	0.00009	1090A 1090A			Tokanui	800224	VMW
B56/2 D 0.0	65	NORMAL 15/03/2023	9:45:24 SOII-		0.00218	0.00016	0.01722	0.00024	0.00046	0.00008	0.00134	0.00009	1090A 1090A	In Situ In Situ	AC AC	Tokanui	800224	VMW
B56/2 O 0.0	66	NORMAL 15/03/2023	9:46:25 SOII-		0.00243	0.00016	0.01722	0.00023	0.00052	0.00008	0.00173	0.00009	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B56/2 A 0.1	67	NORMAL 15/03/2023	9:49:06 soil-		0.00239	0.00018	0.02777	0.00024	0.00045	0.00008	0.00173	0.00003	1090A	In Situ	AC	Tokanui	800224	VMW
B56/2 A 0.2	68	NORMAL 15/03/2023		MW Soil	0.0029	0.00018	0.03126	0.00035	0.00043	0.00011	0.00417	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
<u> </u>	69					0.00019		0.00033	0.00079 <lod< td=""><td>0.0001</td><td>0.18531</td><td>0.00012</td><td>1090A 1090A</td><td>1</td><td> </td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.0001	0.18531	0.00012	1090A 1090A	1	 	Tokanui	800224	VMW
B59/1 A 0.0	70	NORMAL 15/03/2023 NORMAL 15/03/2023	10:07:55 Soil-1		0.00228 0.00202	0.00023	0.07951	0.00077	<lod <lod< td=""><td>0.00217</td><td>0.20809</td><td>0.00121</td><td></td><td>In Situ</td><td>AC</td><td></td><td>800224</td><td>VMW</td></lod<></lod 	0.00217	0.20809	0.00121		In Situ	AC		800224	VMW
B59/1 A 0.0 B59/1 A 0.0	70	NORMAL 15/03/2023	10:08:48 SOII-		0.00202	0.00019	0.10045	0.00064	<lod <lod< td=""><td>0.00187</td><td>0.20809</td><td>0.00098</td><td>1090A 1090A</td><td>In Situ</td><td>AC AC</td><td>Tokanui Tokanui</td><td>800224</td><td>VMW</td></lod<></lod 	0.00187	0.20809	0.00098	1090A 1090A	In Situ	AC AC	Tokanui Tokanui	800224	VMW
B59/1 A 0.0	72	NORMAL 15/03/2023	10:09:44 Soil-		0.00246	0.00015	0.10045	0.00073	0.00093	0.00183	0.19463	0.00103	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
	73	NORMAL 15/03/2023		MW Soil	0.00221	0.00017	0.01019	0.00031	0.00054	0.00017	0.01671	0.0002	1090A	In Situ	AC			VMW
B59/1 C 0.0 B59/1 D 0.0	74	NORMAL 15/03/2023		MW Soil	0.00223	0.00017	0.01019	0.00021	0.00054	0.00012	0.00375	0.00014	1090A 1090A	In Situ In Situ	AC	Tokanui Tokanui	800224 800224	VMW
B59/1 O 0.0	75	NORMAL 15/03/2023		MW Soil	0.00204	0.00016	0.01005	0.0002	0.00059	0.0001	0.00365	0.00012	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B59/1 A 0.1	76	NORMAL 15/03/2023	10:14:16 Soil-1		0.00247	0.00016	0.01005	0.0002	<lod< td=""><td>0.00106</td><td>0.00374</td><td>0.00012</td><td>1090A 1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00106	0.00374	0.00012	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B59/1 A 0.2	76	NORMAL 15/03/2023	10:18:05 soil-		0.0024	0.00017	0.04358	0.00041	<lod <lod< td=""><td>0.00106</td><td>0.03793</td><td>0.00034</td><td>1090A 1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></lod 	0.00106	0.03793	0.00034	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B59/1 A 0.2	78	NORMAL 15/03/2023		/MW Soil	0.00198	0.00017	0.02644	0.00033	0.00094	0.00076	0.03793	0.00034	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
B59/2 A 0.0	79	NORMAL 15/03/2023			0.00221	0.00021	0.01305	0.00038	0.0012	0.00021	0.0146	0.00023	1090A	In Situ	AC	Tokanui	800224	VMW
B59/2 B 0.0	80	NORMAL 15/03/2023	10:25:20 soil-		0.00116	0.00014	0.01015	0.00022	0.00059	0.00017	0.00431	0.00021	1090A	In Situ	AC	Tokanui	800224	VMW
B59/2 C 0.0	81	NORMAL 15/03/2023	10:26:19 soil-		0.00116	0.00013	0.01013	0.0002	0.00057	0.0001	0.00431	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
B59/2 D 0.0	82	NORMAL 15/03/2023	10:27:37 soil-		0.00116	0.00017	0.00783	0.0002	0.00053	0.0001	0.00294	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
B59/2 O 0.0	83	NORMAL 15/03/2023		MW Soil	0.00176	0.00016	0.00842	0.0002	0.00054	0.00001	0.00319	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
	83				_									+				
B59/2 A 0.1	84	NORMAL 15/03/2023 NORMAL 15/03/2023		MW Soil	0.00122 0.12215	0.00022	0.00852 0.00318	0.00026 0.00016	0.00134 0.20216	0.00017	0.00691 <lod< td=""><td>0.0002</td><td>1090A 1090A</td><td>In Situ In Situ</td><td>AC AC</td><td>Tokanui Tokanui</td><td>800224 800224</td><td>VMW</td></lod<>	0.0002	1090A 1090A	In Situ In Situ	AC AC	Tokanui Tokanui	800224 800224	VMW
B60 paint		NORMAL 15/03/2023	10:36:58 SOII-		0.12215 <lod< td=""><td>0.00076</td><td>0.00318</td><td></td><td>0.20216</td><td>0.00082</td><td>0.0004</td><td>0.0002</td><td>1090A 1090A</td><td></td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00076	0.00318		0.20216	0.00082	0.0004	0.0002	1090A 1090A		AC	Tokanui	800224	VMW
B62 paint	86	,,						0.00015						In Situ				$\overline{}$
B62 paint door	87	NORMAL 15/03/2023	10:41:35 soil-		0.01047	0.00037	0.28656	0.00186	<lod< td=""><td>0.00814</td><td>2.91933</td><td>0.01405</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00814	2.91933	0.01405	1090A	In Situ	AC	Tokanui	800224	VMW
B60/1 A 0.0	88	NORMAL 15/03/2023	10:45:15 soil-		0.00194	0.00018	0.0149	0.00026	0.001	0.0001	0.00232	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B60/1 B 0.0	89	NORMAL 15/03/2023	10:47:15 soil-	_	0.00132	0.00019	0.00877	0.00022	0.00097	0.00009	0.00125	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B60/1 C 0.0	90	NORMAL 15/03/2023	10:48:16 soil-		0.0019	0.00019	0.00822	0.00021	0.00086	0.00009	0.00128	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B60/1 D 0.0	91	NORMAL 15/03/2023	10:49:29 soil-		0.00184	0.00019	0.00845	0.00021	0.00079	0.00009	0.00133	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B60/1 A 0.1	92	NORMAL 15/03/2023			0.00238	0.00018	0.01111	0.00023	0.00162 0.00047	0.00013	0.00533	0.00014 0.00016	1090A 1090A	In Situ In Situ	AC AC	Tokanui Tokanui	800224 800224	VMW
B65/1 A 0.0	93	NORMAL 15/03/2023	11:10:20 soil-	MW Soil	0.00251	0.00017	0.0092	0.0002										

Section Sect	B65/1 B 0.0	94	NORMAL 15/03/2023	11:11:20 soil-VMW	Soil	0.00095	0.00013	0.00427	0.00013	0.00023	0.00006	0.00136	0.00008	1090A	In Situ	AC	Tokanui	800224	VMW
SOLITION No. Depart 1997 1996 1996 1997 19																			
Miles															-				
SECTION 1987																			
SECTION 190																			
Section 100 Northern 100 North										<lod< td=""><td>0.00029</td><td></td><td>0.00012</td><td></td><td></td><td>-</td><td></td><td></td><td></td></lod<>	0.00029		0.00012			-			
Section 1907 According Section Secti																			
1807 A.D. 120 MORRA 1507	B65/1 A 0.2	101	NORMAL 15/03/2023	11:19:22 soil-VMW	Soil	0.00366	0.00017	0.00935	0.00018	0.00051	0.0001	0.00425	0.00012	1090A	▲ In Situ	AC	Tokanui	800224	VMW
MONTAIN MONT		102					0.00013				0.00018		0.00008	1090A					VMW
1677 1678 1679	B65/2 A 0.0	103	NORMAL 15/03/2023	11:27:24 soil-VMW	Soil	0.00359	0.00017	0.00918	0.00018	0.00037	0.00009	0.00336	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
MORT COLOR	B65/2 A 0.0	104	NORMAL 15/03/2023	11:29:02 soil-VMW	Soil	0.00291	0.00016	0.01148	0.0002	0.00046	0.00008	0.00253	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
MSC/1001 107 MSC/1001 157 MSC/	B65/2 B 0.0	105	NORMAL 15/03/2023	11:30:12 soil-VMW	Soil	0.00171	0.00014	0.00615	0.00015	<lod< td=""><td>0.00022</td><td>0.00215</td><td>0.00009</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00022	0.00215	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
MORA 1.50 MORA 1.50	B65/2 C 0.0	106	NORMAL 15/03/2023	11:31:31 soil-VMW	Soil	0.0033	0.00018	0.00841	0.00019	0.00052	0.0001	0.00377	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
More 19			-, -,		Soil														
Sept			, -,																
11								1											
12						-									1	+			
BOATA ARD 131 NORMAN SUNCANON SUNCANON Sunt NORMAN SUNCANON			-, -, -, -																
989/1 ROQ			-, -,																
BERY LOCAD 135 MOMMAN, Symptom 115-000 (DRIVAN) Soil 0.00015 0.00014 0.00027 0.00016 0.00007 0.00016 0.00007 1.00006 0.00007 1.00006 0.00007 0.00016 0.00007 0.00016 0.00007 0.00016 0.00007 0.00016 0.00007 0.00016 0.00007 0.00016 0.00017 0.00016 0.00017 0.00016 0.00017 0.00016 0.00017 0.00016 0.00017																			
BBSP 20.0 134 NORMAL \$592,0020 137-80 137-80 139-94 NORMAL \$592,0020 NORMAL \$592,0020 NORMAL \$59																			
BIOLY A.D. 11 NORMAL \$1597,07021 159-29 504-9WW Sel 0.000256 0.00018 0.00048 0.00025 0.00055 0.00051 100040 10004 1000															1			_	
Septy A.D. 18 NGMAMA 15093/2023 200222 sel-vawy 561 0.00278 0.00018 0.00004 0.00005 0.00005 0.000018 0			, -,																
BOYA A.O. 139 NORMAL \$509/2002 20:0212 oil-www 561 0.00075 0.00016 0.00044 0.00075																			
1997 A.O. 120 MORMAL 1509/2003 120555 SolVAMW Soll 0.00018 0.00011 0.00015 0.00013 0.00020 1.00002			-, -,																
Sept A.D. 21 MORMAL 15/03/2002 12:05.5 Sept MW Soil 0.00127 0.00018 0.00																			
Syl A D									_										
Syst A 0.0 123 AORMAN Syst A 2022			+			-	1												
S971 A D										_									
Sept Bol 125 NORMAI 15/99/2023 1299-85 SOM-MAW Soil 0.000222 0.00022 0.00025 0.00025 0.00035 0.00031 100004 In Situ AC Tokamul 800224 VMW Soil 0.00039 0.00030 0.00039 0.00035 0.00039			-, -,																
S471 CO 0 126 NORMANI, 15/98/2023 1211:101 S01/WWW S01 0.00029 0.00024 0.00031 0.0004 0.00021 0.0003																			
SATE DO 0 127 NORMAL 15/03/2023 121:1200 gold-VMW Soll 0.00018 0.00018 0.00009 0.00004 0.00008 0.000227 0.00011 1.090A In STU AC Totamul 800224 VMW SATE AD 1.00018 0.00018															1				
Sylf A.O.1 129 NORMAL 15/63/2022 12:14:15 soil-WMW Soil 0.00179 0.00014 0.00984 0.00018 0.00009 0.00022 0.00001 1.090A In Situ AC Totamui 800224 VMW 17/14 A.O. 131 NORMAL 15/63/2023 12:28:48 soil-WMW Soil 0.00135 0.00015 0.00019 0.00015 0.00005 0.00009 0.00017 0.0001 1.090A In Situ AC Totamui 800224 VMW 17/14 A.O. 131 NORMAL 15/63/2023 12:28:48 soil-WMW Soil 0.00218 0.00018 0.00025 0.00008 0.00027 0.00011 1.090A In Situ AC Totamui 800224 VMW 17/14 C.O. 133 NORMAL 15/63/2023 12:33:15 soil-WMW Soil 0.00228 0.00016 0.00026 0.00071 0.00008 0.00274 0.00011 1.090A In Situ AC Totamui 800224 VMW 17/14 C.O. 134 NORMAL 15/63/2023 12:33:15 soil-WMW Soil 0.00228 0.00016 0.0026 0.00072 0.00008 0.00248 0.00011 1.090A In Situ AC Totamui 800224 VMW 17/14 C.O. 135 NORMAL 15/63/2023 12:33:15 soil-WMW Soil 0.00218 0.00016 0.0026 0.00026 0.00027 0.00001 1.090A In Situ AC Totamui 800224 VMW 17/14 A.O. 135 NORMAL 15/63/2023 12:33:45 soil-WMW Soil 0.0026 0.00026 0.00026 0.00027 0.00011 1.090A In Situ AC Totamui 800224 VMW 17/14 A.O. 136 NORMAL 15/63/2023 12:33:45 soil-WMW Soil 0.00236 0.00026 0.00026 0.00027 0.000011 1.090A In Situ AC Totamui 800224 VMW 17/14 A.O. 138 NORMAL 15/63/2023 12:38:45 soil-WMW Soil 0.00236 0.00026 0.00027 0.00011 1.090A In Situ AC Totamui 800224 VMW 17/14 A.O. 138 NORMAL 15/63/2023 12:38:45 soil-WMW Soil 0.00236 0.00021 0.00036 0.00024 0.00031 0.0003																			
Syl A D 2	S4/1 O 0.0	128	NORMAL 15/03/2023	12:13:11 soil-VMW	Soil	0.00178	0.00014	0.00948	0.00018	0.0004	0.00008	0.00227	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
1311 NORMAL 15/03/2023 123-848 Soil-WMW Soil 0.0014 0.0006 0.00035 0.00008 0.00019 0.0001 1090A In Stut AC Tokanul 800224 VMW Tokanul 15/03/2023 123-123 VMW Soil 0.0023 0.00035 0.00088 0.00008 0.000074 0.0001 1090A In Stut AC Tokanul 800224 VMW 15/03/2023 123-123 VMW Soil 0.0023 0.00036 0.00098 0.000074 0.00001 1090A In Stut AC Tokanul 800224 VMW 15/03/2023 123-123 VMW Soil 0.0023 0.00036 0.00074 0.00007 0.000071 0.0001 1090A In Stut AC Tokanul 800224 VMW 15/03/2023 123-123 VMW Soil 0.0023 0.00036 0.00074 0.00007 0.000071 0.00001 0.00071 0.0001 0.00074 0.000075 0.00076 0.00076 0.00077 0.00008 0.0007	S4/1 A 0.1	129	NORMAL 15/03/2023	12:14:15 soil-VMW	Soil	0.00179	0.00014	0.00984	0.00018	0.00049	0.00008	0.00242	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
ST/LE RO. 132 NORMAL 15/03/2023 12:30:47 Soll-WMW Soll 0.00229 0.00015 0.0098 0.00098 0.00098 0.000071 0.00001 1090A In Stu	S4/1 A 0.2	130	NORMAL 15/03/2023	12:15:20 soil-VMW	Soil	0.00135	0.00015	0.00949	0.0002	0.00045	0.00009	0.00223	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
ST/L CO	B71/1 A 0.0	131	NORMAL 15/03/2023	12:28:48 soil-VMW	Soil	0.00141	0.00016	0.30413	0.00149	0.00025	0.00008	0.00199	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
ST/1 D 0 0	B71/1 B 0.0	132	NORMAL 15/03/2023	12:30:47 soil-VMW	Soil	0.00229	0.00015	0.03901	0.00035	0.00048	0.00008	0.00274	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B71/1 A 0.0 135 NORMAL 15/03/2023 12:33-63 soli-VMW Soli D0009	B71/1 C 0.0				Soil		0.00016							1090A	In Situ		Tokanui		
B71/A A O 1 136 NORMAL 15/03/2023 12:35:28 Soil-VMW Soil 0.0029 0.00016 0.00216 0.00024 0.00009 0.00247 0.00011 1090A In Situ AC Tokanul 800224 VMW Soil 0.0023 12:48:41 Soil-VMW Soil 0.0023 0.00003 0.00009 0.00247 0.00011 1090A In Situ AC Tokanul 800224 VMW Soil 0.0023 12:48:41 Soil-VMW Soil 0.0023 12:48:41 Soil-VMW Soil 0.0023 0.00003 0.00009 0.00247 0.00011 1090A In Situ AC Tokanul 800224 VMW Soil 0.0023 12:48:41 Soil-VMW Soil 0.0023 0.00003 0.00009 0.00003 10:5000 In Situ AC Tokanul 800224 VMW Soil 0.0003 10:5000 0.000000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000	B71/1 D 0.0	134	NORMAL 15/03/2023	12:33:15 soil-VMW	Soil	0.00191	0.00015	0.01966	0.00026	0.00072	0.00008	0.00248	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B71/1 A 0.2 137 NORMAL 15/03/2023 12:36:45 Soli-VMW Soil 0.0015 0.0024 0.00032 0.00032 0.00043 0.00009 0.00271 0.00011 1.090A in Situ AC Tokanul 800224 VMW 855/1 A 0.0 139 NORMAL 15/03/2023 12:49:33 Soli-VMW Soil 0.0024 0.00015 0.1293 0.00078 0.0016 0.00025 0.0346 0.0003 1.090A in Situ AC Tokanul 800224 VMW 835/1 A 0.0 140 NORMAL 15/03/2023 12:50:37 Soli-VMW Soil 0.0024 0.00015 0.1135 0.00025 0.00016 0.00015 0.00016 0.															1	+			
B35/1 A 0.0 138 NORMAL 15/03/2023 12:48:41 soli-WMW Soil 0.00234 0.00016 0.12933 0.00078 0.00146 0.00024 0.00031 1090A In Situ AC Tokanul 800224 VMW 835/1 A 0.0 140 NORMAL 15/03/2023 12:49:33 soli-WMW Soil 0.00264 0.00018 0.12695 0.00081 0.00143 0.00025 0.003446 0.00032 1090A In Situ AC Tokanul 800224 VMW 835/1 A 0.0 141 NORMAL 15/03/2023 12:59:39 soli-WMW Soil 0.00214 0.00017 0.00350 0.00017 0.00350 0.00031 1090A In Situ AC Tokanul 800224 VMW 835/1 B 0.0 141 NORMAL 15/03/2023 12:52:39 soli-WMW Soil 0.00214 0.00017 0.00350 0.00017 0.00350 0.00018 0.000																			
B35/1 A O. 139 NORMAL 15/03/2023 12-50-37 Soil-VMW Soil 0.00264 0.00018 0.12695 0.00081 0.00143 0.00025 0.03464 0.00032 1.00																			
B35/1 A O.O 140 NORMAL 15/03/2023 12:50:37 SOIL-VMW SOIL O.0019 O.0021 O.01135 O.00092 C.1 O.00091 O.03304 O.00039 1090A In Situ AC Tokanul 800224 VMW SOIL O.0017 O.01538 O.00017 O.01538 O.00017 O.01538 O.00017 O.01538 O.00018 O.000			-, -,																
141 NORMAL 15/03/2023 12:52:39 Soil-VMW Soil 0.00245 0.0017 0.04566 0.00044 0.00068 0.0017 0.01538 0.00021 1090A In Situ AC Tokanui 800224 VMW Soil 0.0027 0.00019 0.0017 0.00062 0.00065 0.00013 0.00061 1090A In Situ AC Tokanui 800224 VMW Soil 0.0027 0.00019 0.00011 0.00062 0.00065 0.00013 0.00047 0.00061 1090A In Situ AC Tokanui 800224 VMW Soil 0.0027 0.00011 0.00061																			
B35/1 C 0.0 142 NORMAL 15/03/2023 12:53:50 Soil-VMW Soil 0.00212 0.00015 0.01742 0.0003 0.00062 0.00016 0.00016 1.00016 1.0004 1.00016 1.00016 1.00016 1.0004 1.00016 1.00018			,,															_	
B35/1 D 0.0 143 NORMAL 15/03/2023 12:55:55 Soli-VMW Soli 0.0026 0.00021 0.01117 0.00026 0.00005 0.00013 0.00474 0.00016 1090A In Situ AC Tokanui 800224 VMW Soli 0.0028 0.00018 0.0028 0.00018 0.00025 0.00006 0.00013 0.00696 0.00015 1090A In Situ AC Tokanui 800224 VMW Soli 0.0028 0.00																			
B35/1 0 0.0 144 NORMAL 15/03/2023 12:56:10 50!-VW Soil 0.0028 0.00018 0.01615 0.00026 0.00016 0.00013 0.00696 0.00015 1090A In Situ AC Tokanul 800224 VMW S35/1 A 0.1 145 NORMAL 15/03/2023 12:58:28 50!-VW Soil 0.0035 0.00022 0.09228 0.00074 0.0028 0.00027 0.02833 0.00033 1090A In Situ AC Tokanul 800224 VMW S35/2 B 0.0 146 NORMAL 15/03/2023 13:02:13 50!-VMW Soil 0.0035 0.00025 0.0035 0.00025 0.00038 0.00018 0.00494 0.00048 0.00048 1.000																			
B35/1 A 0.1 145 NORMAL 15/03/2023 12:58:28 Soil-VMW Soil 0.00355 0.00022 0.09228 0.00074 0.0028 0.00027 0.02833 0.00033 1090A In Situ AC Tokanui 800224 VMW Soil 0.00368 0.00025 0.03567 0.00049 0.0003 0.00018 0.00449 0.00048 1090A In Situ AC Tokanui 800224 VMW 8010 0.00588 0.00025 0.00587 0.00037 0.00031 0.00052 0.00013 0.00123 0.00016 1090A In Situ AC Tokanui 800224 VMW 8010 0.00588 0.00025 0.00037 0.00037 0.00031 0.00052 0.00013 0.00123 0.00016 1090A In Situ AC Tokanui 800224 VMW 8010 0.00588 0.00037 0.00037 0.00038 0.00145 0.00017 0.001197 0.00021 1090A In Situ AC Tokanui 800224 VMW 8010 0.00343 0.0002 0.00357 0.00035 0.00015 0.00015 0.00017 0.00011 0.00035 0.00014 1090A In Situ AC Tokanui 800224 VMW 8010 0.00343 0.0002 0.00035 0.00015 0.00035 0.00011 0.00035 0.00014 1090A In Situ AC Tokanui 800224 VMW 8010 0.00035 0.00014 0.00035 0		_	, -,																_
B35/2 B 0.0 146 NORMAL 15/03/2023 13:02:13 50il-VMW Soil 0.00368 0.00025 0.03567 0.00049 < LOD 0.00108 0.04491 0.00048 1090A In Situ AC Tokanui 800224 VMW S0il 0.00694 0.00037 0.00031 0.00031 0.00052 0.00013 0.00123 0.00016 1090A In Situ AC Tokanui 800224 VMW S0il 0.00694 0.00037 0.00031 0.00035 0.00013 0.00015 0.00013 0.00016 1090A In Situ AC Tokanui 800224 VMW S0il 0.00694 0.00037 0.00038 0.0014 0.00015 0.00017 0.00011 0.00031 0.00016 0.00017 0.00018 0.00017 0.00018 0.00017 0.00018 0.00017 0.00018 0.00017 0.00018 0.00017 0.00018 0.00017 0.00018 0.00017 0.00018 0.00017 0.00018 0.00017 0.00018 0.00018 0.00018 0.00018 0.00018 0.00018 0.00019 0.00019 0.00019 0.00019 0.00011 0.00018 0.00018 0.00018 0.00018 0.00018 0.00019 0.00019 0.00019 0.00011 0.00018 0.00011 0.00018 0.00018 0.00019 0.00019 0.00011 0																			
B35/2 B 0.0 147 NORMAL 15/03/2023 13:03:59 50 VMW Soil 0.00694 0.00037 0.00917 0.00031 0.00052 0.00013 0.00123 0.0016 1090A In Situ AC Tokanui 800224 VMW Sail 0.0024 VMW Sail 0.0024 VMW Sail 0.0025 0.00038 0.0014 0.00017 0.01197 0.00021 1090A In Situ AC Tokanui 800224 VMW Sail 0.0025 0.00035 0.00018 0.00017 0.00035 0.00011 0.00835 0.00014 1090A In Situ AC Tokanui 800224 VMW Sail 0.00271 0.00016 0.00271 0.00016 0.00275 0.00035 0.00011 0.00835 0.00014 1090A In Situ AC Tokanui 800224 VMW Sail 0.00271 0.00016 0.00275 0.00025 0.00015 0.00015 0.00014 1090A In Situ AC Tokanui 800224 VMW Sail 0.00271 0.00016 0.00275 0.00025 0.00015 0.00016 0.00025 0.00012 0.00035 0.00014 1090A In Situ AC Tokanui 800224 VMW Sail 0.00271 0.00016 0.00275 0.00025 0.00012 0.00035 0.00014 0.0																			
B35/2 C 0.0 148 NORMAL 15/03/2023 13:05:13 50il-VMW Soil 0.00343 0.0002 0.03057 0.00038 0.00145 0.00017 0.01197 0.00021 1090A In Situ AC Tokanui 800224 VMW Soil 0.00283 0.00015 0.00028 0.00015 0.00025 0.000035 0.00011 0.00835 0.00014 1090A In Situ AC Tokanui 800224 VMW Soil 0.00283 0.00015 0.00028 0.00015 0.00025 0.00035 0.00011 0.00835 0.00014 1090A In Situ AC Tokanui 800224 VMW Soil 0.00275 0.00026 0.00025 0.00035 0.00014 0.00035 0.00014 1090A In Situ AC Tokanui 800224 VMW Soil 0.00283 0.00015 0.00018 0.00175 0.00026 0.00025 0.00012 0.00035 0.00014 1090A In Situ AC Tokanui 800224 VMW Soil 0.00285 0.00018 0.00175 0.00026 0.00029 0.00029 0.00029 0.00027 0.00012 1090A In Situ AC Tokanui 800224 VMW Soil 0.00285 0.00018 0.00185 0.00018 0.00028 0.00029 0.00029 0.00029 0.00029 0.00012 1090A In Situ AC Tokanui 800224 VMW Soil 0.00285 0.00018 0.00018 0.00018 0.00028 0.00029 0.00009 0.00279 0.00012 1090A In Situ AC Tokanui 800224 VMW Soil 0.00285 0.00018 0.00028 0.00029 0.00009 0.00279 0.00012 1090A In Situ AC Tokanui 800224 VMW Soil 0.00285 0.00018 0.00028 0.00029 0.00009 0.00295 0.00011 1090A In Situ AC Tokanui 800224 VMW Soil 0.00285 0.00014 0.00028 0.00009 0.00295 0.00011 1090A In Situ AC Tokanui 800224 VMW Soil 0.00285 0.00014 0.00028 0.00009 0.00295 0.00011 0.00028 0.00011 1090A In Situ AC Tokanui 800224 VMW Soil 0.00285 0.00028 0.00028 0.00029 0.00009 0.00245 0.00011 1090A In Situ AC Tokanui 800224 VMW Soil 0.00285 0.00285 0.00028 0.00028 0.00028 0.00014 0.00028 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014							1												
B35/2 D 0.0 149 NORMAL 15/03/2023 13:06:14 soil-VMW Soil 0.00283 0.00015 0.02064 0.00025 0.00035 0.00011 0.00835 0.00014 1090A In Situ AC Tokanui 800224 VMW Soil 0.00271 0.00016 0.02075 0.00026 0.00052 0.00012 0.00012 0.00014 1090A In Situ AC Tokanui 800224 VMW Soil 0.00271 0.00016 0.02075 0.00026 0.00012 0.00012 0.00012 0.00012 1090A In Situ AC Tokanui 800224 VMW Soil 0.00271 0.00018 0.001175 0.00021 0.00083 0.0001 0.000472 0.00012 1090A In Situ AC Tokanui 800224 VMW Soil 0.00255 0.00018 0.0018 0.0018 0.00018 0.00019 0.00019 0.00019 0.00019 0.00019 0.00011 1090A In Situ AC Tokanui 800224 VMW Soil 0.00255 0.00018 0.0018 0.0018 0.00018 0.00019 0.00019 0.00019 0.00011 1090A In Situ AC Tokanui 800224 VMW Soil 0.00255 0.00018 0.00018 0.00018 0.00019 0.00019 0.00019 0.00011 1090A In Situ AC Tokanui 800224 VMW Soil 0.00255 0.00018 0.00018 0.00018 0.00019 0.00019 0.00019 0.00011 1090A In Situ AC Tokanui 800224 VMW Soil 0.00255 0.00018 0.00019 0.00019 0.00019 0.00011 0.00018 0.00019 0.0001																			
B35/2 O 0.0 150 NORMAL 15/03/2023 13:07:22 50il-VMW S0il 0.00271 0.00016 0.02075 0.00026 0.00025 0.00012 0.00763 0.00014 1090A In Situ AC Tokanui 800224 VMW S0il 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.00018 0.001175 0.00021 0.000033 0.0001 0.00472 0.00012 1090A In Situ AC Tokanui 800224 VMW S0il 0.00265 0.0018 0.0017 0.00025 0.00009 0.00029 0.00009 0.00029 0.00012 1090A In Situ AC Tokanui 800224 VMW S0il 0.00265 0.0018 0.00265 0.0018 0.00216 0.00025 0.00009 0.00029 0.00009 0.00029 0.00011 1090A In Situ AC Tokanui 800224 VMW S0il 0.00265 0.0018 0.00265 0.0018 0.00265 0.00018 0.00265 0.00018 0.00275 0.00025 0.00009 0.00279 0.00009 0.00279 0.00011 1090A In Situ AC Tokanui 800224 VMW S0il 0.00265 0.0018 0.00275 0.0017 0.00916 0.0025 0.00029 0.00029 0.00029 0.00025 0.00011 1090A In Situ AC Tokanui 800224 VMW S0il 0.00265 0.0017 0.00916 0.0026 0.00027 0.00029 0.00029 0.00029 0.00026 0.00011 1090A In Situ AC Tokanui 800224 VMW S0il 0.0026 0.0027 0.0027 0.0027 0.00025 0.00029 0.00029 0.00226 0.00011 1090A In Situ AC Tokanui 800224 VMW S0il 0.0026 0.0027 0.0026 0.0027 0.0026 0.00011 0.00287 0.00012 0.00287 0.00012 0.00287 0.00012 0.00287 0.00012 0.00287 0.00012 0.00287 0.00012 0.00287 0.00012 0.00287 0.00012 0.00287 0.00012 0.0024 VMW S0il 0.00447 0.00018 0.00972 0.00019 0.00008 0.00019 0.00011 0.0008 0.00011 0.0008 0.00011 0.0008 0.00011 0.0008 0.00011 0.0008 0.00011 0.0008 0.00011 0.0008 0.00011 0.0008 0.00011 0.0008 0.00011 0.0008 0.00011 0.0008 0.00011 0.0008 0.00011 0.0008 0.00011 0.0008 0.00011 0.0008 0.00011 0.0008 0.00011 0.0008 0.00011 0.0008 0.00011 0.0008 0.00011 0.000			-, -,													-			
S8/1 A 0.0 151 NORMAL 15/03/2023 13:23:19 soil-VMW Soil 0.0045 0.00018 0.01175 0.00021 0.00083 0.0011 0.00472 0.00012 1090A In Situ AC Tokanui 800224 VMW S8/1 B 0.0 152 NORMAL 15/03/2023 13:24:57 soil-VMW Soil 0.00265 0.00018 0.00018 0.00029 0.00009 0.00279 0.00012 1090A In Situ AC Tokanui 800224 VMW S8/1 C 0.0 153 NORMAL 15/03/2023 13:26:03 soil-VMW Soil 0.00216 0.00018 0.00021 0.0002 0.00009 0.00029 0.00011 1090A In Situ AC Tokanui 800224 VMW S8/1 C 0.0 154 NORMAL 15/03/2023 13:27:06 soil-VMW Soil 0.00237 0.00017 0.00916 0.0002 0.00029 0.00009 0.0025 0.00011 1090A In Situ AC Tokanui 800224 VMW S8/1 C 0.0 155 NORMAL 15/03/2023 13:28:20 soil-VMW Soil 0.00237 0.00017 0.00912 0.0002 0.00029 0.00009 0.0025 0.00011 1090A In Situ AC Tokanui 800224 VMW S8/1 C 0.0 155 NORMAL 15/03/2023 13:29:50 soil-VMW Soil 0.0026 0.00017 0.00912 0.0002 0.00039 0.00009 0.0026 0.00011 1090A In Situ AC Tokanui 800224 VMW S8/1 C 0.0 155 NORMAL 15/03/2023 13:29:50 soil-VMW Soil 0.0035 0.0002 0.00039 0.00009 0.0026 0.00011 1090A In Situ AC Tokanui 800224 VMW S8/1 C 0.0 155 NORMAL 15/03/2023 13:29:50 soil-VMW Soil 0.0035 0.0002 0.00824 0.0002 0.0005 0.0001 0.00287 0.00012 1090A In Situ AC Tokanui 800224 VMW S8/1 C 0.0 155 NORMAL 15/03/2023 13:29:50 soil-VMW SOIl 0.00458 0.0002 0.0005 0.0001 0.00287 0.00012 1090A In Situ AC Tokanui 800224 VMW S8/1 C 0.0 155 NORMAL 15/03/2023 13:30:49 soil-VMW SOIl 0.00458 0.0002 0.0019 0.00095 0.0001 0.0036 0.0001 1090A In Situ AC Tokanui 800224 VMW S8/1 C 0.0 155 NORMAL 15/03/2023 13:31:48 soil-VMW SOIl 0.00447 0.00018 0.00972 0.00019 0.00095 0.00019 0.0001 1090A In Situ AC Tokanui 800224 VMW S8/1 C 0.0 159 NORMAL 15/03/2023 13:31:48 soil-VMW SOIl 0.00283 0.00017 0.00584 0.00016 0.00011 0.00088 0.00019 0.0001 1090A In Situ AC Tokanui 800224 VMW S8/1 C 0.0 159 NORMAL 15/03/2023 13:32:50 soil-VMW SOIl 0.00283 0.00017 0.00584 0.00016 0.00011 0.00088 0.0019 0.00011 1090A In Situ AC Tokanui 800224 VMW																			
S8/1 B 0.0 152 NORMAL 15/03/2023 13:24:57 soil-VMW Soil 0.00265 0.00018 0.00018 0.0002 0.00029 0.00009 0.00279 0.00012 1090A In Situ AC Tokanui 800224 VMW S6/1 C 0.0 153 NORMAL 15/03/2023 13:26:03 soil-VMW Soil 0.00216 0.00018 0.00021 0.00025 0.00009 0.00029 0.00009 0.00192 0.00011 1090A In Situ AC Tokanui 800224 VMW S6/1 C 0.0 155 NORMAL 15/03/2023 13:27:06 soil-VMW Soil 0.00237 0.00017 0.00916 0.0002 0.00029 0.00009 0.00245 0.00011 1090A In Situ AC Tokanui 800224 VMW S6/1 C 0.0 155 NORMAL 15/03/2023 13:28:20 soil-VMW Soil 0.0026 0.00017 0.00912 0.0002 0.00039 0.00009 0.0025 0.00011 1090A In Situ AC Tokanui 800224 VMW S6/1 A 0.1 156 NORMAL 15/03/2023 13:28:50 soil-VMW Soil 0.0035 0.0002 0.00029 0.00009 0.0025 0.00011 1090A In Situ AC Tokanui 800224 VMW S6/1 A 0.1 157 NORMAL 15/03/2023 13:30:49 soil-VMW Soil 0.0035 0.0002 0.00824 0.0002 0.0005 0.0001 0.00287 0.00012 1090A In Situ AC Tokanui 800224 VMW S6/1 A 0.1 157 NORMAL 15/03/2023 13:30:49 soil-VMW Soil 0.00447 0.00018 0.00027 0.00014 0.0005 0.0001 0.00346 0.00012 1090A In Situ AC Tokanui 800224 VMW S6/1 A 0.2 159 NORMAL 15/03/2023 13:32:50 soil-VMW Soil 0.00447 0.00018 0.00972 0.00019 0.00095 0.00019 0.00019 0.0001 1090A In Situ AC Tokanui 800224 VMW S6/1 A 0.2 159 NORMAL 15/03/2023 13:32:50 soil-VMW Soil 0.00447 0.00018 0.00972 0.00019 0.00095 0.00019 0.00019 0.0001 1090A In Situ AC Tokanui 800224 VMW S6/1 A 0.2 159 NORMAL 15/03/2023 13:32:50 soil-VMW Soil 0.00283 0.00017 0.00584 0.00016 0.00011 0.00088 0.0019 0.00019 0.0001 1090A In Situ AC Tokanui 800224 VMW S6/1 A 0.2 159 NORMAL 15/03/2023 13:32:50 soil-VMW Soil 0.00283 0.00017 0.00584 0.00016 0.00011 0.00088 0.0019 0.0001 1090A In Situ AC Tokanui 800224 VMW															1				
S8/1 C 0.0 153 NORMAL 15/03/2023 13:26:03 soil-VMW Soil 0.00216 0.00018 0.00021 0.00025 0.00009 0.00192 0.0011 1090A In Situ AC Tokanui 800224 VMW S8/1 D 0.0 154 NORMAL 15/03/2023 13:27:06 soil-VMW Soil 0.00237 0.00017 0.00916 0.0002 0.00029 0.00009 0.00245 0.00011 1090A In Situ AC Tokanui 800224 VMW S8/1 D 0.0 155 NORMAL 15/03/2023 13:28:20 soil-VMW Soil 0.0026 0.00017 0.00912 0.0002 0.00039 0.00009 0.00226 0.00011 1090A In Situ AC Tokanui 800224 VMW S8/1 A 0.1 156 NORMAL 15/03/2023 13:29:50 soil-VMW Soil 0.00335 0.0002 0.00039 0.00009 0.00226 0.00011 1090A In Situ AC Tokanui 800224 VMW S8/1 A 0.1 157 NORMAL 15/03/2023 13:29:50 soil-VMW Soil 0.00335 0.0002 0.00039 0.00009 0.00287 0.00012 1090A In Situ AC Tokanui 800224 VMW S8/1 A 0.1 157 NORMAL 15/03/2023 13:30:49 soil-VMW Soil 0.00458 0.0002 0.01037 0.00021 0.00068 0.0001 0.00346 0.00012 1090A In Situ AC Tokanui 800224 VMW S8/1 A 0.1 158 NORMAL 15/03/2023 13:31:48 soil-VMW Soil 0.00447 0.00018 0.00972 0.00019 0.00095 0.00009 0.00241 0.0001 1090A In Situ AC Tokanui 800224 VMW S8/1 A 0.2 159 NORMAL 15/03/2023 13:32:50 soil-VMW Soil 0.00283 0.00017 0.00584 0.00016 0.00031 0.00008 0.0019 0.0001 1090A In Situ AC Tokanui 800224 VMW S8/1 A 0.2 159 NORMAL 15/03/2023 13:32:50 soil-VMW Soil 0.00283 0.00017 0.00584 0.00016 0.00031 0.00008 0.0019 0.0001 1090A In Situ AC Tokanui 800224 VMW																			
S8/1 D 0.0 154 NORMAL 15/03/2023 13:27:06 50il-VMW Soil 0.00237 0.00017 0.00916 0.0002 0.00029 0.00009 0.00245 0.00011 1090A In Situ AC Tokanui 800224 VMW S8/1 D 0.0 155 NORMAL 15/03/2023 13:28:20 50il-VMW Soil 0.0026 0.00017 0.00912 0.0002 0.00039 0.00009 0.00226 0.00011 1090A In Situ AC Tokanui 800224 VMW S8/1 A 0.1 156 NORMAL 15/03/2023 13:28:20 50il-VMW Soil 0.00355 0.0002 0.00284 0.0002 0.0005 0.0001 0.00287 0.00012 1090A In Situ AC Tokanui 800224 VMW S8/1 A 0.1 157 NORMAL 15/03/2023 13:30:49 50il-VMW Soil 0.00458 0.0002 0.0137 0.00021 0.00068 0.0001 0.00346 0.00012 1090A In Situ AC Tokanui 800224 VMW S8/1 A 0.1 158 NORMAL 15/03/2023 13:31:48 50il-VMW Soil 0.00447 0.00018 0.00972 0.00019 0.00095 0.00099 0.00241 0.0001 1090A In Situ AC Tokanui 800224 VMW S8/1 A 0.2 159 NORMAL 15/03/2023 13:32:50 50il-VMW Soil 0.00283 0.00017 0.00584 0.00016 0.00031 0.00008 0.0019 0.0001 1090A In Situ AC Tokanui 800224 VMW S8/1 A 0.2 159 NORMAL 15/03/2023 13:32:50 50il-VMW Soil 0.00283 0.00017 0.00584 0.00016 0.00031 0.00008 0.0019 0.0001 1090A In Situ AC Tokanui 800224 VMW S8/1 A 0.2 159 NORMAL 15/03/2023 13:32:50 50il-VMW Soil 0.00283 0.00017 0.00584 0.00016 0.00031 0.00008 0.0019 0.0001 1090A In Situ AC Tokanui 800224 VMW	S8/1 C 0.0	153	NORMAL 15/03/2023	13:26:03 soil-VMW	Soil	0.00216	0.00018	0.00821	0.0002	0.00035	0.00009	0.00192	0.00011	1090A		AC	Tokanui	800224	VMW
S8/1 A 0.1 155 NORMAL 15/03/2023 13:28:20 50il-VMW Soil 0.0026 0.00017 0.00912 0.0002 0.00039 0.00009 0.00226 0.00011 1090A In Situ AC Tokanui 800224 VMW S8/1 A 0.1 156 NORMAL 15/03/2023 13:29:50 50il-VMW Soil 0.00335 0.0002 0.00824 0.0002 0.0005 0.0001 0.00287 0.00012 1090A In Situ AC Tokanui 800224 VMW S8/1 A 0.1 157 NORMAL 15/03/2023 13:30:49 50il-VMW Soil 0.00458 0.0002 0.0137 0.00021 0.00068 0.0001 0.00346 0.00012 1090A In Situ AC Tokanui 800224 VMW S8/1 A 0.1 158 NORMAL 15/03/2023 13:31:48 50il-VMW Soil 0.00447 0.00018 0.00972 0.00019 0.00095 0.00009 0.00241 0.0001 1090A In Situ AC Tokanui 800224 VMW S8/1 A 0.2 159 NORMAL 15/03/2023 13:32:50 50il-VMW Soil 0.00283 0.00017 0.00584 0.00016 0.00031 0.00008 0.0019 0.0001 1090A In Situ AC Tokanui 800224 VMW	S8/1 D 0.0	154			Soil		0.00017	0.00916	0.0002	0.00029	0.00009	0.00245	0.00011	1090A		AC	Tokanui		VMW
SS/1 A 0.1 157 NORMAL 15/03/2023 13:30:49 soil-VMW Soil 0.00458 0.0002 0.01037 0.00021 0.00068 0.0001 0.00346 0.00012 1090A In Situ AC Tokanui 800224 VMW SS/1 A 0.1 158 NORMAL 15/03/2023 13:31:48 soil-VMW Soil 0.00447 0.00018 0.00972 0.00019 0.00095 0.00009 0.00241 0.0001 1090A In Situ AC Tokanui 800224 VMW SS/1 A 0.2 159 NORMAL 15/03/2023 13:32:50 soil-VMW Soil 0.00283 0.00017 0.00584 0.00016 0.00031 0.00008 0.0019 0.0001 1090A In Situ AC Tokanui 800224 VMW															•				
58/1 A 0.1 158 NORMAL 15/03/2023 13:31:48 50i-VMW Soil 0.00447 0.0018 0.00972 0.00019 0.00095 0.00009 0.00241 0.0001 1090A In Situ AC Tokanui 800224 VMW 58/1 A 0.2 159 NORMAL 15/03/2023 13:32:50 50i-VMW Soil 0.00283 0.00017 0.00584 0.00016 0.00031 0.00008 0.0019 0.0001 1090A In Situ AC Tokanui 800224 VMW	S8/1 A 0.1	156	NORMAL 15/03/2023	13:29:50 soil-VMW	Soil	0.00335	0.0002	0.00824	0.0002	0.0005	0.0001	0.00287	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
58/1 A 0.2 159 NORMAL 15/03/2023 13:32:50 50I-VMW Soil 0.00283 0.00017 0.00584 0.00016 0.00031 0.00008 0.0019 0.0001 1090A In Situ AC TOKANUI 800224 VMW	S8/1 A 0.1	157	NORMAL 15/03/2023	13:30:49 soil-VMW	Soil	0.00458	0.0002	0.01037	0.00021	0.00068	0.0001	0.00346	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
					Soil									1090A	In Situ		Tokanui		
Ward H/1 A 0.0 160 NORMAL 15/03/2023 13:42:40 soil-VMW Soil 0.00374 0.00018 0.01113 0.00021 0.00051 0.0001 0.00039 0.00012 1090A In Situ AC Tokanui 800224 VMW	S8/1 A 0.2				Soil		0.00017	0.00584	0.00016	0.00031	0.00008	0.00199	0.0001	1090A	In Situ		Tokanui	800224	
	Ward H/1 A 0.0	160	NORMAL 15/03/2023	13:42:40 soil-VMW	Soil	0.00374	0.00018	0.01113	0.00021	0.00051	0.0001	0.00399	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW

14/	161	NODAAN 45 (02 (2022	142 44 201 "1 1/4 414	6.3	0.00200	0.00034	0.04045	0.00034	0.00042	0.00044	0.00242	0.00044	40004	1. 63.	1.0	T-1	000004	1/2/21/4/
Ward H/1 A 0.0	161	NORMAL 15/03/2023		Soil	0.00298	0.00021	0.01045	0.00024	0.00043 0.00092	0.00011	0.00343	0.00014	1090A	In Situ	AC	Tokanui Tokanui	800224	VMW
Ward H/1 A 0.0	162	NORMAL 15/03/2023		Soil	0.00603	0.00047	0.01214	0.00049			0.00361	0.00026	1090A	In Situ	AC		800224	
Ward H/1 B 0.0	163	NORMAL 15/03/2023		Soil	0.00306	0.00019	0.01023	0.00022	0.00043	0.00011	0.00346	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
Ward H/1 C 0.0	164	NORMAL 15/03/2023		Soil	0.00235	0.00017	0.00875	0.0002	0.0004	0.0001	0.00332	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
Ward H/1 D 0.0	165	NORMAL 15/03/2023		Soil	0.00228	0.00016	0.00665	0.00017	0.00042	0.00008	0.00213	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
Ward H/1 O 0.0	166	NORMAL 15/03/2023		Soil	0.0023	0.00015	0.00701	0.00016	0.00046	0.00008	0.00226	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
Ward H/1 A 0.1	167	NORMAL 15/03/2023		Soil	0.00592	0.00022	0.00853	0.0002	<lod< td=""><td>0.00029</td><td>0.00319</td><td>0.00012</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00029	0.00319	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
Ward H/1 A 0.2	168	NORMAL 15/03/2023		Soil	0.00378	0.00018	0.00852	0.00018	<lod< td=""><td>0.00029</td><td>0.00399</td><td>0.00012</td><td>1090A</td><td>▲In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00029	0.00399	0.00012	1090A	▲In Situ	AC	Tokanui	800224	VMW
Ward H/2 A 0.0	169	NORMAL 15/03/2023		Soil	0.00206	0.0002	0.00831	0.00023	0.0004	0.00012	0.00339	0.00014	1090A	In Situ	AC	Tokanui	800224	VMW
Ward H/2 B 0.0	170	NORMAL 15/03/2023	14:07:58 soil-VMW	Soil	0.00284	0.00021	0.01089	0.00025	0.00061	0.00012	0.00382	0.00014	1090A	In Situ	AC	Tokanui	800224	VMW
Ward H/2 C 0.0	171	NORMAL 15/03/2023	14:09:47 soil-VMW	Soil	0.00238	0.00016	0.00799	0.00018	0.00037	0.00008	0.0026	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
Ward H/2 D 0.0	172	NORMAL 15/03/2023	14:11:45 soil-VMW	Soil	0.00385	0.00021	0.01008	0.00023	0.0005	0.00011	0.00333	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
Ward H/2 O 0.0	173	NORMAL 15/03/2023	14:13:04 soil-VMW	Soil	0.00318	0.00019	0.00987	0.00021	0.0004	0.0001	0.00359	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
Ward H/2 A 0.1	174	NORMAL 15/03/2023	14:14:37 soil-VMW	Soil	0.00328	0.00023	0.00737	0.00022	0.00041	0.00012	0.00351	0.00015	1090A	In Situ	AC	Tokanui	800224	VMW
Ward H/2 A 0.2	175	NORMAL 15/03/2023	14:16:17 soil-VMW	Soil	0.00198	0.00018	0.0054	0.00017	0.00052	0.00009	0.0021	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
Ward F/1 A 0.0	176	NORMAL 15/03/2023	14:26:16 soil-VMW	Soil	0.00135	0.00014	0.00732	0.00017	0.00026	0.00008	0.00258	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
Ward F/1 A 0.0	177	NORMAL 15/03/2023	14:27:19 soil-VMW	Soil	0.00253	0.00018	0.01225	0.00023	0.00074	0.00011	0.00418	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
Ward F/1 A 0.0	178	NORMAL 15/03/2023	14:28:14 soil-VMW	Soil	0.00226	0.00017	0.01089	0.00021	0.00055	0.00011	0.00485	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
Ward F/1 A 0.0	179	NORMAL 15/03/2023		Soil	0.0021	0.00018	0.01037	0.00022	0.00053	0.00011	0.00421	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
Ward F/1 B 0.0	180	NORMAL 15/03/2023		Soil	0.00276	0.00017	0.01244	0.00022	0.00084	0.0001	0.0035	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
Ward F/1 C 0.0	181	NORMAL 15/03/2023		Soil	0.00086	0.00017	0.00705	0.00017	0.00023	0.00007	0.0012	0.000012	1090A	In Situ	AC	Tokanui	800224	VMW
Ward F/1 D 0.0	182	NORMAL 15/03/2023		Soil	0.00154	0.00014	0.00668	0.00017	0.00063	0.00007	0.00254	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
Ward F/1 O 0.0	183	NORMAL 15/03/2023		Soil	0.00154	0.00019	0.00008	0.00018	0.00105	0.00003	0.00234	0.00011	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
Ward F/1 A 0.1	184	NORMAL 15/03/2023		Soil	0.00261	0.00019	0.0089	0.00023	0.00103	0.00012	0.003	0.00014	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
Ward F/1 A 0.1 Ward F/2 A 0.0	185	NORMAL 15/03/2023		Soil	0.00212	0.00023	0.0089	0.00027	0.00049	0.00013	0.00432	0.00018	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
Ward F/2 B 0.0 Ward F/2 C 0.0	186 187	NORMAL 15/03/2023 NORMAL 15/03/2023	14:41:53 soil-VMW 14:43:29 soil-VMW	Soil Soil	0.00184 0.00216	0.00019 0.00016	0.00736 0.01132	0.0002	0.00045 0.00066	0.00011	0.00368	0.00014 0.00012	1090A 1090A	In Situ In Situ	AC AC	Tokanui Tokanui	800224 800224	VMW
								$\overline{}$										
Ward F/2 D 0.0	188	NORMAL 15/03/2023		Soil	0.0023	0.00016	0.00935	0.00019	0.0008	0.0001	0.00427	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
Ward F/2 O 0.0	189	NORMAL 15/03/2023	14:45:37 soil-VMW	Soil	0.00228	0.00016	0.0075	0.00017	0.00053	0.0001	0.00363	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
Ward F/2 A 0.1	190	NORMAL 15/03/2023		Soil	0.00391	0.00018	0.00966	0.0002	0.00092	0.00011	0.00445	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
Ward F/2 A 0.1	191	NORMAL 15/03/2023		Soil	0.00423	0.00019	0.00968	0.0002	0.00065	0.00011	0.00468	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
Ward F/2 A 0.1	192	NORMAL 15/03/2023		Soil	0.00473	0.0002	0.00953	0.00021	0.00073	0.00011	0.00435	0.00013	1090A	In Situ	AC	Tokanui	800224	VMW
Blank	193	NORMAL 15/03/2023		Soil	<lod< td=""><td>0.00038</td><td><lod< td=""><td>0.00023</td><td><lod< td=""><td>0.00015</td><td><lod< td=""><td>0.00021</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<></td></lod<></td></lod<>	0.00038	<lod< td=""><td>0.00023</td><td><lod< td=""><td>0.00015</td><td><lod< td=""><td>0.00021</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<></td></lod<>	0.00023	<lod< td=""><td>0.00015</td><td><lod< td=""><td>0.00021</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<></td></lod<>	0.00015	<lod< td=""><td>0.00021</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00021	1090A	In Situ	AC	Tokanui	800224	VMW
Std	194	NORMAL 15/03/2023		Soil	0.01427	0.00033	0.03997	0.00047	0.00908	0.00058	0.13986	0.00088	1090A	In Situ	AC	Tokanui	800224	VMW
Std	195	NORMAL 15/03/2023		Soil	0.3281	0.00211	0.41746	0.00243	0.14988	0.00149	0.52778	0.00278	1090A	In Situ	AC	Tokanui	800224	VMW
B75/1 A 0.0	196	NORMAL 15/03/2023	15:02:42 soil-VMW	Soil	0.00194	0.00016	0.18771	0.00103	0.0018	0.00021	0.02373	0.00026	1090A	In Situ	AC	Tokanui	800224	VMW
B75/1 A 0.0	197	NORMAL 15/03/2023	15:03:49 soil-VMW	Soil	0.00221	0.00017	0.08789	0.00065	<lod< td=""><td>0.00072</td><td>0.03104</td><td>0.00031</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00072	0.03104	0.00031	1090A	In Situ	AC	Tokanui	800224	VMW
B75/1 A 0.0	198	NORMAL 15/03/2023	15:04:59 soil-VMW	Soil	0.00156	0.00016	0.05652	0.00048	<lod< td=""><td>0.00052</td><td>0.01633</td><td>0.00022</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00052	0.01633	0.00022	1090A	In Situ	AC	Tokanui	800224	VMW
B75/1 A 0.0	199	NORMAL 15/03/2023	15:06:26 soil-VMW	Soil	0.00217	0.00017	0.15525	0.00092	0.00082	0.00019	0.01887	0.00023	1090A	In Situ	AC	Tokanui	800224	VMW
B75/1 B 0.0	200	NORMAL 15/03/2023	15:07:26 soil-VMW	Soil	0.00122	0.00014	0.01497	0.00023	<lod< td=""><td>0.00029</td><td>0.00478</td><td>0.00012</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00029	0.00478	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
B75/1 C 0.0	201	NORMAL 15/03/2023	15:08:43 soil-VMW	Soil	0.00209	0.00016	0.01433	0.00023	<lod< td=""><td>0.00038</td><td>0.00806</td><td>0.00015</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00038	0.00806	0.00015	1090A	In Situ	AC	Tokanui	800224	VMW
B75/1 D 0.0	202	NORMAL 15/03/2023	15:10:01 soil-VMW	Soil	0.00145	0.00015	0.00877	0.00018	<lod< td=""><td>0.00026</td><td>0.00288</td><td>0.00011</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00026	0.00288	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
B75/1 O 0.0	203	NORMAL 15/03/2023	15:12:02 soil-VMW	Soil	0.00157	0.00015	0.00843	0.00018	0.00035	0.00009	0.00271	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW
B75/1 A 0.1	204	NORMAL 15/03/2023	15:13:23 soil-VMW	Soil	0.00313	0.00017	0.06128	0.00048	0.00108	0.00019	0.02084	0.00023	1090A	In Situ	AC	Tokanui	800224	VMW
B75/1 A 0.2	205	NORMAL 15/03/2023	15:14:41 soil-VMW	Soil	0.00244	0.00017	0.01173	0.00023	0.00053	0.00009	0.00257	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
Nurses Home/1 A 0.0	206	NORMAL 15/03/2023		Soil	0.00269	0.00021	0.01687	0.00031	0.0008	0.00012	0.00303	0.00014	1090A	In Situ	AC	Tokanui	800224	VMW
Nurses Home/1 B 0.0	207	NORMAL 15/03/2023		Soil	0.00232	0.00016	0.01508	0.00023	0.00054	0.00009	0.00306	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
Nurses Home/1 C 0.0	208	NORMAL 15/03/2023		Soil	0.00291	0.00016	0.01934	0.00025	0.00051	0.00009	0.00372	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
Nurses Home/1 D 0.0	209	NORMAL 15/03/2023	15:30:27 soil-VMW	Soil	0.00238	0.00016	0.01789	0.00026	0.00052	0.00012	0.00739	0.00015	1090A	In Situ	AC	Tokanui	800224	VMW
Nurses Home/1 0 0.0	210	NORMAL 15/03/2023		Soil	0.00286	0.00016	0.01747	0.00025	0.00073	0.00009	0.00358	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
Nurses Home/1 A 0.1	211	NORMAL 15/03/2023		Soil	0.00280	0.00018	0.01747	0.00027	0.00073	0.0001	0.00338	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
Nurses Home/2 A 0.0	212	NORMAL 15/03/2023		Soil	0.00258	0.00018	0.0151	0.00027	0.00069	0.0001	0.00378	0.00012	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
Nurses Home/2 A 0.0	213	NORMAL 15/03/2023		Soil	0.00259	0.00018	0.0151	0.00028	0.00076	0.0001	0.00270	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
Nurses Home/2 A 0.0	214	NORMAL 15/03/2023	15:37:36 soil-VMW	Soil	0.00292	0.00013	0.02109	0.00028	0.00044	0.0001	0.00237	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
Nurses Home/2 B 0.0	214	NORMAL 15/03/2023		Soil	0.00292	0.00018	0.02109	0.0003	0.0006	0.0001	0.0033	0.00012	1090A 1090A	In Situ	AC	Tokanui	800224	VMW
· · · · · · · · · · · · · · · · · · ·		-, -, -, -																
Nurses Home/2 C 0.0	216	NORMAL 15/03/2023		Soil	0.00252	0.00016	0.01648	0.00025	0.00065	0.00009	0.0029	0.00011	1090A	In Situ	AC	Tokanui	800224	VMW
Nurses Home/2 D 0.0	217	NORMAL 15/03/2023		Soil	0.00159	0.00017	0.01161	0.00023	0.00035	0.0001	0.00286	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
Nurses Home/2 O 0.0	218	NORMAL 15/03/2023		Soil	0.00167	0.00017	0.01165	0.00023	0.00033	0.0001	0.00288	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
Nurses Home/2 A 0.1	219	NORMAL 15/03/2023		Soil	0.00282	0.00018	0.01424	0.00024	0.00066	0.0001	0.00313	0.00012	1090A	In Situ	AC	Tokanui	800224	VMW
Pavilion/1 A 0.0	220	NORMAL 15/03/2023		Soil	0.00198	0.00017	0.01406	0.00024	0.00062	0.00015	0.01008	0.00018	1090A	In Situ	AC	Tokanui	800224	VMW
Pavilion/1 B 0.0	221	NORMAL 15/03/2023		Soil	0.00175	0.00016	0.01581	0.00026	<lod< td=""><td>0.0004</td><td>0.00804</td><td>0.00016</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.0004	0.00804	0.00016	1090A	In Situ	AC	Tokanui	800224	VMW
Pavilion/1 C 0.0	222	NORMAL 15/03/2023		Soil	0.00236	0.00019	0.01696	0.00029	<lod< td=""><td>0.00051</td><td>0.01185</td><td>0.00021</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00051	0.01185	0.00021	1090A	In Situ	AC	Tokanui	800224	VMW
Pavilion/1 D 0.0	223	NORMAL 15/03/2023		Soil	0.00239	0.00018	0.01229	0.00024	<lod< td=""><td>0.00052</td><td>0.01359</td><td>0.00022</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00052	0.01359	0.00022	1090A	In Situ	AC	Tokanui	800224	VMW
Pavilion/1 O 0.0	224	NORMAL 15/03/2023	15:57:43 soil-VMW	Soil	0.0019	0.00016	0.01615	0.00025	<lod< td=""><td>0.00045</td><td>0.01149</td><td>0.00019</td><td>1090A</td><td>In Situ</td><td>AC</td><td>Tokanui</td><td>800224</td><td>VMW</td></lod<>	0.00045	0.01149	0.00019	1090A	In Situ	AC	Tokanui	800224	VMW
Pavilion/1 A 0.1	225	NORMAL 15/03/2023		Soil	0.00099	0.00014	0.0048	0.00014	0.00064	0.00008	0.00145	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
Pavilion/1 A 0.1	226	NORMAL 15/03/2023	16:00:19 soil-VMW	Soil	0.00108	0.00014	0.00496	0.00015	0.00063	0.00008	0.00136	0.00009	1090A	In Situ	AC	Tokanui	800224	VMW
Pavilion/1 A 0.1	227	NORMAL 15/03/2023	16:01:17 soil-VMW	Soil	0.00109	0.00015	0.0044	0.00015	0.00053	0.00008	0.0015	0.0001	1090A	In Situ	AC	Tokanui	800224	VMW

Sample ID	Reading #	Test Type	Date	Time	Method ID	Method Name	Concentra	Cu Error1s	Concentra	Zn Error1s	Concentra	As Error1s	Concentral	Pb Error1s	Project No.	Sample Type	Operator	Notes	Serial No.	Model
B2/3 A 0.0	17	NORMAL	28/08/2023	23:01:11	soil-VMW	Soil	221	8	4425	38	0	20	1700	17	1090A	In Situ	AC	Tokanui	804954	VMW
B2/3 A 0.0	19	NORMAL	28/08/2023	23:07:01	soil-VMW	Soil	226	9	4217	38	0	20	1602	17	1090A	In Situ	AC	Tokanui	804954	VMW
B2/3 A 0.0	20	NORMAL	28/08/2023	23:08:24	soil-VMW	Soil	185	8	4190	39	0	22	1852	19	1090A	In Situ	AC	Tokanui	804954	VMW
B2/3 B 0.0	21	NORMAL	28/08/2023	23:11:41	soil-VMW	Soil	13	4	125	5	0	7	163	4	1090A	In Situ	AC	Tokanui	804954	VMW
B2/3 A 0.1	22	NORMAL	28/08/2023	23:16:44	soil-VMW	Soil	42	5	842	12	0	10	499	7	1090A	In Situ	AC	Tokanui	804954	VMW
B2/3 A 0.2	23	NORMAL	28/08/2023	23:20:52	soil-VMW	Soil	34	5	634	12	0	10	310	7	1090A	In Situ	AC	Tokanui	804954	VMW
B2/3 A 0.3	24	NORMAL	28/08/2023	23:24:30	soil-VMW	Soil	29	4	535	10	15	5	230	5 🔺	1090A	In Situ	AC	Tokanui	804954	VMW
B2/3 A 0.4	25	NORMAL	28/08/2023	23:25:51	soil-VMW	Soil	36	5	241	8	17	3	74	4	1090A	In Situ	AC	Tokanui	804954	VMW
B2/3 C 0.0	26	NORMAL	28/08/2023	23:29:14	soil-VMW	Soil	15	4	96	4	0	5	58	3	1090A	In Situ	AC	Tokanui	804954	VMW
B2/3 D 0.0	27	NORMAL	28/08/2023	23:30:59	soil-VMW	Soil	0	6	81	4	0	4	59	3	1090A	In Situ	AC	Tokanui	804954	VMW
B2/3 E 0.0	28	NORMAL	28/08/2023	23:32:41	soil-VMW	Soil	0	7	91	5	0	5	_ 53	3	1090A	In Situ	AC	Tokanui	804954	VMW
B11 (front)	29	NORMAL	28/08/2023	23:54:38	soil-VMW	Soil	19	5	329	10	0	12	342	8	1090A	In Situ	AC	Tokanui	804954	VMW
B11/3 A 0.0	1	NORMAL	28/08/2023	0:00:23	soil-VMW	Soil	35	6	281	10	0	16	559	11	1090A	In Situ	AC	Tokanui	804954	VMW
B11/3 A 0.0	2	NORMAL	28/08/2023	0:02:44	soil-VMW	Soil	37	6	330	9	41	11	941	13	1090A	In Situ	AC	Tokanui	804954	VMW
B11/3 A 0.0	3	NORMAL	28/08/2023	0:03:44	soil-VMW	Soil	39	5	307	8	0	15	697	10	1090A	In Situ	AC	Tokanui	804954	VMW
B11/3 A 0.0	4	NORMAL	28/08/2023	0:05:27	soil-VMW	Soil	39	5	308	8	0	17	902	12	1 <mark>0</mark> 90A	In Situ	AC	Tokanui	804954	VMW
B11/3 A 0.0	5	NORMAL	28/08/2023	0:06:06	soil-VMW	Soil	42	5	297	8	0	17	900	12	1090A	In Situ	AC	Tokanui	804954	VMW
B11/3 A 0.0	6	NORMAL	28/08/2023	0:07:46	soil-VMW	Soil	31	5	302	8	0	17	903	12	1090A	In Situ	AC	Tokanui	804954	VMW
B11/3 A 0.1	7	NORMAL	28/08/2023	0:14:15	soil-VMW	Soil	49	6	258	8	0	12	470	8	1090A	In Situ	AC	Tokanui	804954	VMW
B11/3 A 0.1	8	NORMAL	28/08/2023	0:16:05	soil-VMW	Soil	42	4	249	6	0	10	458	7	1090A	In Situ	AC	Tokanui	804954	VMW
B11/3 A 0.1	9	NORMAL	28/08/2023	0:16:49	soil-VMW	Soil	52	6	268	8	0	13	542	9	1090A	In Situ	AC	Tokanui	804954	VMW
B11/3 A 0.3	10	NORMAL	28/08/2023	0:23:23	soil-VMW	Soil	29	4	105	5	0	5	79	3	1090A	In Situ	AC	Tokanui	804954	VMW
B11/3 A 0.2	11	NORMAL	28/08/2023	0:24:20	soil-VMW	Soil	59	5	175	6	15	4	164	5	1090A	In Situ	AC	Tokanui	804954	VMW
B11/3 B 0.0	12	NORMAL	28/08/2023	0:25:37	soil-VMW	Soil	18	5	187	7	0	9	230	6	1090A	In Situ	AC	Tokanui	804954	VMW
B11/3 C 0.0	13	NORMAL	28/08/2023	0:26:39	soil-VMW	Soil	23	4	251	7	0	7	160	5	1090A	In Situ	AC	Tokanui	804954	VMW
B11/3 D 0.0	14	NORMAL	28/08/2023	0:27:57	soil-VMW	Soil	0	8	200	8	0	7	110	5	1090A	In Situ	AC	Tokanui	804954	VMW
B11/3 E 0.0	15	NORMAL	28/08/2023	0:28:56	soil-VMW	Soil	0	6	56	3	0	4	57	3	1090A	In Situ	AC	Tokanui	804954	VMW
B59/3 A 0.0	16	NORMAL	28/08/2023	0:40:07	soil-VMW	Soil	0	8	1085	18	0	29	2528	27	1090A	In Situ	AC	Tokanui	804954	VMW
B59/3 A 0.0	17	NORMAL	28/08/2023	0:41:16	soil-VMW	Soil	20	5	1329	20	0	30	3045	29	1090A	In Situ	AC	Tokanui	804954	VMW
B59/3 A 0.0	19	NORMAL	28/08/2023	0:45:14	soil-VMW	Soil	32	5	673	13	0	24	1949	21	1090A	In Situ	AC	Tokanui	804954	VMW
B59/3 A 0.1	20	NORMAL	28/08/2023	0:46:18	soil-VMW	Soil	24	5	500	11	37	10	843	12	1090A	In Situ	AC	Tokanui	804954	VMW
B59/3 A 0.2	21	NORMAL	28/08/2023	0:49:13		Soil	27	5	358	10	0	14	610	11	1090A	In Situ	AC	Tokanui	804954	VMW
B59/3 A 0.2	22	NORMAL	28/08/2023	0:55:15		Soil	28	8	334	13	42	11	514	13	1090A	In Situ	AC	Tokanui	804954	VMW
B59/3 A 0.2	23	NORMAL	28/08/2023	0:58:18	soil-VMW	Soil	32	8	352	13	0	18	596	14	1090A	In Situ	AC	Tokanui	804954	VMW
B59/3 A 0.3	24	NORMAL	28/08/2023	0:59:31	soil-VMW	Soil	33	6	175	7	0	7	116	5	1090A	In Situ	AC	Tokanui	804954	VMW
B59/3 B 0.0	25	NORMAL	28/08/2023	1:04:08	soil-VMW	Soil	41	5	123	5	11	3	69	3	1090A	In Situ	AC	Tokanui	804954	VMW
B59/3 C 0.0	26	NORMAL	28/08/2023	1:05:21	soil-VMW	Soil	0	12	121	8	0	7	45	5	1090A	In Situ	AC	Tokanui	804954	VMW
B59/3 D 0.0	27	NORMAL	28/08/2023	1:07:13	soil-VMW	Soil	12	4	179	6	0	5	58	3	1090A	In Situ	AC	Tokanui	804954	VMW
					5,	Soil Soil Soil Soil		.												

Appendix Harris Quality assurance/quality

Quality assurance/quality control documentation

RETURN ADDRESS

Please ship to:

ENVCO 438B Rosebank Road Avondale Auckland 1026

CERTIFICATE OF CALIBRATION AND COMPLIANCE

Customer:David Jackson - GHDInstrument:MiniRae PID 3000Serial No:592-915554

Date Checked: Thursday, June 15, 2023

Calibrated by: Mike Sheridan

Envco certifies that the above instrument has been calibrated in accordance with the manufacturers instructions. The instrument has been tested and assessed to ensure compliance with the approval documents and the relevant standards to which it is approved.

Parameter	Standard	Meter
Zero Calibration	0.0ppm	0ppm
Span Calibration	100.0ppm	100ppm
Low Alarm	-	50.0ppm
High Alarm	-	100.0ppm

Calibration Gas	Zero Air	Part# 92-9040-0-2774
	Isobutylene	Part# 003105 (ex G13039)

Battery: Good

Please check that all items are received and all returned. Please clean equipment before returning. A charge may apply to any unclean items. Any damaged or lost items are the liability of the renter.

Sent		Returned
\boxtimes	Handheld	
\boxtimes	Inlet probe	
\boxtimes	Protective yellow boot	
\boxtimes	Charger	
\boxtimes	Charger cradle	
\boxtimes	ENVCO Quickstart Guide	
\boxtimes	Envco storage/troubleshooting guide	
\boxtimes	Filter	
\boxtimes	Spare filter (replacement if moisture or dirt enters filter \$20 + GST)	

COMMENTS:

Please allow the instrument to warm up for <u>15 mins</u> before operating, and only calibrate with highgrade fresh air from a gas cylinder.

Please give the PID a quick wipe-down after the hire/before returning, especially if dirtied. A cleaning fee upwards of \$65 + gst may apply if returned in unsuitable conditions.

Rental Customer and Company

PID Number Serial Number

OUTWARDS CHECKLIST

aHD

PID Checklist and Calibration

PID 3

	Reading	Target	Acceptable	Pass	Lot no / expiry date
100ppm Isobutylene gas	99.0	100	± 10% *		A00829
Fresh Air	0.8	0.0	± 10% *		
Adintenance Checks PID Turns on/off PAT test date on chair Pump Stall Test Configuration & Alarn	an keep calibro		to 30 days, * On		affer calibration
Checklist	14		C	ommer	nts
Phocheck Tiger PID 100ppm Isobutylene of Gas Regulator Calibration adaptor Charcoal Filter Trap Ze Charging Adaptor Manual and Quick Ste Use of PID Information Hard Case Moisture Filters x 5 Tamper sticker intact Cal gas	eroing Kit art Guide	expiry date	e) —		
gned:			D	ate: 26	16/23
lame: Nitch					

CERTIFICATE OF CALIBRATION AND COMPLIANCE

Customer: David – GHD

Instrument: AMS Sludge and Sediment Sampler

Date Checked: Wednesday, June 21, 2023

Calibrated by: Mohak Dave (Rental Manager)

Envco certifies that the above instrument has been calibrated and/or assessed in accordance with the manufacturers' specifications.

	Test	Pass
Extension rod thread check	10 .11	\boxtimes
Check extension rods for bends		
Accessories check	70	\boxtimes

Please check that all items are received and all returned. Please clean and dry equipment before returning. A charge may apply to any unclean items. Any damaged or lost items are the liability of the renter.

Sent		Returned
\boxtimes	AMS Sludge Cylinder Body	
\boxtimes	AMS Sludge Valved Core Tip	
\boxtimes	Sediment Corer Cylinder (screw-on top)	
\boxtimes	Sludge Screw-on end-piece	
\boxtimes	3x Threaded Extensions (0.9m each)	
\boxtimes	10" Plastic Liners (14x – only return if unused and clean!)	
\boxtimes	Liner Caps (28x - only return if unused and clean!)	
\boxtimes	Carry Bag + Cardboard Box for Shipping	

Comments:

PLEASE RETURN EVERYTHING CLEANED, DECONTAMINATED AND DRIED AS BEST AS POSSIBLE. A CLEANING FEE MAY APPLY IF RETURNED IN UNSUITABLE CONDITIONS TO ACCOUNT OF TIME AND LABOUR REQUIRED BY US TO CLEAN UP EQUIPMENT!

Appendix G Table 1 **Duplicate and Triplicate RPD calculations**

										Matale					TRH - NEF 1999	PM	TPH									PAHs - sta	andard 16							Ī
									(I+A/I)						iction				95	впе		acene	976	oranthen	ranthene	oerylene .		nthacene				b	of total) -	Ī
						enic	Milum	on dmium	mium (I	bber	2	cury	kel	0	DC 14 Fra	5-C36	98	8	maphther	maphflyk	hracene	ız(a)anthı	nzo(a)pyre	ızo[b+]∫fı	nzo(k)flua	χί, '('β)ozι	узепе	enz(a,h)a	oranthene	orene eno(12.3	pyrene	ene ene	Hs (Sum	
EQL						mg/kg 0.125	mg/kg 0.013	mg/kg mg/k 1.25 0.00	g mg/kg 5 0.125	mg/kg 0.075	mg/kg 0.25	5 ≥ mg/kg 0.025	mg/kg 0.05	.E N mg/kg 0.05	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg 0.01	mg/kg 0.01	mg/kg 0.01	mg/kg 0.02	mg/kg 0.01	mg/kg 0.02	mg/kg 0.01	mg/kg 0.02	mg/kg 0.01	mg/kg 1	mg/kg n	ng/kg m	ng/kg mg	/kg mg/kg 01 0.02	mg/kg	-
Location Code B35_TP04	Date 07 Jun 2023 08 Jun 2023	Field ID B35 TP 04 0.10	Matrix Type Soil	Sample Type Normal	Lab Report Number	5	0.8	<20 <0.1	7	13	30	<0.10	5	66					-	-	-				-	-		-						1
RPD BWL_TP04	08 Jun 2023 08 Jun 2023	DUP A1 BWL TP 04 0.10	Soil	Field_D Normal Field_D	3299078 3299078 3299078	22 5	0.5 46 1.0	<20 <0.1 0 0 <20 0.33	9 25 9	13 0 36	20 40 82	<0.10 0 0.18	4 22 5	32 69 103					-	-	-	-	-	-	-		-	-						
RPD DS01_TP03	12 Jun 2023	DUP B1 DS01 TP03 0.10 DUP C1	Soil Soil	Normal Field_D	3299078 3299078 3299078	5 0 7	1.0 0 1.1 0.9	<20 0.31 0 6 <20 0.13	0	28 25 25 26	111 30 34 34	0.17 6 <0.10	18 4	102 1 49	:	- :	- :	:	-	:	:	:	:	-	:	-	:		: (:			
RPD B16_TP01	12 Jun 2023	B16 TP01 0.1 Dup E5	Soil	Normal Field_D	3299078 3299078	13	20 -	<20 0.13 0 0 	11		0 - 16.3	0	22	10 - 80	<20 <20	<40	<80	<20 <20	<0.011	<0.011	<0.011	<0.011	<0.011		<0.011	<0.011	<0.011	<0.011	<0.011 <	0.011 <0	0.011 0.0	349 <0.01 114 <0.01	<9.3	
RPD	12 Jun 2023	B59 TP03 0.1 Dup E4	Soil Soil	Normal Field D	3299078 3299078	- 4 4	0.5 0.5 0.5	<20 0.12 <20 <0.1	30	- 13 14	13.1 12.6	<0.10	15 13	137 220	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0		11 0	0	
RPD	12 Jun 2023	B74 HA02 0.1 Dup E3	Soil	Normal Field_D	3299078 3299078	0 4 6	0	0 18 <20 <0.1 <20 <0.1	26	7 22	4 23	<0.10	14	46 73 49	- :	-			-	-	-	- :			-	-	-	H						Y
RPD	12 Jun 2023 06 Jun 2023	HSP SED 01 0.1 Trip B	Soil	Normal Interlab_D	3299078 23-27152	40 5 4.5	0.6 29 1.3 1.2	0 0 <20 0.33 16 0.30	10 18 11 13.9	0 47 48.7	21 9 143 198		9 10.6	39 185 189	-	-		-	<0.5	<0.5	<0.5	<0.5	<1.0		<1.0	<1.0	<0.5	<1.0	<0.5	<0.5	<1.0 <0	0.5		
RPD	12 Jun 2023 06 Jun 2023	HSP SED 01 0.1 Trip B	Soil Soil	Normal Interlab D	3299078 23-27152	11 - 4.5	1.2	0 6 16 0.30	23	-	32 - 198	10 - 0.11	16	189		-			- :			:			- :			:	· ·					
RPD WWTP_TP02	13 Jun 2023 12 Jun 2023	WWTP TP02 0.10 Dup D1 [A]	Soil Soil	Normal Field_D	3299078 3299078	3 10	0.8 0.9	<20 0.13 <20 <0.1	8	15 13	19.8 19.3	0.11 <0.10	5 4	57 48	-	-	-	:	<0.5	<0.5	<0.5	<0.5	<0.5	•	<0.5	<0.5	<0.5	0.5	<0.5	<0.5	9.5	0.5		1
DS02_TP02	19 Jun 2023 12 Jun 2023	DS02 TP02 0.1 Dup E1	Soil Soil	Normal Field D	3299078 3299078	7 6	12 1.1 1.1	0 26 <20 0.21 <20 0.20	12 14 16	14 45 46	25 23	0.19 0.19	8	17 72 70	-	- :	-	-	-	-	-	- :							:	:	7À			
DS03_TP04	21 Jun 2023 12 Jun 2023	DS03 TP04 0.5 Dup F1	Soil Soil	Normal Field_D	3299078 3299078	15 4 3	0 0.7 0.7	0 5 <20 <0.1 <20 <0.1	13 10 9	9 8	18.7 17.8		4 4	3 39 36	-		-	-	-	:	-	- :	:	:			:	:	: /					
RPD	29 Jun 2023	SB 07 TP 01 0.1 Trip A	Soil Soil	Normal Interlab_D	3299078 23-27152	29 4 4.2	0 0.6 0.56	<20 <0.1 9.1 0.08 0 0	11 18 3 18.3	12 73 68.3	5 25 24.7	<0.10	11 10.4	66 75.0						-)			
NW FILL TP01	11 Sep 2023 12 Sep 2023	NW FILL TP01 0.1 DUP J1	Soil Soil	Normal Field_D	3362681 3362681	6 4	1.0 0.8 22	<20 0.18 <20 <0.1	10 12 18	27	13.6 15.8	0.19 0.14 30	5 6 18	43 30 36					<0.5 <0.016	<0.5 <0.016	<0.5 <0.016	<0.5 <0.016	<0.5 <0.016		<0.5 <0.016	<0.5 <0.016	<0.5 <0.016	<0.5 s0.016	<0.016 <	-9.5 0.016 <0	0.5 <0 0.016 <0.	0.5 <0.5 016 <0.01	<0.4	
RPD	11 Sep 2023	NW FILL TP04 0.1 Trip D	Soil Soil	Normal Interlab_D	3362681 23-28470	5 6.8 31	1.0 1.0	<20 0.13 1.9 0.09 0 27	11 9 14.2 25	19 25.0 27	14.9	0.27	7 24	27 41.0 41	- :	- :	- :	÷	<0.5 <0.010	<0.5 <0.010	<0.5 <0.010	<0.5 <0.020	<0.5	<0.020	<0.55 <0.010	<0.5 <0.020	<0.5 <0.010	<0.5 <0.010	<0.5	0.5 < 0.010 <0	<0.5 <0 0.010 <0.	0.5 <0.5 010 <0.02	- :	
WDG TP02 RPD	12 Sep 2023	WDG TP02 0.1 Trip E	Soil	Normal Interlab D	3362681 23-28470	5 3.7 30	0.8 0.94 16	<20 <0.1 2.3 0.11 0 10	12 14.6 20	21 29.6 34	18.6 30.0 47	63 0.16 0.094 52	9.48 45	31 75.0 83	:	-		:	-	:					- :	-		:		:				
WDH TP02 RPD	12 Sep 2023	WDH TP02 0.1 DUP J2	Soil Soil	Normal Field_D	3362681 3362681	3 3 0	0.9 0.8 12	<20 <0.1 <20 <0.1 0 0	14 13 7	25 25 0	24 26 8	<0.10 <0.10	8 8 0	58 58 0	:	- :	- :	:	<0.012	<0.012	0.021	0.20	0.25	: .	0.131	0.179	0.165	0.034	0.36 <	:0.012 0 .	.178 0.0	0.35 0.35	2.4	1
																1					•													
								Ç			59	\ \ \	×			2			×															

