

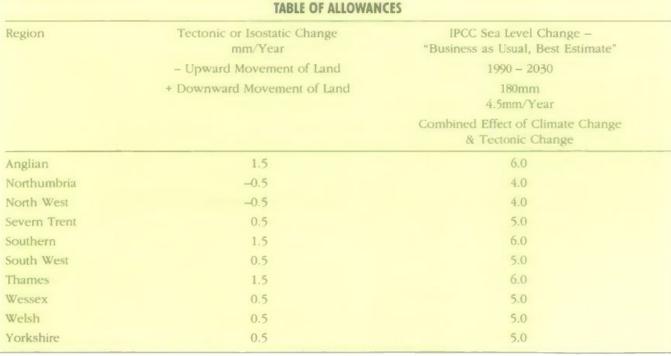
Climate change, flood risk & policy setting: tales from the UK

Rob Deakin | Manager Resilience | LINZ

Key themes

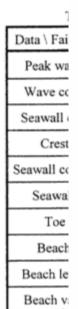
- The impact of events
- How science can influence
- The importance of nationally consistent data
- The importance of nationally consistent methods
- How data, policy and legislation are linked

Towyn, 26 February, 1990



1991, National Sea Defence Survey

Phase 1



Phase 3

1992 – 95, National Coastal Flood Risk Assessment

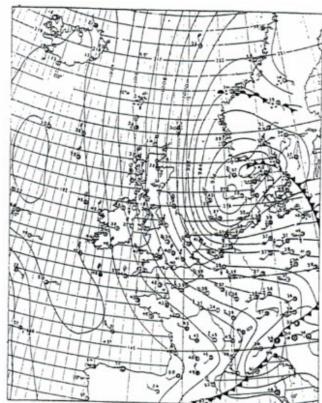


Figure 3: Surface pressure chart for 1800hours GMT January 31 1953.

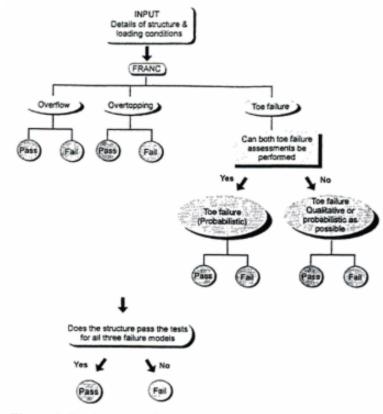


Figure 2: Decision tree for the risk assessment methodology.

Coast Protection Survey of England, 1993 - 94

1997, Spending Review

Coastal property counts& probability bands

 Coarse fluvial floodplains and urban extents

newzealand.govt.nz

2000, Comprehensive Spending Review

Land Information
New Zealand
Toitū te whenua

Table 1 Summary of property at risk and estimated annual damages for England and Wales (AAD= Annual Average Damage)

England and Wales (AAD= Annual Average Damage)						
England and Wales	Sea/Tidal Flooding	Coastal Erosion	Total			
Total assets in risk areas:						
Residential properties (Nr)	1 026 000 113 00		1 139 000			
Commercial/Ind properties (Nr)	74 000	9 000	83 000			
Agricultural land (ha)	432 000	5 000	437 000			
Capital value of assets (£m)	133 300	7 700	141 000			
Damages	£ millions/year					
Do nothing damages:	K	V				
Property damage/loss	1 527.7	84.0	1 611.7			
Agricultural losses	107.7	0.3	108.0			
Traffic disruption	1.8		1.8			
Total	1 637.2	84.3	1 721.5			
AAD – current defences			- /			
Property damage/loss	210.4	16.3	226.7			
Agricultural losses	52.4	0.3	52.7			
Total	262.8	16.6	279.4			
Benefit of current defences	1374.4	67.7	1442.1			

More time & data ©

- Regional data fluvial on standards of protection
- National Address data
 - Residential
 - Non-residential

Annual Average Damage calculations:

- Property damage
- Agricultural losses
- Traffic disruption
- + Write-off values

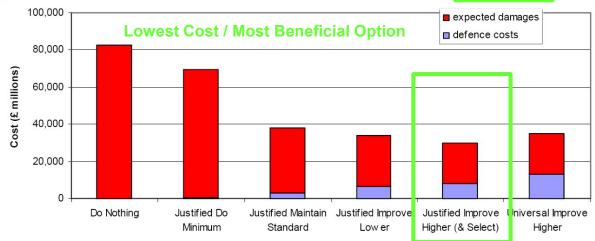
2001, Climate Change & Wales

	Current AAD	Predicted AAD		% of current AAD		
Region	(£ million)	10% Flood Flow Increase	20% Flood Flow Increase	10% flood flow increase	20% flood flow increase	
Anglian	£55.02	£78.16	£111.70	142	203	
Midlands	£50.23	£69.04	£98.52	137	196	
North East	£47.29	£90.81	£111.70	192	236	
North West	£19.22	£34.03	£45.05	177	234	
Thames	£201.26	£213.83	£227.18	106	113	
Southern	£15.51	£19.65	£25.71	127	166	
South West	£28.90	£35.49	£44.06	123	152	

Table 4.2 Predicted increase in AAD for fluvial flood areas (£ million)

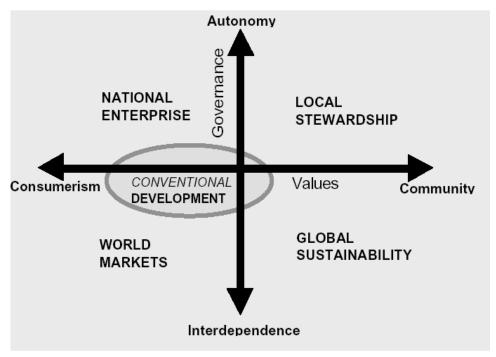
Re-run:

- Add in Wales
- To assess climate change impacts "Standard of Protection" adjusted for:
 - peak flood flow increase
 - sea level rise



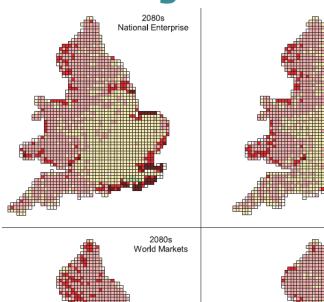
2004, CSR National Scenarios & Benefits

Table 3 Expected costs and damages (£ billion) for different investment scenarios


*	Do Nothing	Justified Do Minimum	Justified Maintain Current	Justified Improve Lower	Justified Improve Higher	Universal Improve Higher
PV100 flood defence cost	-	0.4	3.1	6.7	7.9	13.0
PV100 flood damages	82.7	68.9	35.2	27.2	22.1	21.8
Total PV100 flood costs	82.7	69.3	38.3	33.9	30.0	34.8

2004, Foresight Study – climate change scenario testing

Four Foresight Futures for 2080 (from UK Climate Impact Programme)


Input Variables:

- CO² Emissions
- Socio-economic development
- Pathways & receptors in floodplain
 - Demographics
 - Defence performance
 - Assets at risk

Relative Change 2000 - 2080s

2080s Foresight scenarios Change from present day (2002)

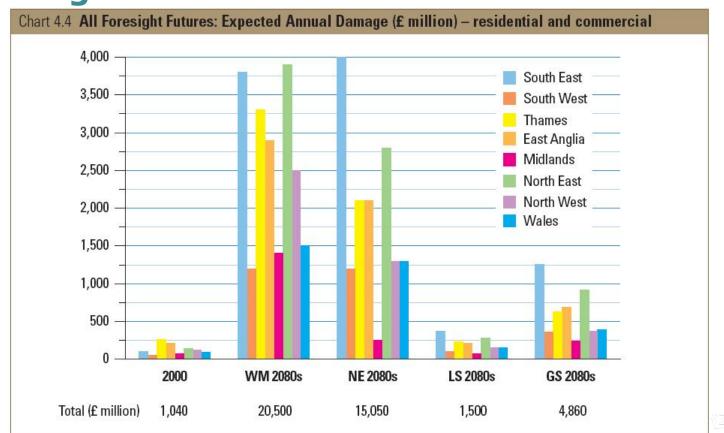
Decrease (<-0.01)

Negligible (-0.01 to 0.01)

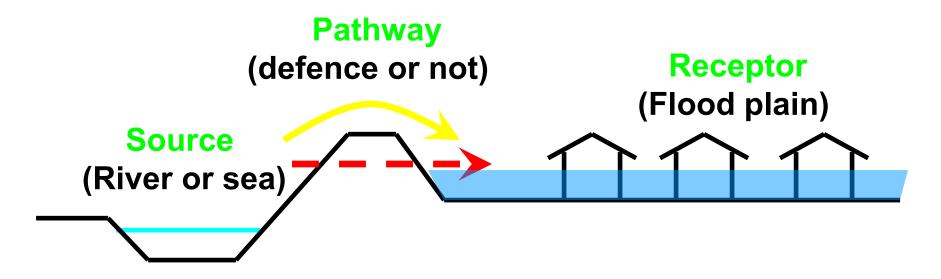
Low (0.01 to 0.05)

Medium (0.05 to 0.3)

High (>0.3)

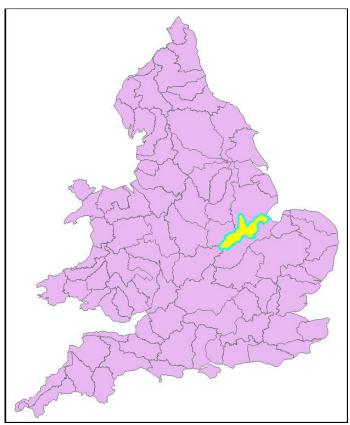


Local Stewardship


Risk Increases - Economic Damage

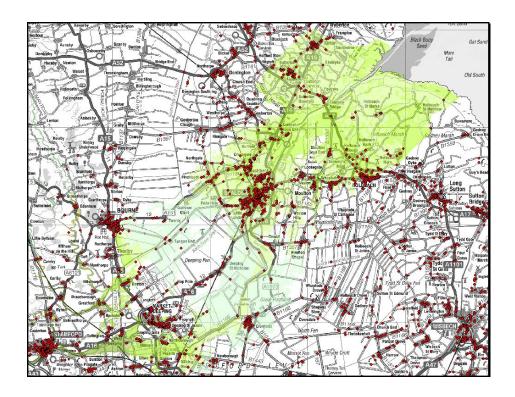
Flood Risk 101 – modelled objects

Risk = f (Likelihood x Consequence)

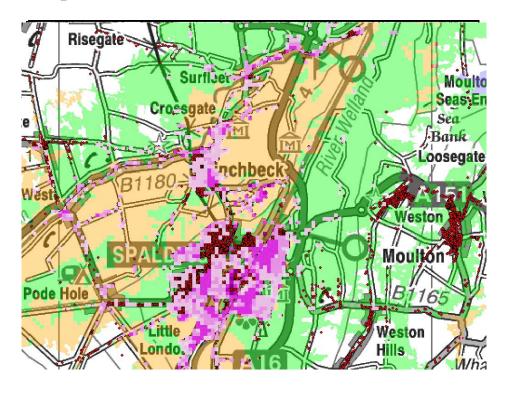

2004, Supporting National Geodata

- Source
 - Wave & water level
 - Flood level
 - National river network
- Pathway
 - National Flood & Coast Defence Database
 - National ifSAR (& local Lidar) DTM
- Receptor
 - Properties National Property Data Set
 - Population Census & Office National Statistics
 - Agricultural Land classification & Agric. census
 - Cultural & Heritage sites
 - Infrastructure Ordnance Survey topographic data

newzealand.govt.nz

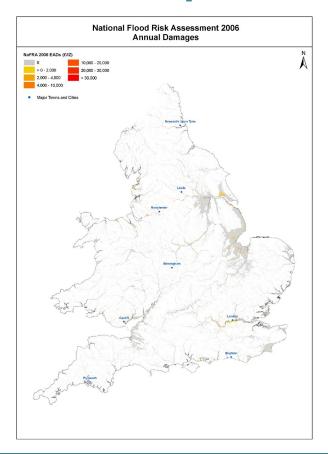

National Flood Risk Assessment

- National Assessment
 - England
 - Wales
- Projects run
 - **2004**
 - **2005**
 - **2006**
 - 2008 onwards
- Model run based on 85 individual catchments
 - fluvial
 - coastal
 - tidal


Glen & Welland - Input Data Sets

- Water levels
- Defences
 - Type
 - Condition
 - Crest level
- Terrain model
- Risk receptors
 - Property
 - People
 - Infrastructure
 - Environment
 - Heritage & culture

Output Model Results



- Flood Likelihood
 - Probability
 - Category

- Risk
 - Probability X Consequence
- Economic Damage

National Output Model Results

- Flood Likelihood
 - Probability
 - Category

- Risk
 - Probability XConsequence
- Economic Damage

By2009:

Floodplains of England & Wales:

- 11 % of land
- 1.7 million ha
- 2.6 million properties
- 4.6 million people
- £221 bn asset value at risk
- > 40,000 km of river channel
- 27,500 km of defences
- £240 m spent in 2001
- £350 m spent in 2003/4
- £650 m spent in 2007/8
- £800 m by 2010

With Surface Water:

- 5.5 million properties
- 1 in 6

2007 Floods

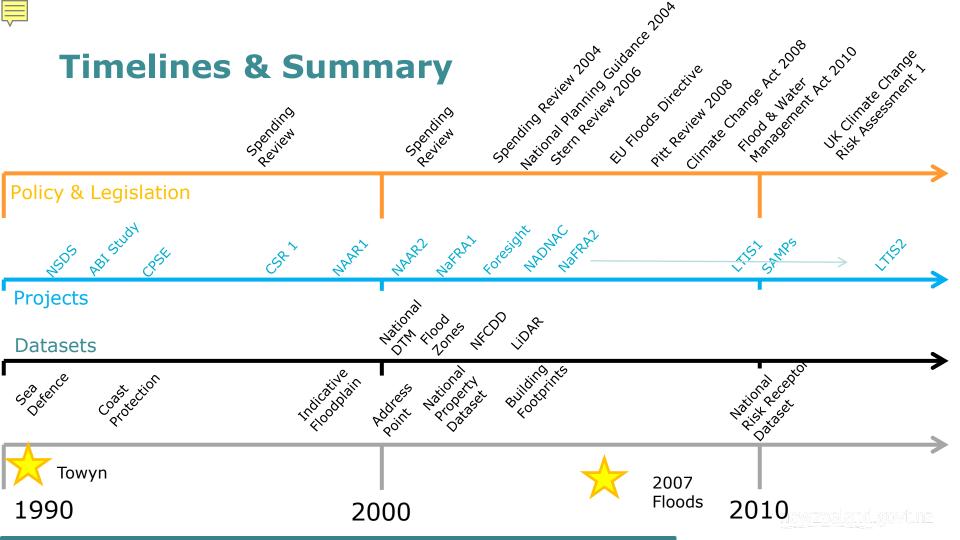
 June + July, 2007: 13 Dead; 7,000 rescued; 50,000 properties flooded; £3 billion insured losses

newzealand.govt.nz

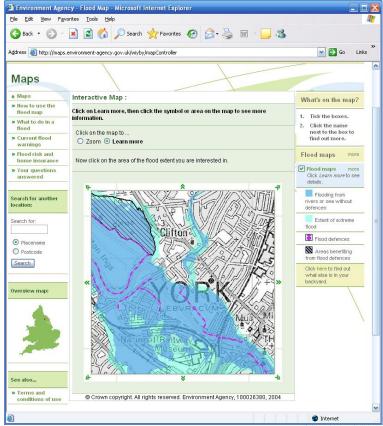
Pitt Review – some key recommendations

- Establishing a <u>cabinet committee</u> to address the <u>risk</u> of <u>flooding</u>.
- Adopting a long-term approach to <u>flood risk management</u>, with priority given to adaptation and <u>mitigation</u>
- Establishing a National <u>Resilience</u> Forum to facilitate emergency <u>planning</u> at a national level.
- A presumption against <u>building</u> in high <u>flood risk</u> <u>areas</u>.
- Action to ensure the <u>resilience</u> of critical <u>infrastructure</u> such as <u>power</u>, <u>water</u> and <u>transport</u>(in particular dams and reservoirs).
- A wider brief for the <u>Environment Agency</u>, taking a national overview of all <u>flood risk</u>.
- A 'step change' in the quality of flood warnings
- Providing better information, awareness and advice.
- Removing the automatic right to connect <u>surface water drainage</u> from new <u>developments</u> to the <u>sewerage</u> system.
- Local authorities leading on the management of local flood risk.

https://www.designingbuildings.co.uk/wiki/Pitt_Review_Lessons_learned_from_the_2007_floods


- 16: Local Authorities should collate and map the main flood risk management and drainage assets (over and underground), including a record of their ownership and condition.
- 17: All relevant organisations should have <u>a duty to share information</u> and cooperate with local authorities and the Environment Agency to facilitate the management of flood risk.
- 51: Relevant government departments and the <u>Environment Agency should work with infrastructure operators to identify the vulnerability and risk of assets to flooding</u> and a summary of the analysis should be published in Sector Resilience Plans.
- 55: The Government should strengthen and enforce the duty on Category 2 responders to <u>share information on the risks to their infrastructure assets</u>, enabling more effective emergency planning within Local Resilience Forums
- 90: All upper tier local authorities should establish Oversight and Scrutiny Committees to review work by public sector bodies and essential service providers in order to manage flood risk, underpinned by a legal requirement to cooperate and share information.

Post-2007


- Pitt Review: recommendations accepted
- 2007 EU Floods Directive
- Flood and Water Management Act 2010
 - Clear leadership & responsibilities
 - Need for Local Flood Risk Assessments
 - 5-year review cycle

What does national risk assessment deliver?

- Disseminate information (Government, insurers, public)
- Develop benefit / cost cases for national investment strategy
- Scenario testing to inform policy
 - Consistent data & method = rapid development
 - Possible interventions
 - Climate change impacts
- Improved data

