

Using Synthetic Aperture Radar to Maintain the National Reference Frame

Nic Donnelly Geodetic Surveyor

InSAR and GGOS

InSAR – Millimetreaccurate Deformation

ōVÌ, INZ

Heading change across image

~ 0.1 degrees over 100km

Incidence angle change across image

~ 6 degrees over 100km

Combining Techniques to Maximise Spatial Resolution

Combining Techniques to Maximise Spatial Resolution

InSAR – Dense Coverage

21.d.110...9071...117.

Combining Techniques to Maximise Temporal Resolution

Time Interval

n ew zszland, govi, hz

"Product CSK © ASI, (Italian Space Agency), year of acquisition, 2011, distributed by e-GEOS (an ASI/Telespazio Company)."

10 km

Christchurch , central business district

aver the

Ground displacement away from satellite

Flight direction Radar look direction Incidence angle = 36°

तन

From Beavan et al (2011)

Ground displacement towards satellite

Other sources of image incoherence

Summary of Uses for InSAR in the National Reference Frame

- As a direct observation of displacement between two epochs
- Combined with GNSS (and other measurements) to create deformation models of events
- Develop time series where CORS are lacking
- Identify areas of highly localised disturbance