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Preparations for a new
gravimetric geoid model of

New Zealand, and some
preliminary results

ABSTRACT

The rationale is given for a new gravimetric model of the New Zealand geoid to support
a new vertical geodetic datum based on entirely different principles to the conventional
use of tide gauges and geodetic levelling. The geoid model is currently being computed by
Land Information New Zealand (LINZ) in close collaboration with the Western
Australian Centre for Geodesy. The data to be used in this new geoid model comprise
>40,000 land and >1.3M ship-track gravity data points, a 56 m-resolution digital
elevation model (DEM), a 2' × 2' grid of marine gravity anomalies derived from multi-
mission satellite altimetry, and a hybrid global geopotential model derived from EGM96
and the new EIGEN-2 model. A preliminary geoid model has been computed from these
data using spectral techniques with modified kernels, and comparisons with existing
GPS-levelling data on the 13 different vertical datums used in New Zealand indicate
an overall precision of ~ 35 cm, which can be improved with the more sophisticated data
pre-processing currently underway. This preliminary geoid model has been used to estimate
preliminary offsets among the 13 different vertical datums used throughout New Zealand.
Importantly, the standard deviations are less than the computed offsets, which indicates
that statistically significant offsets can be computed with the proposed approaches.
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1. INTRODUCTION AND
BACKGROUND

1.1 A Geoid for New Zealand

New Zealand does not currently have a

national geoid. A discussion of the various

options available is provided in, for example
Pearse (2001) and Blick et al. (2001). There

are two logical options for geoid

determination, the GPS-levelling or
gravimetric approaches. Given the poor

spatial coverage of precise levelling and the

fact that interpolation would be necessary
in mountainous areas (where the geoid is

more variable) the GPS-levelling geoid is not

a preferred option. The gravimetric option

utilises the better distribution of terrestrial

gravity observations and a global

geopotential model. This is the preferred
method of geoid computation in New

Zealand.

1.2 The Gravimetric Geoid

The geoid is essentially the equipotential

surface of the Earth’s gravity field that

corresponds most closely with mean sea level
(MSL) in the open oceans ignoring the

effects of quasi-stationary sea surface

topography. The primary practical
application of the geoid height (N) in land

surveying is to transform GPS-derived

ellipsoidal heights (h) to orthometric heights
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(H) using the simple algebraic relation H =
h – N. This use of a geoid model in

conjunction with GPS provides a very

attractive alternative to geodetic spirit
levelling, especially over long distances and

throughout the steep terrain encountered in

many parts of New Zealand.

A geoid model for this vertical coordinate

transformation can be computed using the

gravimetric method, provided that spatially
dense and accurate gravity and terrain data

are available. A modern gravimetric geoid

uses a combination of three primary input
data sources:

• a global geopotential model, which

provides most of the long and
intermediate wavelength (>100 km)

geoid undulations;

• terrestrial gravity data (from land- and

ship-based observations, or derived from
satellite radar altimetry in open marine

areas) in and surrounding the area of

interest, which supply most of the
intermediate wavelengths (>10-20 km),

and;

• a high-resolution digital elevation model
(DEM), which supplies most of the

short wavelengths (>50 m), and is also

required to satisfy theoretical demands
of geoid computation from the geodetic

boundary-value problem.

The pre-processing of these data is critically
important, because if errors remain in any

of these input data, they will directly

propagate into the regional geoid model.

Unlike many other countries, New Zealand

does not currently have a regional geoid

model to support geodetic operations,
including the transformation of GPS-

derived heights (e.g., Reilly, 1990). Gilliland

(1990) computed the first New Zealand
gravimetric co-geoid, but this model is no

longer available for use. Nevertheless,

advances in theory and data availability
would now render this model obsolete.

Therefore, there is a need to compute a new

geoid model for New Zealand. Amos and
Featherstone (2003a) computed a very

preliminary co-geoid model, but it has since

been found that some incorrectly mapped
and thus pre-processed gravity data had been

used. In addition, the above two co-geoid

models omit the primary indirect effect
term, which may be greater than ~0.5 m in

magnitude at the summit of Aoraki/Mount

Cook, the highest mountain in New
Zealand (~3754 metres above local MSL).

1.3 The Vertical Geodetic Datum

Probably the largest challenge to high-
precision gravimetric geoid computation in

New Zealand is its use of 13 separate vertical

geodetic datums based on local MSL. Each
levelling network (cf. Gilliland, 1987) is

based on MSL observed at a different tide

gauge, often over a very short time period
(less than two weeks in some cases!). As well

as not averaging out long-period tidal effects,

these tide gauges are subject to sea surface
topography, which is notoriously difficult

to quantify and model in the coastal zone

(e.g., Hipkin, 2000) or in harbours and
estuaries where most of the tide gauges are

located. Other oceanographic phenomena,

such as storm surges or the outflow of fresh
water, also act to bias the tide-gauge-

measured MSL from the classical geoid.

Accordingly, the 13 vertical datums in New
Zealand are not unified and may be offset

from one another by more than 0.23 metres

(Pearse, 1998).

These different vertical datums also

introduce two primary problems to practical

geoid determination. First, the regional
gravity and terrain data used to compute the

geoid model refer to different reference

surfaces. This causes long- and medium-
wavelength errors in the computed gravity

anomalies (cf. Heck, 1990), which then

propagate into the gravimetric geoid model.
Secondly, a single geoid model will not be

suited for the direct transformation of GPS

heights to these local vertical datums.
Therefore, LINZ has proposed a new

strategy for the New Zealand vertical datum.

It will be based on a combination of
ellipsoidal heights (in the three-dimensional

NZGD2000) and a precise regional geoid

model. This geoid model will then allow the
existing vertical datums to be unified (cf.

Kumar and Burke, 1998), but first it is
necessary to contend with the above-

mentioned practical and theoretical

difficulties.

2. DATA USED FOR REGIONAL
GEOID COMPUTATION

This section will describe the peculiarities

of the New Zealand data and what pre-
processing has been done, or is proposed,

before computing the regional geoid model.

2.1 Global Geopotential Models

A global geopotential model (GGM)

comprises a set of spherical harmonic

coefficients that describe the long-
wavelength characteristics of the Earth’s

gravity field. These are computed from the

analysis of artificial Earth-satellite orbits
(satellite-only GGMs), and higher

resolution combined GGMs also include

terrestrial gravity, terrain and satellite
altimetry data. Notable examples of

combined GGMs are OSU91A (Rapp et al.,
1991) and EGM96 (Lemoine et al., 1998),
which are often used as the default geoid

model in commercial GPS data processing

and network adjustment packages. The
differences between the OSU91A and

EGM96 geoid models can be up to 2.5

metres over New Zealand. This means that
some significant errors can be introduced if

these models are mixed during the reduction

of GPS and other survey data.

The geoid height is computed from a GGM

using

(1)

and the gravity anomaly is

(2)

where GM is the product of the Newtonian

gravitational constant and mass of the Earth

(assumed equal to that of the geocentric
reference ellipsoid); γ is normal gravity on

the surface of the reference ellipsoid; (r, θ, λ)

are the geocentric spherical polar
coordinates of the computation point; a is

the semi-major axis length of the geocentric
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reference ellipsoid,  are the fully
normalised associated Legendre functions

for degree n and order m;  and  are

the fully normalised spherical harmonic
coefficients of the GGM, reduced for the

even zonal harmonics of the geocentric

reference ellipsoid; and, M is the maximum
degree of spherical harmonic expansion.

Amos and Featherstone (2003b, in press)

evaluate the fit of recent GGMs to the New
Zealand gravity field, which includes free-

air gravity anomalies on land, GPS-levelling

data, and vertical deflections. If the gravity
field implied by a GGM is a close fit to these

local gravity field parameters, it is then
reasonable to expect that it is suitable as the

basis for a regional gravimetric geoid model.

Table 1 summarises their results for the
EIGEN-2 satellite-only GGM (Reigber et

al., 2002 submitted), OSU91A, EGM96,

and a hybrid of EIGEN-2 and EGM96
where degrees 2-32 (inclusive) of EIGEN-

2 are used to replace the corresponding low

degrees of EGM96. EIGEN-2 is unique in
that it uses data derived purely from the

CHAMP dedicated satellite gravimetry

mission, whose mission parameters and
concepts are described in, for example,

Rummel et al. (2002). On the other hand,
OSU91A and EGM96 use pre-CHAMP

ground-based satellite tracking data,

terrestrial gravity observations and satellite
altimetry.

From Table 1, it is difficult to unequivocally

ascertain the best degree-360 GGM simply
from the statistical fit to the local gravity

field data, principally due to the error budget

of the latter. A crude upper estimate of the
error of the GPS-levelling is ~10 cm, the

terrestrial free-air gravity anomaly is ~1-10

mGal (cf. Reilly, 1972), and the vertical
deflections is ~2". Therefore, the high-

degree GGMs are statistically insignificantly

different from one another when using the
New Zealand ‘control’ data. More

importantly, long- and medium-wavelength

errors in these terrestrial data may obscure
the selection of the best GGM. Therefore,

other considerations must be used in

parallel. The argument in favour of the
hybrid EIGEN/EGM model is that

EIGEN-2 uses high-quality dedicated

satellite gravity data, whereas EGM96 uses
probably the best coverage of terrestrial

gravity data. Therefore, the hybrid GGM

probably represents the best-available long-
wavelength (EIGEN-2) and medium-

wavelength (EGM96) GGM data.

2.2 Terrestrial Gravity Data

2.2.1 Land Gravity Data

The Institute for Geological and Nuclear

Sciences Ltd (GNS) supplied the land
gravity data to Land Information New

Zealand (LINZ) in 2001. The primary

model degree max min mean std

raw data N/A 195.785 -163.178 15.921 43.210

EIGEN-2 120 193.288 -182.501 -1.305 41.695

OSU91A 360 193.834 -175.097 -1.509 40.417

EGM96 360 192.494 -176.004 -1.770 40.438

EIGEN/EGM9632/360 192.369 -176.047 -1.847 40.457

Table 1a. Fit of GGMs to 40737 land gravity observations over New Zealand (mGal)

model degree max min mean std

raw data N/A 3.583 39.410 16.235 10.817

EIGEN-2 120 3.359 -7.595 0.647 2.259

OSU91A 360 4.211 -0.933 0.213 0.733

EGM96 360 3.712 -1.338 0.027 0.616

EIGEN/EGM9632/360 3.496 -1.376 -0.039 0.606

Table 1b. Fit of GGMs to 1055 GPS-levelling observations over New Zealand (metres)

East-west vertical deflections North-south vertical deflections

model degree max min mean std max min mean std

raw data N/A 15.759 -27.797 -2.714 9.183 15.844 -16.798 0.154 8.289

EIGEN-2 120 15.858 -20.595 2.037 8.260 15.960 -14.337 -0.180 7.753

OSU91A 360 15.476 -5.932 2.541 4.996 10.570 -13.628 0.069 5.637

EGM96 360 13.671 -7.380 2.605 4.688 9.852 -12.596 -0.012 5.258

EIGEN/EGM9632/360 13.577 -7.500 2.559 4.681 9.840 -12.648 -0.040 5.254

Table 1c. Fit of GGMs to 33 Helmert vertical deflections over New Zealand (arc-sec)
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database comprises 40,737 gravity
“mapping” observations (Reilly, 1972;

Woodward, 2001 pers. comm.) and

auxiliary information (e.g., positions and
computed gravity anomalies). The

approximate average spatial density of these

data is one observation per 7.5 km-squared,
but this is higher in areas of scientific or

commercial interest and lower in areas where

it is impractical or difficult to collect ground
gravity data (notably in Fiordland).

Since these 40,737 land gravity observations

were originally reduced mainly for
geophysical mapping purposes, gravity

anomalies have been recomputed according

to the more stringent geodetic requirements
(e.g., Featherstone and Dentith, 1997). The

horizontal positions of the gravity

observations were supplied in terms of the
New Zealand Yard Grid (i.e., on the New

Zealand Geodetic Datum 1949). Therefore,

they were transformed to geodetic latitude
and longitude on the New Zealand Geodetic

Datum 2000 (NZGD2000). As well as to

correctly map these data on the new datum,
geocentric geodetic coordinates are required

to correctly compute normal gravity for the

gravity anomaly (e.g., Featherstone and
Dentith, 1997). Normal gravity was

evaluated on the surface of the GRS80

ellipsoid at the geocentric latitude of the
gravity observation using Somigliana’s closed

formula (Moritz, 1980).

The gravity values, and hence pre-computed
gravity anomalies, in the GNS land gravity

database are referred to the Potsdam (New

Zealand) gravity datum. It has been known
for a long time that the Potsdam datum

contains an error (e.g., Torge, 1989).

Therefore, a constant value of 15.27 mGal
(Woodward, 2001 pers. comm.) was

subtracted from all gravity values in the GNS

database to convert them from Potsdam
(New Zealand) to the International Gravity

Standardisation Network 1971 (IGSN71)

global gravity datum (Morelli et al., 1971).

Free-air gravity anomalies were computed

from the IGSN71-corrected gravity

observations by subtracting the value of
normal gravity at the geocentric observation

latitude, then adding the second-order free-
air correction and an atmospheric correction

for the observation elevation (above local

MSL). A second-order free-air correction is
a more accurate representation of the vertical

gradient of gravity for an ellipsoidal Earth

because it takes into account the variation
of normal gravity with latitude as well as

higher order terms in height. The

atmospheric correction accounts for the
mass-inconsistency between the GRS80

normal ellipsoid and gravity observed on the

Earth’s surface, as well as the gravitational
attraction of the atmosphere above the

gravity observation point. The atmospheric

correction is also needed to make the
terrestrial gravity anomalies consistent with

those derived from the GGM.

The relevant formulas for the above
computations are given in Featherstone

(1995) and Featherstone et al. (1997) so will

not be duplicated here. The difference
between the linear and second-order free-

air gravity anomalies reaches 1.149 mGal

at the summit of Aoraki/Mount Cook (H =
~3754 m above local MSL, NZGD2000

latitude = 43° 35' 44.5"). The atmospheric

correction is 0.871 mGal at MSL, decreasing
to 0.550 mGal at the summit of Aoraki/

Mount Cook. Further work will investigate

the use of more sophisticated atmospheric
gravity corrections (e.g., Sjöberg, 2000).

The GNS gravity database also includes

gravimetric terrain corrections, which have
been computed from topographic maps

using Hammer charts out to zones L-M

(Reilly, 1972), which equates to a distance
of 22.4 km, and using a topographic mass

density of 2,670 kgm-3. For the preliminary

geoid model (described later), these terrain
corrections are added to the free-air gravity

anomalies to yield a crude approximation

of Helmert gravity anomalies at the geoid.
Future work will concentrate on the

evaluation of detailed New Zealand-wide

terrain corrections from the DEM
(described later), as well as the downward

continuation of gravity from the topography

to the geoid (cf. Martinec et al., 1993). This
will yield rigorous Helmert gravity

anomalies on the geoid (cf. Vanicek et al.,
1999) that appear theoretically more

appropriate for regional gravimetric geoid

computation.

Bouguer planar gravity anomalies were also

recomputed from the above free-air gravity

anomalies. Simple planar Bouguer
anomalies use an infinite lateral plate of

thickness equal to the observation height to

model the gravitational attraction of the
topography. Refined (or complete) Bouguer

anomalies add the above terrain correction,

which accounts for the departure of the
actual topography about the simple Bouguer

plate. There are also Spherical Bouguer

anomalies that use a sphere instead of a plate.
These different types of Bouguer gravity

anomaly will be experimented with during

the gridding of the land gravity data. This
is because they are theoretically smoother

than the free-air gravity anomalies and thus

less sensitive to aliasing (e.g., Goos et al.,
2003), especially in the topographically

rugged areas of New Zealand.

Other future work will concentrate on
carefully validating the land gravity data. As

pointed out by Featherstone et al. (2001),

gravity data validation can be an extremely
time-consuming part of regional geoid

computation. The methods employed by

Featherstone et al. (1997) will be used,
together with those employed by the Bureau

Gravimetrique International (BGI) in

France, where nearby gravity anomalies are
used to predict gravity at another location.

At present, however, it will be assumed that

the GNS validation of the land gravity data
is satisfactory.

2.2.2 Ship-track Gravity Data

The ship-track gravity data in the marine

regions around New Zealand were supplied

to LINZ by GNS in 2001 and 2002. This
database comprises 1,300,266 gravity

anomalies bound by NZGD2000

coordinates 160°E ≤ λ ≤ 190°E and
25°S ≤ φ ≤ 60°S and auxiliary information

(e.g., coordinates, gravity values and Eötvös

corrections). These gravity anomalies had
been sourced from a variety of different
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agencies, and their quality is largely
unknown. However, the older observations

are likely to be less accurate because of

poorer gravity instrumentation and
navigation, the latter of which affects the

mapping, positioning for computation of

normal gravity and Eötvös corrections.
Therefore, all ship-track gravity data were

compared with more homogeneous marine

gravity anomalies derived from satellite-
radar altimetry (described next).

2.2.3 Satellite Altimeter-derived Marine
Gravity Anomalies

A homogeneous and complete spatial

coverage of gravity anomalies is of prime
importance for geoid determination,

because in order to determine the geoid

height at a single point, gravity data
surrounding that point are required.

Therefore, it is proposed that the land and

ship-track gravity data will be supplemented
with gravity anomalies derived from multi-

mission satellite altimetry in open ocean

areas.

There are currently three recent global grids

of marine gravity anomalies derived from a

combination of multi-mission satellite
altimetry. Perhaps coincidentally, each has

used each one of the above methods, but all

are based on EGM96-implied gravity
anomalies (Equation 2) in a remove-

compute-restore procedure. They are:

• Sandwell’s v9.2 (2001) global 2' × 2' grid
of marine gravity anomalies, which was

computed using Laplace’s equation (c.f.

Sandwell and Smith, 1997).

• The KMS01 global 2' × 2' grid of marine
gravity anomalies, which was computed

using the inverse Stokes integral

(Andersen et al. 2001).

• The NCTU01 global 2' × 2' grid of

marine gravity anomalies (Hwang et al.,
2002), which was computed using the
inverse Vening Meinesz formula.

Though all these marine gravity anomalies

are available at a 2' spatial resolution (~4 km
at New Zealand latitudes), the spacing of

the satellite altimeter ground tracks dictate

that the highest resolution of the gravity
anomalies is more realistically ~15-20 km.

2.2.4 Comparison between ship-track and
altimeter gravity anomalies

Given the different altimeter-derived marine

gravity anomalies available, it is important
to first choose the most appropriate for the

New Zealand geoid model. This is usually

best done through comparisons with well-
navigated ship-track gravity data. Therefore,

the different grids were compared with the

(corrected to GRS80 and IGSN71) ship-
track gravity data supplied by GNS,

described earlier. However, as will be seen,

this approach proved more useful for
identifying errors in ship-track gravity data

(cf. Featherstone, 2003). The ship-track free-

air gravity anomalies were visually and
statistically compared with the above three

altimeter grids using exactly the same

procedures as explained in Featherstone
(2003). The results are summarised in Table

2 and shown for the NCTU01 data in

Figure 1.

From Table 2 and Figure 1 it can be seen
that there are significant differences between

the altimeter-derived gravity anomalies and

the New Zealand ship-track data. The larger
difference for some tracks is evidence that

crossover corrections have not been applied

to the ship-track data, which was verified
by Woodward (2001 pers. comm.).

Therefore, these data should not be used in

the New Zealand geoid model until they are
crossover-corrected. Future work will

therefore compute crossover corrections to

the ship-track gravity data. This will then
allow the better altimeter-derived grid of

gravity anomalies to be selected. More

importantly, it will allow the well-known
errors in altimeter-derived gravity anomalies

near the coast (e.g., Andersen and Knudsen,

2000; Deng et al., 2002) to be corrected by
warping the altimetry to fit the crossover-

corrected ship-track data (cf. Kirby and

Forsberg, 1998). This is particularly
important because erroneous gravity data

near the coast will propagate into the geoid

model on land.

2.3 Digital Elevation Data

Auxiliary elevation data are necessary in

gravimetric geoid determination because the
gravitational effect of topographic masses

grid Max min Mean Std

Sand v9.2 464.551 -366.510 -5.302 13.088

KMS01 467.513 -392.158 -4.912 12.434

NCTU01 465.705 -367.328 -4.960 12.655
Figure 1. Difference between the NCTU01
altimeter grid and the 1,300,266 points in

the New Zealand ship-track gravity database

(Units in mGal, Mercator projection)

Table 2. Descriptive statistics of the differences (in mGal) between altimeter-derived gravity

anomalies and the 1,300,266 [GRS80, IGSN71 and atmospherically corrected] free-air

gravity anomalies in the New Zealand ship-track gravity database.
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outside the geoid has to be mathematically
condensed onto, or below, the geoid in order

to satisfy the boundary-value problem of

physical geodesy (e.g., Heiskanen and
Moritz, 1967). The terrain effect on the

gravimetric geoid is applied in two stages.

Firstly, the gravimetric terrain correction is
added to the terrestrial gravity anomalies. A

co-geoid is computed from these gravity

anomalies, which must then be converted
to the geoid using a correction for the

primary indirect effect of the terrain

correction. Secondary indirect effects also
come into play, but these will be neglected

for the preliminary geoid models. Of course,

later work will also consider these secondary
indirect effects.

In addition to this theoretical demand, high-

resolution terrain data can provide
additional short-wavelength geoid

information and to help smooth the gravity

field prior to gridding. Removing high-
frequency signals from the gravity anomalies

makes the gridding process less sensitive to

aliasing (e.g., Goos et al., 2003), where
under-sampled high frequencies are

incorrectly propagated into the low

frequencies. A more significant effect is to
use a digital elevation model (DEM) to

‘reconstruct’ mean free-air gravity anomalies

(Featherstone and Kirby, 2000). This is
necessary in areas of rugged and high terrain,

where the practicalities of collecting gravity

data in the field mean that gravity is
generally observed in the more accessible

lowland regions. It will be shown later that

this reconstruction technique has a
significantly positive effect in the Southern

Alps.

A 0.0005-degree (1.8” or ~56m) resolution
digital elevation model (DEM) was supplied

by GeographX, which has been derived from

LINZ topographic source data. The
estimated precision of this DEM is ±20m

horizontally and ±10m vertically. A more

generalised DEM, at a 250m spatial
resolution, was also supplied. This DEM

was used in the preliminary geoid

computations, because the 56 m DEM is
too large to efficiently handle at the

moment. Future work will use a more high-

powered computer to compute topographic
effects (i.e., terrain corrections and high-

resolution free-air anomaly reconstruction)

from the 56m DEM.

In immediate future work, the 56 m DEM

will be used to compute gravimetric terrain

corrections based on the two-dimensional
fast Fourier transform (2D-FFT)

implementation of Moritz’s (1968) formula

(Schwarz et al., 1990). Moritz’s formula
implicitly includes a downward

continuation of free-air gravity anomalies

to the geoid under the assumption of linear
correlation between gravity and height

(Martinec et al., 1993). However, a

restriction with Moritz’s formula is that it
becomes numerically unstable for high-

resolution DEMs close to the computation

point (e.g., Martinec et al., 1996; Tsoulis,
2001), which requires regularisation (e.g.,

Schwarz et al., 1990) or alternative theories.

Finally, the primary indirect effect of the
terrain corrections must be consistent with

the algorithm used; Wichiencharoen (1982)

gives this for Moritz’s (1968) formula.
Future work will experiment with alternative

theories for the computation of Helmert

anomalies at the geoid, with their associated
terrain corrections, downward continuation,

and primary and secondary indirect effects

(e.g., Vanicek et al., 1999).

However, for the preliminary geoid model

presented in this paper, the terrain

corrections supplied in the GNS database
(described earlier) were used. As stated, these

were computed from Hammer charts and

the topographic maps available at the time.
Therefore, they may not be ideally suited

to gravimetric geoid computations; further

work will ascertain this. Acknowledging this
uncertainty, the co-geoid computed from

Stokes’s integration of the terrain-corrected

free-air gravity anomalies must still be
converted to the geoid via the primary

indirect effect. To a first order

approximation, the quadratic (first) term of
Wichiencharoen’s (1982) series expansion

will be used; this is

(3)

where G is the Newtonian gravitational
constant, which has the new value of

6.67310 × 10-11 kg-1m3s-2 (Mohr and Taylor,

2002), ρ is the bulk density of the
topographic masses, which is taken to be a

constant 2,670 kgm-3, and H is the

topographic height above the geoid. The
250m DEM was generalised (i.e., area-

weight averaged) onto a 2' × 2' grid before

computing the primary indirect effect so
that it is identical to the spatial resolution

of the computed co-geoid. The approximate

primary indirect effect (Eq. 3) has a
maximum value of 0.5 metres at the summit

of Aoraki/Mount Cook.

2.4 GPS and Spirit Levelling Data

Relative carrier-phase GPS observations co-

located with precise geodetic levelling can

provide external control with which to test
a gravimetric geoid on land, especially if the

geoid model is to be used subsequently for

the recovery of heights above MSL from
GPS (cf. Featherstone, 1998). The normal-

orthometric heights used to derive these

geometrical geoid heights were observed by
first-order spirit levelling and are based on

the 13 different vertical datums in New

Zealand. However, it is important to
acknowledge that this does not yield

estimates of the classical geoid because of

Figure 2. The geometrical ‘geoid’ (in metres)
of New Zealand derived using the shown

1055 GPS-levelling heights (Mercator

projection)
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the error budget in the GPS data and the
systematic errors in the levelling data, as well

as the use of normal-orthometric corrections

and 13 different tide gauges. Figure 2 shows
a geometrical ‘geoid’ model that was derived

from 1,055 GPS-levelling data points using

the surface fitting algorithms of Smith and
Wessel (1990). Of course, the extrapolated

values offshore should not be relied upon.

Initially, these GPS-levelling data will be
used to assess the precision of the gravimetric

geoid model. These points will also be used

to estimate offsets between the 13 different
vertical datums used in New Zealand (cf.

Amos and Featherstone, 2003a). The results

presented later are only preliminary, so the
computed offsets must be treated with

caution.

3. A PRELIMINARY NEW
ZEALAND GRAVIMETRIC GEOID

MODEL

3.1 Theoretical Background

In modern gravimetric geoid determination,

a GGM is combined with terrestrial gravity
and terrain data surrounding each geoid

computation point. When using this

approach, one must avoid adding the long
wavelength component of the gravity field

to the geoid solution twice. Therefore, the

gravity anomalies implied by a GGM (Eq.
2) are subtracted from the terrestrial gravity

anomalies to produce residual gravity

anomalies. These are then used to compute
residual geoid heights based upon this GGM

using some adapted implementation of

Stokes’s integral. The corresponding geoid
component from the same degree of

expansion of the same GGM (Eq. 1) is

subsequently restored to produce the co-
geoid. Generally, smaller corrections are

then applied for the indirect effects (Eq. 3)

to convert the co-geoid to the true geoid.

The equations used for the preliminary New

Zealand geoid are based on the same theories

and techniques that were used to compute
the AUSGeoid98 gravimetric geoid model

of Australia (Featherstone et al., 2001). The

contribution of the GGM is given by Eqs.
(1) and (2), and the approximate

contribution of the primary indirect effect
is given by Eq. (3). The residual geoid

undulations are given by an adapted Stokes

formula with a deterministically modified
integration kernel. The residual geoid is

given by

(4)

where N
M

 is the geoid contribution of the

GGM (Eq. 1),

R is the radius of a spherical Earth (6371005
m for GRS80; Moritz, 1980), σ

0
 is the

limited integration domain, which is taken

as a spherical cap about each computation
point, and ∆g are the terrain-corrected free-

air land and marine gravity anomalies.

The Featherstone et al. (1998)
deterministically modified kernel

( ) requires that the kernel is zero

at and beyond the truncation radius (y
0
),

and is given by

for 0 ≤ y ≤ y
0

(5)

where

(6)

is the Vanicek and Kleusberg (1987)
modified kernel, and  is given by

(7)

where S(ψ) is the spherical Stokes kernel

(Heiskanen and Moritz 1967, p. 94) and ψ
is the spherical distance between the

computation point and the remote points

in Eq. (4). The  modification
coefficients in Eq. (6) were first derived by

Vanicek and Kleusberg (1987) and can be

evaluated from the solution of the following
set of L-1 linear equations once the spherical

cap radius has been selected

(8)

where both of

(9)

and

(10)

were computed using Paul’s (1973)

algorithms.

The use of Eq. (4) over a limited spherical
cap σ

0
 of radius ψ

0
 about each geoid

computation point leads to a truncation

error term, which can sometimes be
neglected when using a high-degree GGM

with the modified spheroidal Stokes integral

(hence the approximation in Eq. (4)). The
reduction of this truncation error term is

the primary aim of the deterministically

modified kernel (Featherstone et al., 1998).
The final preliminary geoid is then given

by the addition of Eqs. (1), (4) and (3).

Further work will experiment with different
modifications of Stokes’s formula, as well as

different integration radii.

3.2 Computations and Results

The preliminary gravimetric geoid of New

Zealand and its surrounding seas was

computed on a regular 2' by 2' grid in the
region bound by NZGD2000 coordinates

160°E ≤ λ ≤ 190°E and 25°S ≤ φ ≤ 60°S.

This gives a data array of 1051 rows by 901
columns, or a total of 946,951 geoid heights

with respect to the GRS80 ellipsoid.

In order to demonstrate the effectiveness of
the mean gravity anomaly reconstruction

technique (described earlier), two types of

gravity anomaly were extracted from the
revised GNS gravity database together with

their NZGD2000 latitude and longitudes.

These were the 40,737 terrain-corrected,
atmosphere-corrected, second-order free-air

gravity anomalies and the refined Bouguer

gravity anomalies, which also include the
second-order free-air correction, the

atmosphere correction and the terrain

correction. Each gravity data set was
arithmetically averaged into 2' × 2' cells and

interpolated onto a regular grid using the

tensioned-spline algorithm of Smith and
Wessel (1990), which is conveniently

included in the public domain GMT

software (e.g., Wessel and Smith, 1991). A
tension factor of 0.25 was used, since this is
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best suited to gravity-related data (Smith and

Wessel, 1990).

The 2' × 2' grid of mean refined Bouguer

anomalies was then used to reconstruct
mean free-air gravity anomalies by applying

the ‘reverse’ Bouguer plate correction for the

height of the DEM (Featherstone and Kirby,
2000). The DEM used for this purpose was

the same 2' × 2' DEM used to compute the
primary indirect effect. The reconstructed

mean terrain-corrected free-air anomalies are

given by (Featherstone and Kirby, 2000)

(11)

where  is the mean refined Bouguer

gravity anomaly and is the mean height of

the topography in a cell as given by the
DEM. The benefit of this approach is that

it gives a more representative mean gravity

anomaly and is also less subject to aliasing
during the gridding process (cf. Featherstone

and Kirby, 2000; Goos et al., 2003).

No ship-track gravity observations were used
in this preliminary gravimetric geoid

solution because these have not yet been

crossover corrected (see earlier). Therefore,
marine gravity anomalies were taken from

the 2' by 2' NCTU01 altimeter-derived

gravity grid (Hwang et al., 2002). This grid
was chosen because it uses an arguably more

rigorous theoretical basis than other

approaches (Hwang, 1998), and also uses
slightly more recent altimeter data. These

reasons remain somewhat subjective,

however, because the ship-track gravity data
are not yet of sufficiently reliable quality to

isolate the best altimeter data in the New

Zealand region. In future, the crossover-
corrected ship-track data will be used both

in the geoid model and to select the most

appropriate grid of altimeter-derived gravity
anomalies around New Zealand. Moreover,

they will be used to correct the well-known

deficiencies of altimeter-derived gravity
anomalies near the coast (cf. Kirby and

Forsberg, 1998; Hipkin, 2000).

The gridded 2' by 2' land gravity anomalies
and altimeter-derived gravity anomalies

were concatenated and the land and marine

areas sorted using the high-resolution
shoreline database contained in the GMT

software. The M = 360 gravity anomalies

implied by the hybrid EIGEN-EGM GGM
(described earlier) were computed on the

same 2' by 2' grid, then subtracted from the

terrestrial gravity anomalies to produce
residual gravity anomalies. Figures 3 and 4

show the reconstructed gravity anomalies,

and the residual gravity anomalies,
respectively. The descriptive statistics of

these gravity anomalies are given in Table

3. Also, the difference between the

reconstructed and simple mean free-air

anomalies is largest over the Southern Alps.
This is as expected because the gravity

observations are sparser in this area and are

often located in the more accessible by road
in the lowland areas.

These two types of residual gravity

anomalies (i.e., simple mean and
reconstructed mean) were then used to

compute the residual geoid undulations

using Eqs. (4) through (10) via the one-
dimensional FFT technique (Haagmans et
al., 1993). Importantly, the 1D-FFT yields

results that are identical to a quadrature-
based numerical integration of the modified

Stokes formula. The parameters chosen for

the residual geoid computations were taken
simply from those used for AUSGeoid98

(Featherstone et al., 2001), specifically a

spherical cap radius of ψ
0 
= 1 arc-degree and

L = 20. Future work will aim to optimise

these parameters for the New Zealand data,

as well as experimenting with other variants
of the modified Stokes formula, many of

which are cited in Featherstone et al. (1998).

Table 4 gives the descriptive statistics of the
residual geoid undulations computed from

the modified Stokes formula (Eq. 4) for the

respective simple mean and reconstructed
gravity anomalies.

The two grids of residual geoid undulations

were then added to the M = 360 EIGEN-

Grid max min mean std

Simple mean gravity anomalies 351.900 -292.800 1.748 34.359

Reconstructed gravity anomalies 555.187 -292.800 3.737 39.758

Residual simple mean anomalies 352.526 -358.800 -0.152 13.409

Residual reconstructed anomalies 539.182 -358.800 1.827 21.380

Table 3. Descriptive statistics of the 946,951 grided mean 2' by 2' gravity anomalies (units

in mGal)

Figure 3. The reconstructed gravity

anomalies over New Zealand (units in mGal

relative to GRS80. Mercator projection)

Figure 4. The residual reconstructed gravity
anomalies over New Zealand (units in mGal

relative to EIGEN-EGM. Mercator

projection)
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EGM-implied geoid undulations and the
approximate primary indirect effect (Figure

1) to yield two preliminary geoid models of

New Zealand (Figures 5 and 6). The
descriptive statistics of each of the various

geoid contributions are shown in Table 4.

It can be seen in Figures 5 and 6 that the
‘reconstructed anomaly’ residual geoid has

much larger corrections in the areas of high

topography, notably in the Southern Alps.
This indicates that the reconstructed-

anomaly geoid provides a better

representation of the effect of topography
on the geoid than the simple free-air model.

However, this does not necessarily imply

that the geoid computed from these
reconstructed mean gravity anomalies is

more precise. This is where the GPS-

levelling data are of use.

The two preliminary geoid models were

then compared with a set of 1055 points

that have both GPS ellipsoidal and spirit
levelled orthometric heights. As mentioned

earlier, the levelled heights are based on 13

different vertical datums, which will bias the
differences computed. Therefore, results for

each local vertical datum will be presented

later. It can be seen from Table 5 that the
reconstructed gravity geoid has a

significantly smaller standard deviation (~35

cm) than both the original GGM and the
free-air gravity geoid. It should be noted that

while this is a good indication of the general

“fit” of the geoid to the levelling data, it still
does not account for the 13 different vertical

datums (shown later).

The two new preliminary geoid models were
then compared with the GPS-levelling

heights on a datum-by-datum basis. Table

6 shows the results of the differences
between the GPS-geoid and levelled heights

for both the reconstructed and simple mean

gravity geoids, respectively. Though all the
descriptive statistics are shown in Table 6,

only the mean differences should be

interpreted as the preliminary vertical datum
offsets. It can be seen that the mean vertical

datum offsets between the two models are

often significantly different. In the case of
the simple mean geoid, the offsets are often

smaller than the (large) standard deviations.

For reasons discussed in the next paragraph,
it is expected that the offsets resulting from

the reconstructed geoid are likely to be the

more accurate preliminary values.

In general the standard deviations of the

‘reconstructed gravity’ geoid are lower than

the ‘simple mean’ geoid. It is also notable
that the vertical datums in the South Island

(Bluff, Dunedin-Bluff, Dunedin, Lyttelton

and Nelson) all show significant

grid max min mean std

M = 360 EIGEN-EGM geoid 54.051 -46.607 5.981 28.258

Residual geoid undulations (from simple means) 2.208 -1.958 -0.019 0.226

Residual geoid undulations (from reconstruction) 15.355 -1.486 0.216 1.279

Approximate indirect effect 0.000 -0.499 -0.001 0.007

Preliminary geoid (from simple means) 54.131 -46.541 5.959 28.252

Preliminary geoid (from reconstruction) 54.169 -46.535 6.197 28.325

Table 4. Statistics of the various component contributions to the New Zealand geoid (units

in metres. 946,951 points)

geoid max min mean std

EIGEN-EGM GGM 3.4961 -1.3764 -0.0385 0.6057

Free-air gravity 4.6041 -0.4800 0.4358 0.7544

Reconstructed gravity 0.3090 -1.7118 -0.3518 0.3487

Table 5. Descriptive statistics of the comparison of geoid models with 1055 GPS-levelling

points (units in metres)

Figure 5. The geoid undulations of New
Zealand computed from the simple mean

free-air gravity anomalies (units in metres

relative to EIGEN-EGM. Mercator
projection)

Figure 6. The geoid undulations of New
Zealand computed from the reconstructed

free-air gravity anomalies (units in metres

relative to EIGEN-EGM. Mercator
projection)
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are not truly representative of the mean
gravity anomalies over the topography in the

vicinity, thus affecting the computed geoid.

Therefore, the improvement in fit to the
GPS-levelling is directly attributed to the

reconstructed anomalies being a better

representation of the actual mean gravity
field than the simple mean anomalies.

SUMMARY AND CONCLUDING
REMARKS

A preliminary gravimetric geoid model has
been computed for New Zealand using a

hybrid combination of the EIGEN-2 and

EGM96 global geopotential models, a
generalised digital terrain model,

reconstructed gravity anomalies on land,

and NCTU01 satellite altimeter-derived
gravity anomalies at sea. The terrestrial

gravity data have been partially reprocessed.

It is not currently possible to recompute the
terrain corrections, downward continuation

and associated indirect effects due to current

computational limitations; this will be the
subject of future work.

It was found from this study that significant

discrepancies exist between the marine
gravity data and the three satellite altimetry

grids, which is due to the marine gravity data

not being crossover adjusted. A future task
is to perform this adjustment. Therefore, for

the purpose of these preliminary

computations, the NCTU01 grid of satellite
altimeter-derived gravity anomalies was used

to provide coverage in the marine areas.

Future studies will investigate optimal
combination of the altimetry data with the

adjusted marine gravity to obtain a better

fit in the problematic near-shore areas.

The mean gravity reconstruction technique

was used to account more correctly for

undersampled gravity observations due to
inaccessibility through the rugged terrain in

New Zealand, notably the Southern Alps.

This technique produced a preliminary
geoid that yields a much better agreement

with GPS-levelling points than previous

models. In particular the fit to the South
Island levelling datums has been

significantly improved as a result of the

Datum points max min mean std

Auckland 84 -0.0063 -0.6116 -0.3731 0.1454

Bluff 91 0.2800 -0.0781 0.0503 0.0567

Dunedin-Bluff 170 0.3090 -0.0978 0.1144 0.0832

Dunedin 58 0.2339 -0.7779 -0.2879 0.1704

Gisborne 57 -0.5080 -0.7779 -0.6200 0.0800

Lyttelton 164 0.1938 -1.7118 -0.5555 0.2630

Moturiki 163 -0.0866 -0.6727 -0.3380 0.1461

Napier 26 -0.2974 -0.5512 -0.4380 0.0805

Nelson 46 -0.6897 -1.1852 -1.0210 0.0854

One Tree Point 34 0.0009 -0.2534 -0.1049 0.0646

Taranaki 57 -0.3139 -0.7255 -0.5347 0.1072

Tararu 13 -0.2209 -0.7747 -0.5298 0.2302

Wellington 67 -0.5395 -0.9638 -0.8164 0.1373

Table 6a. Descriptive statistics of the comparison of the “reconstructed mean gravity” geoid

model with GPS-levelling points on the 13 vertical datums (units in metres)

Datum points max min mean std

Auckland 84 0.1278 -0.3839 -0.1518 0.1203

Bluff 91 1.2101 0.2600 0.4484 0.1332

Dunedin-Bluff 170 3.5352 0.4857 1.1471 0.5321

Dunedin 58 4.4821 -0.2681 0.6866 1.3537

Gisborne 57 0.4822 0.1100 0.2196 0.0901

Lyttelton 164 4.6041 -0.2305 0.9991 0.9497

Moturiki 163 0.6750 0.2897 0.1466 0.2414

Napier 26 0.4925 -0.0549 0.0779 0.1165

Nelson 46 2.4749 -0.0327 0.4622 0.4971

One Tree Point 34 0.1658 -0.0782 0.0658 0.0708

Taranaki 57 0.1473 -0.4419 -0.1517 0.1586

Tararu 13 0.1517 -0.3557 -0.1260 0.2174

Wellington 67 -0.0398 -0.4800 -0.3267 0.1280

Table 6b. Descriptive statistics of the comparison of the “simple mean gravity” geoid model

with GPS-levelling points on the 13 vertical datums (units in metres)

improvement (for example, ~0.4 and ~0.7
m in standard deviation for the Nelson and

Lyttelton local vertical datums, respectively).

For these two local vertical datums, the

precise levelling lines, in general, travel
through mountain passes in very rugged

terrain. This means that the simple mean

gravity anomalies computed in this region
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better modelling of the effect of topography
on the geoid.

The reconstructed-gravity geoid produced

datum offsets that, in a number of cases, were
significantly different to those produced by

the simple-mean-gravity-geoid model.

However, the high standard deviations of the
simple mean model indicate that the offset

values computed from the reconstructed

model (Table 6) are likely to be much better
preliminary vertical datum offsets.

Importantly, these are only preliminary

vertical datum offsets and must not be relied
upon until the final, refined geoid model that

takes into account the many approximations

used to compute the preliminary geoid mode,
are taken into account.

Finally, some significant progress has been

made towards the computation of a high-
precision national gravimetric geoid for New

Zealand and its surrounding waters, and to

the unification of the thirteen local vertical
datums currently in use. While the

preliminary geoid models presented in this

paper represent improvements on previous
attempts, it is anticipated that future studies

will provide yet further refinement to these

models, and ultimately produce a high-
quality national vertical reference system for

New Zealand.
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