# COMPARISONS OF RECENT GLOBAL GEOPOTENTIAL MODELS WITH TERRESTRIAL GRAVITY FIELD DATA OVER NEW ZEALAND AND AUSTRALIA

M.J. Amos<sup>1,2</sup> and W.E. Featherstone<sup>2</sup>

1. Land Information New Zealand Wellington, NEW ZEALAND

2. Western Australian Centre for Geodesy, Curtin University of Technology Perth, WESTERN AUSTRALIA

#### ABSTRACT

This study compares global geopotential models released between 1996 and 2002, including four that incorporate data from the CHAMP dedicated satellite gravimetry mission, with terrestrial gravity field-related data over Australia and New Zealand. The gravity anomalies implied by the models are compared with point free-air gravity anomalies on land. The geoid heights implied by the models are compared with discrete geometrical heights from co-located GPS and sprit-levelling data on the Australian and New Zealand vertical datums. The absolute (Pizzetti) deflections of the vertical implied by these models at the geoid are compared with absolute (Helmert) vertical deflection estimates at the Earth's surface. The results show that EIGEN-1S, which includes CHAMP data, is currently the best satellite-only global geopotential model over Australia and New Zealand, whereas PGM2000A is the best combined global geopotential model over Australia and New Zealand, though it is not statistically significantly better than EGM96. These models are therefore suitable candidates as the base for regional gravimetric geoid models of the Australia and New Zealand region. The combined model is then created from EIGEN-2 to degree 32 and EGM96 from degree 33 to 360, where the cut off is selected using the global error degree variances of each. This model makes a very slight improvement on all others, and thus will probably be used in near-future Australian and New Zealand geoid models.

# **1. INTRODUCTION**

It is usually beneficial to select a global geopotential model (GGM) that is a best fit to the local gravity field as the basis for a regional gravimetric geoid model. This is because it will reduce the amount of geoid contribution that must be made by a regional integration of Stokes's formula or some modification thereof. The quotation from Lambeck and Coleman (1983) "... the various models are not as good as they are said to be. If they were, the differences between them should not be so great as they are ..." provides a secondary motivation for this study.

Kearsley and Holloway (1989) evaluated the fit of some of the GGMs available at that time to the Australian gravity field. This led to the selection of OSU89E (Rapp and Pavlis, 1990) as the basis for the AUSGeoid91 regional geoid model. Zhang and Featherstone (1995) extended this evaluation to some other GGMs, and showed [retrospectively] that OSU91A (Rapp *et al.*, 1991) was an appropriate choice for AUSGeoid93 (Steed and Holtznagel, 1994). Kirby *et al.* (1998) evaluated the EGM test series of GGMs as part of an International Association of Geodesy Working Group, and this led to the use of EGM96 (Lemoine *et al.*, 1998) in AUSGeoid98 (Featherstone *et al.*, 2001). Pearse and Kearsley (1996) also contributed to the above Working Group and showed that "... *EGM96 is marginally superior to OSU91A* ..." over New Zealand.

Because additional GGMs have now been released into the public domain, notably those including data from the CHAMP dedicated satellite gravimetry mission, and new gravity-field-related datasets have been compiled over Australia and New Zealand, it is important to continue such evaluations to select the most appropriate GGM. This is as the basis for a revision to AUSGeoid98, as well as the production of the first regional gravimetric geoid model of New Zealand for over a decade (cf. Gilliland, 1990). Also, such evaluations in this part of the world may provide information that is of use to the developers of these GGMs.

This paper describes three different types of evaluation of the GGMs released between 1996 and 2002 (Table 1). There is replication for some of the GGMs previously tested (cf. Kirby *et al.*, 1998; Pearse and Kearsley, 1996) so as to quantify the effect of using the new and additional 'control' data now available. The evaluations include comparisons with point free-air gravity anomalies on land, GPS-levelling data on the local vertical datums, and Helmert vertical deflections at the Earth's surface. Unlike earlier Australian studies (e.g., Zhang, 1998), ship-track gravity anomalies are not used because of crossover errors that are now known to exist in this data set (e.g., Featherstone, 2002b); likewise for New Zealand. An additional validation is conducted using Helmert vertical deflections observed in Australia and New Zealand (cf. Jekeli, 1999), which has not been attempted before.

## 2. THE GLOBAL GEOPOTENTIAL MODELS TESTED

There are essentially three classes of GGM. In summary:

- 1. **Satellite-only GGMs** are derived solely from the analysis of the orbits of artificial Earth satellites. Historically, these models were limited in precision due to a combination of: the power-decay of the gravitational field with altitude; the inability to track complete satellite orbits using ground-based stations; imprecise modelling of atmospheric drag, non-gravitational and third-body perturbations; and incomplete sampling of the global gravity field due to the limited number of satellite orbital inclinations available. Therefore, though some satellite-only GGMs are available above degree 70 (Table 1), the higher degree coefficients, say greater than 20 (e.g., Vaníček and Sjöberg, 1991) or 30 (e.g., Rummel *et al.*, 2002), are heavily contaminated by noise; also see Figure 2. However, several of the above limitations have now been redressed by the use of the dedicated satellite gravimetry missions, whose concepts are summarised in Rummel *et al.* (2002) and Featherstone (2002a).
- 2. Combined GGMs are derived from the combination of satellite data, land and ship-track gravity observations, and marine gravity anomalies derived from satellite radar altimetry, and more recently airborne gravity data (e.g., Rapp, 1997b). This generally allows an increase in the maximum spherical harmonic degree of the GGM. However, these models are also limited in precision due to the above-mentioned restrictions on [older] satellite-only GGMs, as well as the spatial coverage and quality of the additional data used. For instance, distortions in and offsets among different vertical geodetic datums cause long-wavelength errors in terrestrial gravity anomalies (e.g., Heck, 1990). These will generate low-frequency errors in the combined GGMs if not properly high-pass filtered from the solution.
- Tailored GGMs adjust (and often extended to higher degrees) a satellite-only or combined GGM using gravity data that may not necessarily have been used before (e.g., Wenzel, 1998a, 1998b). This is normally achieved using integral formulas to derive

corrections to the existing geopotential coefficients, as opposed to the combination at the normal equation level that is used to construct combined GGMs. Importantly, tailored GGMs *only* apply over the area in which the tailoring was applied, because spurious effects can occur in areas where no data are available (Kearsley and Forsberg, 1990).

Table 1 lists the GGMs tested in this study, together with the maximum spherical harmonic degree of expansion, whether they are satellite-only, combined or tailored solutions, and a citation.



**Figure 1.** The CHAMP concept of high-low satellite-to-satellite tracking (from Rummel et al., 2001)

The unique GGMs in Table 1 are EIGEN-1S, EIGEN-2, UCPH2002\_02 and TEG-4, all of which include CHAMP (CHAllenging Mini-satellite Payload) high-low satelliteto-satellite tracking (hl-SST) and accelerometry data (Figure 1). The CHAMP dedicated gravimetry satellite was launched on 15 July 2000, and orbits in a near-circular orbit at an initial altitude of 454 km and an inclination of 87.3° to the equatorial plane. The hl-SST allows a near-global coverage of gravity field data, which was previously unavailable with ground-tracked satellite data. The CHAMP satellite also houses a three-axis accelerometer

| model        | degree | class          | citation                    |
|--------------|--------|----------------|-----------------------------|
| JGM-3        | 70     | combined       | Tapley et al. (1996)        |
| EGM96S       | 70     | satellite-only | Lemoine et al. (1998)       |
| UCPH2002_02  | 90     | satellite-only | Howe <i>et al.</i> (2002)   |
| GRIM5-S1     | 99     | satellite-only | Biancale et al. (2000)      |
| EIGEN-1S     | 100    | satellite-only | Reigber et al. (2002a)      |
| EIGEN-2      | 120    | satellite-only | Reigber et al. (2002b)      |
| GRIM5-C1     | 120    | combined       | Gruber et al. (2000)        |
| TEG-4        | 200    | combined       | Tapley <i>et al.</i> (2001) |
| GFZ97        | 359    | combined       | Gruber et al. (1997)        |
| EGM96        | 360    | combined       | Lemoine et al. (1998)       |
| EGM96COR     | 360    | combined       | <i>ibid.</i> ; Rapp (1997a) |
| PGM2000A     | 360    | combined       | Pavlis <i>et al.</i> (2000) |
| EIGEN2/EGM96 | 32/360 | combined       | see text                    |
| UCPH2/EGM96  | 41/360 | combined       | see text                    |
| GPM98C       | 1800   | tailored       | Wenzel (1998b)              |

to help reduce the effect of non-gravitational perturbations. EIGEN-2 is a GGM derived from only CHAMP data.

Table 1. The global geopotential models tested over Australia and New Zealand

Table 1 also lists two additional GGMs, which have been created specifically for this study. These are termed EIGEN2/EGM96 and UCPH2/EGM96, where EIGEN-2 coefficients from degrees 2 to 32 (inclusive) and UCPH2002\_02 coefficients from degrees 2 to 41 (inclusive), respectively, are used to replace the corresponding EGM96 coefficients. The cut-off degrees of 32 and 41 are chosen because these are the points beyond which the error degree variances of EIGEN-2 and UCPH2002\_02 begin to diverge with respect to EGM96 (Figure 2). This roughly agrees with the estimates of degree 20 and 30 made by Vaníček and Sjöberg (1991) and Rummel *et al.* (2002). Also note from Figure 2 that the degree variances (power) of EIGEN-2 and UCPH2002\_02 begin to decay quickly with respect to EGM96 beyond degree ~40.



**Figure 2.** Degree variances (dv) and error degree variances (edv) of new GGMs from CHAMP dedicated satellite gravimetry (see Table 1) in relation to EGM96

Each GGM in Table 1 was evaluated to its maximum available degree and order using harmonics.f, which is a derivative of Rapp's (1982) software held at Curtin University of Technology. The computations were performed point-by-point, where the GGM-implied gravity field quantities were evaluated at the geocentric latitude and longitude of each terrestrial data point, then the descriptive statistics of the differences computed. GRS80 (Moritz, 1980) was used as the reference ellipsoid for all computations, but no zero- or first-degree terms were calculated (cf. Kirby and Featherstone, 1997). As such, the mean differences presented for all the datasets should be treated with some caution, and the standard deviations interpreted as the more informative statistic of the fit of each GGM to the terrestrial-gravity-field-related data.

# **3.** THE AUSTRALIAN AND NEW ZEALAND DATA

## 3.1 Land Gravity Observations



**Figure 3.** Spatial coverage of the 768,992 Australian land gravity observations in the 2001 data release from GA and the 40,737 New Zealand land gravity observations in the 2001 data release from GNS (Lambert projection)

- Australia: 768,992 land gravity observations from a corrected version of the 2001 release of Geoscience Australia's (GA; formerly AGSO) national gravity database (cf. Murray, 1997) were used over Australia (Figure 3). These gravity observations refer to the IsoGal84 gravity datum (Wellman *et al.*, 1985), which is tied to the IGSN71 (Morelli *et al.*, 1971). Second-order, atmospherically corrected, free-air gravity anomalies were recomputed using the procedures outlined in Featherstone *et al.* (1997). No horizontal datum transformation was necessary because the 2001 land gravity data release is claimed to be on the Geocentric Datum of Australia (GDA94), though the transformation technique used by GA are presently unknown.
- *New Zealand*: 40,737 land gravity observations from the national gravity database held by the Institute of Geological and Nuclear Sciences Ltd (GNS) (cf. Robertson and

Reilly, 1960) were used over New Zealand (Figure 3). These gravity observations were originally based on the Potsdam (New Zealand) gravity datum. Therefore, a constant value of 15.21 mGal (Woodward, 2001 pers. comm.) was subtracted to transform them to IGSN71. Second-order, atmospherically corrected, free-air gravity anomalies were computed using the same procedures as used for the Australian data. The horizontal coordinates of the gravity observations were transformed from the New Zealand Geodetic Datum 1949 (NZGD49) to the geocentric New Zealand Geodetic Datum 2000 (NZGD2000) using a similarity transformation with parameters published by Land Information New Zealand (LINZ) (Office of the Surveyor-General, 1997).

#### 3.2 GPS-levelling Heights on Land

- Australia: 1,013 GPS-levelling-derived estimates of the geometrical 'geoid' height (Figure 4), supplied by the National Mapping Division (NMD) of GA (formerly AUSLIG), were used over Australia (cf. Featherstone and Guo, 2001). The spirit-levelling observations are tied to the Australian Height Datum (AHD; Roelse *et al.*, 1971). The quotation marks are used around the term geoid, because these are not estimates of the classical equipotential geoid, mainly due to deficiencies in the AHD (e.g., Featherstone, 1998). In addition, the quality of these GPS data is variable, with them being compiled from a variety of vintages (Johnston and Luton, 2001).
- *New Zealand*: 1,055 GPS-levelling-derived estimates of the geometrical 'geoid' height (Figure 4), supplied by LINZ, were used over New Zealand. The quotation marks used here have more relevance here because the spirit-levelled heights used are not connected to a single national vertical datum. New Zealand uses 13 separate vertical datums tied by (normal-orthometrically corrected) spirit levelling to 12 separate tide gauges (e.g., Gilliland, 1987). Accordingly, the results using these data will be afforded less weight in the comparisons.



**Figure 4.** Spatial coverage of the 1,013 Australian GPS-levelling data from NMD and the 1,055 New Zealand GPS-levelling data from LINZ (Lambert projection)

#### 3.3 Astrogeodetic (Helmert) Vertical Deflections at the Earth's Surface

There is a distinction between Helmert deflections of the vertical at the Earth's surface and Pizzetti deflections of the vertical at the geoid (e.g., Jekeli, 1999). To relate these two quantities requires the curvature of the plumbline through the topography, which is notoriously difficult to estimate (e.g., Bomford, 1971; Papp and Benedek, 2000). Therefore, Pizzetti deflections implied by the GGMs will be compared with the astrogeodetically determined Helmert deflections over Australia and New Zealand.

- Australia: 1,054 Helmert vertical deflections (Figure 5), observed at Laplace stations as part of the establishment of the Australian Geodetic Datum (Bomford, 1967) and supplied by NMD, were used over Australia. GDA94 geodetic coordinates were used to compute the absolute (as opposed to relative) Helmert vertical deflections (cf. Featherstone and Rüeger, 2000; Jekeli, 1999).
- *New Zealand*: 33 Helmert vertical deflections (Figure 5), observed at Laplace stations as a part of the establishment of the NZGD49 and supplied by LINZ, were used over

New Zealand. As for Australia, NZGD2000 geodetic coordinates were used to compute the absolute Helmert vertical deflections (*ibid*.).



Figure 5. Spatial coverage of the 1,054 Australian astrogeodetic vertical deflections from NMD and the 33 New Zealand astrogeodetic vertical deflections from LINZ (Lambert projection)

#### 3.4 Comments on the ANZ Marine Gravity Data

Unlike the evaluations in Australia by Zhang and Featherstone (1995), Zhang (1998) and Kirby *et al.* (1998), ship-track gravity observations will not be used here. This is because these data have not been crossover adjusted and are thus unreliable (cf. Wessel and Watts, 1998). Featherstone (2002b) demonstrates this by a simple comparison between ship-track gravity anomalies and those derived from multi-mission satellite radar altimetry. Unfortunately, this was not known at the time that AUSGeoid98 was produced. The same comparisons with satellite altimetry show the same results for the ~1.3 million marine gravity observations surrounding New Zealand, and (Woodward, 2001, pers. comm.) confirmed that these data have not yet been crossover adjusted. Satellite altimeter-derived gravity anomalies were not used in these evaluations because they are based on a high-degree combined GGM (usually EGM96) and thus offer no independent low-frequency control on other GGMs.

## **4. RESULTS AND DISCUSSION**

#### 4.1 Problems with Evaluating GGMs using Terrestrial Data

Firstly, it is important to point out that terrestrial gravity anomalies do not form an equivocal test of GGMs, especially the satellite-only GGMs derived from the new dedicated satellite gravity field missions. This is because terrestrial gravity data are highly susceptible to medium- and long-wavelength errors due to factors such as errors in vertical geodetic datums, which are used implicitly to compute gravity anomalies, and to gravimeter drift, which tends to accumulate over long distances. Heck (1990) gives a review of the systematic errors in terrestrial gravity anomalies.

Secondly, GPS-levelling data are also equivocal, predominantly because of the aforementioned distortions in and offsets among vertical geodetic datums. However, simple blunders such as the neglect of the GPS antenna height add ~1.5 m errors in single points, which can be difficult to discriminate between vertical datum and geoid errors if the surrounding control is sparse. In addition, the GPS data have been collected over a long period of time, while processing algorithms and data availability (notably precise orbits) have matured. This is the case for the Australian GPS-levelling data (Johnston and Luton, 2001).

Thirdly, observed vertical deflections, in addition to the aforementioned caveat on Helmert versus Pizzetti deflections, are also subject to their own error budget, notably the precision with which the astrogeodetic measurements could be made. However, these data offer the most independent validation of GGMs because they have not been used in the construction of these models. That is, they were observed using astrogeodetic techniques and are based fundamentally on horizontal, as opposed to vertical, geodetic observation techniques.

Finally, and importantly, the terrestrially determined 'control' values contain all frequencies of the gravity field, whereas the GGMs do not because of the finite spherical harmonic expansion that renders them subject to the so-called omission error. As such, it is expected that the agreements will improve as the maximum degree of the GGM increases. This is simply due to a reduction in the omission error and should not necessarily be interpreted as an improvement in the low frequencies (i.e., a smaller commission error) modelled by these GGMs.

|              |        | Au      | stralia (768, | 992 point | ts)    | New Zealand (40,737 points) |          |        |        |  |
|--------------|--------|---------|---------------|-----------|--------|-----------------------------|----------|--------|--------|--|
| model        | degree | max     | min           | mean      | std    | max                         | min      | mean   | std    |  |
| raw data     |        | 248.590 | -112.321      | 2.236     | 25.112 | 195.785                     | -163.178 | 15.921 | 43.210 |  |
| JGM-3        | 70     | 220.073 | -100.940      | -0.641    | 20.975 | 193.866                     | -180.249 | -1.005 | 41.337 |  |
| EGM96S       | 70     | 230.386 | -99.918       | -0.314    | 22.544 | 193.855                     | -183.327 | -1.048 | 41.847 |  |
| UCPH02       | 90     | 224.826 | -99.709       | -0.906    | 21.915 | 193.724                     | -180.864 | -0.624 | 41.528 |  |
| GRIM5-S1     | 99     | 226.757 | -104.719      | -0.161    | 21.932 | 193.528                     | -182.117 | -0.565 | 41.811 |  |
| EIGEN-1S     | 100    | 220.658 | -108.232      | -0.328    | 21.623 | 193.266                     | -181.525 | -0.843 | 41.681 |  |
| EIGEN-2      | 120    | 215.611 | -105.875      | -1.063    | 21.419 | 193.288                     | -182.501 | -1.305 | 41.695 |  |
| GRIM5-C1     | 120    | 202.758 | -94.333       | -1.467    | 18.429 | 194.682                     | -179.519 | -1.537 | 40.912 |  |
| TEG-4        | 200    | 211.887 | -97.740       | -1.749    | 15.270 | 193.657                     | -177.085 | -1.693 | 40.555 |  |
| GFZ97        | 359    | 216.479 | -95.959       | -0.367    | 11.103 | 192.809                     | -175.652 | -1.424 | 40.391 |  |
| EGM96        | 360    | 220.046 | -95.110       | -0.722    | 11.097 | 192.494                     | -176.004 | -1.770 | 40.438 |  |
| EGM96COR     | 360    | 220.046 | -95.110       | -0.722    | 11.097 | 192.497                     | -176.001 | -1.750 | 40.438 |  |
| PGM2000A     | 360    | 219.517 | -95.154       | -0.675    | 11.085 | 192.466                     | -176.052 | -1.823 | 40.440 |  |
| EIGEN2/EGM96 | 32/360 | 219.949 | -95.376       | -0.707    | 11.100 | 192.369                     | -176.047 | -1.847 | 40.457 |  |
| UCPH2/EGM96  | 41/360 | 219.978 | -99.589       | -0.346    | 11.238 | 192.260                     | -175.948 | -1.824 | 40.458 |  |
| GPM98C       | 1800   | 204.165 | -96.957       | -1.432    | 14.093 | 193.012                     | -176.606 | -1.828 | 40.558 |  |

# 4.2 Results for Australia and New Zealand (ANZ)

**Table 2**. Fit of the geopotential models to land gravity observations [mGal]

|              |        | Australia (1,013 points) |        |        |        | New Zealand (1,055 points) |        |        |        |  |
|--------------|--------|--------------------------|--------|--------|--------|----------------------------|--------|--------|--------|--|
| model        | degree | max                      | min    | mean   | std    | max                        | min    | mean   | std    |  |
| raw data     |        | 71.301                   | -3.880 | 11.298 | 23.106 | 3.583                      | 39.410 | 16.235 | 10.817 |  |
| JGM-3        | 70     | 4.024                    | -3.838 | -0.018 | 1.156  | 3.661                      | -5.350 | 0.740  | 1.691  |  |
| EGM96S       | 70     | 5.674                    | -4.563 | 0.630  | 1.665  | 4.520                      | -8.392 | 0.936  | 2.848  |  |
| UCPH2002     | 90     | 6.240                    | -4.426 | 0.061  | 1.327  | 4.444                      | -5.948 | 1.240  | 2.152  |  |
| GRIM5-S1     | 99     | 6.527                    | -4.006 | -0.190 | 1.660  | 4.558                      | -7.210 | 1.254  | 2.695  |  |
| EIGEN-1S     | 100    | 6.251                    | -4.114 | 0.046  | 1.487  | 4.462                      | -6.616 | 0.940  | 2.265  |  |
| EIGEN-2      | 120    | 6.376                    | -3.675 | 0.054  | 1.331  | 3.359                      | -7.595 | 0.647  | 2.259  |  |
| GRIM5-C1     | 120    | 3.492                    | -2.259 | -0.145 | 0.718  | 3.248                      | -4.707 | 0.000  | 1.191  |  |
| TEG-4        | 200    | 3.053                    | -2.543 | -0.105 | 0.499  | 3.373                      | -2.397 | 0.002  | 0.694  |  |
| GFZ97        | 359    | 3.750                    | -2.584 | -0.052 | 0.497  | 4.636                      | -0.963 | 0.303  | 0.697  |  |
| EGM96        | 360    | 3.537                    | -2.441 | -0.015 | 0.441  | 3.712                      | -1.338 | 0.027  | 0.616  |  |
| EGM96COR     | 360    | 3.538                    | -2.442 | -0.005 | 0.434  | 3.734                      | -1.332 | 0.035  | 0.620  |  |
| PGM2000A     | 360    | 3.466                    | -2.312 | -0.012 | 0.439  | 3.660                      | -1.388 | -0.022 | 0.611  |  |
| EIGEN2/EGM96 | 32/360 | 3.387                    | -2.514 | -0.019 | 0.425  | 3.496                      | -1.376 | -0.039 | 0.606  |  |
| UCPH2/EGM96  | 41/360 | 3.529                    | -2.517 | -0.025 | 0.458  | 3.458                      | -1.284 | -0.040 | 0.604  |  |
| GPM98C       | 1800   | 3.351                    | -2.459 | -0.003 | 0.491  | 3.325                      | -2.152 | -0.028 | 0.675  |  |

**Table 3**. Fit of the geopotential models to GPS-levelling data [m]

|              |        | East-west vertical deflections |         |        |       | North-south vertical deflections |         |        |       |
|--------------|--------|--------------------------------|---------|--------|-------|----------------------------------|---------|--------|-------|
| model        | degree | max                            | min     | mean   | std   | max                              | min     | mean   | Std   |
| raw data     |        | 12.935                         | -20.994 | -4.893 | 3.346 | 15.092                           | -27.424 | -3.486 | 4.074 |
| JGM-3        | 70     | 19.861                         | -17.082 | 0.028  | 2.941 | 15.352                           | -21.449 | -0.186 | 3.453 |
| EGM96S       | 70     | 18.250                         | -15.082 | 0.173  | 3.199 | 16.605                           | -24.259 | -0.066 | 3.708 |
| UCPH2002     | 90     | 19.939                         | -16.120 | 0.008  | 2.983 | 15.899                           | -21.726 | -0.284 | 3.748 |
| GRIM5-S1     | 99     | 18.707                         | -15.168 | 0.136  | 3.209 | 16.880                           | -23.770 | -0.125 | 3.687 |
| EIGEN-1S     | 100    | 18.666                         | -15.890 | 0.161  | 3.096 | 16.889                           | -23.321 | -0.123 | 3.566 |
| EIGEN-2      | 120    | 20.077                         | -15.349 | 0.152  | 3.053 | 16.582                           | -20.428 | -0.123 | 3.547 |
| GRIM5-C1     | 120    | 20.766                         | -14.068 | 0.020  | 2.672 | 14.558                           | -20.142 | -0.225 | 3.156 |
| TEG-4        | 200    | 18.727                         | -9.751  | -0.081 | 2.215 | 13.608                           | -15.958 | -0.150 | 2.706 |
| GFZ97        | 359    | 21.565                         | -7.276  | -0.130 | 1.821 | 14.566                           | -13.889 | -0.123 | 2.218 |
| EGM96        | 360    | 20.574                         | -7.314  | -0.100 | 1.791 | 14.453                           | -13.328 | -0.084 | 2.189 |
| EGM96COR     | 360    | 20.574                         | -7.314  | -0.100 | 1.791 | 14.453                           | -13.328 | -0.084 | 2.189 |
| PGM2000A     | 360    | 20.620                         | -7.328  | -0.089 | 1.790 | 14.567                           | -13.178 | -0.084 | 2.190 |
| EIGEN2/EGM96 | 32/360 | 20.611                         | -7.332  | -0.105 | 1.788 | 14.557                           | -13.315 | -0.090 | 2.187 |
| UCPH2/EGM96  | 41/360 | 20.426                         | -7.530  | -0.156 | 1.819 | 14.385                           | -13.168 | -0.116 | 2.207 |
| GPM98C       | 1800   | 19.158                         | -7.777  | -0.089 | 2.154 | 13.444                           | -14.088 | -0.200 | 2.525 |

 Table 4. Fit of the geopotential models to 1054 Helmert vertical deflections over Australia ["]

|              |        |        |             | 1 1 0      | -     |        |              |             |        |
|--------------|--------|--------|-------------|------------|-------|--------|--------------|-------------|--------|
|              |        | East-  | west vertic | al deflect | tions | North  | -south verti | ical deflec | ctions |
| model        | degree | max    | min         | mean       | std   | max    | min          | mean        | Std    |
| raw data     |        | 15.759 | -27.797     | -2.714     | 9.183 | 15.844 | -16.798      | 0.154       | 8.289  |
| JGM-3        | 70     | 14.072 | -18.273     | 1.604      | 7.564 | 14.540 | -12.869      | 0.015       | 7.145  |
| EGM96S       | 70     | 16.480 | -20.981     | 1.981      | 8.450 | 15.316 | -14.222      | 0.283       | 7.759  |
| UCPH2002     | 90     | 15.196 | -19.465     | 1.752      | 7.901 | 14.401 | -13.634      | 0.010       | 7.238  |
| GRIM5-S1     | 99     | 14.790 | -21.967     | 1.416      | 8.377 | 16.055 | -14.561      | 0.658       | 7.747  |
| EIGEN-1S     | 100    | 15.524 | -21.088     | 1.766      | 8.268 | 14.178 | -13.695      | 0.026       | 7.192  |
| EIGEN-2      | 120    | 15.858 | -20.595     | 2.037      | 8.260 | 15.960 | -14.337      | -0.180      | 7.753  |
| GRIM5-C1     | 120    | 15.141 | -14.838     | 2.122      | 7.148 | 10.185 | -12.070      | -0.444      | 6.355  |
| TEG-4        | 200    | 15.464 | -7.118      | 2.762      | 5.635 | 10.076 | -12.504      | 0.081       | 6.199  |
| GFZ97        | 359    | 17.585 | -7.210      | 3.180      | 5.543 | 10.198 | -12.946      | 0.082       | 5.742  |
| EGM96        | 360    | 13.671 | -7.380      | 2.605      | 4.688 | 9.852  | -12.596      | -0.012      | 5.258  |
| EGM96COR     | 360    | 13.671 | -7.380      | 2.606      | 4.688 | 9.852  | -12.596      | -0.013      | 5.252  |
| PGM2000A     | 360    | 13.670 | -7.363      | 2.615      | 4.681 | 9.908  | -12.610      | -0.013      | 5.257  |
| EIGEN2/EGM96 | 32/360 | 13.577 | -7.500      | 2.559      | 4.681 | 9.840  | -12.648      | -0.040      | 5.254  |
| UCPH2/EGM96  | 41/360 | 13.569 | -7.296      | 2.570      | 4.646 | 10.005 | -12.535      | -0.008      | 5.279  |
| GPM98C       | 1800   | 16.924 | -5.926      | 2.274      | 5.196 | 9.549  | -10.364      | -0.450      | 5.369  |

Table 5. Fit of the geopotential models to 33 Helmert vertical deflections over NZ ["]

#### 4.3 Discussion of Results

Recall that due to the omission of the zero-degree term, the standard deviations (std) in Tables 2 to 5 will be used to infer the best fits of the various GGMs to the terrestrial-gravity-field-related data. Firstly, a number of somewhat expected observations are evident from Tables 2 to 5; these are:

- The fits of the GGMs to the Australian data are consistently better (up to a factor of about four) than for the New Zealand data. This is due to a combination of the different terrestrial 'control' data used and the different geomorphological settings. Australia is an old and heavily weathered continent, whereas New Zealand is at the active boundary of the Australian and Pacific tectonic plates. Also, New Zealand hosts considerably more rugged terrain than Australia. Therefore, the New Zealand gravity field, as sensed by terrestrial observations, contains more variability and power in the high frequencies than Australia, which cannot be described by the GGMs (cf. Jekeli, 1999). Simply comparing the descriptive statistics of the raw data in Tables 2, 4 and 5 confirms the former.
- Generally, the lower the spherical harmonic degree, the poorer the fit of the GGMs to the ANZ data. This is entirely as expected because the higher degree expansions have smaller omission errors (but not necessarily smaller commission errors in the low degrees). The exception to this trend is GPM98C, which does not include ANZ data because of data confidentiality clauses (cf. Zhang et al., 2002).
- The combined GGMs generally give better fits to the ANZ gravity data than the satellite-only models (Table 2), which again is to be expected because most of the former include terrestrial gravity data from this part of the world. However, it is plausible that the satellite-only GGMs, notably those derived from the CHAMP mission data, are more precise than the combined GGMs because the latter will have been contaminated by long- and medium- wavelength errors in the terrestrial gravity data (described earlier). Therefore, comparisons with terrestrial gravity data are not such a good means of assessing the precision of satellite-only GGMs (cf. Reigber *et al.*, 2002).

Secondly, there are some specific inferences that can be made by comparing the results among Tables 2 through 5:

- The fit of the GGMs to the New Zealand GPS-levelling data is consistently worse than for the Australian data (Table 3). Acknowledging the presence of GPS and levelling errors, as well as the more rugged topography and gravity field in New Zealand, this larger difference is also likely to be caused by the 13 separate vertical datums using in New Zealand. Amos and Featherstone (2002) estimate that the offsets could be as large as 0.5 m.
- The fits of the GGMs to the vertical deflections in Australia broadly agree with those observed in North America (cf. Jekeli, 1999). However, the fits to the New Zealand data are consistently poorer. This is probably due to a combination of the rugged topography and hence gravity field in New Zealand (as evidenced by the larger standard deviations of the raw vertical deflections (cf. Tables 4 and 5)) that is not sensed by the GGMs (due to the omission error) and the [incorrect] comparison of observed Helmert deflections with Pizzetti deflections from the GGMs.
- While the EIGEN-1S satellite-only GGM gives a slightly poorer fit to the terrestrial gravity data than other satellite-only GGMs (Table 2), it does give better fits to the GPS-levelling (Table 3) and the independent vertical deflections (Tables 4 and 5). Assuming these data are less prone to low-frequency errors than the terrestrial gravity data, this shows that EIGEN-1S is an improvement on existing satellite-only models, thus vindicating the use of GRACE hl-SST and accelerometry data. Therefore, if a satellite-only solution is to be used for Australian and New Zealand geoid models (cf. Vanicek and Sjöberg, 1991), EIGEN-1S or subsequent GGMs that include dedicated satellite gravity data should be used.
- It is slightly more difficult to select the combined GGM that gives the best fit to the ANZ data. All the degree-360 models give results that are not statistically significantly different when considering the errors in the 'control' data. Therefore, the choice is somewhat more arbitrary. However, PGM2000A does give a very small (and insignificant) improvement on the other models, which is to be expected because it uses additional data and modelling not used in the other combined GGMs (Pavlis *et al.*, 2000).
- The models that replaced the lower degree coefficients of EGM96 with UCPH2002\_02 and EIGEN-2 showed a minor improvement over the original EGM96 model. This is the expected result as the combined models essentially extend the degree and order of

the CHAMP derived models. The use of this type of combined model for future ANZ geoid computations is likely.

#### **5.** CONCLUSIONS AND RECOMMENDATIONS

The results of these comparisons of recent GGMs with terrestrial gravity data, GPSlevelling and vertical deflections over Australia and New Zealand show general trends that can be expected given the omission errors in the models and the expected quality of the 'control' data. In terms of selecting the optimal GGM for the computation of future Australian and New Zealand regional gravimetric geoid models, two GGMs present themselves as suitable candidates. If the regional geoid is to be based on a satellite-only GGM, then EIGEN-1S should be used. If the regional geoid is to be based on a combined GGM, then PGM2000A could be used, though EGM96 is an equally acceptable candidate. Finally, the GPM98 tailored GGM should not be used over Australia or New Zealand because it has not included terrestrial gravity data from these regions.

#### ACKNOWLEDGEMENTS

We would especially like to thank the many providers of data, who are either named or cited in this paper. This research is funded by Australian Research Council large grant A39938040 and discovery project grant DP0211827, a Curtin University Postgraduate Scholarship, and Land Information New Zealand. Finally, thanks are extended to the reviewers of this manuscript.

## REFERENCES

- Amos, M.J. and Featherstone, W.E., 2002. Development of a gravimetric geoid for New Zealand and a single national vertical datum, *Proceedings of GG2002*, Thessaloniki, http://olimpia.topo.auth.gr/GG2002/SESSION6/session6.html
- Biancale, R., Balmino, G., Lemoine, J.M., Marty, J.C., Moynot, B., Barlier, F., Exertier, P., Laurain, O., Gegout, P., Schwintzer, P., Reigber, C., Bode, A., König, R., Massmann, F.H., Raimondo, J.C., Schmidt, R. and Zhu, S.Y., 2000. A new global Earth's gravity field model from satellite orbit perturbations: GRIM5-S1, *Geophysical Research Letters*, 27, 3611-3615. [coefficients available from http://www.gfz-potsdam.de/pb1/pg3/grim/grim5\_e.html]
- Bomford, A.G., 1967. The geodetic adjustment of Australia, 1963-66. Survey Review, 144, 52-71.
- Bomford, G., 1971. Geodesy (third edition), Oxford University Press, Oxford, 855 pp.
- Featherstone, W.E., 1998. Do we need a gravimetric geoid or a model of the base of the Australian Height Datum to transform GPS heights? *The Australian Surveyor*, 43, 273-280.
- Featherstone, W.E., 2002a. Expected contributions of dedicated satellite gravity field missions to regional geoid determination with some examples from Australia, *Journal of Geospatial Engineering*, 4, 2-19.

- Featherstone, W.E., 2002b. Comparison of different satellite altimeter-derived gravity anomaly grids with ship-borne gravity data around Australia, *Proceedings of GG2002*, Thessaloniki, http://olimpia.topo.auth.gr/GG2002/SESSION4/session4.html
- Featherstone, W.E. and Rüeger, J.M., 2000. The importance of using deviations of the vertical in the reduction of terrestrial survey data to a geocentric datum, *The Trans-Tasman Surveyor*, 1(3), 46-61 [erratum in *The Australian Surveyor*, 47, 7]
- Featherstone, W.E. and Guo, W., 2001. A spatial evaluation of the precision of AUSGeoid98 versus AUSGeoid93 using GPS and levelling data, *Geomatics Research Australasia*, 74, 75-102.
- Featherstone, W.E., Kearsley, A.H.W. and Gilliland, J.R., 1997. Data preparations for a new Australian gravimetric geoid, *The Australian Surveyor*, 42, 33-44.
- Featherstone, W.E., Kirby, J.F., Kearsley, A.H.W., Gilliland, J.R., Johnston, G.M., Steed, J., Forsberg, R. and Sideris, M.G., 2001. The AUSGeoid98 geoid model of Australia: data treatment, computations and comparisons with GPS-levelling data, *Journal of Geodesy*, 75, 313-330.
- Gilliland, J.R., 1987. A review of the levelling networks of New Zealand, *The New Zealand Surveyor*, 271, 7-15.
- Gilliland, J.R., 1990. A gravimetric geoid for the New Zealand region, *The New Zealand Surveyor*, 276, 591-595.
- Gruber, T., Anzenhofer, M., Rentcsh, M. and Schwintzer, P., 1997. Improvements in highresolution gravity field modelling at GFZ, in: Segawa, J., Fujimoto, H. and Okubo, S. (eds.) *Gravity, Geoid and Marine Geodesy*, Springer, Berlin, 445-452.
- Gruber, T., Bode, A., Reigber, C., Schwintzer, P., Balmino, G., Biancale, R. and Lemoine, J.M., 2000. GRIM5-C1: combination solution of the global gravity field to degree and order 120, *Geophysical Research Letters*, 27, 4005-4009. [coefficients available from http://www.gfzpotsdam.de/pb1/pg3/grim/grim5\_e.html]
- Heck, B., 1990. An evaluation of some systematic error sources affecting terrestrial gravity anomalies, *Bulletin Géodésique*, 64, 88-108.
- Howe, E., Stenseng, L. and Tscherning, C.C., 2002. CHAMP gravity field model UCPH2002\_02, http://www.gfy.ku.dk/~stenseng/sagrada/poster.pdf [coefficients available from http://www.gfy.ku.dk/~stenseng/sagrada.php]
- Jekeli, C., 1999. An analysis of vertical deflections derived from high-degree spherical harmonic models, *Journal of Geodesy*, 73, 10-22.
- Johnston, G.M. and Luton, G.C., 2001. GPS and the Australian Height Datum, in Kubik K., Rizos C. and Featherstone W.E. (eds.), *Proceedings of the Fifth International Symposium on Satellite Navigation Technology and Applications*, Canberra [CD-ROM].
- Kirby, J.F. and Featherstone, W.E., 1997. A study of zero- and first-degree terms in geopotential models over Australia, *Geomatics Research Australasia*, 66, 93-108.
- Kirby, J.F., Featherstone, W.E. and Kearsley, A.H.W., 1998. Tests of the DMA/GSFC geopotential models over Australia, *International Geoid Service Bulletin*, 7, 2-13.
- Kearsley, A.H.W. and Forsberg, R., 1990. Tailored geopotential models applications and shortcomings, *manuscripta geodaetica*, 15, 151-158.
- Kearsley, A.H.W. and Holloway, R.D., 1989. Tests on geopotential models in the Australian region, *Australian Journal of Geodesy Photogrammetry and Surveying*, 50, 1-17.
- Lambeck, K. and Coleman, R., 1983. The Earth's shape and gravity field: a report of progress from 1958 to 1982, *Geophysical Journal of the Royal Astronomical Society*, 74, 25-54.
- Lemoine, F.G., Kenyon, S.C., Factor, J.K., Trimmer, R.G., Pavlis, N.K., Chinn, D.S., Cox, C.M., Klosko, S.M., Luthcke, S.B., Torrence, M.H., Wang, Y.M., Williamson, R.G., Pavlis, E.C., Rapp, R.H. and Olson, T.R., 1998. The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96, NASA/TP-1998-206861,

National Aeronautics and Space Administration, Maryland, ~575 pp. [coefficients available from http://164.214.2.59/GandG/wgsegm/egm96.html]

Moritz, H., 1980. Geodetic reference system 1980, Bulletin Géodesique, 54, 395-405.

- Morelli, C., Gantar, C., Honkaslo, T., McConnell, R.K., Tanner, T.G., Szabo, B., Uotila, U. and Whalen, C.T., 1971. The International Gravity Standardisation Network 1971 (IGSN71), Special Publication 4 of Bulletin Géodésique, International Association of Geodesy, Paris.
- Murray, A.S., 1997. The Australian national gravity database, AGSO Journal of Australian Geology and Geophysics, 17, 145-155.
- Office of the Surveyor-General, 1997. Transformation Parameters from WGS84 to NZGD49, SG Policy 97/3, Land Information New Zealand, Wellington.
- Papp, G. and Benedek, J., 2000. Numerical modelling of gravitational field lines the effect of mass attraction on horizontal coordinates, *Journal of Geodesy*, 73, 648-659.
- Pavlis, N.K., Chinn, D.S., Cox, C.M. and Lemoine, F.G., 2000. Geopotential model improvement using POCM\_4B dynamic ocean topography information: PGM2000A, paper presented at the Joint TOPEX/Poseidon and Jason-1 Science Working Team Meeting, Miami, ftp://geodesy.gsfc.nasa.gov/dist/nkp/PGM2000A/pavlis\_swt\_fall2000.pdf [coefficients available from ftp://geodesy.gsfc.nasa.gov/dist/nkp/PGM2000A/]
- Pearse, M.B. and Kearsley, A.H.W., 1996. Analysis of EGM models in New Zealand, *International Geoid Service Bulletin*, 6, 203-213.
- Rapp, R.H. and Pavlis, N.K., 1990. The development and analysis of geopotential coefficient models to spherical harmonic degree 360, *Journal of Geophysical Research – Solid Earth*, 95, 21855-21911.
- Rapp, R.H., Wang, Y.M. and Pavlis, N.K., 1991. The Ohio State 1991 geopotential and sea surface topography harmonic coefficient model, *Report 410*, Department of Geodetic Science and Surveying, Ohio State University, Columbus.
- Rapp, R.H., 1982, A FORTRAN program for the computation of gravimetric quantities from highdegree spherical harmonic expansions, *Report 334*, Department of Geodetic Science and Surveying, Ohio State University, Columbus.
- Rapp, R.H., 1997a. Use of potential coefficient models for geoid undulation determinations using a spherical harmonic representation of the height anomaly/geoid undulation difference, *Journal of Geodesy*, 71, 282-289. [coefficients available from http://164.214.2.59/GandG/wgsegm/egm96.html]
- Rapp, R.H., 1997b. Past and future developments in geopotential modelling, in: Forsberg, R., Feissl, M. and Dietrich, R. (eds.) *Geodesy on the Move*, Springer, Berlin, 58-78.
- Reigber, C., Balmino, G., Schwintzer, P., Biancale, R., Bode, A., Lemoine, J.M., Koenig, R., Loyer, S., Neumayer, H., Marty, J.C., Barthelmes, F., Perosanz, F. and Zhu, S.Y., 2002. A high-quality global gravity field model from CHAMP GPS tracking data and accelerometry, *Geophysical Research Letters*, 29(14), 10.1029/2002GL015064. [coefficients available from http://op.gfzpotsdam.de/champ/results/grav/004\_eigen-1s.html]
- Reigber, C., Schwintzer, P., Neumayer, K.H., Barthelmes, F., König, R., Förste, C., Balmino, G., Biancale, R., Lemoine, J.M., Loyer, S., Bruinsma, S., Perosanz, F. and Fayard, T., 2002. The CHAMP-only EIGEN-2 Earth gravity field model, *Advances in Space Research* (submitted) [coefficients available from http://op.gfz-potsdam.de/champ/results/grav/007\_eigen-2.html]
- Robertson, E.I and Reilly, W.I., 1960. The New Zealand primary gravity network, *New Zealand Journal of Geology and Geophysics*, 3, 41-68.
- Reilly, W.I., 1972 New Zealand gravity map series, New Zealand Journal of Geology and Geophysics, 15(1), 3-15.
- Roelse, A., Granger, H.W. and Graham, J.W., 1971. The adjustment of the Australian levelling survey 1970 1971, *Technical Report 12*, Division of National Mapping, Canberra, 81 pp.

- Rummel, R., Balmino, G., Johnhannessen, J., Visser, P. and Woodworth, P., 2002, Dedicated gravity field missions principles and aims, *Journal of Geodynamics*, 33, 3-20.
- Steed, J. and Holtznagel, S., 1994. AHD heights from GPS using AUSGeoid93, *The Australian Surveyor*, 39, 21-27.
- Tapley, B.D., Watkins, M.M., Ries, J.C., Davis, G.W., Eanes, R.J., Poole, S.R., Rim, H.J., Schutz, B.E., Shum, C.K., Nerem, R.S., Lerch, F.J., Marshall, J.A., Klosko, S.M., Pavlis, N.K. and Williamson, R.G., 1996. The joint gravity model 3, *Journal of Geophysical Research – Solid Earth*, 101, 28029-28049. [coefficients available from http://www.gik.unikarlsruhe.de/~wenzel/geopmods.htm]
- Tapley, B.D., Bettadpur, S., Chambers, D., Cheng, M.K., Choi, K., Gunter, B., Kang, Z., Kim, J., Nagel, P., Ries, J., Rim, H., Roesset, P. and Roundhill, I., 2001. Gravity field determination from CHAMP using GPS tracking and accelerometer data: initial results, paper presented to the Fall Meeting of the American Geophysical Union, San Francisco. ftp://ftp.csr.utexas.edu/pub/grav/AGU\_CHAMP 2001.pdf [coefficients available from ftp://ftp.csr.utexas.edu/pub/grav]
- Vaníček, P. and Sjöberg, L.E., 1991. Reformulation of Stokes's theory for higher than seconddegree reference field and modification of integration kernels, *Journal of Geophysical Research* - *Solid Earth*, 96, 6529-6539.
- Wellman, P., Barlow, B.C. and Murray, A.S., 1985. Gravity base station network values, *Report 261*, Australian Geological Survey Organisation, Canberra.
- Wenzel, H.G., 1998a. Ultra-high degree geopotential model GPM93E97A to degree 1800 tailored to Europe, *Report 98:4*, Finnish Geodetic Institute, Masala, 71-80.
- Wenzel, H.G., 1998b. Ultra-high degree geopotential models GPM98A, B and C to degree 1800, paper presented to the joint meeting of the International Gravity Commission and International Geoid Commission, Trieste, http://www.gik.unikarlsruhe.de/~wenzel/gpm98abc.htm [coefficients available from http://www.gik.uni-karlsruhe.de/~wenzel/geopmods.htm]
- Wessel, P. and Watts, A.B., 1988. On the accuracy of marine gravity measurements, *Journal of Geophysical Research Solid Earth*, 94, 7685-7729.
- Zhang, K.F., 1998. Altimetric gravity anomalies, their assessment and combination with local gravity field, *Report 98:4*, Finnish Geodetic Institute, Masala, 137-144.
- Zhang, K.F. and Featherstone, W.E., 1995. The statistical fit of recent geopotential models to the gravity field of Australia, *Geomatics Research Australasia*, 63, 1-18.
- Zhang, K.F., Deakin, R., Talbot, N. and Edwards, N., 2002, Evaluation of ultra-high degree geopotential models in Australia, *Survey Review*, 36, 474-482.