

Guideline for CORS data supply

National Geodetic Office 1 November 2016

Document History

DATE	VERS	ISSUE	AMENDMENTS	AUTHOR(S)
1 Nov 2016	1.0	1		Paula Gentle

Contents

Con	tents	ii
Ter	ms and	definitionsiv
For	eword.	1
Bac	kgrour	nd1
Rela	ated Sp	pecifications1
Ref	erence	s1
1	Data Sı	upply2
:	1.1 Ge	eneral requirements2
:	1.2 RI	NEX Supply3
	1.2.1	RINEX 2 supply
	1.2.2	RINEX 3 supply4
	1.3 Me	etadata Supply5
	1.3.1	CORS details
	1.3.2	Mark and site details
	1.3.3	Mark and site photographs
App	endix	A CORS Operation recommendations
	A.1	GNSS Equipment
	A.2	Signal quality
	A.2.1	Sky visibility9
	A.2.2	Pre-installation data quality assessment
	A.3	CORS monument
	A.3.1	Monument design10
	A.3.2	Antenna mounts
App	endix	B Field Codes11
	B.1.1	Mark Type (MRKT)11
	B.1.2	Monument Type (MRKE)11
	B.1.3	Mark Physical State (MPSC)11
	B.1.4	CORS Status (CSTA)

Terms and definitions

Term/Acronym	Definition
APC	Antenna Phase Centre – the point inside the GNSS antenna to which all GNSS signals are measured.
ARP	Antenna Reference Point - the physically accessible point on a GNSS antenna to which all measurements and calibrations related to that antenna are referred.
CORS	Continuously Operating Reference Station
DOMES	Directory of MERIT Sites – historically, the DOMES numbering system was designed at the start of the MERIT campaign in the early 1980s in order to give an unambiguous identifier to all instrument reference points and markers. Since 1988, a DOMES number has been issued for all stations contributing to the ITRF.
Elevation mask	A GNSS receiver setting that determines whether GNSS signals are recorded below a certain angle above the horizon.
Epoch	A specific instant in time. GNSS measurements are made at a given frequency or epoch rate
GNSS	Global Navigation Satellite System, it refers to any of the currently existing satellite systems. At this time being includes: Navstar GPS ("Global Positioning System", operated by US Department of Defense), GLONASS ("GLObal Navigation Satellite System", Soviet Commonwealth), Galileo (European Space Agency), BeiDou (Republic of China), SBAS ("Satellite Based Augmentation System") and QZSS ("Quasi-Zenith Satellite System", Japan)
GNS Science	GNS Science - A crown research institute (CRI), their purpose is to understand natural Earth system processes and resources, and to translate these into economic, environmental and social benefits.
GeoNet	GeoNet - A project to build and operate a modern geological hazard monitoring system in New Zealand. It is housed within GNS Science. GeoNet operates approximately 200 CORS in New Zealand.
IGS	International GNSS Service - An international federation of agencies that pool resources to operate a global CORS network whose data is used, amongst other purposes, to

generate precise GNSS products in support of Earth science research.

ITRF International Terrestrial Reference Frame

Reference mark

The physical point to which all observations are relative

to. If the CORS equipment was removed the reference mark would still be able to be visited and surveyed at a

later date.

Multipath Errors in GNSS observations caused by reflected GNSS

signals interfering with the direct GNSS signal because of

their common time origin but different path lengths.

PositioNZ The New Zealand Continuous GNSS Tracking Network run

in partnership by LINZ and GNS Science

RINEX Receiver INdependent Exchange Format: An

internationally accepted format for the exchange of GNSS data between software applications and for GNSS data

archiving.

VRP Vertical reference point, the vertical point or surface on

the reference mark

Foreword

Background

The purpose of this guideline is to outline the technical requirements for supply of station metadata and RINEX data to LINZ.

The aim is to recognise privately owned CORS as high quality geodetic marks and to monitor the stations stability.

A number of CORS stations have been added to Landonline and the Geodetic Database over time. These records are inconsistent and the co-ordinates are only in terms of the cadastral or geodetic survey that included them. This document will provide guidance on station metadata and how to supply it to LINZ for inclusion in Landonline and the Geodetic Database

Scope of this guideline

This guideline outlines what LINZ would expect private CORS operators to supply when submitting data for processing.

Related Specifications

Current geodetic specifications can be located http://www.linz.govt.nz/geodetic/standards-publications/geodetic-specifications

References

Publications

- ICSM (2013) Guideline for Continuously Operating Reference Stations Available online: http://www.icsm.gov.au/publications/sp1/Guideline-for-Continuously-Operating-Reference-Stations.pdf
- IGS (2013a), GPS and GLONASS antenna corrections, International GNSS Service. Available online: http://igs.org/igscb/station/general/igs08.atx
- IGS (2013b), *IGS site guidelines*, International GNSS Service. Available online: http://igscb.jpl.nasa.gov/network/quidelines/quidelines.html
- IGS (2013c), *IGS formats*, International GNSS Service. Available online: http://igscb.jpl.nasa.gov/components/formats.html
- UNAVCO (2013), UNAVCO Knowledgebase GNSS Permanent Stations, University Navstar Consortium. Available online: http://facility.unavco.org/kb/categories/GNSS+Permanent+Stations

1 Data Supply

1.1 General requirements

(a) Each CORS should be identified by a 4-character geodetic code assigned to the reference mark by LINZ,

GEODETIC CODE ALLOCATION

Geodetic Codes are assigned to the position of a mark. If a mark is disturbed or CORS equipment relocated to a new site, a new geodetic code will have to be assigned to the new position before it can be added to the Geodetic Database.

Even if CORS equipment is removed surveyors may be able to adopt old observations to the mark or reoccupy the mark if the monument is still in place.

LINZ holds the register of geodetic codes for New Zealand. GNS Science/GeoNet and private surveyors have to request a unique geodetic code from LINZ.

- (b) Mark Names should
 - (i) Be unique
 - (ii) Reflect its locality including street or road name
 - (iii) Be no more than 20 characters
 - (iv) Not include a company name or a reference to CORS or GPS/GNSS,

MARK NAMES

Mark names are assigned to the physical marks and once the name has been approved as part of a cadastral dataset LINZ is reluctant to change it.

If a CORS station is removed from a mark then it can be confusing to have it identified as a CORS or GPS/GNSS within the name.

If a company is renamed or rebranded it is unlikely that the station name will be changed to reflect the new branding.

(c) LINZ should be notified if the CORS equipment and/or reference mark is removed. The mark physical state in the mark and site details file should be updated to reflect this (refer to 1.3.2 and B.1.3)

1.2 RINEX Supply

RINEX data should:

- (a) Be supplied as a 24 hour file at 30 second observation rate
- (b) Commence daily at 00:00:00 UTC,
- (c) Be provided in either RINEX 2 or RINEX 3 format as described in sections 2.2.1 and 2.2.1
- (d) Be provided within 24 hours of the end of the 24 hour observation period, and
- (e) Be verified using a quality control tool eg teqc
- (f) Be provided on the LINZ FTP site: Email: <u>positionz@linz.govt.nz</u> for access details

FTP FILE STRUCTURE

To make automation more efficient RINEX files should be uploaded using the following directory structure.

/companyusename/RINEX/YYYY/DDD/

1.2.1 RINEX 2 SUPPLY

RINEX 2 data should:

- (a) Be named CODEDDDS.YYO, where
 - (i) CODE: as assigned in accordance with section 1.1 (a)
 - (ii) DDD: Day of year
 - (iii) S: Session number 0 for daily files
 - (iv) YY: Year
 - (v) O or D: For observation or hatanaka compressed format
- (b) Be provided in a format accepted by the IGS and approved by LINZ currently v2.11 for GPS and/or GLONASS observations: http://igscb.jpl.nasa.gov/components/formats.html

EXAMPLE: RINEX2 HEADER INFORMATION
2.11 OBSERVATION DATA M (MIXED) RINEX VERSION / TYPE
teqc 2013Mar15 20130708 03:02:21UTCPGM / RUN BY / DATE
AUCK MARKER NAME
50209M001 MARKER NUMBER
GeoNet · · · · · · · · · GNS · · · · · · · · · · · · · · · · · · ·
5035K69859 TRIMBLE NETR9 4.46 REC # / TYPE / VERS
1441047132 TRM55971.00 NONE ANT # / TYPE
5105681.0751 461564.03813782181.6600 APPROX POSITION XYZ
0.0550 · · · · · · 0.0000 · · · · · · · 0.0000 · · · ·
1 1 WAVELENGTH FACT L1/2
8 · · · C1 · · · L1 · · · S1 · · · · P1 · · · · C2 · · · · L2 · · · · S2 · · · · P2 · · · · · # · / · TYPES · OF · OBSERV
····30.0000······INTERVAL
····16·····LEAP·SECONDS
20137700-0.0000000GPSTIME-OF-FIRST-OBS
······································

Note: PositioNZ stations have been assigned a DOMES number. This has been entered as the MARKER NUMBER. The MARKER NUMBER can be left blank if station is without a DOMES number

1.2.2 RINEX 3 SUPPLY

RINEX 3 DATA STORAGE

LINZ currently does not have the capability to process RINEX 3.X or Multi-GNSS RINEX. If this data is supplied to LINZ it will be converted to RINEX 2.11 and the RINEX 3.03 will be archived it for future processing

RINEX 3 data should:

(a) Be named using the following convention:

Example: **CODE00NZL_R_YYYYDDD0000_01D_30S_MO**.rnx, where each component corresponds to the following:

Station name: CODE00NZL

(i) CODE: as assigned in accordance with section 1.1 (a)

(ii) NZL: country code

Data Source: R

(iii) R: Receiver,

S: streamed data,

U: unknown

Start time: YYYYDDD0000

(iv) YYYY: Year

(v) DDD: Day of year

(vi) 0000: Time of first observation in GPS time

File Period: 01D

(vii) 01D: 1 day (24hrs) of data

(viii) 01H: 1 hour of data

(ix) 15M: 15 minutes of data

Data Frequency: 30S

(x) 30S: 30 second data rate or epoch

(xi) 05Z: 5 Hz data rate or epoch

Data Type/Format: MO

(xii) MO: Mixed Observations only

(xiii) GO: GPS Observations only

(xiv) RO: GLONASS Observations only

(xv) CO: BDS (BEIDOU) Observations only

RINEX 3 LONG NAME CONVENTION

This is the IGS naming convention, it is a recommendation but LINZ understands that it might be too difficult at this stage to provide data using this convention. The priority is the data, the RINEX2 naming convention may be used as long as the two RINEX formats are identifiable.

- (b) Be provided in a format accepted by the IGS and approved by LINZ currently v3.03 for multi-GNSS observations: http://igscb.jpl.nasa.gov/components/formats.html
- (c) Use the following compression methods include: gzip ".gz", bzip2 ".bz2" and ".zip"

1.3 Metadata Supply

1.3.1 CORS DETAILS

CORS METADATA SUPPLY

The information within this file will be used for time series analysis. Receiver, antenna and height changes can cause discontinuities within the time series of a station. In order to include these in the processing or avoid reprocessing datasets LINZ will like updates before the final orbit products are released, preferably within 10 working days from any changes.

- (a) The following fields should be provided for each CORS station:
- (b) The CORS details file should:
 - (i) Be provided in the template or form provided by LINZ:
 - (ii) Contain the following header line:

CODE, NAME, ANTH, ANTE, ANTN, DATE, ATYP, RDOM, ASER, RTYP, RSER, RFR W, CSTA, PNET, OBSR, AGNT

- (iii) Each update or change should have a new record
- (c) The following fields should be provided for each CORS site and/or equipment change:

Field Name	Contents	Format
CODE	Geodetic Code	Code in accordance with 1.1(a) Char4
NAME	Reference mark name	See 1.1 (b) Max Char20
ANTH	Antenna height	Nearest 4 decimal places
ANTE	Antenna easting horizontal offset	Nearest 4 decimal places, blank if none
ANTN	Antenna northing horizontal offset	Nearest 4 decimal places, blank if none
DATE	Installation or upgrade date	YYYY.MM.DD
ATYP	Antenna type	Text , make-model using IGS conventions
RDOM	Does the antenna have a radome	"NONE" or enter the type
ASER	Antenna serial number	Text
RTYP	Receiver type	Text , make-model using IGS conventions
RSER	Receiver serial number	Text
RFRW	Receiver firmware	Text
CSTA	CORS Status	See Section B.1.4
PNET	Primary Network	Text
OBSR	Observer	Text Max Char20
AGNT	Agency	Text Max Char40

1.3.2 MARK AND SITE DETAILS

MARK AND SITE METADATA SUPPLY

The data supplied within this section will be updated and added to Landonline and the Geodetic Database. This replaces the need for IGS sitelog files.

All the following information, except owner details and address will be made available to Surveyors and other users of Landonline and the Geodetic Database.

It is recommended that you add the station owner and network operator's contact details to access restrictions field (ARES) so the operator can be contacted if surveyors would like to use the network or station data.

LINZ would like to be notified within 10 working days prior to a station being decommissioned or relocated.

- (a) The Mark Details File should
 - (i) Be provided for each reference mark:
 - (ii) Be provided in the template or form provided by LINZ:
 - (iii) contain the following header line:

CODE,NAME,MRKT,MPSC,EDAT,MRKE,GLREL,MRKD,MLOC,OWNR,PADD, ARES,COMM

(b) The following fields should be provided for each reference mark:

Field Name	Contents	Format
CODE	Geodetic Code	Code in accordance with 1.1(a) Char4
NAME	Mark Name	See 1.1 (b) Max Char20
MRKT	Mark Type	See Section B.1.1
MPSC	Mark Physical State	See Section B.1.3
EDAT	Date reference mark originally established	YYYY.MM.DD
MRKE	Monument type	See Section B.1.2
GLREL	Ground level relationship	Metres (2 d.p)
MRKD	Description of reference mark and any obstructions on the site that may cause multipath or signal interference	Text,
MLOC	Description of site and location	Text,

OWNR	Name of contact person for access to and the occupation of mark	Text,
PADD	Physical address of OWNR, where they can be contacted	Text, blank if OWNR is road reserve
ARES	Restrictions to accessing mark	Text, state if no access restrictions
СОММ	Optional comments	Text, for information only. These comments will not be loaded in to the Geodetic Database or Landonline

1.3.3 MARK AND SITE PHOTOGRAPHS

PHOTOGRAPHS

These photographs provide information about the mark, the station and its surroundings. Having a photo reduces the need for a station diagram.

These photographs will be made available over the internet in a public database so LINZ has to be careful not to compromise an individual's privacy so please avoid providing images of the general public.

These CORS stations are not owned and operated by LINZ, company or network logos will be accepted on these photos.

The following photographs should be provided for each CORS site:

- (a) Mark Photograph that clearly shows the mark,
- (b) Site Photograph that clearly shows the mark in relation to its immediate surroundings the ARP including the any spacers or antenna offsets,
- (c) Extended Site Photograph that shows a wider view of the site, its surroundings, and other features including possible causes of multipath or signal interference

EXTENDED SITE PHOTOGRAPHS

The Extended Site Photograph should:

- (i) be taken more than 20m from the mark,
- (ii) contain enough information to convey the suitability of the mark for terrestrial or GNSS observations, including any features that may obstruct sky visibility

Appendix A CORS Operation recommendations

OVERVIEW

This appendix is a general overview of the key operational recommendations for a CORS station. These recommendations are based on a minimum standard to which the LINZ PositioNZ stations are operated.

A.1 GNSS Equipment

- (a) The GNSS receiver installed at a CORS station should be of geodetic quality and designed for CORS operation,
- (b) The GNSS antenna installed should:
 - (i) Have the height of antenna reference point (ARP) and vertical reference point (VRP) of mark (or reference surface) determined to the nearest 0.001m
 - (ii) Be of geodetic quality and designed for CORS operation,
 - (iii) Be orientated to within 5° of True North,
 - (iv) Be a brand/model with a specific antenna IGS phase centre calibration and model,
 - (v) Not be removed unless
 - (A) maintenance or replacement is required as a result of a hardware failure, or
 - (B) the site is decommissioned, or
 - (C) moved to another location

A.2 Signal quality

A.2.1 SKY VISIBILITY

A CORS site should have:

- (a) No obstructions above 15° elevation, and
- (b) No foreseen changes from tree growth, developments at site or adjacent sites that will affect sky visibility
- (c) Have elevation mask set to 0°

A.2.2 PRE-INSTALLATION DATA QUALITY ASSESSMENT

- (d) A CORS site should be visually assessed to determine whether data quality is likely to be adversely affected by site specific conditions, including:
 - (i) signal obstruction,

- (ii) radio frequency interference, and
- (iii) multipath
- (b) Where any site conditions have been identified and the site installed details should be recorded as per section **1.3**

A.3 CORS monument

A.3.1 MONUMENT DESIGN

CORS monument or reference mark should:

- (a) Only be established in sites that are stable.
- (b) Sites should be avoided where reactive soils or surface cracking indicates significant soil movement.
- (c) Be resigned to reduce the effect of multipath,
- (d) Have a top that is less than the antenna diameter (to minimise multipath from the monument edge and upper surface),
- (e) Be resistant to corrosion, erosion, and subsidence,
- (f) Be designed to be appropriate for the site and ensure stability,

A.3.2 ANTENNA MOUNTS

The antenna mount should:

- (a) Lock the antenna in place on the monument to avoid any movement, rotation and maintain the level and orientation of the antenna,
- (b) Allow the antenna reference point to return within 1 mm and within 1 degree to its original location and orientation, respectively, if the antenna is removed and reinstated, and
- (c) Only use washers, shim or any other spacer where the offsets can be accurately recorded to within 1 mm.
- (d) Have true verticality within 5 mm,

Appendix B Field Codes

B.1.1 MARK TYPE (MRKT)

The following MRKT codes should be used to indicate the type of reference mark:

MRKT Code	Description
FCTR	Forced Centering (5/8 th thread)
NAIL	Nail
PIN	Steel Pin, Stainless or other material
BP	Bronze/Brass Plaque
OTHR	Any other mark type,

B.1.2 MONUMENT TYPE (MRKE)

The following MRKE codes should be used to indicate the monument type:

MRKE Code	Description
MS	Mast
DB	Deep drilled braced monument (UNAVCO style)
PL	Pillar
SB	Shallow drilled braced monument (UNAVCO style)
TO	Tower
RP	Roof mounted pillar
RM	Roof mounted mast
ND	Unknown/Other

B.1.3 MARK PHYSICAL STATE (MPSC)

The following MPSC codes should be used to indicate the physical state of a mark:

MPSC Code	Description
RELB	Reliable / Found
DEST	Destroyed
DMGD	Damaged

RELIABLE AND DESTROYED MARKS

A mark is presumed reliable unless there is evidence to prove otherwise.

A mark physical state record should be populated with "Destroyed" if the reference mark no long exists or it is impossible to physically reoccupy the same position. For example: if the antenna was attached to a mast and the

mast was relocated with the CORS station.

B.1.4 CORS STATUS (CSTA)

CSTS Code:	Description
ACTIVE	Operational
TEMP	Temporary Station
DECOM	Decommissioned