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ABSTRACT 

One goal of modern geodesy is the global unification of vertical datums so that 

height data from them can be properly integrated.  This thesis studies the unification 

of the 13 disparate levelling- and tide-gauge-based vertical datums in New Zealand 

(NZ).  It proposes a new NZ-wide single vertical datum based on a gravimetric 

quasigeoid model to unify the existing local vertical datums.  This will also include 

methods to transform height data in terms of the existing datums to the new datum 

and vice versa. 

After defining and comparing the main types of height system and vertical datum 

used around to world, the system of heights used in NZ was shown to be normal-

orthometric.  Consequently, datum unification was achieved using a quasigeoid 

model, as opposed to a geoid model.  The quasigeoid was computed by combining 

the GRACE-based GGM02 and EGM96 global geopotential models with land 

gravity data (40,737 observations) and a 56-m resolution digital elevation model 

(DEM).  Marine gravity data came from a least-squares collocation combination of 

1,300,266 crossover-adjusted ship track observations and gravity anomalies derived 

from multi-mission satellite altimetry. 

To ensure that the best quasigeoid was computed for the NZ datasets, a number of 

computation processes were compared and contrasted.  The Hammer chart, fast 

Fourier transform (FFT) and prism integration methods of computing terrain 

corrections (TCs) were compared.  This showed that the prism integration TC is the 

most realistic in NZ.  The mean Helmert gravity anomalies, required for numerical 

integration of Stokes’s formula, were computed via refined Bouguer anomalies with 

the prism TCs, and reconstruction with heights from the DEM used to ‘reconstruct’ 

more representative mean anomalies.  In addition, five deterministic modifications to 

Stokes’s formula were compared.  There was little difference between three of them, 

so the Featherstone et al. (1998) modification ( 0ψ = 1.5°, M = 40) was chosen 

because it is theoretically better than its predecessors. 

The global geopotential, gravimetric geoid, sea surface topography and geodetic 

boundary-value problem approaches to vertical datum unification were then 

contrasted.  As none was likely to be effective in NZ, a new iterative quasigeoid 
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approach was adopted.   This procedure computes an initial quasigeoid from 

existing data on the various local vertical datums to estimate the vertical datum 

offsets from co-located GPS-levelling data.  These offsets were then subsequently 

applied to the gravity observations by way of additional reductions to the initially 

computed quasigeoid to reduce gravity anomaly biases caused by the vertically offset 

datums.  These adjusted gravity anomalies were then used to compute a new 

quasigeoid model, and the process repeated until the computed offsets between the 

local vertical datums (or equivalently two quasigeoid solutions) converged, which 

took only two iterations. 

The computed offsets were then compared with spirit-levelled height differences 

among adjoining datums, where these were available, giving an average agreement 

of 7 cm.  Since the local vertical datums are effectively unified, the new national 

vertical datum for NZ will comprise the iteratively computed gravimetric quasigeoid 

model, accompanied by local vertical datums.  This approach is implemented to give 

a new national vertical datum for NZ.  When used with the appropriate offset, this 

enables the transformation of heights in terms of the national vertical datum to the 13 

precise-levelling datums and the ellipsoidal national geodetic datum, NZ Geodetic 

Datum 2000. 
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1 INTRODUCTION 

1.1 Background 

New Zealand (NZ) does not currently have a single national vertical datum.  Instead, 

13 separate datums based on local mean sea level (MSL) observed at tide-gauges 

around the country are used.  These tide gauges have been used as the datum for the 

precise-levelling observations made from them.  Despite some early evidence to the 

contrary (e.g., Humphries, 1908), the datums were assumed to be stable and thus 

capable of being linked by precise-levelling, so that they could eventually be linked 

to form a single national datum (e.g. Hannah, 2001). 

It is well-known that NZ is tectonically active (e.g., Walcott, 1984).  In recent years 

the phenomenon of sea surface topography has become more widely recognised by 

geodesists (e.g. Hipkin, 2000).  This, combined with sea level rise (e.g. Hannah, 

1990), has meant that the MSL at the tide-gauge datum origins does not lie on a 

single equipotential surface.  Thus, the prospect of forming a national height network 

based solely on the adjustment of the regional precise-levelling networks based on 

MSL at a number of tide-gauges is becoming more remote with time (e.g. Hannah, 

2001). 

An alternative technique is to obtain vertical datum unification is via a geoid model 

(cf. Kumar and Burke, 1998).  When a GNSS (Global Navigation Satellite System) 

receiver is used at a benchmark such a model enables each of the vertical datums to 

have an offset calculated for it (i.e., � = h – H – N), and so the datums can be related 

to each other.  This technique also has the benefit of allowing geocentric 

observations (e.g., Global Positioning System; GPS) to be converted into heights in 

terms of an orthometric height system in relation to each of the vertical datums. 

Recent improvements in technology have meant that systems such as GPS are now 

able to readily observe three-dimensional positions with respect to an ellipsoid.  

Because GPS is referenced to a geocentric ellipsoid, heights that are obtained from it 

are not in relation to a geopotential surface of the Earth’s gravity field.  In most 

cases, users need heights that are referenced to the gravity field, primarily to 

determine fluid flows and to be consistent with the existing spatial infrastructure.  To 

convert GPS-derived ellipsoidal heights (h) to orthometric heights (H), it is necessary 
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to use a geoid (N) model (i.e., H h N= − ).  Because normal-orthometric heights 

( N OH − ) are used in NZ (cf. Section 2.4.2), the conversion to ellipsoidal heights is 

achieved using a quasigeoid (�) model (i.e., N OH h ζ− = − ). 

Unlike many countries (e.g., Australia, Featherstone et al., 2001; the United States, 

Smith and Roman, 2001; the United Kingdom, Featherstone and Olliver, 1994; and 

Europe, Ihde et al., 2002), NZ does not currently have a high-resolution regional 

quasigeoid model (cf. Section 1.2.2).  An evaluation of user groups by Pearse (2001) 

determined that an initial gravimetric quasigeoid with an accuracy of 10-15 cm 

would meet a majority of their requirements. 

1.2 New Zealand setting 

1.2.1 Basic geological setting 

NZ is an isolated country located in the South Pacific Ocean, approximately 2,200 

km south-east of Australia.  It consists of three main islands (North, South and 

Stewart/Rakiura) and a number of smaller offshore islands (Figure 1.1).  It has a long 

narrow shape with a heavily indented coastline that has been estimated as between 

11,000 km and 15,000 km in length.  Mountain ranges and hill country dominate the 

NZ landscape, with one of the most striking features being the Southern Alps/K� 

Tiritiri o te Moana.  These, along with fiords, glaciers, lakes and the coastal plains of 

Canterbury characterise the South Island geography.  The North Island volcanic 

interior contains NZ’s largest lake, Lake Taupo (~600 km2) and several active 

volcanoes.  Hot pools, geysers and mud pools also form part of the volcanic system 

centred around Rotorua. 

Geologically, NZ straddles the boundary between the Australian and Pacific tectonic 

plates (Figure 1.1).  The North Island is at the southern end of the Tonga-Kermadec-

Hikurangi oblique subduction zone where the Pacific plate is subducting westward 

beneath the Australian plate to the west of the Hikurangi Trench.  In the south of NZ, 

the opposite occurs where the Australian plate is subducting eastward under the 

Pacific plate to the east of the Puysegur Trench.  Between the subduction zones, two 

(submerged) continental fragments, the Challenger Plateau and the Chatham Rise, 

collide obliquely (e.g. Pearse, 1998; Walcott, 1984). 
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Figure 1.1 Location of the Pacific and Australian plate boundary in the NZ region 
(adapted from Pearse, 1998; Cole, 1990; Anderson and Webb, 1994).  The solid 

arrows represent the absolute plate motion in terms of the Nuvel-1A (De Mets et al., 
1994) tectonic plate model.  The hollow arrows represent the relative plate motion 

between the Australian (fixed) and Pacific plates. 

This location in the active tectonic zone has shaped the physical terrain of NZ.  The 

mountainous topography is a result of the ongoing plate collision and subsequent 

uplift (notably along the Alpine fault in the South Island, e.g., Berryman, 1984).  
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There is also significant volcanic activity in the Taupo back-arc (Figure 1.1) that is 

typically associated with a major tectonic boundary zone (e.g., Walcott, 1984).  This 

results in regular seismic activity that is considered a “normal” part of life in NZ 

(Hannah, 2001). 

1.2.2 Previous quasigeoid computations in New Zealand 

There have been two previous attempts to compute quasigeoid models for the NZ 

region.  Gilliland (1990) produced a gravimetric quasi-co-geoid for NZ on a 0.25° 

grid by combining gravity data and the OSU81 (Rapp, 1981) global geopotential 

model (GGM) to degree and order 180.  However, without ellipsoidal heights no 

comparison with the precisely-levelled normal-orthometric heights could be made. 

Mackie (1982) determined quasigeoid heights at 18 stations, distributed across NZ, 

by comparing Doppler-derived WGS72 ellipsoidal heights with spirit levelled 

normal-orthometric heights.  Mackie’s work did not use local gravity data, though 

when Gilliland compared his results with those of Mackie, root-mean-square (RMS) 

quasigeoid height differences of less than 1.3 metres were obtained (Pearse, 2001).  

At the time this was a reasonable result given the accuracy of Doppler heights, but 

with current techniques quasigeoid heights of better than 10 cm should be 

achievable. 

1.3 Thesis aim 

The primary objective of the research is to unify the multitude of vertical datums that 

currently exist in NZ.  This will produce a single national vertical datum that has a 

relationship to ellipsoidal (e.g., Global Navigation Satellite System, GNSS) reference 

frames. 

As part of this objective, a secondary task will the computation of a gravimetric 

quasigeoid for the NZ region to enable users of its geodetic system to convert heights 

between the precise-levelling-based vertical datums and GNSS-derived ellipsoidal 

heights.  Such a model does not currently exist for such use in NZ.  This quasigeoid 

will be initially evaluated using existing data sets and “standard” computation 

techniques, (e.g., the techniques used to determine AUSGeoid98; Featherstone et al., 

2001), and then iterating the calculations with information from the previous 
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solutions to remove the distortions in the downward-continued gravity anomalies.  

To the best of the author’s knowledge, this is the first time an “iterative” computation 

scheme and quasigeoid have actually been used to unify vertical datums. 

1.4 Significance of research 

This study is significant for the three reasons. Firstly, it will for the first time create a 

unified national vertical datum for NZ that is linked to global geocentric coordinate 

systems such as the International Terrestrial Reference Frame (ITRF) via a 

gravimetric quasigeoid (Chapter 7).  The current vertical datums are defined in 

relation to local MSL at separate tide-gauges.  From this unified datum, it will be 

possible to use new technologies (e.g. GNSS) to determine normal-orthometric 

heights throughout NZ.  This will be highly significant as the new technologies are 

significantly cheaper than traditional techniques (e.g., precise-levelling) over longer 

distances (i.e., hundreds of kilometres).  The use of a gravimetric quasigeoid to unify 

vertical datums is different to the conventional approach that uses a least-squares 

adjustment of precisely levelled height differences.  It is shown that while it is 

technically possible to complete a precise-levelling adjustment in NZ, such an 

approach is subject to a number of limitations (e.g., vertical deformation, limited 

spatial coverage, incompatibility with GNSS heights) that make its implementation 

unfavourable. 

Second, it will provide an opportunity to develop and test quasigeoid determination 

techniques in the NZ context (Chapters 4 and 5).  NZ has not been an area of major 

quasigeoid investigation in the past due to its isolation and difficult topography – 

particularly with respect to the acquisition of gravity observations.  It is this 

topography however that makes it a suitable “field laboratory” for testing terrain 

correction computation techniques (Chapter 4).  It is in areas of high topographical 

change that the traditional terrain correction (TC) computations start to fail.  For 

example, when terrain slopes are greater than 45°, the fast Fourier transform (FFT) 

technique becomes unstable (e.g., Martinec et al., 1996; Tsoulis, 2001). 

The third and most significant feature of this research is the use of an iterative 

technique for determining a gravimetric quasigeoid based on the fit with the existing 

vertical datum data (Chapter 6).  Most other countries have a national vertical datum 
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that a quasigeoid can be compared against so iterating is of little additional benefit 

(e.g., the Australian Height Datum and the North American Vertical Datum).  

However in NZ, the lack of a single vertical datum means that to obtain a quasigeoid 

that agrees with the existing offset vertical datums, it is necessary to input this 

(offset) information into the quasigeoid through a series of iterations until 

convergence occurs.  This novel technique has not been attempted before in practice, 

although a useful preliminary mathematical framework is given by Rummel and 

Teunissen (1988). 

1.5 Outline and structure of thesis 

This thesis is divided into seven chapters.  Chapter one is an introductory section that 

explains the context for vertical datum (and height system) definition and the need 

for different vertical datums in NZ to be unified.  It also describes the physical 

geographic characteristics of NZ to provide the necessary context for the remainder 

of the thesis. 

Chapter two describes height systems and vertical datums.  It starts with the 

comparison of ten different types of height that can be used to define a height 

system.  Several different approaches to the definition and practical realisation of 

vertical datums are then addressed along with a number of phenomena that can affect 

their accuracy.  This leads into a description of the current NZ vertical datums and 

the problems that exist with them.  The advantages and disadvantages of defining a 

unified NZ vertical datum by the least-squares adjustment of the existing precise 

levelling observations are discussed.  To ascertain the feasibility of this approach in 

NZ, an adjustment of the levelling observations is then undertaken.  To provide an 

international context to the NZ situation, the height systems and approaches to 

vertical datum definition of five different jurisdictions are also compared and 

contrasted.  The chapter is concluded with a proposal for a new modernised height 

system for NZ. 

Chapter three describes each of the datasets and the preparation that was undertaken 

on them before they were used in the computation of a gravimetric quasigeoid and 

the unified vertical datum in NZ.  This required the selection of the “best” GGM for 

the NZ region and the application of reductions to the terrestrial gravity observations 
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(cf. Amos and Featherstone, 2003a, 2003b).  The marine gravity observations were 

crossover adjusted under contract by Intrepid Geophysics (Brett, 2004) before their 

combination with a grid of satellite altimetry derived gravity anomalies (Amos et al., 

2005).  The digital elevation model (DEM) used for gravity interpolation and TC 

computation is also presented with the GPS-levelling data set that is necessary to 

verify the computed quasigeoids and the vertical deflections used to assess the 

GGMs (Amos and Featherstone, 2004).  

When quasigeoids are computed using Stokes’s formula, a pre-requisite is that all of 

the topographic masses have been condensed on or below the quasigeoid.  Chapter 

four describes the different topographic reductions (TC, downward continuation, co-

geoid, and the primary and secondary indirect effects) that need to be applied to 

gravity anomalies before they can be used to compute a quasigeoid.  Three 

approaches to the computation of TCs are compared in NZ to determine the best 

method for the subsequent quasigeoid computations.  It was found that the prism 

integration derived corrections were superior to those computed by FFT or Hammer 

charts. 

Stokes’s function also requires a regular grid of gravity observations.  Chapter four 

also shows that the interpolated grids of gravity observations can be adversely 

affected if the source observations are not regularly spaced.  The Featherstone and 

Kirby (2000) gravity reconstruction method is implemented with the Goos et al. 

(2003) tests to determine the best way to interpolate gravity observations and their 

associated TCs.  The refined Bouguer anomaly solution was selected because it 

produced a smoother surface in areas of sparse gravity observations.  This study 

concluded that the solutions using prism integration computed TCs were the best.   

The computation of gravimetric quasigeoids using Stokes’s kernel function is 

covered in Chapter five, specific emphasis being placed on the deterministic 

modification of the kernel as a method of reducing the truncation error associated 

with the use of spatially limited gravity data.  Stochastic modifications were not 

tested because reliable estimates of the error variances of the Earth’s gravity data are 

not currently known in NZ.  Five deterministic modifications are compared in the NZ 

environment with the purpose of identifying the optimum modification and cap size 

for the NZ dataset.  The Featherstone et al. (1998) deterministic modification (with 
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an integration cap of 1.5° and modification degree 40 was chosen for use in the NZ 

quasigeoid computations. 

Chapter six addresses the unification of the 13 NZ vertical datums.  Three existing 

techniques (geopotential number, gravimetric geoid and the geodetic boundary value 

problem) are contrasted.  The weakness of these approaches is that their solutions do 

not properly incorporate the effect of using data in terms of multiple offset vertical 

datums.  Consequently, a new “iterative quasigeoid unification” methodology is 

described that accounts for the effects of local vertical datum offsets in the datasets 

used to compute a gravimetric quasigeoid.  The “iterative” approach is implemented 

over NZ to demonstrate its validity and to generate a quasigeoid that can be used to 

unify the vertical datums. 

The thesis is concluded in Chapter seven with a recommendation for a new vertical 

datum for NZ that unifies the 13 existing disparate vertical datums using a 

gravimetric quasigeoid.  Several recommendations for future work to improve the 

proposed datum based on prospective new data sets are also suggested, especially 

given the forthcoming Gravity Recovery and Climate Experiment (GRACE), Gravity 

field and steady state Ocean Circulation Explorer (GOCE) and Earth Gravity Model 

2007/8 (EGM07/8) global geopotential models (e.g., Kenyon et al., 2006). 
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2 HEIGHT SYSTEMS AND VERTICAL DATUMS IN NEW ZEALAND 

2.1 Introduction 

Contrary to the perception of most laypeople, the concept of “height” is not 

straightforward.  For example, there are a number of different height systems that can 

be defined; most (but not all) are related to the Earth’s gravity field or an 

approximation of it (e.g., Featherstone and Kuhn, 2006; Hannah, 2001; Heiskanen 

and Moritz, 1967, Chapter 4).  This Chapter presents the major types of height 

systems that are available and describes how they are used in the definition of a 

vertical datum.  The height systems and vertical datums currently used in NZ are 

then presented and discussed in the context of the merits of each system.  This is 

used as the context for the proposal for a modernised unified height system for NZ. 

2.2 Height Systems 

There are many different types of height system that can be broadly classified 

according to the way that the Earth’s gravity field is modelled (i.e., gravity can be 

observed, modelled or not used).  This Section defines and compares the major 

height systems proposed over the years.  It also points out their respective advantages 

and disadvantages using information that has been adapted from Heiskanen and 

Moritz (1967, Chapter 4); Vaní�ek et al. (1980); Vaní�ek and Krakiwsky (1986); 

Jekeli (2000); Dennis and Featherstone (2003); and Featherstone and Kuhn (2006).  

Also new height systems are covered (e.g. Tenzer et al., 2005; Santos et al., 2006). 

2.2.1 Geopotential numbers 

Strictly, all natural or physical height systems must be based on geopotential 

numbers, C (Featherstone and Kuhn, 2006; Vaní�ek and Krakiwsky, 1986; 

Heiskanen and Moritz, 1967, Chapter 4).  A geopotential number is the difference in 

potential from a reference equipotential surface, W0, (usually the geoid) to the 

potential at the point of interest, WP (cf. Figure 2.1).  This definition is shown 

algebraically in Equation (2.1) (Heiskanen and Moritz, 1967, Eq. 2-25) where: P is 

the point of interest; P0 is the corresponding intersection of P with the geoid along 

the plumbline; and g is the gravity vector along the plumbline, dz. 
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0

0

P

P P
C W W g dz= − = �   (2.1) 

Geopotential numbers are measured in geopotential units (GPU), where 1 GPU = 10 

m2s-2.  Because they do not have units of length, they are less intuitive to non-

technical users.  They accurately predict the flow of water (water will flow from a 

higher geopotential number to a lower one based on laws of physics and potential 

theory) and provide a theoretical zero misclosure regardless of the levelling route 

taken, i.e. holonomity (e.g., Heiskanen and Moritz, 1967, Chapter 4; Sansò and 

Vaní�ek, 2006). 

Geopotential numbers can not be directly observed because there is no instrument 

that can actually measure gravity potential.  Instead, they are practically determined 

using geopotential differences (�C) that are derived from precise levelling and 

gravity observations (e.g. Torge, 2001, p.208):   

 meanC g dn∆ =   (2.2) 

where g mean is the average surface gravity value and dn is the difference in height 

(both along the precise levelling route).  The requirement for surface gravity 

observations is common to most types of height (cf. Sections 2.2.2 to 2.2.8). 

2.2.2 Dynamic heights 

To overcome the intuitive problem with geopotential numbers not being expressed in 

units of length, the dynamic height, H dyn, was proposed by Helmert (1884).  These 

heights are obtained by dividing the geopotential number by a constant gravity value, 

g0, often chosen to be the value of normal gravity, �, at 45°.  The dynamic height is 

defined by: 

 dyn

0

C
H

g
=   (2.3) 

Dynamic heights are very simple to compute (if the geopotential number is known) 

and because they retain the same characteristics as the geopotential number they 

predict the flow of fluids correctly and give a holonomic zero levelling loop closure.  

Its unit of length changes depending on the gravity constant used and so it is 
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therefore generally not the same as a Système International (SI) metre.  The dynamic 

height does not have a geometrical meaning because it is a purely physical quantity 

(e.g., Heiskanen and Moritz, 1967, Chapter 4; Jekeli, 2000). 

These heights are typically obtained by applying a dynamic correction to spirit 

levelled height differences.  These corrections can be very large if g0 is not 

representative of the region concerned.  For example a levelling line with a height 

difference of 1000 metres at the equator, g � 978,000 mGal, g0 = 980,600 mGal, then 

the dynamic correction is -2.7 metres (Torge, 2001).  No evidence has been found to 

suggest that dynamic heights have actually been used in practice. 

2.2.3 Orthometric heights 

The orthometric height, H ortho, is defined as the length of the curved plumbline from 

a point, P, to its intersection with the geoid, P0, as shown in Figure 2.1 and is given 

by: 

 ortho C
H

g
=   (2.4) 

where g  is the integral mean value of gravity along the plumbline and is given by: 

 ( )ortho 0

1 H
g g z dz

H
= �   (2.5) 

To determine g , the exact path of the plumbline through the Earth and also the 

gravitational acceleration at all points along that plumbline need to be known.  This 

requires knowledge of gravity variations (cf. Strange, 1982) or the mass-density 

distribution (cf. Sünkel, 1986; Allister and Featherstone, 2001) through the 

topography (Dennis and Featherstone, 2003; Featherstone and Kuhn, 2006).  Because 

this information is not available, it is not possible to observe or compute a true 

orthometric height, despite what many people seem to believe. 

To overcome this limitation, several approaches have been developed to approximate 

g .  Each approximation results in a different kind of orthometric height, which is 

normally named after its proponent. 
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Figure 2.1 The orthometric height (H ortho) of P (adapted from Featherstone and 
Kuhn, 2006) 

2.2.4 Helmert orthometric heights 

The approximation of Helmert (1890) is based on the Poincaré-Prey relationship for 

integral mean gravity (Heiskanen and Moritz, 1967, p. 167): 

 Helmert ortho ortho1
2

2
s d

g g H G H
dh
γ π ρ= + −  (2.6) 

where g s is the observed gravity at the topographic surface, d�/dh is the vertical free-

air gradient of gravity (Equation 3.7), G is the universal gravitational constant, and � 

is the (assumed constant) topographic mass density.  The right-most term in Equation 

(2.6) is the Bouguer shell gravity expression (divided by two) that accounts for the 

topographic mass above the geoid but neglects the terrain effects. 

Helmert-orthometric heights are simple to compute as they do not require 

assumptions to be made about the mass-density or terrain corrections.  This 

simplification means that the Helmert-orthometric height is not a very good 

approximation.  Their computation requires either a geopotential number (computed 

from precise levelling and gravity observations, Section 2.2.1) or the application of 

an orthometric correction (OC) to precisely levelled height differences.  The OC of a 
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height difference between points A and B is given by Heiskanen and Moritz (1967, p. 

168) as: 

 0 0 0

0 0 0

sB
A B

AB A B
A

g g g
OC dn H H

γ γ γ
γ γ γ
− − −= + −�  (2.7) 

where dn is the spirit levelled height increment; Ag  and Bg  are Poincaré-Prey 

estimates of the integral mean values of gravity along the plumblines by Equation 

(2.6); and �0 is normal gravity at 45°N/S. 

Helmert-orthometric heights can be quite different from their true orthometric 

counterparts due to the large corrections to precise levelling observations that are 

necessary.  Nevertheless they are probably the most common type of “orthometric” 

height in actual use (Featherstone and Kuhn, 2006). 

The integral mean gravity formula in Equation (2.6) uses an (assumed) constant 

value for the topographic mass-density.  Allister and Featherstone (2001) 

demonstrated that in the Darling Ranges of Western Australia, the use of a variable 

density in this equation can affect the computed OC by up to ~0.08 mm.  Because no 

digital density information is available it is not possible to corroborate these findings 

for NZ (cf. Section 4.10). 

2.2.5 Neithammer orthometric heights 

Neithammer (1932) orthometric heights are based on a mean gravity approximation 

such that (Rapp, 1961; Krakiwsky, 1965): 

 Neithammer ortho ortho1
2

2
s T Td

g g H G H g g
dh
γ π ρ δ δ= + − + −  (2.8) 

where Tgδ  is the terrain effect at the topographic surface and Tgδ  is the integral 

mean terrain effect on gravity along the plumbline between the topographic surface 

and the geoid.  The latter is given by: 

 
ortho

ortho 0

1 HT Tg g dH
H

δ δ= �   (2.9) 
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These heights are a closer approximation of the true orthometric height than the 

Helmert height (although the Tenzer et al. (2005) methodology is better) and also 

apply the smallest corrections to precise levelling observations (Dennis and 

Featherstone, 2003). They are, however, more computationally demanding than 

Helmert and so are used in practise less frequently. 

2.2.6 Mader orthometric heights 

Mader (1954) orthometric heights use the mean gravity approximation such that 

(Krakiwsky, 1965): 

 Mader ortho ortho 01
2

2 2

T T
s g gd

g g H G H
dh

δ δγ π ρ −= + − +  (2.10) 

where Tgδ  and 0
Tgδ  are the terrain corrections (TCs; cf. Chapter 4) applied at the 

topographic surface and the geoid, respectively.  This assumes that the value of the 

TC changes linearly along the plumbline to the geoid so an average value is used in 

the height computation.  The requirement to determine two TC terms makes them 

more complex than Helmert to compute, however they are simpler to evaluate than 

Neithammer heights. 

2.2.7 Rigorous orthometric heights 

Tenzer et al. (2005) and Santos et al. (2006) show that in order to obtain a more 

rigorous orthometric height, it is necessary to take into account (in addition to the 

effect of terrain roughness and normal gravity) the additional effects coming from 

the masses contained in the geoid that is not accounted for by the Helmert approach 

and from mass-density variations within the topography.  This approach takes into 

account (in addition to Helmert’s approximation) the effects coming from the 

second-order correction for normal gravity, second-order correction for the Bouguer 

shell, the geoid-generated gravity disturbance, the terrain-roughness-generated 

gravity and the lateral variation of topographical mass-density. 

Rigorous heights have not been implemented in any national height systems.  

Numerical computations have been performed in the Canadian Rocky Mountains 

which are similar to NZ (e.g., Kingdon et al., 2005; Santos et al., 2006).  They 
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showed that the corrections for the geoid-generated gravity disturbance, terrain-

roughness gravity and lateral variation of topographic density are the most important 

contributors.  In these tests the total rigorous correction was approximately 13 cm 

(elevation ~2,800 m) in comparison to Mader (1954) and Niethammer (1936) 

corrections of approximately 3 cm.  The consequence of the heights being rigorous is 

that they are relatively complex to compute, but they rely on terms already computed 

for a geoid model (e.g., terrain corrections). 

2.2.8 Normal heights 

The normal gravity field is defined as the gravity field defined by an Earth-fitting 

ellipsoid that contains the total mass of the Earth (including its atmosphere) and 

rotates with at a constant angular velocity more or less equivalent to that of the Earth 

(Moritz, 1980a).  The normal gravity field can be used to define a height that avoids 

the density hypothesis for the crust.  The normal height (H N) was proposed in 1954 

by Molodensky (cited in Molodensky et al., 1962).  It replaces g  in Equation (2.4) 

with normal gravity measured along the curved ellipsoidal normal (of the reference 

ellipsoid), γ , hence (Jekeli, 2000): 

 N C
H

γ
=   (2.11) 

where 

 ( )
0

1 NH

N h dh
H

γ γ= �   (2.12) 

It is defined geometrically as the distance along the ellipsoidal surface normal from 

the reference ellipsoid to the telluroid (Figure 2.2).  The telluroid was defined by 

Molodensky as the surface whose normal potential, U, at every point, Q, is equal to 

the actual potential, W, at the corresponding surface point, P, or UQ = WP.  The 

distance between P and the telluroid, Q, is called the height anomaly, �.  This is 

related to the ellipsoidal height, h, (see Section 2.2.10) by: 

 Nh Hζ = −   (2.13) 
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Normal heights are simple to compute because they do not require knowledge of the 

internal mass-density structure of the Earth; this is a virtue of Molodensky’s theory.  

Figure 2.2 also shows that the height anomaly is also defined as the distance between 

the ellipsoid and the quasigeoid (see Section 2.2.9), hence the normal heights can be 

compatible with GPS heights when they are derived from the quasigeoid.  Because 

normal heights do not have any physical meaning (being defined by a gravity 

model), they are not as applicable to the real Earth as the orthometric height, 

additionally they can not universally predict fluid flows (Featherstone and Kuhn, 

2006). 

The difference between normal and orthometric-type heights increases with 

elevation.  Marti (2003) showed that the differences (between normal and Helmert 

orthometric heights) in the Swiss Alps are typically less than 2 cm but they can 

exceed 10 cm on the mountain tops (< 3000 m).  The Swiss assessment is 

comparable in NZ where the highest peak (Aoraki/Mount Cook) is 3754 m.  Like the 

other heights described above, normal heights can be computed by applying a 

correction to spirit levelled height differences if there are suitably dense gravity 

measurements along the levelling route. 

 

Figure 2.2 The normal and normal-orthometric heights (from Featherstone and Kuhn, 
2006) 



17 

2.2.9 Normal-orthometric heights 

Because many countries do not have gravity observations along all the precise 

levelling routes, the computation of [approximate] orthometric or normal heights is 

not strictly possible (cf. Sections 2.2.3 and 2.2.8).  To overcome this limitation, the 

normal-orthometric height system was developed (e.g., Rapp, 1961; Heck, 2003a).  

The normal-orthometric height is given by: 

 
'N O C

H
γ

− =   (2.14) 

where 'C  is the normal-geopotential or spheropotential number given by (cf. 

Equation 2.1): 

 
0

'
P

P
C dnγ= �   (2.15) 

This height uses only the normal gravity field to approximate all of the gravity field-

related values in the height computation so gravity observations along precise 

levelling routes are not required.  The consequence of this is that normal-orthometric 

heights are less likely to predict fluid flows correctly than normal and orthometric 

heights.  The normal-orthometric height is defined as the distance from the 

quasigeoid to the surface of the Earth along the curved ellipsoidal normal (Figure 

2.2).   

The quasigeoid is identical to the geoid over the oceans and coincides within a few 

decimetres of it over most land areas, however in areas of large Bouguer anomalies 

and high topography significant differences can occur (e.g., Featherstone and Kirby, 

1998; Tenzer et al., 2006).  For example, differences of up to about 3.4 m occur in 

the Himalayas (Rapp, 1997a; Sjöberg, 1995); in Australia the maximum reaches 

around 0.15 m (Featherstone and Kirby, 1998); the NZ maximum is approximately 

0.5 m at Aoraki/Mt Cook (Amos and Featherstone, 2003a).  Because the quasigeoid 

is not a level (i.e. equipotential) surface, it does not have a physical interpretation 

(Heiskanen and Moritz, 1979, Section 8-3). 

In practise, normal-orthometric heights are obtained by applying a normal-

orthometric correction (NOC) to precisely levelled height differences (e.g. Heck, 
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2003a; Torge, 2001).  The NOC is a function of latitude and ellipsoidal height.  Heck 

(2003a, p. 295) gives this correction as: 

 ( )
2

1

NOC sin 2 cos
P

S
k av k k

P

f
H s

R
φ α δ∗= − �  (2.16) 

Where f * is a GRS80 normal gravity flattening constant (0.0053024; Moritz, 1980a); 

R is the radius of the Earth (6,371 km); � indicates the sum of the individual levelled 

height difference components between points P1 and P2 (i.e., each precise levelling 

change point between P1 and P2); S
kH  is the height at the start point of each levelled 

height difference; avφ is the average latitude between the change points, � k is the 

azimuth between the change points; and �s k is the horizontal distance between the 

change points; the k subscript indicates a single height difference in the precise 

levelling line. 

Equation (2.16) is quite hard to implement in practise, primarily due to the 

requirement for the latitude and azimuth to be known for each levelling setup.  As 

such, although normal-orthometric heights have been widely implemented around 

the world, this has been done using different approximations of Equation (2.16).  

These approximations typically evaluate the NOC between benchmarks (as opposed 

to each setup point), only consider the latitudinal change and use simplified 

coefficients, e.g. NZ (DoSLI, 1989), Australia (Roelse et al., 1975).  The use of 

normal-orthometric heights in NZ is discussed further in Section 2.4.2. 

2.2.10 Ellipsoidal heights 

The ellipsoidal height (h) is the distance from the reference ellipsoid to the Earth’s 

surface along the ellipsoidal surface normal as shown in Figure 2.3.  Unlike the 

heights discussed in the Sections above, it is defined independently of the Earth’s 

gravity field, i.e., it is a purely geometric quantity.  Consequently, ellipsoidal heights 

cannot reliably predict the flow of fluids.  They are however relatively easy to define 

mathematically and as such are the type of height obtained from GNSS receivers 

(such as GPS). 
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Ellipsoidal heights are related to orthometric heights by H h N= −  and the normal 

and normal-orthometric heights by NH h ζ= −  and N OH h ζ− = −  (cf. Figure 2.2 

and Figure 2.3).  Therefore, the difference between the geoid and quasigeoid is given 

by N ζ−  (cf. Section 2.2.9). 

 

Figure 2.3 The normal-orthometric (H N-O), quasigeoid (�), ellipsoid (h), orthometric 
(H), and geoid (N) heights 

2.2.11 Height system summary 

This section has defined and compared the major height systems that have been 

proposed over the years.  The dynamic height is the most physically rigorous because 

it can accurately predict fluid flows and give a holonomic zero levelling loop closure.  

All of the other systems make successive approximations of the Earth’s gravity field.  

The orthometric, Helmert, Neithammer, Mader, rigorous orthometric and normal 

heights are all based on geopotential numbers (and therefore require surface gravity 

observations), the difference between them being the way that they model the 

integral mean gravity through the Earth.  The normal-orthometric height system 

differs in that it only uses a normal gravity field to approximate the integral mean 

gravity.  The ellipsoidal height is a purely geometric system, so while being easy to 
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define mathematically, it is not a physical height.  Ellipsoidal heights can be related 

to orthometric heights by defining a geoid, and to normal-orthometric heights by 

defining a quasigeoid. 

2.3 Vertical Datums 

2.3.1 Vertical datum definition 

To realise a vertical datum, it is necessary to select a type of height system and a 

compatible reference surface.  Once these choices are made, and the observed height 

differences have been corrected for systematic errors affecting their observation (e.g. 

Vaní�ek et al., 1980), a vertical datum can be realised point-wise by performing a 

least-squares adjustment of the corrected height differences to minimise the impact 

of random errors and to account for the non-holonomity of the levelling loops (e.g. 

Sansò and Vaní�ek, 2006). 

Ideally this adjustment should be performed on either geopotential numbers or on 

height differences in a height system that exhibits holonomity (e.g., Feathersone and 

Kuhn, 2006; Sansò and Vaní�ek, 2006).  However, this is not always possible (e.g., 

due to the unavailability of gravity observations or the corrections being imperfect).  

Furthermore, if the heights of multiple points are constrained in the adjustment, then 

they should all be on the same equipotential surface.  If they are not (e.g., where 

local MSL is fixed at multiple locations around an island or continent), then the 

vertical datum will be distorted and not represent an equipotential surface over its 

extents (cf. Featherstone, 2004). 

The type of height system chosen normally depends on the data that was available to 

the agency responsible at the time of datum definition (or the system can be chosen 

and the necessary data then acquired).  For example, if gravity observations are 

unavailable, then only the normal-orthometric or ellipsoidal height systems can be 

used (the NOC only requires φ and � for computation).  The choice of reference 

surface is guided by the choice of height system, i.e. orthometric heights use the 

geoid; normal heights the telluroid; normal-orthometric heights the quasigeoid and 

ellipsoidal heights the ellipsoid. 
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While it is possible to obtain ellipsoidal heights from GNSS technology, it is not 

currently possible to directly observe the vertical datum surface in natural/physical 

height systems (e.g. Featherstone and Kuhn, 2006).  Using the assumption that the 

geoid/quasigeoid and mean sea-level (MSL) in the open oceans are coincident it is 

possible to relate a vertical datum to the geoid/quasigeoid using local MSL 

observations.  This approach to practical vertical datum definition introduces several 

issues that are discussed in the following Sections.   

A vertical datum can also be defined by computing the geopotential number of the 

origin point using its ellipsoidal height (from GNSS observations) and absolute 

gravity value.  This approach is well-suited to for the connection of continental 

height datums (i.e. across large water bodies) and is analogous to the geopotential 

number method of datum unification (Section 6.3.1).  Because it is defined using a 

discrete number of points it also suffers from the adjustment weaknesses described 

above. 

2.3.2 Determination of mean sea-level (MSL) 

In the ideal situation, the datum surface (i.e. zero height) of a height system will 

coincide with the geoid (true orthometric height system) or quasigeoid (normal-

orthometric height system).  Because there is no instrument that can directly measure 

the absolute value of the Earth’s geopotential, it is not possible to physically observe 

the geoid.  Recall that over the oceans the geoid and quasigeoid are coincident and 

that they represent an equipotential surface that generally approximates MSL in the 

open oceans.  Thus, the acquisition of sea-level observations at tide-gauges is the 

most common method of MSL determination and thence vertical datum definition.  

MSL observations are affected by three major problems: 1) sea-level is affected by 

the presence of tides and other temporal phenomena; 2) the presence of sea surface 

topography (SSTop), storm surges, non-linear tides etc. in the coastal zone (e.g., 

Merry and Vaní�ek, 1983; Pugh, 1987; Hipkin, 2000; Featherstone and Kuhn, 2006); 

and 3) secular changes in sea level due to climate-related effects (e.g., Pugh, 2004). 

To determine MSL at a coastal tide-gauge, it is necessary to make sea-level 

observations over a sufficiently long period to take into account the full tidal 

signature.  The major tidal effects (caused by the precession and nutation of the 
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Moon and Sun over an 18.6 year metonic cycle) result in the diurnal (daily) and 

semi-diurnal (twice-daily) tides that are most noticeable at the coast (e.g., Melchior, 

1981).  Other celestial objects (e.g., planets) also have effects on the observed tides, 

but these are much smaller in magnitude than those of the sun and moon (e.g., Pugh, 

2004).  Therefore, to determine MSL independent of these tidal effects, it is 

necessary to make regular (e.g., hourly) sea-level observations over at least an 18.6 

year period.  For many of the NZ datums, this duration requirement has not been 

achieved (cf. Section 2.4.1). 

2.3.3 Sea surface topography and sea-level changes 

In addition to accounting for the 18.6 year tidal cycle, the observed MSL will depart 

from the geoid due the phenomenon called sea surface topography (SSTop).  Also 

called dynamic ocean topography (DOT), it includes the effects of changes in sea 

water temperature, salinity, atmospheric pressure, prevailing winds, water currents, 

etc. (Pugh, 1987).  SSTop is dynamic in that it is constantly changing (e.g., due to 

seasonal weather variations).  The magnitude of SSTop in the open oceans can be 

estimated by differencing a global geopotential model (cf. Section 3.2) with satellite-

altimetry derived sea-surface heights (e.g., Hipkin, 2000; Hwang et al., 2002; Rio 

and Hernandez, 2004; Pugh, 2004).   

The magnitude of SSTop in the open oceans can cause MSL to depart from the geoid 

by up to two metres (e.g. Rapp, 1983; 1994; 1991a, 1995).  In coastal areas (where 

most tide-gauges are located), the determination of SSTop becomes more even more 

difficult (e.g. Merry and Vaní�ek, 1983; Hipkin, 2000).  This is because satellite 

altimetry does not work well close to the coast (e.g., Deng and Featherstone, 2006) 

and also many tide-gauges are located in estuaries or river mouths where they are 

also used for monitoring shipping-lanes.  These areas are influenced by the 

freshwater outflows that can significantly alter the observed MSL at different times.  

Other non-SSTop effects, such as storm surges, also cause irregular short-term rises 

in sea-level (Pugh, 1987; Featherstone and Kuhn, 2006).  The presence of SSTop 

causes the MSL measured at tide-gauges to depart from a single equipotential 

surface, thus offsets can occur between adjacent or overlapping vertical datums (e.g., 

Hipkin, 2000; Hipkin et al., 2004). 



23 

2.3.4 Land uplift, subsidence and glacial isostatic adjustment 

Precise levelling-based vertical datums are established on the assumption that the 

benchmarks and tide-gauges used in their definition will remain stable.  Given that 

sea-level observations spanning at least 18.6 years are required to obtain a tide-free 

MSL determination (Section 2.3.2), it is essential that the tide-gauge remain stable 

for that period (or its motion be monitored).  Because tide-gauges are frequently sited 

on reclaimed land or wharves, they can be subject to subsidence over their operating 

period.  Localised subsidence (e.g. within a few hundred metres) can be determined 

from precise levelling, however, more widespread movements are more difficult to 

isolate.  The best way to determine the absolute movement of tide-gauges (and 

therefore identify changes in MSL) is by the co-location of continuous GNSS 

receivers and/or absolute gravimeters (e.g., Bevis et al., 2002; Teferle, 2000; Teferle 

et al., 2007; Woodworth et al., 1999). 

As well as the physical tide-gauge the benchmarks that physically form a vertical 

datum are also affected by uplift and subsidence.  The gradual (and/or sudden, e.g., 

earthquakes) movement of the benchmarks progressively degrades the quality of the 

vertical datum because the documented heights will progressively become out of 

date.  The two major causes of these movements (at a regional scale) are tectonics 

and glacial isostatic adjustment (GIA).  Additional sources of movements include 

groundwater changes (causing swelling/contraction), water/mineral/oil extraction, 

etc. 

Tectonic uplift or subsidence can be either long-term gradual changes or sudden 

irregular movements.  The longer term velocities are small (i.e. mm/year, e.g., 

Walcott, 1984; Otway et al., 2002; Beavan et al., 2004) but the cumulative effect can 

be significant over time (e.g. metres/100 years).  Because of the long time-frames 

involved, they can often be predicted.  The sudden irregular movements are often 

unpredictable and frequently violent.  The major cause is the rupture of tectonic 

faults during earthquakes.  Vertical movements of > 2 m along tectonic fault ruptures 

are not unusual in NZ (e.g. Beanland et al., 1990; Begg and McSaveney, 2005).  

During the last ice age (~10,000 years ago), parts of the Earth’s crust (notably 

northern Canada and Scandinavia) were depressed by the weight of several 

kilometres of ice.  When the ice melted, this weight was removed and the Earth’s 
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surface started rebounding to an equilibrium level (which is still ongoing today).  

This phenomenon is called GIA.  The observed rates of uplift vary depending on 

location but they can reach rates of 7 mm/yr in northern Canada (Mainville and 

Craymer, 2005) and 8 mm/yr in Scandinavia (e.g., Lambeck et al., 1998; Fjeldskaar 

et al., 2000; Lidberg et al., 2007).  The observed GIA uplift in Scandinavia may also 

be affected by tectonic uplift of ~1 mm/yr (e.g., Wu et al., 1999; Fjeldskaar et al., 

2000). 

An attribute of GIA is that when elastic rebound occurs as a result of land-based ice 

melt, the resulting redistribution of mass from the melt-water into the oceans can 

cause elastic compression in other areas.  For example, in northern Europe where 

uplift of 8 mm/yr is observed in Sweden, this decreases (in a regular radial pattern 

around Scandinavia) to an uplift of 3 mm/yr in the North Sea (Lambeck et al., 1998). 

2.3.5 Earth tides 

The definition of the vertical datum zero level is also affected by the permanent 

deformation of the Earth caused by the Sun and the Moon (and other planets to a 

lesser extent).  There are three models for dealing with these permanent tidal effects: 

1) the mean-tide includes both the permanent and elastic effects and so retains 

masses external to the Earth; 2) the tide-free or non-tidal eliminates both the 

permanent and elastic effects; and 3) the zero-tide eliminates only the permanent 

effect but retains elastic effect (e.g., Ekman, 1989, 1995; Poutanen et al., 1996; 

Rapp, 1989; Rapp et al., 1991b; Burša 1995). 

The choice of tidal model used in geoid computation, height system definition and 

the reduction of gravity observations has been the subject of much conjecture.  

Arguments have been made both for and against each of the options (e.g. Ekman, 

1989; Poutanen et al., 1996).  The mean-tide model approximates the shape of sea-

level in its long term equilibrium state and so is physically meaningful.  Because it 

includes the external masses caused by the tidal deformation, it is not consistent with 

the requirements of Stokes’s formula (e.g., Poutanen et al., 1996).  Also it uses an 

integral mean gravity for height determination and so will introduce a bias due to the 

inclusion of the external masses. 
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The tide-free model is compliant with Stokes formula because the permanent and 

time-independent external masses are removed.  However, its use requires different 

Love numbers to be assigned to the permanent and time-dependent deformations.  

Since Love numbers are not well known for the real Earth, this introduces an error.  

The zero-tide model is also compliant with Stokes formula (because all of the 

external masses are removed).  Its advantage over the tide-free model is that it does 

not require the use of an assumption regarding elasticity (in the removal of the 

indirect effect) and so the reduction can be done completely by potential theory 

(Poutanen et al., 1996). 

Resolution 16 of the International Association of Geodesy (IAG) in 1983 (IAG, 

1984) endorsed the use of the zero-tide as the preferred tidal model.  However, this 

endorsement has not been universally adopted.  For example, the definition of the 

International Gravity Standardisation Net 1971 (IGSN71, Morelli et al., 1974) 

gravity system is in terms of the mean-tide model (Poutanen et al., 1996), while 

EGM96 (Lemoine et al., 1998) and the United States G96SSS and GEOID96 geoid 

models (Smith and Milbert, 1999) have been produced in terms of the tide-free 

model because the majority of the source data for these appeared to be in terms of 

that model (Lemoine et al., 1998). 

For the purpose of this study, the IAG-recommended option of the zero-tidal system 

will be used to ensure that any new NZ height system is in agreement with 

international standards.  Although the difference between the zero-tide and tide-free 

models only ranges from 0.12 cm to 1.78 cm over NZ (for latitudes of 34.5°S and 

47.0°S respectively), it is still important for consistency purposes that all quantities 

(i.e. heights, gravity observations, geoid models) are in terms of the same tidal 

system. 

Equations to transform height differences, gravity observations and geoid heights 

between tidal systems were presented in Ekman (1989).  Using the subscripts m, n, 

and z to denote the mean-tide, tide-free and zero-tide models respectively the 

relations for height differences between two stations are given by: 
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where φ N and φ S are the latitudes of the northern and southern stations respectively.  

The corresponding transformations for gravity observations at latitude φ are given by 

(where � is an unobservable arbitrary constant � 1.53, Ekman, 1989): 
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2.4 New Zealand’s vertical datums 

2.4.1 Tide-gauges 

Historically, the tide-gauges used in NZ have been established in harbours and rivers 

by local port authorities for use in the prediction and verification of tide tables (Blick 

et al., 1997).  Data from these gauges was also analysed by Land Information NZ 

(LINZ) and its predecessor agencies (Department of Survey and Land Information – 

DoSLI; Department of Lands and Survey – L&S) to determine MSL at each site.  

This MSL value was then used as the zero height (of the local vertical datum) to 

which a local levelling network was referenced. 

The NZ tide-gauges are generally in locations that are less-than-optimal for vertical 

datum definition purposes.  They are frequently situated in harbours or rivers (within 

a few kilometres of the coast), whereas the ideal locations are either offshore or on 

the open coast to minimise the non-linear tidal effects that occur near the coast (e.g., 

Pugh, 2004).  This means that the observed MSL will not necessarily be 

representative of the region in which the datum is to cover (e.g., Hipkin, 2000; Cross 

et al., 1987; Merry and Vaní�ek, 1983; etc.). 
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2.4.2 Precise levelling networks 

First-order precise levelling in NZ ( 2 mm k± , where k is the distance in km; Blick, 

2006, pers. comm.) has historically been the method for precise height transfer in 

NZ.  Trigonometric and barometric levelling (±0.5 – 15 metres; Blick, 2006, pers. 

comm.) has also been used to densify the precise levelling networks.  However, due 

to the lesser accuracy, this is not generally considered part of the NZ precise height 

network. 

There currently exist >16,000 km of two-way first-order precise levelling that has 

been observed since the 1960s to give the coverage current shown in Figures 2.4 and 

2.5 (e.g., Gilliland, 1987).  These networks were observed in a piece-meal fashion 

and the large loop around the South Island (Figure 2.5) was only completed in the 

late 1980s.  Each local vertical datum (LVD) has been defined using a least-squares 

adjustment to give heights for its constituent marks. 

It can be seen from Figures 2.4 and 2.5 that the levelling coverage is not uniform 

over NZ.  Some areas, such as the central North Island (Figure 2.4) in the vicinity of 

the Moturiki tide-gauge (37º 38’S, 176º 10’E), have a very strong network 

configuration, but other areas, notably the south-west of the South Island (Figure 

2.5), are particularly sparse. 

The irregular coverage has a great deal to do with the topography over which the 

levelling runs traverse and the lack of roads in the sparser areas along which precise 

levelling lines are placed for stability and access reasons.  The South Island levelling 

lines that transect the Southern Alps/K� Tiritiri o te Moana (Figure 2.5) are limited to 

the three mountain passes over them.  It is not practicable (or in some cases possible) 

to obtain a denser spirit levelling network in these remote areas due to the steep and 

rugged topography (gradients are frequently over 45º in the mountainous areas, cf. 

Section 4.9). 
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Figure 2.4  NZ North Island precise levelling networks, tide-gauges and vertical 
datum junction points (adapted from NZNCGG, 1991; Mercator projection) 
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Figure 2.5  NZ South Island precise levelling networks, tide-gauges and vertical 
datum junction points (adapted from NZNCGG, 1991; Mercator projection) 
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LINZ currently uses the normal-orthometric height system for the publication of its 

official heights in NZ (DoSLI, 1989).  These heights are incorrectly referred to as 

orthometric heights by the LINZ geodetic database (www.linz.govt.nz/gdb) and in 

many publications (e.g. Gilliland, 1987; DoSLI, 1989; Reilly, 1990).  True 

orthometric heights can never be realised because of the (impossible) requirement to 

know integral mean gravity through the topography at each point (cf. Section 2.2.3). 

The NZ normal-orthometric heights are derived by the application of a cumulative 

normal-orthometric correction, NOCNZ, to the precisely levelled height differences.  

This correction uses a static potential value and is given by: 

 ( )NZ mid avNOC 2 sin 2 1 2 / cos 2 z Hυ φ υ β υ φ δφ� �= − + −� �� �� �  (2.19) 

The coefficients υ  and β  are respectively 0.002 506 and 0.000 007; midφ  is the mid-

latitude between the levelling benchmarks; z is one arc-minute (in radians); Hav is the 

average height of the instrument at all setups between the benchmarks (in metres); 

and δ φ  is the latitude difference (in arc-minutes, positive southwards) between the 

benchmarks.  This formula was printed incorrectly in Gilliland (1987), but Equation 

(2.19) is correct (DoSLI, 1989). 

The NOC used in NZ is a generalised version of the more rigorous NOC given by 

Equation (2.16).  Australian heights are reduced by a generalised form of Rapp’s 

(1961) formula (Roelse et al., 1975), however this version is more rigorous than 

Equation (2.19).  When the NOC is evaluated using Equations (2.16) and (2.19) (45º 

00’ S, 1000 m altitude, 1 km north-south levelling line with 20 change points 50 m 

apart) corrections of 0.83 mm and 0.73 mm respectively are obtained.  If the 

comparison is repeated with a more typical average height of 200 m the resulting 

NOC’s are 0.17 mm and 0.15 mm respectively.  At the summit of Aoraki/Mt Cook 

(3754 m, 43º 36’ S, 1 km north-south levelling line), the respective NOCs are 3.12 

mm and 2.73 mm.  The cumulative effect of the differences between the equations at 

typical heights is insignificant (e.g. a 100 km levelling line at a height of 1000 m 

would have a cumulative difference of 1 cm). 
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2.4.3 Local vertical datums 

Each of the NZ LVDs is based on a determination of MSL at different tide-gauges 

over a varying range of time intervals (normally three years) and epochs (primarily 

1920 – 1970).  Heights for each LVD are in terms of the normal-orthometric height 

system (Section 2.4.2).  Table 2.1 lists each of the 13 major LVDs with the 

approximate location of the origin and the time period over which MSL was 

observed for its definition.  The locations of these gauges are also shown in Figures 

2.4 and 2.5. 

The Dunedin-Bluff 1960 datum is a notable anomaly in Table 2.1.  Unlike the other 

datums, it was defined by fixing a Dunedin 1958 height in Balclutha and a Bluff 

1955 height in Invercargill.  Also the Stewart Island 1977 datum is not defined by a 

“long”-term-tide-gauge derived estimate of MSL.  Instead its “zero” is based on the 

MSL value determined from three temporary tide-gauges established around Stewart 

Island/Rakiura using observations over three to five successive (but not 

simultaneous) tides.  The Stewart Island approach was based on trigonometric 

heights that could be in error by 0.2-0.3 metres, consequently the resulting MSL 

could be in error by 0.5 metres from the long-term trend. 

Approximate Location 
Datum 

Latitude (S) Longitude (E) 
Observation Period 

One Tree Point 1964 35° 52’ 174° 30’ 1960 - 1963 

Auckland 1946 36° 52’ 174° 47’ 1909 - 1923 
Moturiki 1953 37° 38’ 176° 10’ 1949 - 1952 

Gisborne 1926 38° 39’ 178° 02’ 1926 

Napier 1962 39° 28’ 176° 55’ Unknown 

Taranaki 1970 39° 03’ 174° 02’ 1918 - 1921 

Wellington 1953 41° 17’ 174° 47’ 1909 - 1946 
Nelson 1955 41° 15’ 173° 16’ 1939 - 1942 

Lyttelton 1937 43° 38’ 172° 42’ 1918 - 1933 

Dunedin 1958 45° 54’ 170° 28’ 1918 - 1937 
Dunedin – Bluff 1960 Datum defined by adjustment only, no physical origin 

Bluff 1955 46° 34’ 168° 24’ 1918 - 1934 

Stewart Island 1977 46° 55’ 168° 04’ 1976 - 1977 (5 tides only) 

Table 2.1  Levelling datum origins and periods of MSL observation, compiled from 
Gilliland (1987); Pearse (1998); and LINZ internal records 
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Over the years, many smaller or special-purpose datums have also been defined.  A 

significant number of these (e.g. Tekapo, Karapiro and Maraetai; Table 2.2) were 

defined with respect to other existing datums for specific hydro-electric power 

projects.  Others (e.g. Deep Cove, Tikinui, and Chatham Island) were defined from 

short periods (e.g. several months) of tidal data and are only used for local purposes 

(Hannah, 2001). 

In 2001, as part of the LINZ survey and title automation project, Landonline, 

(www.landonline.govt.nz), the large number of disparate datums was amalgamated 

into a smaller subset of major ones.  Table 2.2 lists the 13 current major datums and 

the “historical” datums that they now comprise.  Also, shown in brackets in Table 2.2 

are any vertical offsets that have been applied (by LINZ) to ensure that the datums 

are consistent with each other.  These offsets were determined from observed precise 

levelling differences.  The “EDS” datums are not truly separate datums.  They were 

“defined” in terms of the same tide-gauges (and levels) as their parent datums; the 

different name was only used to identify the more recent precise levelling that was 

used to generate heights in terms of them (cf. Figures 2.4 and 2.5), consequently no 

offset has been applied. 

Where two or more vertical datums abut or overlap, it is possible to estimate the 

offset that exists between the datums at that point.  This offset will be affected by the 

length and route of the precise levelling to get to the junction point; any deformation 

that has occurred while the levelling was being carried out (although this 

deformation will be “spread-out” by the least-squares adjustment); as well as 

observational and reduction errors; etc.  The consequence of this is that when vertical 

datums join at multiple places, the observed offsets will also differ. 

The observed (post-adjustment) NZ vertical datum offsets have been obtained from 

the LINZ geodetic database by comparing the heights of marks that are located at the 

junction points of the adjacent datums.  The offsets are shown in Table 2.3; the 

junction points are shown on Figures 2.4 and 2.5.  The Taranaki-Moturiki offset 

observed at AHBB (-0.455 m) is abnormally large compared to the other offsets.  

This is probably due to mark movement between the observation of the respective 

levelling lines, however it was not possible to confirm or disprove this hypothesis 

from analysis of the precise levelling records. 
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Major Datum Constituent datums 

One Tree Point 1964 One Tree Point 1964 
Unahi (-0.1859 m) 

Pouto Point (+0.0396 m) 

Island Point (+0.0701 m) 
Tikinui (+0.0244 m) 

Tinopai (+0.0853 m) 

Auckland 1946 Auckland 1946 

Moturiki 1953 Moturiki 1953 
Maraetai (-2.3304 m) 

Moturiki EDS (0.0000 m) 

Wanganui 1953 (-0.0604 m) 

Gisborne 1926 Gisborne 1926 

Napier 1962 Napier 1962 

Taranaki 1970 Taranaki 1970 

Port Taranaki (0.0000 m) 
Taranaki EDS (0.0000 m) 

Wellington 1953 Wellington 1953 

Kaitoke (-0.0148 m) 

Nelson 1955 Nelson 1955 

Lyttelton 1937 Lyttelton 1937 

Lyttelton EDS (0.0000 m) 

Pahau (+2.2265 m) 
Waitaki (+1.3015 m) 

Dunedin 1958 Dunedin 1958 

Alexandra (+0.9235 m) 
Dunedin EDS (0.0000 m) 

Dunedin – Bluff 1960 Dunedin – Bluff 1960 

Bluff 1955 Bluff 1955 

Stewart Island 1977 Stewart Island 1977 

Table 2.2  Major New Zealand height datums and their constituent datums, offsets to 
major datums are shown in brackets 
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Mark Vertical Datum 1 Vertical Datum 2 Offset 
ABHL One Tree Point 1964 Auckland 1946 +0.206 

AGD8 Auckland 1946 Moturiki 1953 -0.069 

ABTE Auckland 1946 Moturiki 1953 -0.075 
ABV5 Auckland 1946 Moturiki 1953 -0.067 

ABX2 Gisborne 1926 Moturiki 1953 -0.075 

AD2J Napier 1962 Gisborne 1926 +0.166 
AEVR Napier 1962 Moturiki 1953 +0.099 

AE54 Napier 1962 Taranaki 1970 +0.046 

AE54 Taranaki 1970 Wellington 1953 +0.191 
AE54 Napier 1962 Wellington 1953 +0.237 

AHBB Taranaki 1970 Moturiki 1953 -0.455 

B48K Taranaki 1970 Moturiki 1953 -0.014 
AEXF Taranaki 1970 Moturiki 1953 -0.019 

AEXF Taranaki 1970 Wellington 1953 +0.102 

AEXF Moturiki 1953 Wellington 1953 +0.121 
AEJ5 Nelson 1955 Lyttelton 1937 +0.014 

AP5E Nelson 1955 Lyttelton 1937 +0.039 

ADHE Nelson 1955 Lyttelton 1937 -0.086 
ADCK Nelson 1955 Lyttelton 1937 -0.076 

B4A2 Lyttelton 1937 Dunedin 1958 -0.054 

AE7N Lyttelton 1937 Dunedin 1958 -0.087 
ADP2 Dunedin-Bluff 1960 Dunedin 1958 -0.019 

AB9T Dunedin-Bluff 1960 Bluff -0.001 

Table 2.3 Datum offsets determined from height differences and junction points of 
vertical datums (metres) 

2.4.4 Sea-level variability and vertical datum definition 

Sea-level observed at tide-gauges can vary on annual, inter-annual and inter-decadal 

cycles, hence the particular epoch of data used will affect the determined level of 

MSL (Bell et al., 2000).  Analysis of sea-level observations by LINZ (Rowe, 2006, 

pers. comm.) has shown that variations in the observed MSL can differ from the 

long-term average by 10 cm over a three-year period.  Figure 2.6 shows the monthly 

sea-level trends for the Wellington tide-gauge (Rowe, 2006, pers. comm.).  Given 

that a number of the vertical datums were defined by only three years of sea-level 

observations (cf. Table 2.1) it is very likely that they are based on a MSL that is not 

representative of the long-term average.  For example if MSL was defined from data 
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indicated by either of the horizontal lines in Figure 2.6 rather than the full set, the 

resulting MSL could be offset from the long term average by over 50 mm. 

 

Figure 2.6 Monthly sea-level observations for Wellington tide-gauge from LINZ 
records, 1984 – 2006 (mm)  

The sea-level observations for the periods when the vertical datums were defined 

have not yet been processed by LINZ so it was not possible to quantify if they were 

affected by such anomalies.  Based on the very limited data available (e.g., Figure 

2.6) an offset of 5-10 cm could readily be attributed to the choice of epoch for the 

shorter duration definitions (e.g., One Tree Point 1946, Moturiki 1953, Gisborne 

1926, Napier 1962, Taranaki 1970, Nelson 1955, Stewart Island 1977; cf. Table 2.1). 

2.4.5 Relative sea-level from tide-gauges 

Because the LVD zero levels have not been updated since their definition, it is likely 

that they would be affected by any changes in MSL since then (e.g. Douglas, 1991).  

Hannah (1988; 2004) analysed the historic sea-level observations made at the 

Auckland, Wellington, Lyttelton and Dunedin tide-gauges.  This analysis showed 

positive MSL trends over the period of the observations at all four gauges; these 

trends are summarised in Table 2.1.  Hannah (2004) concluded an average sea level 

rise rate of 1.6 mm/yr (±0.2 mm/yr) that when corrected for present-day GIA effects 

(using Peltier, 2000) gives an average absolute sea level rise of 2.1 mm/yr.  The later 

rate is comparable with global estimates of sea level rise thereby inferring that, on 

average, there is little differential uplift occurring in NZ. 

To verify the sea level observation derived uplift rates, the University of Otago and 

GNS Science have operated continuous GPS receivers at the four tide-gauges for the 
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last 6.5 years (on average).  The daily height solutions for these records 

(www.geonet.org.nz) show uplift at three ports and subsidence in Wellington (Table 

2.4; cf. Section 2.4.6).  The MSL sea level trend determinations will be better long-

term estimates than the GPS determinations because they use a longer time-series 

and so will be less affected by shorter-term variations in sea level (cf. Section 2.4.4).  

The MSL change since the definition of the vertical datums has been calculated by 

adding the tide-gauge and GPS trends and multiplying by the number of years since 

the establishment of the vertical datum. 

The large changes at Auckland and Lyttelton (15 and 28 cm respectively) show that 

it is likely that the vertical datum zero levels do not coincide with the current MSL.  

This comparison assumes that the change in sea-level is linear.  Recent studies (e.g., 

Church and White, 2006; Holgate and Woodworth, 2004) show that sea-level rise 

may have accelerated in the 20th century and hence the tide-gauge estimated trends 

may be conservative.  Although this analysis has not been undertaken at the other 

tide-gauges, it is reasonable to expect that the MSL changes would be of a similar 

magnitude. 

Tide-gauge / 
vertical datum 

Sea-level 
observation 
data period 

Tide-gauge 
observed 

MSL trend 
(mm/yr) 

Tide-gauge 
height trend 
from GPS  
(mm/yr) 

MSL change 
since datum 
definition to 

2007 (m) 

Auckland 1946 1899 – 1999 +1.30 +1.2 (5.4 yrs) +0.153 

Wellington 1953 1891 – 1893 
1903 – 2001 +1.78 -1.4 (6.9 yrs) +0.021 

Lyttelton 1937 1901 – 2001 +2.08 +1.9 (6.7 yrs) +0.279 

Dunedin 1958 
1899 – 1986 
1989, 1990, 
1996, 1998 

+0.94 +0.9 (6.9 yrs) +0.090 

Table 2.4 MSL trends observed by Hannah (1988; 2004) and GPS observed height 
changes at tide-gauges 

2.4.6 Vertical deformation in New Zealand 

The Earth’s surface in the NZ region experiences relative movements that deform its 

shape (e.g., earthquakes).  The horizontal movements are reasonably well known 

(e.g. Beavan and Haines, 1997; Beavan, 1998; Walcott, 1984), but in comparison the 

vertical movements are not.  There are regional studies that show areas within the 
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Taupo Volcanic Zone (see Figure 2.7) are subsiding by up to 10 mm/yr (Otway et 

al., 2002).  At the local level, subsidence of as much as 8.5 m has been reported as 

occurring in the Wairakei area (38º 37’ S, 176º 06’ E) due to geothermal energy 

draw-off for electricity generation (Bevin et al., 1984). 

 

Figure 2.7  Taupo Volcanic Zone (adapted from Bevin et al., 1984) 

The Southern Alps/K� Tiritiri o te Moana (cf. Figure 2.5) are subjected to uplift rates 

in the order of 10 mm/yr due to the interaction of the Pacific and Australian tectonic 

plates along the Alpine Fault (e.g., Beavan et al., 2004; Walcott, 1984; Wellman, 

1979).  These subsidence and uplift rates have a slow but continuous effect on the 

height of stations and the gravity observations (cf. Section 3.3). 
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Earthquakes, however, often have the largest short-term effect on heights.  Important 

NZ examples include, subsidence of up to 2 m from the Edgecumbe earthquake of 

1987 (Beanland et al., 1990); uplift of 2.7 m from the Inangahua earthquake of 1968 

(Lensen and Otway, 1971); uplift of 2.4 m and subsidence of 0.9 m from the Napier 

earthquake of 1931 (Henderson, 1933); and uplift of 1.3 – 2.1 m (6.4 m maximum) in 

Wellington Harbour from the 1855 Wairarapa earthquake (Begg and McSaveney, 

2005). 

Unfortunately, there is currently no national model of vertical deformation in NZ that 

can be used for transforming heights and gravity anomalies observed at one epoch to 

another (a horizontal deformation model is used in NZGD2000, e.g., Blick, 2003).  

Vertical deformation models are now available for other regions (e.g., Fennoscandia, 

Vestøl, 2006).  To obtain a general impression of the uplift/subsidence that is 

currently occurring in NZ, the vertical components of the daily coordinate solutions 

from 28 PositioNZ (www.linz.govt.nz/positionz) and GeoNet (www.geonet.org.nz) 

continuous GPS stations with records of longer than two years were computed (Table 

2.5).  This revealed an average uplift/subsidence rate of 2 mm/yr for NZ (Table 2.6), 

although, the quality of this estimate is limited by the short (4.1 year) data span and 

potential presence of systematic errors in the data.  Geological estimates of uplift 

rates of 1-5 mm/yr can be obtained from raised beaches etc. (e.g., Ota et al., 1992; 

Stirling, 1992; Cooper and Norris, 1995; Berryman et al., 2000).  It is important to 

note that these geological rates have been deduced from movements occurring over 

geological time scales and therefore may not be representative of sea level 

movements in the last century. 

Although the evidence for uplift is not conclusive it is still useful to evaluate its 

potential effect.  Given that most of the NZ LVDs were defined about 50 years ago, 

this could mean that the heights of the benchmarks and that of the datum origins may 

have risen by 10 cm on average from then until 2006 (assuming linear uplift).  As 

well as the effect on the vertical datum origins, uplift will also cause a gravity 

decrease at the gravity observation points in proportion to the height change.  Ekman 

(1989) approximates gravity to decrease at a rate of 0.02 mgal/mm of uplift, 

therefore the NZ average uplift of 2 mm/yr will result in an annual gravity decrease 

of 0.04 mgal/yr (or 2.0 mgal over 50 years). 
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Site Longitude Latitude Rate 
(mm/yr) 

Duration 
(years) 

WHNG 174º 19’ E 35º 48’ S 3.19 3.6 
AUCK 174º 50’ E 36º 36’ S 1.18 6.9 

CORM 175º 45’ E 36º 52’ S 2.97 3.5 

HAMT 175º 07’ E 37º 48’ S 2.57 3.5 
TRNG 176º 16’ E 37º 44’ S 5.34 3.8 

HIKB 178º 18’ E 37º 34’ S 2.90 3.5 

GISB 177º 53’ E 38º 38’ S 1.87 4.4 
TAUP 176º 05’ E 38º 45’ S 7.27 4.7 

MAHO 174º 51’ E 38º 31’ S 2.16 2.8 

NPLY 174º 07’ E 39º 11’ S 3.06 3.7 
WANG 174º 49’ E 39º 47’ S 1.87 3.6 

HAST 176º 44’ E 39º 37’ S 0.98 4.2 

DNVK 176º 10’ E 40º 18’ S 3.94 4.1 
MAST 175º 35’ E 37º 44’ S 0.48 3.9 

WGTN 176º 16’ E 41º 04’ S 1.47 6.9 

NLSN 173º 26’ E 41º 11’ S 0.75 2.8 
GLDB 172º 32’ E 40º 50’ S 0.15 2.8 

WEST 171º 48’ E 41º 45’ S -0.57 2.2 

KAIK 173º 32’ E 42º 26’ S 0.48 2.8 
LKTA 172º 16’ E 42º 47’ S 2.18 2.8 

MQZG 172º 39’ E 43º 42’ S 3.09 6.9 

HOKI 170º 59’ E 42º 43’ S 5.49 6.9 
MTJO 170º 28’ E 43º 59’ S 1.95 6.3 

HAAS 168º 47’ E 44º 04’ S 0.21 2.4 

OUSD 170º 31’ E 45º 52’ S 2.00 6.9 
LEXA 169º 18’ E 45º 14’ S -0.01 2.7 

MAVL 168º 07’ E 45º 22’ S -1.22 2.5 

BLUF 168º 17’ E 46º 35’ S 0.55 2.7 

Table 2.5 GPS observed uplift rates at PositioNZ stations with more than two years 
observations 

Max Min Average STD 

7.3 -1.2 2.0 1.9 

Table 2.6 Statistics of NZ uplift/subsidence estimates from continuous GPS 
observations at 28 PositioNZ sites (mm/yr) 
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2.4.7 NZ national levelling adjustment 

One proposal (Hannah, 2001) for the establishment of a new vertical datum for NZ is 

to undertake a least-squares adjustment of all the NZ precise levelling observations 

to give a single vertical datum for NZ (or more strictly one datum for each of the 

North and South Islands).  This approach would “complete” the adjustment of 

precise levelling programme that was commenced in the 1960’s (cf. Section 2.4.2).  

Establishing vertical datums by precise levelling is the traditional methodology that 

has been used by many countries (cf. Section 2.5) hence defining a NZ vertical 

datum in this way would follow international “best-practise”. 

A risk of using this methodology is that, during the ~40 year period that the precise 

levelling observations have been acquired, the levelled benchmarks may have been 

subjected to non-uniform localised vertical deformation due to earthquakes, 

geothermal draw-off, etc. (cf. Section 2.4.6).  The deformation may have occurred 

(1) since the levelling was carried out and (2) between the individual levelling 

campaigns that were used to complete a particular levelling line (or loop). 

This means that although an adjustment may provide a statistically strong solution, a 

proportion of the adjusted heights will not be representative of the current ground 

positions.  Also, because not all of the precise levelling lines are connected into 

“adjustable” loops there is a risk that the adjustment would be ill-conditioned and 

therefore give a weak result.  Such an adjustment is less likely to identify the 

systematic (non-random) errors caused by the vertical deformation during the 

acquisition of the precise levelling observations.  An additional constraint is that only 

the reduced height differences between benchmarks are available (i.e., the individual 

setup information is not accessible).  It would also be necessary to only constrain one 

tide-gauge for each (North and South Island) adjustment to prevent the distortions of 

the type that are present in the Australian Height Datum (Roelse et al., 1975). 

Nevertheless an adjustment of the precise levelling observations was undertaken as 

part of this study to determine the effect on benchmark heights (cf. Figures 2.4 and 

2.5).  The first step was to capture the 23,892 height differences between 10,108 

benchmarks from the original computation sheets into a Microsoft Access database so 

that they could be effectively manipulated.  A least-squares adjustment was then 

performed on the observations for each datum using the LINZ in-house SNAP 
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software (www.linz.govt.nz/downloadsoftware) to determine any capture errors by 

identifying “large” height changes or residuals.  The results of these adjustments 

(North Island - Table 2.7; South Island - Table 2.8) were used to identify and correct 

erroneous or conflicting observations (e.g., from levelling carried out before and 

after major earthquakes, regional deformations, etc.). 

Datum Pts Obs Standard 
error ( )2resid�  Average 

error 
Outliers 
(> 99%) 

One Tree Point 1964 566 1,230 0.803 428.8 0.020 9 

Auckland 1946 694 1,462 0.300 69.1 0.027 0 

Moturiki 1953 2,702 6,138 0.409 576.0 0.021 0 
Gisborne 1926 705 1,772 0.429 196.9 0.029 0 

Napier 1962 452 990 0.241 31.4 0.024 0 

Taranaki 1970 274 752 0.308 45.5 0.025 0 
Wellington 1953 632 1,502 0.397 137.9 0.023 8 

North Island 5,967 13,846 0.461 1,672.1 0.031 21 

Table 2.7 Summary of North Island precise levelling adjustments, average error of 
heights is 95% confidence level in metres, “outliers” are observations over 99% 

confidence level and are included in adjustment 

Datum Pts Obs Standard 
error ( )2resid�  Average 

error 
Outliers 
(> 99%) 

Nelson 1955 865 1,970 0.412 188.0 0.028 9 
Lyttelton 1937 2,139 5,382 0.423 579.7 0.032 0 

Dunedin 1958 613 1,550 0.447 187.7 0.025 0 

Dunedin-Bluff 1960 409 838 0.237 24.1 0.024 0 
Bluff 1955 134 306 0.292 14.7 0.014 0 

South Island 4,141 10,046 0.412 1,000.2 0.046 7 

Table 2.8 Summary of South Island precise levelling adjustments, average error of 
heights is 95% confidence level in metres, “outliers” are observations over 99% 

confidence level and are included in adjustment 

Once the separate datum adjustments were working, they were incorporated into 

combined least-squares adjustments for the North and South Islands (bottom rows of 

Tables 2.7 and 2.8).  Because the combined solutions adjust all of the observations 

within an island simultaneously the statistics in bottom rows of Tables 2.7 and 2.8 

are not the sum individual datum statistics.  Some of the connections between datums 

are tenuous, such as, only single one-way height differences between terminal 
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benchmarks.  Overall the adjustment statistics were consistent between the individual 

datums and the combined networks with no major problems occurring during the 

combination.  This demonstrates that it is technically feasible to undertake a 

combined adjustment of the observations.   

The spatial extent of a vertical datum established by the adjustment of precise 

levelling observations is limited to the location of those observations.  In NZ this 

restricts the vertical datum coverage to the major highways (cf. Figures 2.4 and 2.5) 

and urban areas.  Consequently there are large areas of NZ (notably Fiordland and 

the Southern Alps/K� Tiritiri o te Moana in the South Island, and Rakiura/Stewart 

Island) that can not be covered by such a datum.  New levelling observations could 

be acquired to fill some of the gaps in the levelling networks and to identify/quantify 

the effect of vertical deformation, however the high cost of doing so makes this an 

impractical on a national scale. 

There is also no clear demand from users of the LVDs for a nationally adjusted 

precise levelling network, most probably because such an adjustment would not 

provide any additional practical benefits (on a local scale) in addition to those of the 

LVDs.  Also, GNSS users require a quasigeoid that is compatible with the LVD, so a 

quasigeoid would still need to be computed.  Therefore this thesis develops and 

analyses an alternative approach to establishing a new vertical datum for NZ. 

2.4.8 New Zealand Geodetic Datum 2000 

The current official horizontal geodetic datum for NZ is New Zealand Geodetic 

Datum 2000 (NZGD2000; Blick, 2003).  It is a three-dimensional geocentric datum 

that uses the GRS80 ellipsoid (Motitz, 1980) and is aligned to the ITRF96 (Boucher 

et al., 1998) global reference frame.  To incorporate the effects of deformation, 

NZGD2000 uses a horizontal deformation and velocity model to “correct” 

observations for the effects of deformation from the time of acquisition to the 

datum’s reference epoch (01 January 2000).  This approach enables the integration of 

observations into the LINZ Landonline database (www.landonline.govt.nz) that are 

acquired at different times.  No vertical deformation or velocity model is used in 

NZGD2000. 
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NZGD2000 uses GRS80 ellipsoidal heights as its official height system (Blick, 

2003).  The use of ellipsoidal heights is becoming increasingly popular amongst 

users of the geodetic system, even with the limitations described in Section 2.2.10.  

The most significant of these limitations is the inability of ellipsoidal heights to 

predict the flow of fluids.  Consequently there is a need for any new NZ vertical 

datum to support the use of ellipsoidal heights and to provide the ability to convert 

them to naturally based heights that can predict fluid flows (Blick et al., 2001). 

2.5 International height systems and vertical datums 

Before finally deciding on an approach for developing a modernised height system 

for NZ (and taking for granted the current unique situation of 13 LVDs), it is sensible 

to examine the height systems and vertical datums that are used in other countries to 

ascertain if there are any lessons that can be learnt from them.  The following 

Sections compare and contrast the height systems and vertical datums of a selection 

of countries with the system of NZ (cf. Hannah, 2001). 

2.5.1 Australia 

Australia differs from New Zealand in that it has a single unified vertical datum 

(excluding Tasmania) called the Australian Height Datum (AHD; Roelse et al., 

1975).  It was defined in May 1971 by the adjustment of 97,230 km of two-way 

(mainly third order; ICSM, 2002) precise levelling that was constrained to MSL at 32 

tide-gauges around the coast (Roelse et al., 1975).  The AHD uses a modified version 

of the normal-orthometric height system (e.g. Holloway, 1988; Featherstone and 

Kuhn, 2006) where a truncated form of Rapp’s (1961) normal-orthometric correction 

was applied to the spirit levelling observations (cf. Section 2.2.9).  As in NZ, no 

gravity observations were used in the reductions so the AHD is not rigorously based 

on a physical/natural height system (Featherstone and Kuhn, 2006). 

Several gravimetric quasigeoid models have been computed for Australia (e.g., 

Featherstone et al., 2001; Steed and Holtznagel, 1994; Kearsley and Govind, 1991; 

Gilliland, 1989) that provide a conversion between GNSS derived heights and the 

AHD.  However, because the AHD is not an equipotential surface and the effect of 

SSTop has been neglected, a slope of approximately 70 cm exists between the north 
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and the south of the country (Featherstone, 2004, 2006) as well as 1.5 m local 

distortions (Roelse et al., 1975).  At the present time, there are no plans to readjust 

the AHD. 

2.5.2 United States of America 

The current vertical datum in the United States of America (USA) is the North 

American Vertical Datum of 1988 (NAVD 88; Zilkoski et al., 1992).  Its 

predecessor, the National Geodetic Vertical Datum of 1929 (NGVD 29) is still used 

in some areas.  NAVD 88 incorporated approximately 730,000 km of two-way first- 

and second-order precise levelling in both the USA and Canada, including 81,500 

km of re-levelling.  The datum was realised by the adjustment of American, Mexican 

and Canadian levelling data constrained to a single benchmark (Rimouski, Quebec, 

Canada) located at the mouth of the St Lawrence River (Zilkoski et al., 1992).  This 

differed from NGVD 29, which was constrained at 26 coastal tide-gauge sites.  

NAVD 88 heights are in terms of the Helmert orthometric height system (see Section 

2.2.4); as such observed gravity was used for the height computations.  The vertical 

datums and height systems of the USA are described in detail in Meyer et al. (2004; 

2005; 2006a, 2006b). 

There are currently two official geoid models for the USA that can be used to convert 

ellipsoidal heights to their [Helmert] orthometric counterparts (Roman et al., 2004).  

These models are the latest in a succession of models (Milbert, 1991; Smith and 

Milbert, 1999; Smith and Roman, 2001).  USGG2003 is a gravimetric geoid that has 

been computed for the contiguous USA and GEOID03, which is based on 

USGG2003, but uses 14,185 GPS-levelling heights to fit it to the NAVD 88 height 

system using least-squares collocation (Roman et al., 2004). 

2.5.3 Canada 

Canada’s official vertical datum is called the Canadian Geodetic Vertical Datum 

1928 (CGVD28). It was established through the adjustment of approximately 

124,000 km of precise levelling that was constrained to MSL observed at six tide-

gauges (spread on both coasts of Canada) in 1928.  This adjustment (like NAVD 88) 

used Helmert orthometric heights (Kingdon et al., 2005).   
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Until 1993, 4000 km to 5000 km of levelling was carried out by Natural Resources 

Canada (NRCan), with about 3000 km of this for maintenance purposes. This 

reduced to 1200 km from 1994 to 2000; from 2001 only minimal targeted levelling 

has been undertaken (Véronneau et al., 2006).  Like NZ, the coverage of the precise 

levelling data is not uniform, primarily as a result of large areas terrain being 

unsuitable for this activity and the remoteness of northern Canada.  In the case of 

Canada, the levelling is concentrated along the southern edge of the country. 

The Canadian Gravimetric Geoid 2000 (CGG2000; Véronneau, 2002) has been 

computed to enable users to transform ellipsoidal heights to the CGVD.  However 

this has been seen as an interim step towards a modernised datum (CGRSC, 2004).  

The current NRCan proposal is to adopt a gravimetric geoid as the new vertical 

datum and therefore provide a definition in terms of an ellipsoid.  This will allow 

users to access heights in terms of a common reference surface over the entire 

country rather than just at precise levelling points along the precise levelling routes 

(Véronneau et al., 2006).  While enabling the use of GNSS positioning technology, 

the new datum would be implemented over a long (10 year) period to enable users to 

properly migrate data from CGVD28.  Given the similarities between the existing 

height systems and the physical environments of NZ and Canada, the Canadian 

approach to modernisation of its vertical datum can also be applied to NZ.  This 

approach is also advantageous from a financial point of view because it does not 

require the 16,000 km of precise levelling to be repeated or for gravity observations 

to be acquired at each levelling point (cf. Section 2.4.2). 

2.5.4 Europe 

The height systems and vertical datums used in Europe are characterised by their 

diversity.  The vertical datums of the different countries are generally related to MSL 

estimated at one or more tide-gauges.  The tide-gauges are located at various oceans 

and inland seas (e.g. Baltic Sea, North Sea, Mediterranean Sea, Black Sea, Atlantic 

Ocean) between which sea-levels can differ by several decimetres (Ihde et al., 2002).  

The height datums are (in many cases) historical and so not all datums represent 

MSL, some relate to high and low tides instead.  Three different height systems are 

used throughout Europe: [Helmert] orthometric (Belgium, Denmark, Finland, Italy 

and Switzerland); normal (France, Germany, Sweden, most countries of Eastern 
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Europe); and normal-orthometric (Norway, Austria, countries of former Yugoslavia) 

(EUREF, 2006). 

The European Vertical Reference Network (EUVN) has been developed as a method 

of unifying the different national vertical datums to a proposed accuracy of a few 

centimetres (Ihde et al., 2002).  The EUVN and the United European Levelling 

Network 1995/1998 (UELN95/98) adjustment (Ihde et al., 2000) define the 

European Vertical Reference Frame 2000 (EVRF2000).  The vertical datum of the 

EVRF2000 is realised using the zero level through the Normaal Amsterdams Peil 

tide-gauge (NAP) with a geopotential number of zero; related parameters are defined 

according to the GRS80; and the zero-tide Earth-tide model (EUREF, 2006). 

EVRF2000 has shown that the zero levels of the national vertical datums typically 

vary in the order of a decimetre, but can reach 50 cm in France and Spain (Ihde et al., 

2002).  This approach to the unification of vertical datums works well in Europe 

where it is possible to precisely level between datums.  In jurisdictions where this is 

not possible (e.g., NZ which comprises three main islands), an alternative approach 

(e.g. hydrodynamic levelling, e.g., Cartwright and Crease, 1963) needs to be 

considered. 

2.5.5 Fennoscandia 

The height systems of the Fennoscandian countries (Denmark, Finland, Norway and 

Sweden) are very comprehensive (e.g., Ihde et al., 2002; Ádám et al., 2000).  They 

are characterised by frequent first- and second-order re-levelling and vertical datum 

readjustments that are possibly as a result of their long history of settlement and 

significant uplift due to GIA of over 7 mm/yr (e.g., Lidberg et al., 2007; Fjeldskaar 

et al., 2000; Lambeck et al., 1998; Pan and Sjöberg, 1998; Ekman, 1996; 1989; 

Vestøl, 2006).  A notable feature that is present in each of the four Nordic countries 

is that after each major re-levelling, a new vertical datum is released. 

Cross et al. (1987) report that later versions of the Danish and Finnish height systems 

have not been well received by users of the systems because they introduced small 

changes to all benchmark heights for no perceived practical (as opposed to scientific) 

benefit.  It also introduces the potential for confusion if the height datum is not 
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clearly stated.  These are important considerations that need to be taken into account 

when defining a new vertical datum for NZ.  For example, the national precise-

levelling adjustment (Section 2.4.7) gives new heights that are typically less than 10 

cm different to their existing values. 

2.6 A modernised height system for New Zealand 

The existing NZ vertical datums can be characterised as disparate, offset (Table 2.3) 

levelling networks that are (relatively) dense in the populated (flat, coastal) regions 

and very sparse in the uninhabited or mountainous areas (cf. Section 2.4.2, Figures 

2.4 and 2.5).  Levelling-based LVDs cannot be easily extended into areas where 

there are no roads.  Trigonometric heighting is able to be used away from roads and 

can achieve accuracies of 1-2 mm/km if sight lines are 100 to 300 metres in length 

(Torge, 2001, p254).  Such short sight lines can be difficult to achieve (especially in 

areas of rough topography where roads do not exist) and can therefore make 

trigonometric heighting as time consuming as precise levelling; hence a different 

approach is required.  Even with the limited spatial extent of the levelling datums, 

users appear happy to continue using these local systems for many of their 

applications because their observation technology works well with them (e.g., spirit 

levels).  There is also an increasing demand from users of NZ heights for the ability 

to convert ellipsoidal heights obtained from GPS receivers to the 13 local normal-

orthometric datums (Blick et al., 2001). 

The issues faced by NZ in regards to the selection of a new vertical datum and height 

system are very similar to those which are currently being addressed by Canada.  

Both NZ and Canada have national precise levelling networks that are relatively 

dense in populated areas and also very sparse (if not non-existent) in their more 

remote regions.  As such, they do not provide uniform vertical datum coverage over 

the whole of their jurisdictions.  A key difference between the two countries LVDs is 

that while Canada has a single vertical datum, NZ has 13.  Also, precise levelling 

based vertical datums are not compatible with GNSS technology (i.e., ellipsoidal 

heights) unless they are combined with a precise quasigeoid undulation model (cf. 

Section 6.3.2).  Given that Blick et al. (2001) identified “compatibility with 

ellipsoidal heights” as an essential criterion for any new NZ vertical datum, the 
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retention of precisely levelled heights on their own as the basis for a vertical datum 

will not be satisfactory. 

Both NZ and Canada experience vertical deformation, although it is caused by 

different phenomena.  In NZ it is a result of tectonics (cf. Section 2.4.6), whereas in 

Canada it is primarily as a result of GIA (e.g., Mainville and Craymer, 2005).  Both 

GIA and tectonic deformations are broadly predictable on a regional scale, however 

if they are ignored, the rates are sufficiently high (7 mm/yr) that they will introduce 

errors into their respective vertical datums.  It is therefore important that the effects 

are accounted for.  This is most effectively achieved with a vertical deformation 

model like that being used horizontally in NZGD2000 (cf. Section 2.4.8; Vestøl, 

2006). 

There are therefore two main approaches that could be used to define a new vertical 

datum for NZ, undertake a combined adjustment of the precise levelling networks or 

define a gravimetric quasigeoid that can be used as the datum surface.  The 

advantages and disadvantages of both options have been described in the previous 

sections.  On balance, the quasigeoid approach was chosen for the development of 

the new vertical datum, even though its computation may be affected by errors in the 

gravity data (cf. Section 6.5.1). 

A new vertical datum for NZ should be defined using a gravimetric quasigeoid 

(Figure 2.8).  This approach will allow points to have official heights in terms of both 

a LVD and the ellipsoid (i.e., in terms of NZGD2000).  To enable the transformation 

of heights from the LVDs an additional offset will also need to be used with the 

quasigeoid.  This approach will allow the continued use of the LVDs by users and 

enable the use of GPS positions with the official height network (Amos, 2006).  To 

ensure that the relationship between the NZ height system and any future world 

height system is known, absolute gravity observations should be made at one (or 

more) of the continuous GNSS points defining NZGD2000. 
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Figure 2.8  Proposed new vertical datum for NZ using a quasigeoid (�) and LVD 
offset (�) to relate heights in the 13 normal-orthometric LVDs and the ellipsoidal 

NZGD2000 

The remainder of this thesis presents the preparations for and computations of the 

gravimetric quasigeoid that is essential to implement this vertical datum proposal.  A 

unique issue that occurs in NZ is that the input datasets relate to different vertical 

datums, this aspect is treated in the iterative geoid computation approach discussed 

further in Section 6.4. 

2.7 Summary 

This Chapter has discussed several different types of heights as a precursor to the 

presentation of the existing height systems that are currently used in NZ.  Similarly 

the methodology for the establishment of a vertical datum was described and this was 

also related to the NZ situation.  The NZ height systems and vertical datums were 

discussed from a historical context and their strengths and weaknesses identified. 

An analysis of the readjusted precise-levelling observations showed that, while it is 

technically possible to develop a new vertical datum in this way, the methodology is 

subject to several significant disadvantages in NZ (e.g., vertical deformation during 

and since the precise-levelling observations were made, high cost to obtain new 

levelling observations, and the poor spatial coverage of resulting datum).  Therefore, 

this thesis develops and analyses an alternative approach to establishing a new 

vertical datum for NZ.  

A number of international vertical datums were investigated to determine which 

aspects of these that would be useful in a modernised NZ system.  This resulted in a 

conceptual model for the development of a new national vertical datum for NZ that is 
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very similar to the proposal also being considered in Canada.  This proposal will 

retain the normal-orthometric height system that NZ currently uses.  The 13 existing 

vertical datums will also be retained, but they will be related to a reference ellipsoid 

through an official quasigeoid model coupled with additional local offsets.  This will 

ensure that the new national vertical datum is compliant with ellipsoidal heights as 

well as the existing 13 LVDs.  Since a regional quasigeoid model does not currently 

exist for NZ, the remainder of this thesis deals with the computation of such a 

quasigeoid model that takes into account the fact that the input data is referenced to 

13 existing datums that are offset from each other. 
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3 DATA PREPARATION 

3.1 Introduction 

This Chapter describes the different data sets that have been compiled for use in the 

quasigeoid computations described in the remainder of this thesis.  The Chapter is 

divided into seven sections that discuss each of the datasets, with a number of 

sections having Appendices that describe the actual analysis in more detail.  Global 

geopotential models are introduced first, and the results of the model comparisons in 

Appendix A are summarised.  The terrestrial gravity data is then presented with an 

outline of the various gravity anomaly reductions that need to be performed.  The 

actual database is described in Appendix B.  The marine gravity and satellite 

altimetry datasets are then described with the crossover adjustment summarised in 

Appendix C.  The combination of these two datasets by least-squares collocation 

(LSC) is then presented.  The Chapter concludes with a description of the digital 

terrain model and the GPS-levelling points that are to be used to compute the LVD 

offsets and to determine the fit of the quasigeoid. 

3.2 Global Geopotential Models 

3.2.1 Background 

A global geopotential model (GGM) comprises a set of fully normalised spherical 

harmonic coefficients that model the long-wavelength features of the Earth’s external 

gravity field.  The quasigeoid height � is computed from a GGM using Equation (3.1) 

and the gravity anomaly �g from Equation (3.2), where GM is the product of the 

Newtonian gravitational constant and mass of the Earth (assumed equal to that of the 

geocentric reference ellipsoid); γ is normal gravity on the surface of the reference 

ellipsoid; (r,θ,λ) are the geocentric spherical polar coordinates of the computation 

point; a is the semi-major axis length of the geocentric reference ellipsoid; 

( )θcosnmP  are the fully normalised associated Legendre functions for degree n and 

order m; nmCδ  and nmS  are the fully normalised spherical harmonic coefficients of 

the GGM, reduced for the even zonal harmonics of the geocentric reference ellipsoid 

(e.g. Torge, 2001, pp. 271-272). 
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The highest resolution attainable from a GGM at the Earth’s surface is determined by 

its maximum degree of complete harmonic expansion, Mmax.  The maximum 

wavelength is given approximately by: 

 max
max

2
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R
M

πλ φ≈   (3.3) 

where φ is the evaluation latitude.  The maximum resolution is equal to half the 

maximum wavelength: 

 cosMax
Max

R
M
πρ φ=   (3.4) 

Therefore, assuming an Earth radius of R, = 6,378.137 km, the maximum resolution 

attainable from a degree 360 GGM (e.g., EGM96, Lemoine et al., 1998) is ~55 km at 

the equator.  Over NZ (φ � 45º) the maximum resolution is approximately 39 km. 

3.2.2 Merged GGMs 

There are three main types of GGM that are available for use today (satellite-only, 

combined and tailored) that differ according to the types of gravity data used, their 

computation methodologies and their region of applicability.  These models (and 

their source data) are discussed in detail in Appendix A.  Several GGMs, termed 

“merged” models, have been created specifically for this study.  These models take 

advantage of the fact that the different types of GGM are better in different parts of 

the gravity field spectrum (cf. Vergos et al., 2006). 

A merged GGM is generated by replacing the lower order spherical harmonic 

coefficients of a combined model (cf. Appendix A.2.2) with those obtained from a 

satellite-only model (cf. Appendix A.2.1).  The degree at which the satellite-only and 

combined GGMs are merged together is determined by plotting the degree and error-
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degree variances of the two models that are being merged and then ascertaining 

where the degree-variance curves diverge (cf. Figure 3.1).  The development of a 

new Earth Gravity Model (EGM07/8) to degree and order 2160 (~6.5 km resolution 

in NZ) is currently scheduled for release in 2008 (Kenyon et al., 2006).  This model 

has been reported to be of much higher accuracy than its predecessors, so it should 

be evaluated when it becomes available. 

For the combination of the UCPH2002_02 (Howe et al., 2002) and EGM96 

(Lemoine et al., 1998) GGMs the degree- and error-degree variances of both models 

were plotted (Figure 3.1).  It can be seen that the error-degree curves diverge at 

degree 41.   Hence the UCPH2002_02 coefficients from degrees 2 to 41 (inclusive) 

were used to replace the corresponding EGM96 coefficients.  This roughly agrees 

with the estimates of degree 20 and 30 made by Vaní�ek and Sjöberg (1991) and 

Rummel et al. (2002) respectively.  It is also noted from Figure 3.1 that the degree 

variances (power) of UCPH2002_02 begins to decay quickly with respect to EGM96 

beyond degree ~40.  The other six merged GGMs listed in Table 3.1 are shown in 

Figures A.4 to A.10 have been computed using the same procedure. 

 

Figure 3.1  Error-degree (edv) and degree (dv) variance of UCPH2002_02 and 
EGM96 global geopotential models 
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3.2.3 GGM Evaluation 

Amos and Featherstone (2003b) evaluated the fit of the then available GGMs to the 

NZ gravity field, which includes [Molodensky] free-air gravity anomalies (Section 

3.3) on land, GPS-levelling data (Section 3.8) and vertical deflection data (Section 

3.9). 

If the gravity field implied by a GGM is a close fit to these local gravity field data, it 

is then reasonable to expect that it is suitable as the basis for a regional gravimetric 

quasigeoid model.  These tests have been repeated with an increased number of GPS-

levelling points over NZ (cf. Section 3.8) and the additional recent GGMs given in 

Table 3.1 (a total of 24 models are compared here).  All of the models (except the 

merged models) have been obtained from the International Centre for Global Earth 

Models (http://icgem.gfz-potsdam.de/ICGEM/ICGEM.html), which is a service of 

the International Gravity Field Service under the auspices of the International 

Association of Geodesy (IAG). 

Each GGM in Table 3.1 was evaluated to its maximum available degree and order 

using harmonics.f, which is a derivative of Rapp’s (1982) software held at Curtin 

University of Technology, Perth, Australia.  The computations were performed 

point-by-point, where the GGM-implied gravity field quantities were evaluated at the 

geocentric latitude and longitude of each terrestrial data point.  The descriptive 

statistics of the differences were then computed.  GRS80 (Moritz, 1980a) was used 

as the reference ellipsoid for all computations, but no zero- or first-degree terms were 

calculated (cf. Kirby and Featherstone, 1997).  As such, the mean differences 

presented for all the datasets should be treated with some caution, and the standard 

deviations interpreted as the more informative statistic of the fit of each GGM to the 

terrestrial-gravity-field-related data. 
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Model Mmax Class Reference 
UCPH2002_02 90 satellite-only Howe et al. (2002) 

UCPH2004 90 satellite-only Howe & Tscherning (2005) 
GRIM5-S1 99 satellite-only Biancale et al. (2000) 
EIGEN-1S 100 satellite-only Reigber et al. (2002) 
EIGEN-2 120 satellite-only Reigber et al. (2003) 

EIGEN-3P 120 satellite-only Reigber et al. (2005a) 
GGM01S 120 satellite-only Tapley et al. (2004) 
GGM02S 160 satellite-only Tapley et al. (2005) 

EIGEN-CHAMP03S 120 satellite-only Reigber et al. (2005a) 
EIGEN-GRACE02S 120 satellite-only Reigber et al. (2005b) 

JGM-3 70 combined Tapley et al. (1996) 
GRIM5-C1 120 combined Gruber et al. (2000) 

TEG-4 200 combined Tapley et al. (2000) 
GFZ97 359 combined Gruber et al. (1997) 
EGM96 360 combined Lemoine et al. (1998) 

PGM2000A 360 combined Pavlis et al. (2000) 
GGM01C 200 Combined Tapley et al. (2004) 
GGM02C 200 combined Tapley et al. (2005) 

EIGEN-CG03C 360 combined Förste et al. (2005) 
EIGEN-GL04C 360 combined Förste et al. (2006) 

GPM98C 1800 tailored Wenzel (1998) 
UCPH2002_02/EGM96 41/360 merged see text 

UCPH2004/EGM96 52/360 merged see text 
EIGEN2/EGM96 32/360 merged see text 
GGM01S/EGM96 90/360 merged see text 
GGM02S/EGM96 100/360 merged see text 

EIGEN-
CHAMP03S/EGM96 60/360 merged see text 

EIGEN-
GRACE02S/EGM96 120/360 merged see text 

Table 3.1  The GGMs tested over NZ 

It is important to point out that terrestrial gravity anomalies do not form an 

unequivocal test of GGMs, especially the satellite-only GGMs derived from the new 

dedicated satellite gravity field missions.  This is because terrestrial gravity data are 

highly susceptible to medium- and long-wavelength errors due to factors such as 

errors in vertical geodetic datums, which are used implicitly to compute gravity 

anomalies (particularly in NZ, cf. Section 2.4), and to gravimeter drift, which tends 

to accumulate over long distances (Pavlis, 1998).  Heck (1990) gives a review of the 

systematic errors in terrestrial gravity anomalies. 

When any GGM (or quasigeoid) is computed using Stokes’s integral (the most 

common technique) it is deficient in the zero-degree term because the exact values of 

the product of the mass of the Earth and the Universal gravitational constant and the 
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potential of the GGM/quasigeoid are unknown (e.g. Kirby and Featherstone, 1997).  

This manifests itself as a bias in the position of the GGM/quasigeoid with respect to 

the Earth’s geocentre.  The zero-degree term can be controlled using geometrical 

geoid information (i.e. GPS-levelling points) to estimate its magnitude (Heiskanen 

and Moritz, 1967, Section 2-19); however, this approach is dependent on the GPS 

and levelling observations all being in terms of the same vertical datum (e.g. 

Featherstone, 2001).  It is known that the NZ levelling observations are in terms of 

13 offset vertical datums (cf. Section 2.4); therefore any zero-degree term computed 

from that data would be biased by the offsets between the datums.  Consequently, the 

zero-degree term has not been computed for these GGM comparisons.  Therefore the 

average difference between the GGM and GPS-levelling will be affected by this 

term.  

3.2.4 Results of comparison 

The results of the comparisons are summarised in Tables 3.2, 3.3 and 3.4 for the 

terrestrial gravity anomalies, GPS-levelling geometrical geoid heights and vertical 

deflections respectively.  Due to the omission of the zero-degree term, the standard 

deviations (STD) will be used to infer the best fits of the various GGMs to the 

terrestrial gravity-field-related data. 

In general (from Tables 3.2, 3.3 and 3.4), the lower the spherical harmonic degree of 

a GGM, the poorer the resulting fit (i.e. STD) of the GGMs to the data.  This is 

because the terrestrially determined ‘control’ values contain all frequencies of the 

gravity field, whereas the GGMs do not because of the finite spherical harmonic 

expansion that renders them subject to the so-called omission error.  As such, it is 

expected that the agreements will improve as the maximum degree of the GGM 

increases.  This is simply due to a reduction in the omission error and should not 

necessarily be interpreted as an improvement in the low frequencies (i.e., a smaller 

commission error) modelled by these GGMs.  The exception to this trend is 

GPM98C.  This model is based on EGM96, which, because of a lack of NZ data in 

its computation, causes the coefficients to be poorly constrained in NZ, hence the 

STD becomes worse. 
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Model Mmax Max Min Mean STD 
Raw Land Gravity Data - 197.045 -162.258 16.462 42.586 

UCPH2002_02 90 197.045 -162.258 16.462 42.586 
UCPH2004 90 191.956 -151.965 4.904 38.941 
GRIM5-S1 99 187.179 -157.982 2.438 40.016 
EIGEN-1S 100 190.317 -161.487 6.036 40.444 
EIGEN-2 120 187.276 -156.556 4.000 40.359 

EIGEN-3P 120 175.400 -162.836 -14.429 39.726 
GGM01S 120 188.014 -169.667 -0.483 40.811 
GGM02S 160 205.001 -125.558 -13.506 40.877 

EIGEN-CHAMP03S 120 211.870 -173.275 -15.418 48.469 
EIGEN-GRACE02S 120 185.690 -154.676 -2.624 40.034 

JGM3 70 199.517 -134.045 -15.314 41.324 
GRIM5-C1 120 192.240 -147.336 1.436 38.625 

TEG4 200 207.087 -135.803 -5.981 37.821 
GFZ97 359 189.817 -102.627 -8.821 30.425 
EGM96 360 171.161 -110.645 -5.891 26.787 

PGM2000A 360 162.917 -113.320 -8.891 27.459 
GGM01C 200 170.736 -121.633 -26.647 31.757 
GGM02C 200 190.234 -142.846 -25.733 41.287 

EIGEN-CG03C 360 162.803 -113.942 -9.204 27.462 
EIGEN-GL04C 360 149.527 -128.650 -25.470 28.640 

GPM98C 1800 239.009 -122.879 -11.340 29.909 
UCPH2002_02/EGM96 41/360 163.413 -113.920 -9.441 27.506 

UCPH2004/EGM96 52/360 161.798 -113.882 -10.259 27.902 
EIGEN-2/EGM96 32/360 162.187 -113.227 -9.190 27.569 
GGM01S/EGM96 90/360 155.477 -116.567 -14.533 29.232 
GGM02S/EGM96 100/360 151.887 -119.234 -15.352 29.807 

EIGEN-CHAMP03S/EGM96 60/360 163.481 -116.220 -11.154 28.031 
EIGEN-GRACE02S/EGM96 120/360 150.126 -122.909 -16.594 30.242 

Table 3.2  Fit of the geopotential models to land gravity observations (mGal) 

The combined GGMs generally give better fits to the terrestrial gravity data than the 

satellite-only models (Tables 3.2, 3.3 and 3.4), which again is to be expected because 

most of the former include terrestrial gravity data from the NZ region.  However, it is 

plausible that the satellite-only GGMs, notably those derived from recent mission 

data, are more precise than the combined GGMs because the latter will have been 

contaminated by long- and medium-wavelength errors in the terrestrial gravity data 

(described earlier).  It is acknowledged that some filtering of the terrestrial biases is 

achieved in the GGM data combination process (Pavlis, 1998).  Therefore, 

comparisons with terrestrial gravity data are not such a good means of unequivocally 

assessing the precision of satellite-only GGMs (cf. Reigber et al., 2002). 
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Model Mmax Max Min Mean STD 
Raw GPS-Levelling Data - 39.411 1.240 16.869 10.542 

UCPH2002_02 90 4.443 -5.948 1.287 2.045 
UCPH2004 90 4.034 -6.517 1.001 2.031 
GRIM5-S1 99 4.558 -7.210 1.325 2.595 
EIGEN-1S 100 4.479 -6.583 1.037 2.178 
EIGEN-2 120 3.973 -7.596 0.742 2.150 

EIGEN-3P 120 4.054 -5.725 0.373 1.396 
GGM01S 120 3.965 -4.129 -0.388 1.084 
GGM02S 160 3.913 -3.767 -0.515 1.511 

EIGEN-CHAMP03S 120 4.055 -6.038 0.462 1.558 
EIGEN-GRACE02S 120 3.644 -4.577 -0.523 1.190 

JGM3 70 3.892 -5.350 0.799 1.622 
GRIM5-C1 120 3.486 -4.708 0.138 1.202 

TEG4 200 3.373 -2.398 0.128 0.777 
GFZ97 359 4.636 -0.963 0.407 0.765 
EGM96 360 3.712 -1.338 0.134 0.673 

PGM2000A 360 3.660 -1.388 0.084 0.669 
GGM01C 200 2.163 -2.469 -0.402 0.657 
GGM02C 200 3.705 -4.408 -0.465 1.169 

EIGEN-CG03C 360 1.210 -1.697 -0.458 0.495 
EIGEN-GL04C 360 1.646 -1.441 -0.394 0.509 

GPM98C 1800 3.325 -2.153 0.083 0.735 
UCPH2002_02/EGM96 41/360 3.458 -1.284 0.076 0.679 

UCPH2004/EGM96 52/360 2.989 -1.276 -0.008 0.609 
EIGEN-2/EGM96 32/360 3.496 -1.377 0.064 0.653 
GGM01S/EGM96 90/360 1.716 -1.414 -0.414 0.536 
GGM02S/EGM96 100/360 1.421 -1.453 -0.411 0.474 

EIGEN-CHAMP03S/EGM96 60/360 2.666 -1.372 -0.192 0.652 
EIGEN-GRACE02S/EGM96 120/360 1.221 -1.526 -0.438 0.468 

Table 3.3  Fit of the geopotential models to GPS-levelling data (metres) 

3.2.5 Analysis of GGM Comparison 

It is difficult to unequivocally ascertain the best degree-360 GGM from Tables 3.2, 

3.3 and 3.4 simply from the statistical fit to the local gravity field data, principally 

due to the error budget of the latter.  A crude upper estimate of the error of the GPS-

levelling is ~14 cm (cf. Section 3.8), the terrestrial free-air gravity anomalies are 

~0.1-0.5 mGal (cf. Reilly, 1972) and the vertical deflections ~0.3 seconds (Lee, 

1978).  Therefore, the 360-degree GGMs are, statistically, insignificantly different 

from one another in NZ.  More importantly, long- and medium-wavelength errors in 

these terrestrial data may obscure the selection of the best GGM.  Therefore, other 

considerations must be used in parallel. 
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Table 3.4  Fit of the geopotential models to vertical deflections (seconds) 

The argument in favour of the merged EIGEN-GRACE02S/EGM96 and 

GGM02S/EGM96 models is that they use high-quality dedicated GRACE satellite 

gravity data, whereas EGM96 uses probably the best coverage of terrestrial gravity 

data.  Therefore, the merged models probably represent the best-available long-

wavelength and medium-wavelength GGM data.  The choice between the two 

merged GGMs described above is arbitrary.  The GGM02S/EGM96 GGM was 

selected as the reference model for use in the gravimetric quasigeoid computations 
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because its combined standard deviation (between Table 3.2 and Table 3.3) was 

lower.  Because the GGM02 model is in terms of the zero-Earth-tide model (EGM96 

is in the tide-free system) and the Earth-tide only affects the C20 harmonic 

coefficient, the merged GGM02S/EGM96 GGM was therefore in terms of the zero-

tide model so no conversion was required to comply with IAG (1984) (cf. Section 

2.3.5). 

3.3 Terrestrial Gravity 

The terrestrial gravity data in NZ is held and maintained by GNS Science 

(www.gns.cri.nz).  The database currently (2006) consists of 40,737 observations 

covering the NZ and Chatham Island groups (Figure 3.2).  These data were primarily 

collected for the production of gravity anomaly maps in the 1960s and 1970s (Reilly, 

1972).  The database and its records are described more fully in Appendix B.  Reilly 

(1972) estimates the accuracy of the gravity observations to be ~0.1-0.5 mGal. 

The observation horizontal positions in the database are in terms of three different 

transverse Mercator projections that are based on non-geocentric datums.  The 

heights of these positions are likely to be in terms of the 13 LVDs.  The gravity 

observations are referenced to the Potsdam (NZ) gravity datum, which is known to 

give gravity values that are 14 mGal too large due to an error in the absolute gravity 

measurement (Torge, 1989; Grossman and Peschel, 1964).  To ensure the 

consistency of the terrestrial data with other datasets used in gravimetric quasigeoid 

computation, it is necessary to convert the horizontal positions of the points onto the 

geocentric NZGD2000 and to change the gravity datum to IGSN71 (Morelli et al., 

1974).  These conversions are given in Appendix B. 

The gravity anomalies that are supplied in the database have been computed for 

geophysical purposes (gravity mapping) and so do not use the rigorous formulae that 

are necessary for geodetic computations (cf. Featherstone and Dentith, 1997).  It is 

therefore essential that the gravity anomalies used in the remainder of this thesis are 

recomputed.  Sections 3.3.1 to 3.3.3 describe the reductions that are applied to the 

gravity observations to produce the [Molodensky] free-air and complete/refined 

Bouguer anomalies.  [Geophysical] terrain corrections are also included in the 

database, which are discussed in Section 4.7.1. 
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Figure 3.2  NZ (including the Chatham Islands) land gravity data (Mercator 
projection) 

3.3.1 Normal gravity 

The latitude correction (as it is called in geophysics; e.g., Hackney and Featherstone, 

2003) attempts to eliminate the centrifugal acceleration that affects observed gravity 

and the oblate elliptical shape of the Earth, as a function of latitude, φ.  The 

correction is calculated from an international gravity formula that has been adopted 

by the IAG.  The current formula, which is used in this study, is the Geodetic 

Reference System 1980 (GRS80) as given in Moritz (1980a).  The correction is 

applied through the use of Somigliana’s closed formula (Moritz, 1980a).  This is 

given in Equation (3.5) where k is the normal gravity constant, γa is normal gravity at 

the equator, e2 is the square of the first eccentricity, and φ is the geodetic latitude on 

the mean Earth ellipsoid.  The constants from Moritz (1980a) are given in Table 3.5. 
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Constant Value 
γa 9.780 326 771 5 m s -2 
k 0.001 931 851 353 
e2 0.006 694 380 022 90 
a 6 378 137 m 
f 0.003 352 810 681 18 
m 0.003 449 786 003 08 

Table 3.5  Physical and geometrical constants of GRS80 used in gravity reductions 

GRS80 was defined using satellite-derived data.  This means that the GRS80 model 

includes the mass of the atmosphere, whereas observations made at the surface of the 

Earth do not.  The atmospheric correction accounts for the mass-inconsistency 

between the GRS80 normal ellipsoid and gravity observed on the Earth’s surface, as 

well as the atmosphere above the gravity observation point.  The atmospheric 

correction (δgA) is added to the gravity anomalies to account for this difference and 

to therefore make them consistent with those derived from a GGM.  The atmospheric 

correction recommended by the IAG is given in Equation (3.6) where H is the terrain 

elevation of the observation point (in metres).  The correction has units of mGal. 

 40.871 1.0298 10Ag Hδ −= − ×   (3.6) 

Sjöberg (2001) pointed out that the use of the above IAG atmospheric correction will 

incur a bias term if Stokes’s integral is truncated to a limited region around the 

computation point during geoid computation.  He presented an alternative correction 

strategy that is not subject to this bias.  The limitations of Equation (3.6) identified in 

Sjöberg (2001) are acknowledged, however, to ensure consistency with its 

conventions the IAG approach given in Equation (3.6) have been used in this study. 

The terrestrial gravity anomalies were provided in terms of the mean Earth-tide 

system (see Section 2.3.5).  To comply with the IAG resolution on Earth-tide models 

(IAG, 1984) the gravity observations were converted to the zero-tide system using 

Equation 2.18.  It was also necessary to assume that GNS Science properly removed 

instrumental drift and tidal effects during post-processing with frequent base-station 

ties (e.g., Torge, 1989). 
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3.3.2 Free-air correction 

The free-air correction is used to partly downward- or upward-continue gravity 

observations to the quasigeoid using the vertical gradient of normal gravity as an 

approximation, i.e., the first derivative of Equation (3.5) with respect to the 

ellipsoidal height, h (Hackney and Featherstone, 2003).  The free-air correction 

( Fgδ ) “carries up” the normal gravity from the ellipsoid to the Earth’s surface by the 

height H giving the Molodensky free air anomaly Fg∆ . 

A second-order free-air correction is a more accurate representation of the vertical 

gradient of gravity for an ellipsoidal Earth because it takes into account the variation 

of normal gravity with latitude as well as higher order terms in height.  Typically, 

this correction, which assumes an oblate ellipsoid shaped Earth, based on a Taylor 

expansion of normal gravity on the Earth that was derived in Heiskanen and Moritz 

(1967; p79), is given in Equation (3.7), where f is the geometrical flattening of the 

mean Earth ellipsoid (e.g. GRS80, Moritz, 1980a), m is the ratio of gravitational and 

centrifugal forces at the equator as given in Table 3.5.  Because this equation is 

derived from Equation (3.5), the ellipsoidal height is strictly the height that should be 

used, but the normal orthometric height is used in practice. 

 ( )2 2
2

2 3
1 2 sinFg f m f h h

h a a
δγ γ γδ φ
δ

= = + + − −  (3.7) 

 F S A Fg g g g Hγ δ δ∆ = − + +   (3.8) 

3.3.3 Bouguer correction 

The free-air reduction neglects the gravitational attraction of the topography between 

the Earth’s surface and the vertical datum surface.  The simple (planar) Bouguer 

correction removes the mass of the topographic masses using the assumption that the 

topography can be represented by an infinitely lateral plate (Bouguer plate) of 

thickness to the observation elevation as given by Equation (3.9), where G is the 

Newtonian gravitational constant (6.6742 x 10-11 ± 0.00015 m3kg-1s-2, Mohr and 

Taylor, 2007) and ρ is the topographic mass density that is often approximated by 

2,670 kg m-3 (Heiskanen and Moritz, 1967, p130). 
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 2Bg G Hδ π ρ=   (3.9) 

The assumption in the simple (planar) Bouguer reduction that the Earth’s topography 

attracts as an infinitely lateral plate neglects the fact that the surface of the Earth is 

not a flat plane.  At any point where a gravity observation is made the presence of 

topography (i.e. mountains and valleys) surrounding it will have an influence on the 

magnitude of the measurement.  An additional “terrain” correction is therefore 

needed to account for the effect of the surface topography relative to the observation 

point.  When the terrain correction (TC) is applied in conjunction with the Bouguer 

correction given in Equation (3.9) it results in a refined or complete Bouguer 

anomaly Bg∆ .  The computation of TCs is a rather involved process that is discussed 

further in Sections 4.4 and 4.7. 

 ( )+ TCB F Bg g g Hδ∆ = ∆ +   (3.10) 

An alternative approach to the planar model (described above) is based on the 

assumption that the topography can be represented by a shell of thickness equal to 

the observation elevation (Bouguer shell).  This “spherical” model also has an 

associated spherical terrain correction.  Although the NZ gravity observations were 

reduced using the planar model, both approaches are discussed in Section 4.4. 

3.4 Marine ship-track gravity 

Marine gravity observations in the vicinity of NZ have been collected over the past 

45 years by various agencies at different times for different purposes (Figure 3.3).  

The available databases comprise 1,300,266 gravity anomalies bound by 160°E ≤ λ  

≤ 190°E and 25°S ≤ φ ≤ 60°S and auxiliary information including horizontal 

coordinates, gravity values and Eötvös corrections.  Woodward (2001, pers. comm.) 

estimates the accuracy of the marine data to be approximately 1 mGal. 

Until recently, these observations were stored in different formats, in terms of 

different (horizontal and gravity) datums, and no attempt had been made to ensure 

consistency among individual cruises, let alone the datasets.  The problems with 

offsets and tilts in marine gravimetry are well known (e.g., Wessel and Watts, 1988).  

To remedy this problem a crossover adjustment of ~900,000 line-kilometres of 
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observations surrounding NZ was carried out by Intrepid Geophysics (www.intrepid-

geophysics.com) under contract to LINZ (Brett, 2004).  This has brought all the 

observations into a single, coherent, internally consistent dataset.  The crossover 

adjustment process and its results are described in Appendix C. 

 

Figure 3.3  Coverage of ship-track gravity observations around NZ used for 
crossover adjustment (Mercator projection) 

3.5 Satellite altimetry-derived gravity anomalies 

The coverage of the crossover-adjusted marine gravity data is good near the coast, 

but it becomes relatively sparse further from land (cf. Figure 3.3).  To achieve the 

necessary homogeneous coverage of gravity data over the computation area, it is 
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necessary to combine the ship-track observations with gravity anomalies derived 

from multi-mission satellite altimetry (e.g., Li and Sideris, 1997).  This Section 

describes the comparisons that were performed in Amos et al. (2005) on four 

different altimetry-derived gravity grids so that the best grid could be selected for use 

in the NZ quasigeoid computations. 

Satellite altimetry is based on a satellite-borne radar altimeter that transmits pulses in 

the nadir direction to the Earth’s surface.  The ocean’s surface reflects these signals 

back to the satellite and the total travel time is used to determine the height of the 

satellite above the ocean after the application of various corrections (e.g. Torge, 

2001, p. 154).  The relative changes in height and the rate of these changes can then 

be used to determine the gravity anomalies.   

There are several approaches for the actual gravity field recovery that are used in 

practise.  These include: conversion of marine geoid heights (sea surface heights 

corrected for SSTop) using the inverse Stokes formula (e.g. Olgiati et al., 1995); 

conversion of vertical deflections (along-track first derivatives of sea surface heights) 

using the inverse Vening-Meinesz formula (e.g., Hwang et al., 1998, 2002); and 

conversion of vertical deflections through the integration of Laplace’s equation (e.g., 

Haxby et al., 1983; Sandwell and Smith, 2005; 1997; Olgiati et al., 1995).  Since this 

study only uses the final grids (see below) a detailed comparison of the different 

gravity field recovery methods will not be provided here (although a summary is 

provided in Featherstone, 2003a). 

3.5.1 Altimetry-derived gravity anomaly grids 

There are currently (2006) four recent global grids of marine gravity anomalies 

derived from a combination of multi-mission satellite altimetry (Table 3.6).  Each 

grid is provided on a 2 arc-minute resolution and has used a different computation 

method, but all are based on EGM96-implied gravity anomalies (Lemoine et al., 

1998; Equation 3.2) in a remove-compute-restore (RCR) procedure (cf. Section 

5.2.4).  The KMS02 and GSFC00 grids were computed using the inverse Stokes 

integral (Andersen et al., 2005 and Wang, 2001 respectively); SSv11.2 used 

Laplace’s equation (cf. Sandwell and Smith, 1997); and GMGA02 the inverse 

Vening Meinesz formula (Hwang et al., 2002).  Also, the altimetry grids were 
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provided in terms of the mean Earth-tide system (see Section 2.3.5).  To comply with 

the IAG resolution on Earth-tide models (IAG, 1984) the grid values were converted 

to the zero-tide system using Equation (2.18). 

Grid Reference / URL 

KMS02 Andersen et al. (2005) 
http://spacecenter.dk/data/gravity/download.html 

SSv11.2 Sandwell and Smith (1997) 
http://topex.ucsd.edu/marine_grav/mar_grav.html 

GMGA02 Hwang et al. (2002) 
ftp://gps.cv.nctu.edu.tw/pub/data/marine_gravity/  

GSFC00 Wang (2001) 
http://magus.stx.com/mssh/mssh.html  

Table 3.6  Public domain satellite-altimeter-derived marine gravity anomalies 

3.5.2 Differences between altimetry grids 

It is well known that satellite-altimeter-derived gravity anomalies are less accurate 

close to the coast (e.g., Hipkin, 2000; Andersen and Knudsen, 2000).  This is due to 

factors such as poorly tracked altimetry close to the coast (Deng et al., 2002; Deng 

and Featherstone, 2006), poor shallow-water tidal models, and poor wet delay 

corrections (e.g. Andersen and Knudsen, 2000).  In addition, there are significant 

differences close to the Australian coast among altimeter-derived anomalies derived 

by different groups (Featherstone, 2003b).  This is also the case in NZ (Amos et al., 

2005), albeit to a lesser extent than near Australia (Figure 3.4 and Table 3.7).  Note 

that the maximum and minimum differences in Table 3.7 range from -366.2 mGal to 

380.8 mGal, however, the differences shown in Figure 3.4 have been truncated for 

display purposes.  All three grids have been derived from principally the same 

satellite data, so the differences between them are due to the way that they have been 

computed. 

The largest differences among the altimeter grids occur along the western coast of 

NZ’s South Island (centred at: ~45°S, ~167°E); see the example in Figure 3.4 and 

Amos et al. (2005).  This is due to a combination of the problems with coastal 

satellite altimetry, coupled with the very steep gravity gradients at the boundary of 

the Australian and Pacific plates.  The latter will give a large Gibbs phenomenon 
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when transforming the sea surface heights/gradients to gravity anomalies because 

there is no gravity data on land.  From Table 3.7, the comparisons that involve the 

GMGA02 grid give the largest maximum and minimum differences.  These 

differences are concentrated as several ‘spikes’ located close to the NZ and Chatham 

Islands (183°E, 44°S) coasts.  This shows that it is the least consistent with the other 

grids, which are reasonably self-consistent (Table 3.7). 

 

Figure 3.4  Example difference between KMS02 and SSv11.2 gravity anomalies 
(mGal; Mercator projection) 

Data Max Min Mean Std 

KMS02 – SSv11.2 139.4 -79.4 -0.1 3.0 

KMS02 – GMGA02 371.8 -337.3 -0.0 4.2 

KMS02 – GSFC00 117.2 -103.2 0.1 2.9 

SSv11.2 – GMGA02 380.8 -334.7 0.0 4.0 

SSv11.2 – GSFC00 123.9 -129.3 0.2 3.2 

GMGA02 – GSFC00 334.7 -366.2 0.1 4.2 

Table 3.7  Statistics of the differences between the different altimetry grids (mGal) 
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3.5.3 Comparisons of altimetry grids with ship-track data 

Next, the various altimeter-derived anomalies (Table 3.6) were compared with the 

crossover-adjusted ship-track anomalies (Appendix C) in order to select the best grid 

for NZ quasigeoid computations.  The altimeter-derived gravity anomalies (assumed 

to also be on a geocentric horizontal datum) were bi-cubically interpolated to the 

locations of the ship-track data.   The statistics in Table 3.8 only compare the 

altimetry grids at the locations of the dense ship-track observations in a 50-400 km 

band around NZ and the Chatham Islands.  The Generic Mapping Tools (GMT) 

grdmask function (Wessel and Smith, 1998) was used to create a “mask” for the 50-

400 km band.  This was then used to remove the ship-track observations which were 

outside the “mask”.  The observations were limited in this way because the altimeter 

data are less reliable within ~50 km from the coast (Figure 3.4).  Conversely, the 

altimeter data are probably more reliable than the ship-track data in the open oceans, 

especially in areas with sparse data coverage where the crossover adjustment is less 

well constrained (e.g., south of 55°S; see Figure 3.3).  The differences between the 

cross-over adjusted ship-track observations and the KMS02 altimetry grid within 400 

km of the NZ and Chatham Island coasts are shown in Figure 3.5. 

Data Max Min Mean Std 

KMS02 194.5 -108.7 1.7 8.2 

SSv11.2 196.0 -109.1 1.6 8.2 

GMGA02 197.3 -107.7 1.7 8.2 

GSFC00 193.9 -107.4 2.2 8.0 

Table 3.8  Statistics of the differences between the altimetry grids and the crossover-
adjusted ship-track observations within 50–400 km of the coast (mGal) 

From the results in Table 3.8, no single altimeter grid is significantly better than 

another in the 50-400-km region around NZ.  An analysis of the comparison between 

the altimetry grids and all 2,401,932 adjusted ship-track data (Table 3.9) also showed 

that no altimetry grid was significantly better than another.  The selection of the 

KMS02 altimetry grid was thus arbitrary based on the justification that the standard 

deviation of the difference between it and the cross-over adjusted marine data was 

slightly lower (although it was equal to GSFGC00).  The KMS02 model was chosen 
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over the GSFC00 model because it was more recent and the KMS group have 

produced altimetry models for many years. 

 

Figure 3.5  Difference between the adjusted ship-track observations and KMS02 
altimetry anomalies up to 400 km from coast (mGal; Mercator projection) 

Data Max Min Mean Std 

KMS02 486.3 -789.5 1.4 11.2 

SSv11.2 484.9 -789.1 1.0 12.0 

GMGA02 486.4 -790.0 1.1 12.1 

GSFC00 485.6 -789.6 1.8 11.2 

Table 3.9  Statistics of the differences between the altimetry grids and all crossover-
adjusted ship-track observations (mGal) 
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3.6 Combination of altimetry-derived and ship-track gravity anomalies 

3.6.1 Overview 

It is expected that the altimeter derived gravity anomalies are probably of better 

quality than the poorly constrained ship-track data far from shore (cf. Kirby and 

Forsberg, 1998); conversely the ship-track data is likely to be better than the 

altimetry near the coast (cf. Deng et al., 2002).  To reduce the error in the altimetry 

data near the coast, the crossover-adjusted ship-tracks were used to “correct” it (cf. 

Strykowski and Forsberg, 1998).  This was achieved using the least-squares 

collocation (LSC) interpolation routines in the GRAVSOFT suite (Tscherning et al., 

1992) to “drape” the altimetry anomalies onto the crossover-adjusted ship track data. 

3.6.2 Description of procedure 

The LSC “draping” procedure was described in Amos et al. (2005) and broadly 

followed the procedures of Strykowski and Forsberg (1998).  Firstly, the crossover-

adjusted ship-track data was supplemented with land gravity information (Section 

3.3) by the addition of free-air anomalies over the land areas.  This was essential to 

ensure that the LSC algorithm performed correctly across the land/sea boundary.  

Next, the differences between the ship-track/land data and the KMS02 altimeter data 

within the study area were determined.  These differences were then gridded 

(predicted with LSC) onto a 2 arc-minute correction grid over the computation area.  

A 2 arc-minute correction grid was used because this matched the resolution of the 

altimetry grids that were being draped. 

A second-order Markov covariance model was used with a correlation length of 20 

km and 3 mGal RMS noise of the gravity data.  These parameters were optimised by 

testing them over a range of 5-100 km and 1-5 mGal, respectively (see Section 

3.6.3).   The correction grid was then added to the pre-gridded altimetry data.  This 

yields an altimetry data set that is consistent with the ship-track data, thus correcting 

the well-known coastal errors in the altimetry data (e.g. Andersen and Knudsen, 

1998; 2000; Hipkin 2000; Deng and Featherstone, 2006). 
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3.6.3 Results and discussion 

The LSC data combination was (partly) independently tested by extracting 2,328 

randomly scattered observations (~0.2%) from the adjusted ship-track data within 

400 km of the coast.  These observations were selected by removing every 2,328th 

record from the ship-track data file.  These data were not used in the LSC 

combination, but used later to test the results; it also allowed empirical optimisation 

of the choice of RMS noise and correlation length.  This is analogous to, but easier to 

implement than, cross-validation (Featherstone and Sproule, 2006).  The 

“optimisation” resulted in the same values for the noise and correlation length as 

adopted by Strykowski and Forsberg (1998).  The comparison between the 2,328 

extracted marine observations and the KMS02 altimetry anomalies before and after 

draping revealed a significant improvement in the fit (Table 3.10).  An additional 

comparison was made between all of the ship-track anomalies (Table 3.11).  This 

also demonstrates an improved fit between the datasets after the LSC draping has 

been performed. 

Grid Max Min Mean STD 
Cross-over adjusted 61.2 -89.7 0.7 9.9 

Draped 32.0 -32.1 0.0 3.2 

Table 3.10  Statistics of the differences between 2328 ship-track observations (within 
400 km of the coast) and the KMS02 anomalies before and after draping (mGal) 

Grid Max Min Mean STD 
Cross-over adjusted 486.3 -789.5 1.4 11.2 

Draped 486.2 -789.5 0.9 9.1 

Table 3.11  Statistics of the differences between 2,401,932 ship-track observations 
and the KMS02 anomalies before and after draping (mGal) 

From this comparison, the precision/accuracy of the LSC combined gravity 

anomalies is cautiously estimated to be ~3.5 mGal, which is a GLOPOV (General 

Law of Propagation of Variance) combination of the standard deviation of crossover 

adjusted ship-track misclosures (0.3 mGal; Table C.2) and the standard deviation of 

the differences with the independent points (3.2 mGal; Table 3.10).  The final marine 

gravity grid (LSC combined using all the ship-track data) is shown in Figure 3.6. 
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3.7 Digital elevation models 

Auxiliary elevation data are necessary in gravimetric geoid determination because 

the gravitational effect of topographic masses outside the geoid has to be 

mathematically condensed onto, or below, the geoid in order to satisfy the boundary-

value problem of physical geodesy (e.g., Heiskanen and Moritz, 1967).  This so-

called topographic effect is described more fully in Chapter 4 where different 

methods of computation are compared. 

In addition to this theoretical demand, high-resolution terrain data can provide 

additional short-wavelength quasigeoid information and to help smooth the gravity 

field prior to gridding (Forsberg and Tscherning, 1981).  Removing high-frequency 

signals from the gravity anomalies makes the gridding process less sensitive to 

aliasing (e.g., Goos et al., 2003), where under-sampled high frequencies are 

incorrectly propagated into the low frequencies. 

A digital elevation model (DEM) can also be used to ‘reconstruct’ mean free-air 

gravity anomalies (Featherstone and Kirby, 2000; Lemoine et al., 1998).  This is 

necessary in areas of rugged and high terrain, where the practicalities of collecting 

gravity data in the field mean that gravity is generally observed in the more 

accessible lowland regions.  It will be shown in Section 4.11 that this reconstruction 

technique has a significantly positive effect in the Southern Alps/K� Tiritiri o te 

Moana. 

LINZ is the NZ government agency responsible for the topographic mapping of NZ 

at a scale of 1:50,000.  It makes available its official topographic source data (that is 

used for the production of topographic maps) in a vector-based format.  Spot heights 

in this data have heights with an accuracy of ±5 metres and contour lines ±10 metres 

(NTHA, 2006).   All heights in this dataset are related to the “zero” contour line 

which approximates the level of mean high water springs.  The heights are not 

explicitly referenced to one of the 13 LVDs. 
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Figure 3.6  The 2' x 2' NZ gravity anomaly grid: comprising crossover adjusted and 
draped marine anomalies (ship-track and KMS02 altimetry) and reconstructed 

terrestrial Faye anomalies (mGal; Mercator projection) 
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Although no official DEM is published in NZ, a number of companies sell 

commercial DEM data that is derived from the official LINZ vector data.  For this 

study a 1.8 arc-second (0.0005 degree) resolution DEM was purchased from 

GeographX (www.geographx.co.nz).  At the NZ latitudes this has an effective 

resolution of approximately 56 metres.  The DEM has an estimated precision of ±22 

m horizontally and ±10 m vertically (Smith, 2001, pers. comm.). 

3.8 GPS and spirit levelling data 

Relative carrier-phase GPS observations co-located with precise geodetic levelling 

can provide external “control” with which to test a gravimetric quasigeoid on land, 

especially if the quasigeoid model is to be used subsequently for the recovery of 

heights above MSL from GPS (e.g., Featherstone, 1998). 

Ellipsoidal heights in NZ (in terms of NZGD2000) have been established at geodetic 

marks by GPS observations using a combination of static and real-time kinematic 

(RTK) techniques (Blick, 2003).  Although NZGD2000 is promoted as a three-

dimensional datum, the emphasis of its development has been placed on establishing 

and maintaining the horizontal coordinates of marks.  This is particularly evident 

with the urban cadastral control surveys where positions are typically established by 

double-occupation RTK surveys.   

The absolute accuracy of the NZGD2000 ellipsoidal heights is estimated to be on 

average 10 centimetres (OSG, 2003; Blick, 2005, pers. comm.).  The first- and 

second-order spirit levelling (and its derived normal-orthometric heights) is 

described in Section 2.4.  A conservative estimate of the absolute accuracy of these 

heights is also 10 centimetres (ibid.).  The absolute height accuracy is distinct to the 

relative height difference accuracy that is obtained from precise levelling.  Precise 

levelling for the first- and second-order heights was undertaken to misclosure 

tolerances 2 mm k±  and 7 mm k±  respectively, where k is the distance in 

kilometres (cf. Section 2.4.2).  It is therefore possible to derive a combined accuracy 

for the GPS-levelling points of 14 centimetres ( ( ) ( )2 20.1 0.1+ ).  This accuracy 

estimate does not take into account the effect of the offsets between the vertical 

datums. 
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GPS-levelling data do not give an unequivocal verification of a quasigeoid, 

predominantly because of the distortions in and offsets among the different vertical 

geodetic datums (Sections 2.4.3 – 2.4.5).  However, simple blunders such as the 

neglect of the GPS antenna height can add ~1.5 m errors in single points, which can 

be difficult to discriminate between vertical datum and geoid errors if the 

surrounding control is sparse.  In addition, the GPS data have been collected over a 

long period of time, while processing algorithms and data availability (notably 

precise orbits, from the International GNSS Service; Beutler et al., 1999) have 

matured. 

 

Figure 3.7  1422 NZ GPS-levelling points (Mercator projection) 
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A total of 1,422 points within NZ have both ellipsoidal and normal-orthometric 

heights (first- and second-order).  The spatial distribution of the GPS-levelling points 

is not uniform and there are significant gaps in large parts of the South Island (Figure 

3.7).  These large gaps are in areas where the topography is particularly rugged and 

so the precise levelling coverage is restricted to the limited roads in the area.  The 

GPS-levelling points are also split between thirteen vertical datums so they are also 

affected by the offsets between the datums.  It is important to note that there are no 

GPS-levelling points on the Chatham Islands and the five points on Stewart Island 

only have less accurate normal-orthometric heights because no precise levelling 

network exists there. 

3.9 Vertical deflections 

The defection of the vertical is the angle that describes the deviation of the true 

vertical, as defined by the direction of the Earth’s gravity vector, with respect to 

some (geometric or physical) reference direction.  The classic definition of a 

reference direction identifies it as the perpendicular to an ellipsoid, often defining a 

geodetic datum (Jekeli, 1999).  Vertical deflections are defined in terms of a north-

south (	) and east-west (
) components. 

Vertical deflections offer the most independent validation of GGMs (in comparison 

to GPS-levelling and gravity observations) because they have not been used in the 

construction of the models.  There is a distinction between Helmert deflections of the 

vertical at the Earth’s surface and Pizzetti deflections of the vertical at the geoid 

(e.g., Jekeli, 1999).  To relate these two quantities requires the curvature of the 

plumbline through the topography, which is notoriously difficult to estimate (e.g. 

Bomford, 1980; Papp and Benedeck, 2000).  The corrections required to convert 

between Helmert and Pizzetti deflections are typically so small as to be overwhelmed 

by the errors made when observing astro-geodetic deflections.  Therefore Pizzetti 

deflections implied by GGMs will be compared with the astrogeodetically 

determined Helmert deflections. 

 
In NZ, 33 Helmert vertical deflections (Figure 3.8) were observed at Laplace stations 

as part of the establishment of the NZGD49 (Lee, 1978) and the Earth Deformation 

Study (EDS) programme (Rowe, 1989).  NZGD2000 coordinates were used to 
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compute the absolute Helmert deflections (cf. Featherstone and Rüeger, 2000; Jekeli, 

1999) from the GGMs. 

 

Figure 3.8  33 NZ vertical deflections (Mercator projection) 

3.10 Summary 

This Chapter has presented the datasets that will be used for computations and 

analysis in the remainder of this thesis.  The merged GGM02S/EGM96 GGM was 

shown to have the best fit to the NZ gravity and GPS-levelling data.  As such it has 

been selected for use as the reference GGM for quasigeoid computations (Chapters 4, 

5 and 6).  The terrestrial gravity anomalies from GNS Science have been re-reduced 

to convert them to the ISGN71 gravity datum, the GRS80 reference system, and to 

ensure that the other corrections were applied correctly (in the geodetic sense).  The 
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marine data has been crossover adjusted and the KMS02 satellite altimetry grid was 

chosen.  These were then combined using LSC to give a two arc-minute grid of free-

air anomalies over the marine parts of the computation area.  A description was given 

of the 1.8 arc-second DEM that will be used for the terrain correction tests and 

gravity reconstruction in Chapter 4.  This Chapter was concluded with the GPS-

levelling points that will be used to compute the LVD offsets and to verify the fit of 

the computed quasigeoid models to NZ in Chapters 5 and 6. 
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4 TOPOGRAPHICAL CORRECTIONS FOR GRAVIMETRIC GEOID 
COMPUTATION 

4.1 Introduction 

Terrain corrections (TCs) are one of the most important components in the solution 

of the Stokes-Helmert geodetic boundary-value problem (GBVP).  The solution of 

the GBVP using Stokes’s formula assumes harmonicity, i.e., that there should be no 

masses outside the geoid.  To fulfil this assumption, it is necessary to regularise the 

effect Earth’s topography on the input gravity anomalies so that they refer to the 

geoid.  This is achieved by the application of the topographical correction (Bouguer 

plate/shell plus TC) and the downward continuation (DC) of the gravity anomalies 

(e.g., Martinec and Vaní�ek, 1994a; Vaní�ek et al., 1996).  The mathematical and 

physical treatments of the TC play an important role in the computation of precise 

gravimetric quasigeoid models.  This is particularly significant in rugged terrain, 

where the major part of the short-wavelength gravity field variation is caused directly 

by the topography (e.g. Forsberg, 1985; Sideris, 1990).  When applied to gravity 

observations, TCs help to produce a gravity field that is smoother and thus more 

suited to gridding (Section 4.11). 

Surface gravity observations need to be gridded prior to quasigeoid computation.  To 

ensure that the grid is representative of the actual gravity field, the surface gravity 

observations would ideally be acquired such that there is a higher spatial density of 

observations where the gravity field is rapidly changing and a lower density where it 

changes more predictably.  In general, the opposite occurs, i.e., where the gravity 

field is more variable (e.g., the mountains) the gravity observations are more sparsely 

located due to access difficulties, terrain roughness and problems with gravimeter 

drift (e.g., Janak and Vaní�ek, 2005).  To overcome this, Section 4.11 applies the 

Featherstone and Kirby (2000) process of gravity reconstruction to account for the 

irregular spatial density in the NZ terrestrial gravity observations.  It then repeats the 

Goos et al. (2003) experiments to determine the type of gravity anomaly and TC best 

suited to gridding in the NZ environment. 
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4.2 Helmert’s second method of condensation 

When attempting the gravimetric determination of the geoid using Stokes’s formula, 

a prerequisite requirement is that there are no masses outside the geoid and that the 

gravity anomalies (observed at or above the surface of the Earth) are referred to the 

geoid (e.g. Heiskanen and Moritz 1967, p. 145).  One method of achieving these 

requirements is to use Helmert’s second method of condensation (e.g., Heiskanen 

and Moritz 1967, Sections 3-7, 4-3; Vaní�ek and Kleusberg 1987; Martinec and 

Vaní�ek, 1994a; Vaní�ek et al., 1996; Heck 2003b).  Martinec et al. (1993) describe 

the five steps of this process to convert observed gravity anomalies to geoid 

undulations in the Stokes-Helmert scheme as: 

1. Direct topographical effect (DTE) on gravity: replace the effect of the 

topographical masses on gravity at a point on the Earth’s surface by the effect 

of the mass layer condensed on the geoid, also called the topographic 

correction (Section 4.3); 

2. Downward continuation (DC): reduce the gravity anomalies from the 

observed level/height (either on or above the Earth’s surface) to the geoid 

(Section 4.5); because this is carried out after the masses are removed, the DC 

applies to a harmonic quantity (i.e., the Abel-Poisson integral is satisfied); 

3. Co-geoid: use Stokes’s formula to transform the reduced gravity anomalies to 

the co-geoid (Section 5.2.4); 

4. Primary Indirect topographical effect (PITE) on potential: apply a 

(reverse) correction to account for the change in the potential of the Earth that 

occurs due to the condensation of its masses in steps 1 and 2 (Section 4.6); 

5. Secondary indirect topographical effect (SITE) on potential: apply a 

(reverse) correction to account for the difference in height between the geoid 

and the Stokes-Helmert co-geoid.  Vaní�ek et al. (1999) showed that the 

effect of this correction on the geoid is less than 1 mm so it can normally be 

disregarded. 
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4.3 Direct topographical effect on gravity 

The effect of the topography on the computation of geoid undulations has been 

extensively researched (e.g., Helmert, 1884; Heiskanen and Moritz, 1967; 

Wichiencharoen, 1982; Forsberg, 1985; Vaní�ek and Kleusberg, 1987; Tziavos et al., 

1988; Wang and Rapp, 1990; Sideris, 1990; Martinec and Vaní�ek, 1994a; Martinec 

et al., 1993; Heck, 1993, 2003b, 2005; Tscherning, 2005; Tsoulis, 1998, 2001, 2003; 

Bajracharya, 2003; Jekeli and Serpas, 2003; Huang and Véronneau, 2005).  Because 

Stokes’s method of geoid computation requires that all of the Earth’s masses are 

contained within the geoid, it is necessary to “dispose” of the topography before the 

approach can be used.  This disposal is achieved (under Helmert’s second method of 

condensation) by condensing the topography onto an infinitesimally thin surface 

layer on the geoid with density equal to the cumulative vertical density of the 

topography at that point.  This reduction is commonly termed the direct 

topographical effect (DTE) on gravity (Martinec and Vaní�ek, 1994a). 

The computation of the DTE can be divided into two parts, the effect caused by a 

Bouguer plate or shell and the effect due to the departure of the topography from it 

(the terrain correction, TC).  The Bouguer component is a first approximation of the 

topography above the geoid and is typically represented by either an infinitely lateral 

planar plate (Figure 4.1) or a spherical shell (Figure 4.2) of “height” equal to the 

height of the gravity observation point above the geoid (cf. Section 3.3.3).  The TC is 

a measure of the effect on gravity of the actual topographic variation from the 

Bouguer component (cf. Figures 4.1 and 4.2).  The sum of these two components is 

the DTE on gravity under the planar (DTEP) and spherical (DTES) models (Equations 

(4.1) and (4.2) respectively). 

 2P PDTE G H TCπ ρ= +   (4.1) 

 4S SDTE G H TCπ ρ= +   (4.2) 

Both the Bouguer plate/shell and the TC are evaluated at the Earth’s (topographic) 

surface, after their application the gravity anomalies are reduced to the geoid.  The 

addition of the TC to the free-air gravity anomaly gives an approximation of the 

Helmert gravity anomaly called the Faye gravity anomaly (Moritz, 1980b, p. 419).  

When the Bouguer component of the DTE is added to the free-air anomaly the 
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simple Bouguer anomaly is obtained.  Similarly, the addition of the complete DTE 

(Bouguer plus TC) gives the refined or complete Bouguer anomaly (Heiskanen and 

Moritz, 1967, Section 3-3). 

4.4 Moritz’s terrain correction (TC) 

The TC formula that approximates Helmert’s condensation together with Moritz-

Pellinen DC (Section 4.5) under a linear and planar approximation (Schwarz et al., 

1990) is given by Moritz (1968, p.12) as: 
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where G is Newton’s gravitational constant, � is the topographic mass-density 

(normally assumed constant so is outside the integral), R is the mean Earth radius, HP 

is the nominally orthometric height of the computation point, HP’ the height of the 

roving point in the integral, d� is the surface area element, and l is the planar distance 

between the points P and P’. 

The planar TC approximation (Figure 4.1) uses a Bouguer plate to approximate the 

effect of the topography above the geoid surface.  Despite its popularity (e.g., 

Featherstone et al., 2001; Omang and Forsberg, 2000; Li and Sideris, 1994) it is not a 

realistic approximation of the real Earth (Vaní�ek et al., 2004).  The use of a 

Bouguer plate causes the TC to diminish rapidly with distance from the computation 

point.  These computations are typically limited to a relatively small calculation 

radius (e.g., 50 kilometres) because the magnitude of the TC reduces rapidly with 

distance (e.g., Moritz, 1980b, Section 49).  The truncated computation area is often 

referred to as a Bouguer cap.  In areas of rough topography, it has been shown to be 

necessary to compute over a larger (1º cap) radius (e.g., Huang et al., 2001).  The 

planar approximation has been widely implemented for the computation of TCs for 

use in regional gravimetric geoid computations (e.g., Blais and Ferland, 1984; 

Schwarz et al., 1990; Ma and Watts, 1994; Li and Sideris, 1994; Tsoulis, 2001; 

Kirby and Featherstone, 1999, 2002). 
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Figure 4.1 Planar approximation of the TC 

In contrast to the planar approximation, the spherical approximation (Figure 4.2) uses 

a spherical Bouguer shell instead of a plate.  It was proposed for use in geoid 

computation by Martinec and Vaní�ek (1994a) and is intuitively more representative 

of the real Earth.  Because the Bouguer shell does not diminish with distance, the 

total global terrain effect can be very large (this is especially the case in areas of high 

altitude where a very “thick” Bouguer shell will be used).  This means that it is 

imperative that the TC has to be computed globally, not just over a limited spherical 

cap, as is done under the planar approximation (e.g., Vaní�ek et al., 2001, 2004). 

 

Figure 4.2 Spherical approximation of the TC 
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It has been argued by several authors (e.g., Sjöberg and Nahavandchi, 1999; 

Nahavandchi, 2000; Vaní�ek et al., 2001; Novák et al., 2001a) that the spherical 

approximation and the subsequent global computation of TCs is the conceptually 

superior method of determining the DTE on the gravity.  Vaní�ek et al. (2004) take 

this argument further by pointing out that the DC of Bouguer anomalies can only be 

done meaningfully under the spherical approximation.  The computation of spherical 

TCs is very time consuming (because the magnitude does not diminish with 

increasing distance from the computation point) and as such it is not normally 

implemented for regional geoid computations.  Examples where spherical TCs have 

been computed include Nahavandchi and Sjöberg (2001), Huang and Véronneau, 

(2005) and Kuhn (2006). 

The spherical model is a closer representation of physical reality than the planar 

model and is the theoretically better option for the delivery of high accuracy geoid 

results.  Vaní�ek et al. (2001) note that the numerical evaluation of the spherical TC 

could be affected by systematic errors embedded in the global elevation data.  The 

planar model is advantageous in this respect (it does not use a global DEM) and also 

produces a smoother field that is more suitable for the prediction of gravity data 

(Section 4.11). 

While the theoretical arguments for implementing a spherical Bouguer model for the 

DTE computation are very compelling, from a practical perspective the alternative 

Bouguer plate approach is still widely used for geoid computation.  Novák et al. 

(2001a) note that the differences in the computed TC between the spherical and 

planar models can be significant (up to 100 mGal in the Coastal Mountains in 

western Canada); however these differences are generally limited to the long 

wavelength part of the gravity spectrum.  The difference between the planar and 

spherical TC models in NZ is likely to be similar to the 5.5 cm difference observed 

by Nahavandchi (2000) in a comparable region of Sweden (topography range of 354 

m to 1147 m).  Given the significant computational burden that is associated with 

implementing the spherical TC model, the TCs computed for NZ were restricted to 

the planar model (see Sections 4.7.2 and 4.7.3). 
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4.5 Downward continuation 

The solution to the GBVP for geoid evaluation deals with the determination of the 

gravity potential on the geoid from gravity observations made on (or above) the 

Earth’s surface.  The Earth’s surface for continental regions differs significantly from 

the geoid and so it is necessary to “downward continue” (DC) the observations from 

their point of observation to the geoid surface (Martinec, 1996). 

The DC of gravity observations from both the surface of the Earth and from satellite 

or aerial altitudes above the Earth’s surface is an ill-posed problem and therefore not 

easily achieved (e.g. Sun and Vaní�ek, 1998; Heck, 2003b; Jekeli and Serpas, 2003).  

It is ill-posed because the results (on the gravitational potential) do not continuously 

depend on the observations (Martinec, 1996).  An additional constraint is that the 

more high-frequency content there is in the gravity field, the more difficult is the 

accurate DC with either method (Jekeli and Serpas, 2003).  This problem has been 

described extensively in the literature (e.g. Heiskanen and Moritz, 1967; Schwarz, 

1978; Moritz, 1980b; Jekeli, 1981a; Bjerhammar, 1987; Sideris, 1987; Wang, 1988; 

Engels et al., 1993; Sjöberg, 1996; Vaní�ek et al., 1996; Martinec, 1996; Grafarend 

and Krumm, 1998; Sun and Vaní�ek, 1998; Sjöberg, 1998; Nahavandchi, 2000; 

Wong, 2002; Novák and Heck, 2002; Sjöberg, 2003a; Jekeli and Serpas, 2003; 

Huang et al., 2003; Tsoulis, 2003; Ågren, 2004; Huang and Véronneau, 2005). 

Steps 1 and 2 of the gravity to geoid conversion (Section 4.2) can be applied in 

slightly different ways that are theoretically equivalent.  The two procedures (as 

described by Huang and Véronneau, 2005) are (i) Helmert gravity anomalies are 

evaluated above the irregular Earth before DC (i.e., the topographic masses are 

condensed onto the geoid prior to DC); and (ii) refined Bouguer anomalies on or 

above the surface of the Earth are DC to the geoid then Helmert anomalies evaluated 

on the geoid (i.e. mass-condensation is completed after DC).  These alternatives are 

respectively equivalent to the Moritz-Pellinen, (Moritz 1968; Pellinen 1962) and the 

Vaní�ek-Martinec, (Vaní�ek and Kleusberg, 1987; Vaní�ek and Martinec, 1994) 

approaches (Jekeli and Serpas, 2003).  In the Moritz-Pellinen (M-P) approach the DC 

is implicit in the TC, whereas in the Vaní�ek-Martinec (V-M) approach, DC is 

explicitly applied in the two separate stages described below. 
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The DC of gravity is typically split into two components: the normal gravity, �; and 

the Molodensky free-air gravity anomaly, �g. The normal gravity DC can be done 

easily since it only depends on the (known) normal field and the topographic height.  

The �g component can be determined by the inverse solution of the Abel-Poisson 

integral (e.g. Heiskanen and Moritz, 1967, p. 318; Schwarz, 1978; Bjerhammar, 

1987; Wang, 1988; Vaní�ek et al., 1996; Martinec, 1996; Sun and Vaní�ek, 1998) or 

Moritz’s (1980b) analytical approach based on the Taylor series expansion (e.g. 

Moritz, 1980b; Sideris, 1987; Wang, 1988). 

Huang and Véronneau (2005) compared the M-P and V-K approaches using both the 

Abel-Poisson integral and Moritz’s DC.  They found that the V-K approach was less 

sensitive to the DC because of the smooth Bouguer anomaly field.  The DC of the 

refined Bouguer anomalies over Western Canada contributed to the geoid at the 

decimetre level, which was at the accuracy level of the height data used to evaluate 

it.  This implies that the importance of DC in geoid computation (in this study area) 

may be more for theoretical rigor than a practical necessity.  They also found little 

difference between the two DC methods. 

Jekeli and Serpas (2003) undertook a similar study (also in the Canadian Rocky 

Mountains but in a different area) and also concluded that the difference between the 

two approaches is practically insignificant in areas of smooth topography.  However, 

they also found that the M-P approach was superior in mountainous areas.  The 

numerical differences between the two approaches noted in their findings agreed 

with the conclusions of both Wang and Rapp (1990) and Nahavandchi (2000).  

Huang and Véronneau (2005) countered these conclusions by suggesting that the 

significant differences noted by Jekeli and Serpas (2003) in the mountainous areas 

were most likely due to insufficient resolution of the DC rather than the condensed 

topographic effect.  It is clear that some conjecture remains around the optimum 

treatment of DC and TC. 

The process of DC is relatively easy when dealing with a harmonic function; 

conversely it is very difficult to perform with a non-harmonic function such as the 

topography of the Earth because it is affected by the density irregularities in the close 

proximity to the surface (Vaní�ek et al., 1996).  This problem is usually overcome by 

smoothing (or regularisation) the disturbing potential by using a relatively coarse 
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DEM to introduce harmonocity into the topography (e.g. the Residual Terrain Model, 

RTM, method of Forsberg, 1984, 1985).  Vaní�ek et al. (1996) showed that the use 

of averaged Helmert anomalies over a 5’ by 5’ grid was able to give a unique DC 

solution. 

Given the small difference between DC approaches (Huang and Véronneau, 2005) 

and the fact that the implicit approach is simpler to implement (it is already 

accounted for in the TC software used), the M-P approach was selected for use in the 

NZ geoid computations. 

4.6 Primary indirect topographic effect on potential 

When the Earth’s masses are condensed onto the geoid (as is done under Helmert’s 

second method of condensation), the original gravitational potential of the Earth is 

also changed.  The difference between the gravitational potential of the actual in situ 

topographical masses and the gravitational potential of the condensed topographical 

masses referred to a point on the geoid is typically referred to as the PITE (e.g. 

Heiskanen and Moritz, 1967, sec 3-6; Martinec and Vaní�ek, 1994b; Sjöberg and 

Nahavandchi, 1999). 

Like the DTE discussed above, the magnitude of the indirect effect on the Earth’s 

potential can be evaluated under either a planar or spherical approximation (e.g., 

Martinec and Vaní�ek, 1994b; Wichiencharoen, 1982).  The planar formula for 

determining the PITE on the geoid at a point P for Helmert’s second method of 

condensation is given by Wichiencharoen (1982) as: 

 ( )
2 3 32
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The spherical approximation (with constant mass-density) is given by Martinec and 

Vaní�ek (1994b) as: 
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Equation (4.4) has been developed further in terms surface spherical harmonics to the 

power H2 (Sjöberg, 1995) and to the power H3 (Nahavandchi and Sjöberg, 1998a).  

Martinec et al. (1996) showed that when Equation (4.4) is written as a Taylor series, 

it becomes divergent after the quadratic term when evaluated with a dense (1 km 

grid) topographic DEM in the Canadian Rocky Mountains.  Consequently, for 

practical geoid applications, it is common to only evaluate the PITE using the first 

(quadratic) term of Equation (4.4) (e.g. Featherstone et al., 2001).  Because of the 

rough topography in NZ, a 56-metre DEM was used for the NZ quasigeoid 

computations.  Consequently, the planar PITE was computed using only the first 

term of Equation (4.4).  The use of the planar PITE is then also consistent with the 

planar DTE described in Section 4.4. 

4.7 Terrain correction computation techniques 

4.7.1 Terrain corrections by Hammer charts 

The method that Hammer (1939) devised to make TCs involved dividing the area 

surrounding the station into concentric circular zones and compartments (Table 4.1, 

Figure 4.3).  These are then overlaid onto topographical maps where the average 

height within each compartment is estimated and the overall TC deduced.  The 

accuracy of the TCs computed by this method are limited by the accuracy and 

resolution of the available topographic maps, by the use of too few compartments out 

to a given distance in an area of rugged topography, and the ability of the interpreter 

to correctly average the height differences in each compartment (Nowell, 1999).  The 

use of Hammer charts to determine TCs is a very labour-intensive process, it is for 

this reason that the approach has generally been superseded by the fast Fourier 

transform (FFT) and prism approaches described below. 
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Zone Inner 
Radius 

Outer 
Radius 

Number of 
Compartments 

A 0.0 2.0 1 

B 2.0 16.6 4 

C 16.6 53.3 6 

D 53.3 170.1 6 

E 170.1 390.1 8 

F 390.1 894.9 8 

G 894.9 1530 12 

H 1530 2615 12 

I 2615 4469 12 

J 4469 6653 16 

K 6653 9903 16 

L 9903 14,742 16 

M 14,742 21,944 16 

Table 4.1  Hammer zones used for computation of TCs (radii in metres) 

 

Figure 4.3  Hammer zones and compartments up to zone F 

GNS Science (www.gns.cri.nz) provided TCs computed from Hammer charts at the 

locations of each of the 30,876 land gravity anomalies (described in Sections 3.3 and 

B.7).  These were computed as inner- and outer-zone components (Reilly, 1972; 
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Woodward, 1982).  The inner-zone component was calculated by the observer’s field 

assessment of the topography from zone B (2 metres) out to either zone D (170.1 

metres) or zone F (894.9 metres) depending on when the gravity observation was 

made (Reilly, 1972).  The outer-zone components were evaluated from the edge of 

the inner-zone out to zone M (21.994 kilometres) using the 1:63,360 topographic 

maps (contoured to 100 feet or ~30 metres) that were available in the 1970s using the 

procedure described in Woodward and Ferry (1973). 

The Hammer TCs are assessed on the surface of the Earth and calculated using the 

spherical approximation (cf. Section 4.4), giving corrections that are residual to a 

spherical Bouguer cap of thickness equal to the gravity observation elevation H and a 

radius of 21.994 km (Hammer zone M).  They were computed using a constant mass 

density of 2,670 kgm-3 (Woodward and Ferry, 1973).  The sum of the inner and outer 

zone corrections gives a band-limited TC signal (i.e. from 2 m to 21.994 km).  The 

GNS Hammer TCs are shown in Figure 4.4. 

4.7.2 Terrain corrections by two-dimensional Fourier transform 

In recent times, it has become possible to efficiently compute TCs using regular grids 

of elevations available in DEM data.  With the use of a computer and some 

approximations, it is possible to utilise the FFT (e.g. Forsberg, 1985; Sideris, 1985; 

Schwarz et al., 1990; Parker, 1995, 1996; Kirby and Featherstone, 1999, 2002).  A 

major weakness of TCs determined using DEM data is that that the elevation values 

of a given cell generally relate to the average topographic height within that cell and 

so do not represent well the actual topographic morphology.  Thus, the near-station 

effects of the topography can be omitted.  It is however acknowledged that average 

values are beneficial for the numerical evaluation of integral functions.  The 

magnitude of the effect due to using averaged heights is a function of the DEM cell 

size and the roughness of the topography and can reach several tens of mGal in 

magnitude (e.g., Leaman, 1998; Nowell, 1999).  The consequence of using a DEM is 

that the resulting TC will be band-limited from a distance of half the DEM cell size, 

up to the maximum distance of the computation (cf. Kirby and Featherstone, 2002). 
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Figure 4.4 A generalised (30”) image of the Hammer TCs (mGal, Mercator 
projection) 

When the topography is represented in a regular grid such as a DEM, the height in 

each cell is represented by a prism with average height and average mass-density of 

the topography.  This is termed the mass-prism topographic model (Li and Sideris, 

1994).  If the mass of the prism is then mathematically concentrated along its vertical 

symmetric axis, then the topography within the prism is represented by a line, which 

gives rise to the mass-line topographic model (Li and Sideris, 1994).  When the 
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DEM grid spacing is small enough (e.g. <100 metres) the difference between the two 

approaches is likely to be negligible (Tziavos et al., 1996). 

 

Figure 4.5 A generalised (30”) image of the FFT Moritz TCs (mGal, Mercator 
projection) 

A 1.8” (~56 metre) resolution grid of TCs was computed over NZ using the planar 

2D-FFT implementation of Moritz’s (1968) algorithm (Schwarz et al., 1990; Kirby 

and Featherstone, 1999).  The FFT TCs were computed over a cap size of 100 km by 
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100 km about each computation point using a constant mass-density of 2,670 kg/m3.  

This computation cap was chosen because the effect of increasing the residual 

topographic effect outside this radius under a planar approximation is minimal (Li 

and Sideris, 1994; Ma and Watts, 1994, Kirby and Featherstone, 1999).  The Moritz 

algorithm for the TC includes an implicit DC; hence the calculation is performed at 

the geoid as opposed to the Earth’s surface in the Hammer method.  The computed 

TCs are shown in Figure 4.5.  The image has been generalised to a 30” grid for 

display purposes. 

4.7.3 Terrain corrections by prism integration 

The method of prism integration as a means of calculating TCs was proposed by 

Nagy (1966a, 1966b).  This approach simply represents the terrain as a regular grid 

of prisms that correspond to a DEM of the topography with the base of the prisms at 

sea level and the tops defined by the elevation in the DEM.  The vertical component 

of the gravitational attraction of each prism is assessed through numerical integration 

and the sum of these components gives the TC (Forsberg, 1984; Nagy et al., 2000).  

Nagy et al. (2000, 2002) showed that the integration of the gravity disturbance over a 

rectangular prism gives closed formulas for the potential and its derivatives (up to 

third order). 

The prism approach is relatively simple to implement and it does not suffer from the 

same numerical instabilities that affect the FFT approach, so it is ideal for use in 

areas of rough topography.  However it can take a very long time to perform the 

calculations since the computation time increases exponentially with an increase in 

the DEM resolution (see below).  In addition, the use of flat-topped prisms (while 

computationally efficient) does not give a realistic depiction of the actual 

topography, especially in the zone close to the computation point.  An alternative is 

to use prisms with inclined (or curved) tops (e.g., Blais and Ferland, 1984; Ma and 

Watts, 1994; Smith, 2000).  While this is more realistic, it adds significantly to the 

computational burden of evaluating the TC so is not an efficient approach over a 

large area.  A different approach is to use the rigor of the prism approach in areas 

close to the computation point and to use the relatively speedy FFT method further 

away, thus getting the best from both methods (e.g., Tsoulis, 1998; 2003).  This 

combined approach was not used in NZ; instead (as described below) the prism 
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method was implemented using DEM information of different resolutions to increase 

the computational efficiency. 

 

Figure 4.6 A generalised (30”) image of the prism TCs (mGal, Mercator projection) 

A set of TCs were also computed over NZ using the prism integration approach 

(Figure 4.6).  The corrections were evaluated using the TC routine in GRAVSOFT 

computer software using a constant mass density of 2,670 kgm-3 (Forsberg, 1984).  

Like the FFT approach described in Section 4.7.2, the prism TCs were evaluated 
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with respect to a spherical Bouguer plate.  The computations were evaluated using 

the 56 m NZ DEM (cf. Section 3.7) out to a distance of 12 kilometres from the 

computation point, a coarser 250 metre DEM (obtained by re-sampling the former) 

was used outside this to the computational limit of 50 kilometres. 

The main difficulty in implementing the prism integration approach is that it is 

computationally intensive.  To minimise the computer memory requirements, the TC 

calculations were split into 1 x 1 degree tiles (a total of 64 over NZ).  For each tile a 

3 x 3 degree extract from the DEM (centred on the calculation tile) was used to 

determine the TC at each cell within the tile.  In addition to reducing the memory 

requirements, the tiled approach enabled simultaneous calculations on an eight-

processor Sun™ server.  Even with this “multi-tasking”, the TCs took a total of 2.5 

months to calculate. 

4.8 Comparisons among TC computational models 

To determine the best TC computation approach for use in NZ, the three sets of TCs 

described above were compared.  It is acknowledged that the Hammer TCs use a 

different conceptual model (spherical approximation) to the FFT Moritz and prism 

approaches (planar and linear approximation).  The TCs have also been computed 

with different “band-limits”: the FFT TCs are from ~28 m to 50 km; the prism TCs 

are ~28 m to 55 km; and the Hammer TCs are 2 m to 21.994 km.  The final major 

difference between the different approaches relates to where the TC is calculated, the 

Hammer TC is evaluated at the Earth’s surface whereas the FFT and prism 

approaches are at the geoid (because Moritz’s algorithm incorporates implicit DC). 

Conceptually, the Hammer TCs are superior to the FFT and prism TCs because they 

consider a spherical approximation model (cf. Section 4.4) and provide for more of 

the near-gravimeter effects (as little as 2 m from the observation point).  However, 

this must be balanced against the additional need to perform DC prior to geoid 

computation (cf. Jekeli and Serpas, 2003), whereas the DC is implicit to the FFT and 

prism TCs [under some assumptions (e.g., Martinec et al., 1993, 1996)].  Also the 

spatial coverage of the Hammer TCs is relatively sparse (cf. Figure 3.2) so they are 

not as suited to gridding etc.  Nevertheless, it remains instructive to compare the 

different TCs (Table 4.2). 
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It can be seen in the top section of Table 4.2 that the different approaches of 

computing the TCs give quite different results.  To enable a valid comparison 

between the gridded TCs and the point Hammer TCs, the FFT and prism corrections 

were also interpolated (using a bi-cubic spline) to the locations of the former.  This 

results in both reduced values for the maximum values and also the mean correction 

values.  An explanation for the observed reduction is that the gravity observations are 

generally made at easily accessible locations where the topography is not so rough 

and so the corresponding TC will be less.  The effect of the unrepresentative gravity 

observation locations in relation to gridding of the gravity field is examined in 

Section 4.11. 

Quantity Max Min Mean Std Dev 

Hammer TCs (at gravity observation points) 49.12 0.00 2.05 3.66 

FFT TCs (all NZ) 174.98 0.00 1.84 3.95 

FFT TCs (at gravity observation) 36.20 0.00 1.72 2.89 

Prism TCs (all NZ) 131.06 0.00 2.64 5.35 

Prism TCs (at gravity observation) 42.39 0.00 2.47 3.79 
     

Hammer – FFT TCs (at gravity observation) 27.95 -10.71 0.33 1.35 

Hammer – prism TCs (at gravity 
observation) 23.79 -15.24 -0.42 1.21 

Prism – FFT TCs (at gravity observation) 15.21 -2.27 0.75 1.06 

Prism – FFT TCs (all NZ) 128.27 -58.80 -0.80 1.60 

Table 4.2 Statistics of and comparisons between TC calculation methods over NZ 
using the 1.8” DEM and at the 40,440 gravity observation locations (mGal) 

The bottom section of Table 4.2 shows the differences between each of the TC 

solutions (again the gridded TCs have also been evaluated at the gravity observation 

locations).  The differences between the TC solutions are relatively constant at the 

locations of the gravity observations.  This was expected for the same reasons as 

described in the paragraph above.  The differences between the prism and FFT TCs 

are much larger when evaluated over the entire 1.8” grid.  This was suspected to be 

caused by numerical instabilities in the FFT approach that occur in areas of steep 

topography (Section 4.9).  This suspicion was reinforced by Figure 4.7 which shows 

that the larger TC differences coincide remarkably well with the mountainous areas 

of NZ (specifically the Southern Alps/K� Tiritiri o te Moana). 
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Figure 4.7 Generalised (30”) absolute differences between prism and FFT TCs 
(mGal, Mercator projection) 

4.9 Topographic gradients 

Numerical instabilities occur in the FFT implementation of Moritz’s (1968) 

algorithm (cf. Section 4.7.2) when the change in height between adjacent DEM cells 

is larger than the size of the cell (i.e. the condition ( )2/ 1h l∆ >  exists, where �h is 

the height difference between adjacent DEM cells and l is the DEM cell size; 



99 

Tsoulis, 2001).  This corresponds to a requirement that the topography immediately 

surrounding the computation point does not exceed 45°.  This instability is the most 

significant in areas of rough (i.e., steep) topography when combined with a high-

resolution DEM (e.g., Forsberg, 1985; Klose and Ilk, 1993; Martinec et al., 1996; 

Tsoulis 2001).  Figure 4.8 shows that the requirement for the topographic gradient to 

be less that 45° is not achieved in large areas of NZ. 

 

Figure 4.8 NZ topographic gradients over 45° computed from 56 metre DEM 
(Mercator projection) 
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The topographical gradients of the NZ DEM (cf. Section 3.7) were computed to 

ascertain whether this (< 45°) requirement was satisfied in NZ.  The gradients were 

computed using the GMT grdgradient function (Wessel and Smith, 1998) in north-

south and east-west directions and the statistics of these are given in Table 4.3.  The 

locations of gradients over 45° are shown in Figure 4.8.  It is clear from both Table 

4.3 and Figure 4.8 that there are significant areas of NZ that are steeper then 45° (e.g. 

the Southern Alps/ K� Tiritiri o te Moana).  This indicates that the FFT TCs (Section 

4.7.2) may be unreliable in these areas. 

The TC differences were then classified into the 5° gradient bands for each direction 

shown in Table 4.4.  It can be seen that the mean and standard deviation values 

increase with the increasing topographic gradient (as implied by Figure 4.7); this 

suggests a relationship between increasing gradient and TC difference.  However, 

due to the magnitude of the change, it is not conclusive. 

DEM Gradient Max Min Average STD 
East-west 86° 0° 4.8° 9.1° 

North-south 85° 0° 4.4° 8.5° 

Table 4.3  Statistics of the 56m DEM gradients 

Gradient Points Max Min Average STD 
30-35° EW 4191815 70.5 -36.9 -4.2 2.2 
30-35° NS 3243492 20.1 -33.4 -4.1 2.2 
35-40° EW 2375371 127.0 -32.0 -5.1 2.4 
35-40° NS 1935219 113.6 -51.0 -4.8 2.3 
40-45° EW 1044504 126.5 -30.6 -6.1 2.6 
40-45° NS 811836 20.3 -36.9 -5.8 2.6 
45-50° EW 444158 128.0 -51.0 -7.2 2.8 
45-50° NS 342837 18.9 -36.9 -6.8 2.8 
50-55° EW 192760 17.61 -36.9 -8.2 3.1 
50-55° NS 155214 53.8 -33.3 -7.7 3.2 
55-60° EW 82614 72.9 -35.7 -9.1 3.4 
55-60° NS 67577 92.0 -51.0 -8.5 3.5 
60-65° EW 30999 15.0 -50.2 -10.0 3.8 
60-65° NS 24899 17.6 -32.6 -9.1 4.1 
65+° EW 11570 15.0 -51.0 -11.4 4.7 
65+° NS 8100 128.0 -35.4 -9.6 6.2 

Table 4.4  Statistics of the difference between FFT and prism derived TCs at 
different 56-metre resolution DEM gradients (mGal) 
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To obtain a better insight into the correlation between topographic gradient and the 

TCs, the observed differences between the FFT and prism approaches were plotted at 

their full (1.8”) resolution (Figure 4.9).  The area between 169°E – 170W° and 45°S 

– 46°S (Lake Wakatipu) was chosen because it contains some of the larger TC 

differences (cf. Figure 4.7).  

 

Figure 4.9 Differences between prism and FFT TCs in vicinity of Lake Wakatipu 
(mGal, Mercator projection) 
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When compared with the locations of topographic gradients that are over 45° (Figure 

4.10), it is apparent that the larger TC differences occur where the gradients are also 

higher.  This does not conclusively prove that the prism TC is better than the FFT TC 

in NZ.  However, the documented problems with the FFT TC in areas of steep 

topography indicate that it may not be appropriate to use them in the NZ quasigeoid 

computations. 

 

Figure 4.10 Location of topographic gradients larger than 45° TCs in vicinity of Lake 
Wakatipu (Mercator projection) 

4.10 Topographic mass-density modelling in TC computation 

An additional aspect that needs to be considered in the computation of TCs is the 

treatment of the topographical mass-density.  When topographic reductions (such as 

TCs) are determined in practise, it is normally assumed that the density of the 
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topography is constant (2,670 kg/m3).  Several investigations (e.g. Martinec, 1998; 

Huang et al., 2001; Nahavandchi and Sjöberg, 2001; Kuhn 2003; Sjöberg, 2004a) 

have been undertaken to determine the effect of using more realistic values of the 

Earth’s density that is known to vary laterally.  It has been shown by, for example, 

Tziavos and Featherstone (2001) that the use of actual density information (if 

available) improves the quality of the TCs.  Novák et al. (2001a) found that the 

omission of (actual) mass-density information will limit the accuracy of the 

computed TC regardless of the choice of planar or spherical Bouguer model.  

Likewise for gravity reconstruction (Section 4.11.2) density information should be 

used if it is available (Goos et al., 2003; Bajracharya and Sideris, 2005a) 

It was not possible to include variations in topographical density in the NZ 

calculations because no digital density information is available.  It could be possible 

to infer crustal-density information from the NZ national 1:250,000 geological map 

series.  This map series is currently undergoing extensive revision hence a national 

coverage is not available.  When the series is complete (tentatively 2010) it will 

provide a digital geological map that could easily be converted to a surface density 

model.  However, it may not be possible to convert the mapping to a three-

dimensional model because surface geology is not always representative of the 

structure through the topography. 

4.11 Gravity aliasing and gridding 

Both the FFT and prism TC computations described above (and the quasigeoid 

computations described in Section 6.2) require regular grids of gravity anomalies.  

When surface gravity observations are made for mapping or exploration purposes, 

the ideal situation is for them to be located so that they are spatially distributed to 

adequately sample the gravity field (Figure 4.11b).  This means that, in ideal 

circumstances, there will be a higher density of observations where the gravity field 

is rapidly changing and a lower density where it changes more smoothly.  In reality, 

the areas where the gravity field is more variable (e.g., mountainous regions) are 

frequently the areas where gravity observations are more sparsely located (Figure 

4.11a) due to difficulties physically accessing the desired locations, terrain roughness 

and problems with gravimeter drift (e.g., Janák and Vaní�ek, 2005).  To overcome 

these limitations, Featherstone and Kirby (2000) proposed a gravity “reconstruction” 
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technique to predict the gravity field using high-frequency topography information 

from a DEM (Figure 4.11c). 

 

Figure 4.11  The gravity reconstruction concept: (a) typical gravity observation 
scheme, (b) ideal observation scheme, (c) reconstructed gravity field (X and O are 

the actual and reconstructed observations respectively) 

4.11.1 Gravity pseudo-aliasing 

The NZ gravity observations (cf. Figure 3.2) are not regularly spaced.  This is 

demonstrated in Figure 4.12 which shows the gravity observations in the vicinity of 

Hanmer Springs in the Southern Alps/K� Tiritiri o te Moana of the South Island.  It 

can be seen that the observations are clustered around the Hanmer Plain (central east 

of map) and the Canterbury Plains (south-east of map).  Most of the remaining 

observations are systematically located along the valley floors where driving (or 

more commonly walking in the case of NZ) is easier.  Infrequent observations have 

also been made on ridges where they were accessed by helicopter (cf. Figure 4.12).  

The irregular spatial distribution of surface gravity observations becomes a problem 

when they are interpolated because the interpolated surface is not representative of 

the actual gravity field (e.g., Reilly, 1972). 

Featherstone and Kirby (2000) and Goos et al. (2003) explain that the effect of 

irregular sampling (Figure 4.11a) is similar to the phenomenon of aliasing in signal 

processing.  This is because both involve sampling a continuous function at discrete 

intervals that can not duplicate the desired function.  In signal processing, the 

samples are usually made at regular intervals, where information at frequencies 

higher than twice the sampling frequency (Nyquist frequency) is incorrectly 
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represented.  According to sampling theory, this high-frequency information 

becomes aliased into the lower frequencies, thus contaminating the sampled function. 

 

Figure 4.12  Gravity observations in part of the Hanmer Springs region of the 
Southern Alps/K� Tiritiri o te Moana, South Island, NZ (heights in metres, Mercator 

projection) 

With gravity data acquisition, the sampling interval is usually irregular but the 

consequence is similar; the gravity signal is sampled such that higher-frequency 

information is omitted and may be aliased into the lower frequencies.  As stated 

above (and shown in Figure 4.12), because most of the NZ gravity observations have 

been made in the valleys between large mountains, it is likely that simple averaging 
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of the values will result in a non-representative estimation of the mean gravity field.  

The mean gravity field is required to numerically solve Stokes’s integral (Heiskanen 

and Moritz, 1967; cf. Section 5.2). 

4.11.2 Gravity reconstruction 

Free-air gravity anomalies are highly correlated with the height of the observation 

points.  This means that the “roughness” of the free-air anomalies is similar to that of 

the topography, thus in mountainous areas (e.g., Figure 4.12) it is not sensible to 

directly interpolate and average the anomalies because of aliasing (e.g., Featherstone 

and Kirby, 2000).  To minimise the interpolation error, a common method is to grid 

Bouguer (or refined Bouguer) anomalies which are by definition “smoother” than 

their free-air counterparts (e.g., Featherstone and Kirby, 2000; Goos et al., 2003; 

Janák and Vaní�ek, 2005).  Because the same (limited) number of gravity 

observations is still being used, this approach will still give a surface that is aliased. 

Featherstone and Kirby (2000) proposed a method to reduce the effects of both 

gravity aliasing and the irregularly spaced gravity observations where supplementary 

terrain information from a DEM is used to compute additional “reconstructed” 

anomalies at unobserved locations on the topography (Figure 4.13).  Termed the 

“reconstruction” technique, the resulting Faye gravity anomaly grid is a better 

representation of the true integral mean over the topography than simple averaging of 

the original Faye anomalies (cf. Figure 4.11).  This method has been implemented in 

a number of other studies, such as Goos et al. (2003); Janák and Vaní�ek (2005); 

Bajracharya and Sideris (2005a, 2005b). 

The reconstruction method (Figure 4.13) initially reduces the individual gravity 

observations to their planar Bouguer anomaly equivalents using (alternatively the 

spherical approximation could be used, cf. Section 4.3): 

 ( ) ( ) ( ),B S F Bg g g H g Hγ φ δ φ δ∆ = − + −  (4.6) 

where Sg  is the observed gravity acceleration on the Earth’s surface; � is normal 

gravity at the reference ellipsoid, computed from the geocentric latitude φ of the 

observation using the Somigliana formula (Moritz, 1980a); ( ),Fg Hδ φ  is the 
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second-order free-air gravity reduction (e.g. Featherstone, 1995) and ( )Bg Hδ  is the 

Bouguer plate reduction given by (cf. Equation 4.1) as: 

 ( ) 2Bg H G Hδ π ρ=   (4.7) 

 

Figure 4.13  The gravity reconstruction process 

Therefore, the individual free-air anomalies are reduced to their planar Bouguer 

equivalents and then interpolated onto a relatively coarse grid (Figure 4.13).  A high-

resolution DEM is then used to reconstruct free-air anomalies at each higher 

resolution DEM element by the application of a “reverse” Bouguer correction 
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(Figure 4.13).  Bajracharya and Sideris (2005b) showed that the best results are 

achieved when a DEM with the highest resolution is utilised.  The resulting high-

resolution grid of free-air anomalies is then interpolated onto the coarser grid that can 

be used for geoid computation.  The resulting grid of free-air anomalies should 

theoretically be more representative of the actual gravity field than the grid obtained 

by simply interpolating the original observations. 

The above procedure was used by Goos et al. (2003) in Australia, and by Janák and 

Vaní�ek (2005) and Bajracharya and Sideris (2005a) in the Canadian Rocky 

Mountains.  The general procedures followed were the same, however they reached 

different conclusions regarding what was the best type of Bouguer anomaly to use in 

gravity data interpolation for subsequent geoid computation.  Both of the Australian 

studies (albeit performed by the same team) found that the use of simple Bouguer 

anomalies gave better results while both Canadian studies favoured the use of refined 

Bouguer anomalies.  This difference was attributed to the more rugged terrain that is 

found in Canada (and similarly in NZ) versus that in Australia and the corresponding 

sparse gravity observations.  The topography of NZ is probably closer to that of 

Canada (particularly in the South Island) although the gravity coverage in the areas 

of rough topography is not as dense (cf. Figure 4.12).  This suggests that the direct 

interpolation of refined Bouguer anomalies in NZ will not produce un-aliased values. 

4.11.3 Gridding comparisons 

The experiments undertaken by Goos et al. (2003), relating to the comparison of 

gridding simple Bouguer (SB) and refined Bouguer (RB) anomalies, have been 

replicated for the NZ terrestrial gravity observations with the intent of determining 

the best gridding method for this data set (cf. Janák and Vaní�ek, 2005).  The gravity 

gridding process is schematically shown in Figure 4.14.  The SB technique involves 

the following stages (Featherstone and Kirby, 2000): 

(i) Compute SB anomalies at the observation points from the observed 

gravity data; 

(ii) Interpolate the point SB anomalies onto a 2’ grid using a tensioned spline 

(Smith and Wessel, 1990); 
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(iii) Reconstruct free-air anomalies using the 1.8” NZ DEM with Equation 

(4.6); 

(iv) Add the 1.8” Moritz TCs to the reconstructed free-air anomalies to give 

Faye (approximate Helmert) gravity anomalies, recalling (from Section 

4.5) that the Moritz TC includes an implicit DC; 

(v) Interpolate the 1.8” reconstructed Faye anomalies onto a 2’ grid using 

tensioned splines (Smith and Wessel, 1990). 

 

Figure 4.14  Flowchart of the techniques tested to compute grids of mean Faye 
anomalies (from Goos et al., 2003) 

The RB technique is largely similar to the SB procedure and can be summarised as 

follows: 

(i) Compute RB anomalies at the observation points using the observed 

gravity data and  the 1.8” Moritz TCs that were bi-cubically interpolated 

to the observation points; 

(ii) Interpolate the point RB anomalies onto regular 2’ grids using tensioned 

splines (Smith and Wessel, 1990); 

(iii) Reconstruct Faye anomalies from the 2’ RB grids using the 1.8” NZ 

DEM; 
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(iv) Interpolate the 1.8” reconstructed Faye anomaly grids onto 2’ grids using 

tensioned splines (Smith and Wessel, 1990). 

There are many different gridding operations available (e.g. polynomials, splines, 

Kriging, collocation) that could be used to achieve the above interpolations (point to 

2’ grid and 1.8” grid to 2” grid), however these will not be explicitly tested.  Instead, 

the tensioned spline algorithm of Smith and Wessel (1990) was used firstly for 

convenience (the operation is incorporated in GMT software, Wessel and Smith 

1998) and secondly because it is suited to gridding potential field data (Zhang, 1997; 

Wessel and Smith 1998; Goos et al., 2003). 

4.11.4 Comparison of gridding techniques 

To compare the three gridding techniques, a quasigeoid model of NZ was computed 

for each of the three Faye anomaly grids described above.  The reconstruction 

procedures described above only cover the land areas of NZ.  It was necessary to 

incorporate information about the marine gravity field for the subsequent geoid 

computation so that spurious effects (e.g., the Gibbs phenomenon) did not occur 

along the coast as a result of the lack of gravity field information in these areas. 

The 2’ by 2’ marine gravity field grid derived from the KMS02 satellite altimetry 

(Andersen et al., 2005) and crossover adjusted ship-track anomalies as described in 

Section 3.6 was used.  The two grids were combined using the GMT grdlandmask 

and grdmath functions (Wessel and Smith, 1998) to set the grid cells on and off the 

coast (as appropriate) to zero.  The grids were then “added” together to give a 2’ by 

2’ grid of Faye anomalies over the geoid computation area (160°E-170°W, 25°S-

60°S). 

The merged GGM02S/EGM96 GGM (cf. Section 3.2.2) was then used to remove the 

low-frequency gravity anomalies from the combined Faye anomaly grids.  The 

residual anomaly grids were then subjected to a 1D-FFT gravity-to-geoid 

transformation (described in Section 5.2.4) with the Featherstone et al. (1998) 

modified Stokes kernel (using a 1.5° integration cap and 40 degree integer removal 

as described in Section 5.4.5) to evaluate the residual co-quasigeoid.  This was then 
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restored with the GGM02S/EGM96 GGM, and the primary indirect effect (Section 

4.5) was applied to give five quasigeoid solutions:  

• MSB: from gridded SB anomalies with Moritz FFT TCs (Section 4.7.2) 

applied after the gridding (cf. Kirby and Featherstone, 2001); 

• PSB: from gridded SB anomalies with prism TCs (Section 4.7.3) 

applied after the gridding; 

• HRB: from gridded RB anomalies with GNS Science’s Hammer TCs 

(Section 4.7.1) applied before the gridding; 

• MRB: from gridded RB anomalies with Moritz FFT TCs applied before 

the gridding; 

• PRB: from gridded RB anomalies with prism TCs applied before the 

gridding. 

These tests are an extension to those presented in Amos and Featherstone (2004).  

The main differences are that the current comparisons were additionally evaluated 

using prism-integration-derived TCs, the geoids were evaluated using optimised 

computation parameters (kernel modification, cap size and truncation degree, cf. 

Section 5.4.5); and additional recently observed GPS-levelling points were used.  For 

this comparison the gravity observations were assumed to be on the same vertical 

datum and so the iterative procedure (Section 6.4) was not used. 

4.11.5 Results of gridding comparison 

The quasigeoids were compared with a nation-wide set of 1422 GPS-levelling points 

(refer Section 3.8), the GGM02S/EGM96 GGM was also evaluated for comparative 

purposes (Appendix D).  The results of these comparisons are summarised in Table 

4.5.  The levelled heights are based on 13 different vertical datums, which will bias 

the differences computed.  When the comparisons in Table 4.5 are repeated on a 

datum-by-datum basis, the above findings are confirmed, albeit with lower standard 

deviations (Table 4.6).  The full descriptive statistics are given in Tables D.1 to D.6 

in Appendix D. 
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 Max Min Average STD 

GGM02S/EGM96 1.421 -1.453 -0.394 0.472 

MSB quasigeoid 0.971 -0.664 -0.172 0.354 

PSB quasigeoid -0.005 -0.698 -0.362 0.127 

HRB quasigeoid 0.086 -0.679 -0.336 0.135 

MRB quasigeoid 0.208 -0.661 -0.304 0.154 

PRB quasigeoid 0.016 -0.692 -0.352 0.126 

Table 4.5  Statistics of comparisons between quasigeoid solutions and 1422 GPS-
levelling points on assumed single vertical datum (metres) 

Datum Points GGM MSB PSB HRB MRB PRB 

One Tree Point 51 0.158 0.067 0.067 0.069 0.068 0.068 

Auckland 137 0.129 0.069 0.066 0.069 0.070 0.068 

Moturiki 258 0.290 0.064 0.060 0.064 0.063 0.060 

Gisborne 61 0.110 0.111 0.104 0.100 0.101 0.100 

Taranaki 70 0.307 0.072 0.069 0.065 0.070 0.066 

Napier 54 0.255 0.075 0.066 0.067 0.076 0.068 

Wellington 78 0.205 0.043 0.043 0.042 0.043 0.043 

Nelson 111 0.430 0.109 0.070 0.057 0.096 0.062 

Lyttelton 251 0.535 0.146 0.097 0.118 0.140 0.097 

Dunedin 73 0.256 0.196 0.154 0.163 0.176 0.150 

Dunedin-Bluff 181 0.294 0.260 0.074 0.084 0.095 0.074 

Bluff 92 0.216 0.175 0.052 0.054 0.055 0.052 

Stewart Island 5 0.116 0.094 0.134 0.129 0.130 0.130 

All Points 1422 0.472 0.354 0.127 0.135 0.154 0.126 

Table 4.6  Standard deviation of comparisons between quasigeoids and GPS-
levelling points on respective vertical datums (metres) 

Unlike in Amos and Featherstone (2004), where it was found that the RB models 

were much better than the others, the current tests show that there is not a single 

definitive method that gives a conclusively better fit to the GPS-levelling points.  It 

appears that the problems associated with the FFT TCs (cf. Section 4.7.2) cause the 

MSB and MRB solutions to be worse than their prism-derived counterparts.  Most of 

the 1422 GPS-levelling points are located alongside major roads in the 

topographically flatter areas.  This means that the areas where the effect of gravity 

reconstruction is expected to be greatest (i.e. the mountainous regions) will not be 
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represented from the GPS-levelling dataset, however a general impression of their 

effect can be inferred. 

4.11.6 Summary of gridding comparison 

The insignificant difference between the PSB and PRB solutions is not in agreement 

with the findings of other studies.  Goos et al. (2003) found that SB anomalies were 

the best gridding surface in the relatively flat continent of Australia.  This is 

contrasted by the finding of Janák and Vaní�ek (2005), who concluded that RB 

anomalies were preferable in the Rocky Mountains of Canada.  This difference can 

be explained because the topography of NZ lies somewhere between the extremes of 

Australia and Canada so the SB and RB anomalies should be about the same.  It is 

evident however that the prism-integration derived TCs should be used irrespective 

of the gridding procedure.  The reconstruction using PRB anomalies was selected for 

use in reconstruction for the NZ quasigeoid computations (Chapters 5 and 6) because 

it should give a smoother interpolation surface that is more representative of the 

actual gravity field in areas of sparse observations (i.e. the mountains). 

4.12 Summary 

This Chapter has described the DTE, DC, PITE and SITE corrections that need to be 

applied to gravity observations made on or above the surface of the Earth so that they 

are in accordance with Helmert’s second method of condensation so that they can be 

used in Stokes’s method of geoid computation.  The M-P approach to DC was 

selected for use in the gravity reductions because it was implicit in the TC.  For the 

DTE, the planar and spherical conceptual models of the Bouguer plate/shell and the 

TC were presented.  Given these approximations three different methods of 

computing the TCs were then described (Hammer, FFT and prism).  The advantages 

and disadvantages of each approach were discussed and a set of TCs derived from 

each was calculated over NZ.  The FFT TCs are subject to numerical instabilities in 

areas of steep topography so an investigation was undertaken to determine if this was 

a problem in NZ.  An analysis of the topographic gradients (derived from the NZ 

DEM) showed that there were large areas where the topographic gradient was steeper 

than 45º and hence the FFT TCs were likely to be unreliable.   
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The use of topographic mass-density data was also considered, however, because this 

information is not available for NZ it was not implemented.  The reconstruction of 

gravity anomalies was discussed to establish the best method of interpolating the 

sparse gravity observations onto a regular grid for computing the NZ quasigeoid.  It 

was found that gravity reconstruction using prism TCs with either simple or refined 

Bouguer anomalies gave results superior to both the Hammer and FFT TCs.  The 

refined Bouguer approach was chosen for gravity reconstruction in the NZ 

quasigeoid computations because it should give a smoother interpolation surface in 

areas of sparse gravity observations. 

The Hammer TCs were probably the best conceptually however their limited spatial 

distribution and poor performance in the reconstruction tests makes them unsuitable 

for NZ quasigeoid computation.  There is also no conclusive evidence that the prism 

TC is significantly better than the FFT TC.  However, suspicion over the quality of 

the FFT TC modelling in the steep NZ topography makes their use undesirable.  The 

superior performance of the prism TCs in both the TC comparisons and the 

reconstruction tests meant that they will be used consistently for the NZ quasigeoid 

computations discussed in the remainder of this thesis. 
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5 GRAVIMETRIC QUASIGEOID COMPUTATION AND STOKES’S 
INTEGRAL KERNEL MODIFICATION 

5.1 Introduction 

The gravimetric approach to quasigeoid computation converts observed and reduced 

gravity anomalies into quasigeoid undulations or height anomalies (�).  This 

conversion is often achieved using the widely accepted Stokes formula to enhance a 

GGM over a region.  Because regional quasigeoids only use gravity observations 

over regional extents, this can introduce a truncation error into the computed 

quasigeoid undulations.  The magnitude of this error can be reduced through the 

modification of the integration kernel of Stokes formula or GGM (or both).  This 

Chapter presents and then compares five deterministic kernel modifications over NZ.  

The purpose of this comparison is to determine the best modification and its 

associated parameters for the computation of a regional NZ quasigeoid that is used in 

the datum unification described in Chapter 6. 

5.2 Quasigeoid computation theory 

5.2.1 Stokes integral and kernel 

The most widely accepted method of evaluating the quasigeoid from (global) gravity 

anomalies is through the solution to the geodetic boundary-value problem (GBVP) 

that was proposed by Stokes (1849).  Stokes’s formula enables the determination of 

the geoid from the global coverage of gravity anomalies.  When gravity anomalies 

are reduced using normal-orthometric heights (as opposed to orthometric heights) 

Stokes’s formula yields a quasigeoid rather than a geoid.  Heiskanen and Moritz 

(1967, p. 94) gives this to a spherical approximation as: 

 ( )cos
4
R

S g d
σ

ζ ψ σ
πγ

= ∆��   (5.1) 

where R is the mean Earth radius, � is the sphere of integration, �g the gravity 

anomalies reduced to the quasigeoid (Section 4.2), d� is an element of surface area 

on the sphere, and S(�) is the spherical Stokes integration kernel given in ibid. (p. 

94) as: 
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 ( ) 2cos csc 6sin 1 cos 5 3ln sin sin
2 2 2 2

S
ψ ψ ψ ψψ ψ � �� � � � � �= − + − + +	 
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 (5.2) 

The surface spherical radius (�) between two points on the sphere is given by 

spherical trigonometry as: 

 ( )cos sin sin ' cos cos 'cos 'ψ φ φ φ φ λ λ= + −  (5.3) 

where φ, λ are the geographical coordinates of the computation point and φ’, λ’ are 

the coordinates of the variable surface element d�.  S(�) can also be expressed as an 

infinite Fourier series of Legendre polynomials (Pn), this is given by ibid. (p. 97) as: 

 ( ) ( )
2

2 1
cos cos

1 n
n

n
S P

n
ψ ψ

∞

=

+=
−�   (5.4) 

The integration element d� in Equation (5.1) can be transformed into integration 

elements expressed in terms of surface spherical coordinates (d�, d�) whose origin is 

at the quasigeoid computation point, and where � is the azimuth.  Thus the element 

of solid angle is given in ibid. (p. 95) as 

 sind d dσ ψ ψ α=   (5.5) 

and since all points of the sphere are equivalent, the relation in Equation (5.5) holds 

for an arbitrary point P so that the change of variables is 

 
2

0 0
sind d d

π π

σ α ψ
σ ψ ψ α

= =
=�� � �   (5.6) 

for 0 � � � � and 0 � � � 2�.  This is equivalent to using spherical polar coordinates 

centred on each computation point rather than the North Pole.  A singularity occurs 

in Stokes’s function when 0ψ → .  When the transformation in Equation (5.6) is 

applied to Equation (5.1), the following is obtained (ibid. p. 95): 

 ( )2

0 0
cos sin

4
r

S g d d
π π

α ψ
ζ ψ ψ ψ α

πγ = =
= ∆� �  (5.7) 
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Equation (5.7) is simplified by introducing the substitution � = r / 4�� and 

abbreviating the lower integral limits as 0.  This gives (in terms of surface spherical 

coordinates): 

 ( )2

0 0
cos sinS g d d

π π
ζ κ ψ ψ ψ α= ∆� �  (5.8) 

Equation (5.8) represents a spherical approximation (e.g., Heiskanen and Moritz, 

1967, p. 95; Moritz, 1980b, p. 15).  It is only correct for a reference ellipsoid that: 

has the same potential U0 = W0 as the quasigeoid; encloses a mass that is numerically 

equal to the Earth’s mass; and has its centre coincident with the centre of gravity of 

the Earth.  In addition, T is assumed to be harmonic outside the quasigeoid.  This 

means that the effect of the masses above the quasigeoid must be removed by 

appropriate gravity reductions before Equation (5.8) can be used (Section 4.2).  The 

condition U0 = W0 can be difficult to achieve in practise, hence Equation (5.8) can be 

generalised so that it applies to any arbitrary ellipsoid that is close enough to the 

quasigeoid that the deviations can be treated as linear (Heiskanen and Moritz, 1967, 

p. 98).  For the purpose of this study, only the explicit form of Equation (5.8) will be 

considered.   

It is also useful to re-iterate the caveat in Moritz (1980b, p. 15) that the spherical 

approximation does not mean that a sphere is used as the reference surface for the 

quasigeoid; rather the flattening coefficients are neglected in the ellipsoidal formulae 

so that a spherical relationship is obtained.  The spherical approximation can 

introduce a relative error in the order of 3 × 10-3 in equations relating the quantities 

of the anomalous field (e.g., Heiskanen and Moritz, 1967, p. 87).  This is normally 

permissible because, for example, the effect on the quasigeoid is 0.003 �, which is 

approximately 10 cm in NZ.  Nevertheless, the so-called “ellipsoidal correction” has 

been extensively investigated by a number of authors in an attempt to better model 

its effect in the quest of a one-centimetre quasigeoid (recent studies include Fei and 

Sideris, 2000, 2001; Sjöberg, 2003b, 2004b; Huang et al., 2003; Heck and Seitz, 

2003; Hipkin et al., 2004; Claessens, 2006). 
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5.2.2 Truncation of Stokes’s formula 

The principal difficulty with the practical application of Equation (5.8) is the 

requirement for continuous gravity data covering the entire Earth.  This lack of 

global coverage has led to the natural approximation where the integration is limited 

to a spherical cap around the point of calculation (Figure 5.1; Jekeli, 1981b). The use 

of a cap also has the benefit that the smaller amount of data reduces the requirements 

for computer memory and subsequent processing time. 

When gravity data are limited by a spherical cap, this causes a truncation error to 

occur due to the omission of the gravity field outside the cap (far zone contribution).  

This was identified by Molodensky et al. (1962), where they proposed a modification 

to Stokes’s formula to reduce the effect of the error.  This modification was not 

widely adopted due to the lack of low-frequency quasigeoid information derived 

from satellite orbit analysis that was available at the time (Featherstone, 1999). 

In addition to the reduction of the truncation error, some modifications to Stokes’s 

formula possess some preferential high-pass filtering properties (Vaní�ek and 

Featherstone, 1998) that lessen the low-frequency errors in terrestrial gravity 

databases (cf. Heck, 1990), while others can simultaneously reduce the effect of the 

truncation error as well as errors in the gravity data and/or the GGM (e.g., Sjöberg, 

1984, 1991, 2003c; Sjöberg and Hunegnaw, 2000; Featherstone, 2003c).  These 

benefits are discussed more in Section 5.3. 

 

Figure 5.1  The spherical cap �c with radius �0 
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The effect of neglecting the distant zones through the use of a spherical cap in 

Stokes’s integral has been derived by Heiskanen and Moritz (1967, p. 259).  The 

truncation error (��) can be incorporated in Equation (5.8) to give: 

 ( )0 2

0 0
cos sinS g d d

ψ π
ζ κ ψ ψ ψ α δζ= ∆ +� �  (5.9) 

where the truncation error is given by: 

 ( )
0

2

0
cos sinK g d d

π π

ψ
δζ κ ψ ψ ψ α= ∆� �  (5.10) 

using the error kernel function: 
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 (5.11) 

If Equation (5.11) is expanded into a series of Legendre polynomials 

 ( ) ( ) ( )0
0

2 1
cos cos cos

2 n n
n

n
K Q Pψ ψ ψ

∞

=

+=�  (5.12) 

where ( )0cosnQ ψ  are the spherical truncation coefficients given by (e.g., 

Molodensky et al., 1962) and computed by Paul (1973) or Hagiwara (1972, 1976): 

 ( ) ( ) ( )
0

0cos cos cos sinn nQ S P d
π

ψ
ψ ψ ψ ψ ψ= �  (5.13) 

Using the two series, Equations (5.12) and (5.18), in Equation (5.10), and performing 

the integrations (e.g., Heiskanen and Moritz, 1967, Section 2.5), gives the series 

expansion of the truncation error in surface spherical harmonics: 

 ( )0
2

cos
2 n n

n

R
Q gδζ ψ

γ

∞

=
= ∆�   (5.14) 

The spherical truncation coefficients ( )0cosnQ ψ  are proportional to the integration 

kernel (Equation (5.13); Heiskanen and Moritz, 1967, p. 260).  This means that the 

coefficients can be altered to achieve a reduction in ��.  Thus, the modification of the 
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integration kernel is the basis of the minimisation of the truncation error (e.g., 

Featherstone, 1992). 

5.2.3 Generalised Stokes scheme 

Today, the use of GGMs in conjunction with terrestrial gravity data using a truncated 

form of Stokes’s integral is now commonplace (e.g., Vincent and Marsh, 1973; Rapp 

and Rummel, 1975; Sideris and She, 1995; Huang et al., 2000; Featherstone, 2003b; 

etc.).  This combination is often implemented as the so-called remove-compute-

restore (RCR) scheme (Vaní�ek and Merry, 1973; Rapp and Rummel, 1975; Sjöberg, 

2005a) where the full degree of a GGM is removed from the terrestrial gravity 

anomalies, spherical Stokes’s function (Equation 5.9) is evaluated with a spherical 

cap, and the GGM quasigeoid contribution is restored (see Section 5.2.4).  Sjöberg 

(2005a) showed that simply using the high-order GGM without modifying Stokes’s 

function will not necessarily take advantage of the high-quality low-degree signal of 

the GGM.  Hence the RCR technique should be implemented in conjunction with a 

modified Stokes kernel (as well as proper topographic, atmospheric and other 

corrections). 

A formal description of the combination of GGMs, terrestrial gravity data and 

spherical caps is given in Vaní�ek and Sjöberg (1991), where they refer to it as the 

generalised Stokes scheme for quasigeoid computation.  The generalised approach 

parallels the classical Stokes approach when the reference ellipsoid is replaced by a 

Mth degree spheroid, normal gravity on the reference ellipsoid (�) is replaced by a 

model gravity on the spheroid, and the Stokes integration kernel S is replaced by the 

spheroidal kernel S M(�) (this equivalent to the Wong and Gore (1969) modification, 

cf. Section 5.3.3).  Gravity anomalies are reduced by subtracting model gravity to 

give residual high-frequency gravity anomalies (Vaní�ek and Sjöberg 1991).  

Martinec and Vaní�ek (1996) point out that this approach satisfies a solution to the 

geodetic boundary-value problem when formulated for a higher than second-degree 

reference model.  The generalised Stokes scheme builds on the common RCR 

technique (described above) in that it also considers the use of modified integration 

kernels (see Section 5.3). 
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In the generalised Stokes scheme, the low-frequency quasigeoid undulations are 

computed from a global geopotential model (�M) and these are extended into the high 

frequencies by the global integration of high frequency terrestrial gravity anomalies 

(�gM).  This substitution is possible because the effect of the terrestrial anomalies (in 

regards to the shape of Stokes kernel, Figure 5.2) tapers off rapidly to zero with an 

increasing radius from the computation point (e.g., Jekeli, 1980), thus the effect of 

the distant anomalies on the local quasigeoid height is reduced (Vaní�ek and Sjöberg, 

1991).  The generalised scheme also reduces the impact of the spherical 

approximations inherent in Stokes’s formula (Heiskanen and Moritz, 1967, p. 97) 

because the majority of the quasigeoid’s power is contained within the low 

frequencies (Vaní�ek and Sjöberg, 1991; Vaní�ek and Featherstone, 1998). 

 
Figure 5.2  Magnitude of Stokes spherical kernel with increasing surface spherical 

distance from the computation point 

The generalised Stokes scheme can be written as a revised form of Equation (5.8) 

 ( )2

0 0
cos sinM M

M S g d d
π π

ζ ζ κ ψ ψ ψ α= + ∆� �  (5.15) 

where SM is the spheroidal form of Stokes kernel that is implicit to the generalised 

scheme and has the series expansion: 
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The low-frequency component of the quasigeoid undulation ( Mζ ) in Equation (5.15) 

can be computed from spherical harmonic coefficients (cf. Section 3.2) using: 

 ( ) ( )
2 0

cos sin cos
nM n

M nm nm nm
n m

GM a
C m S m P

r r
ζ δ λ λ θ

γ = =

� �= +	 

� �

� �  (5.17) 

where GM is the product of the Newtonian gravitational constant and mass of the 

solid Earth, oceans and atmosphere; a is the semi-major axis of the reference 

ellipsoid; (r, , �) are the geocentric polar coordinates of the computation point; 

nmCδ  and nmSδ  are fully normalised geopotential coefficients of degree n and order 

m, which have been reduced by the zonal harmonics of the reference ellipsoid; and 

( )cosnmP θ  are the fully normalised Legendre functions.  The first- and second-

degree harmonic terms are assumed to be inadmissible because they vanish in any 

spherical-harmonic expansion of the Earth’s potential (e.g., Heiskanen and Moritz, 

1967, p. 62). 

The high-frequency gravity anomalies (�gM) in Equation (5.15) are computed by 

subtracting the spherical harmonic global geopotential model contribution from the 

terrestrial anomalies 

 ( ) ( ) ( )2
2 0

1 cos sin cos
nM n

M
nm nm nm

n m

GM a
g g n C m S m P

r r
δ λ λ θ

= =

� �∆ = ∆ − − +	 

� �

� �  (5.18) 

5.2.4 Remove-compute-restore (RCR) quasigeoid computation 

The RCR technique (described in Section 5.2.3) is the most well known method for 

regional gravimetric quasigeoid determination today.  It has been applied 

extensively; for example: the Nordic region (Forsberg 1990, 2001), Europe (Denker 

et al., 1996), the United States (Smith and Milbert, 1999), Canada (Sideris and She, 

1995; Fotopoulos et al., 1999), Australia (Featherstone et al., 2004), and Africa 

(Gachari and Olliver, 1998; Merry et al., 2005).  Typically it has been implemented 



123 

using the maximum expansion (M) of the GGM and an (unmodified) spherical 

Stokes kernel. 

An alternative technique, proposed by researchers at the University of New 

Brunswick (UNB) does not use the full expansion of the GGM for the “remove” and 

“restore” components (e.g., Vaní�ek and Kleusberg, 1987; Vaní�ek and Sjöberg, 

1991; i.e., the generalised Stokes approach).  Instead, a low degree expansion of a 

satellite-only GGM (degree ~20), a deterministically modified spheroidal Stokes 

kernel and an explicit computation of a truncation bias term from a combined GGM 

is used.  There are fewer quasigeoids computed by this technique, however examples 

of its use include Canada (Vaní�ek et al., 1995) and South East Asia (Kadir et al., 

1999).  Featherstone et al. (2004) compared the UNB and RCR approaches in 

Australia.  They concluded that while the UNB technique appeared to give a better 

agreement to GPS-levelling observations, this may have been as a result of errors 

cancelling rather than a better numerical model.  On balance, a combination of the 

RCR technique with modified kernels was used for quasigeoid computations in this 

study (Sections 4.11.4, 5.4 and 6.5). 

The RCR technique can be efficiently implemented using the FFT technique (e.g. 

Schwarz et al., 1990; Strang van Hees, 1990) in either one- and two-dimensional (1-

D, 2-D) convolutions.  Tziavos (1996) noted that the 2-D-FFT introduces an error 

when computing quasigeoid heights for each parallel.  This error is avoided by using 

the 1-D-FFT (Haagmans et al., 1993).  The 1-D-FFT is also quicker to compute since 

it only needs to form 1-D arrays.  Featherstone et al. (2001) point out that while 

quadrature-based numerical integration techniques are quicker than the 1-D-FFT, 

they give the same results and hence they were not trialled for this study. 

The RCR quasigeoid computations described here (Sections 4.11.4, 5.4 and 6.5) 

were undertaken using the following procedure.  Firstly the GGM gravity 

contribution (M = 360) is removed from the gridded gravity anomalies in the 

computation area (160ºE – 170ºW, 25ºS – 60ºS) to give residual gravity anomalies.  

The residual anomalies were then subjected to a 1-D-FFT (Haagmans et al., 1993) to 

give residual co-geoid undulations using the 1-D-FFT software with kernel 

modifications from Curtin University of Technology (Featherstone and Sideris, 

1998).  This software is a modified version of a software package developed at the 
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University of Calgary (Sideris, 1994).  Following the procedure used by Featherstone 

and Sideris (1998), the kernel was set to zero outside the integration cap radius (see 

Section 5.3) before being transformed into the frequency domain.  This prevented the 

whole grid of gravity anomalies being used during the 1-D-FFT quasigeoid 

computation.  The integration kernel used in the FFT is discussed extensively in 

Section 5.3.  The “restore” part of the RCR process involves adding back the GGM 

quasigeoid contribution to the residual co-geoid, this gives a co-geoid.  The PITE 

(Section 4.6) is then also added to the co-geoid give the final quasigeoid. 

5.3 Kernel modification 

As stated previously, Stokes’s (1849) solution to the GBVP (Section 5.2.1) requires a 

global integration of gravity anomalies.  Because there is an incomplete global 

coverage of gravity data (or the ready access to it, e.g., due to military restrictions, 

etc.) and the frequent unavailability of accurate terrestrial data, it is not possible to 

carry out a precise gravimetric determination using Stokes’s formula.  The 

Molodensky et al. (1962) approach to reduce the truncation error associated with 

using limited spatial data applies a modification to the integration kernel of Stokes’s 

formula (e.g., Featherstone, 2003b). 

5.3.1 Kernel modification approaches 

There are two main groups into which the modifications to the kernel of Stokes’s 

integral can be categorised: deterministic and stochastic.  The deterministic 

approaches reduce the effect of the truncation error caused by the neglected remote-

zones.  However, no attempt is made to account for the accuracy estimates of the 

geopotential coefficients and terrestrial data, even though the effect of these 

propagates into the resulting quasigeoid height (e.g., Ellmann, 2005).  Prominent 

deterministic approaches that have been proposed include: Molodensky et al. (1962); 

de Witte (1967); Wong and Gore (1969); Meissl (1971); Vincent and Marsh (1973); 

Heck and Grüninger (1987); Vaní�ek and Kleusberg (1987); Vaní�ek and Sjöberg 

(1991); Featherstone et al. (1998); and Evans and Featherstone (2000).   

The stochastic approach attempts to reduce the GGM, truncation error and gravity 

data errors through the use of stochastic models in the computation (Ellmann, 2005).  
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Examples of stochastic methods include: Sjöberg (1980, 1981, 1984, 1991, 2003c, 

2005b), Wenzel (1983); Vaní�ek and Sjöberg (1991); and Sjöberg and Hunegnaw 

(2000).  Following Featherstone (2003c), the stochastic modifications have also not 

been considered here because reliable estimates of the error variances of the Earth’s 

gravity data are not currently known in NZ. 

Kernel modifications have also been suggested to reduce the truncation error for 

integration areas other than spherical caps (e.g., Neyman et al., 1996; Zelin and 

Zoufa, 1992).  However these do not appear to be as popular as the spherical cap 

approach (Featherstone and Sideris, 1998).  In addition to kernel modifications 

reducing truncation errors, they also have filtering properties that can reduce the 

effect of errors in the gravity observations and GGMs on the computed quasigeoid 

(Vaní�ek and Featherstone, 1998).  These are discussed as appropriate in the 

following Sections. 

5.3.2 Meissl 

The ( )0cosnQ ψ  spherical truncation coefficients (Equation 5.13) govern the rate at 

which the truncation error associated with the spherical Stokes kernel converges.  

The rate of decay of the truncation coefficients is determined by the mathematical 

smoothness properties of the error kernel ( )cosK ψ  in Equation (5.11).  However, 

this error kernel is not a continuous function at the integration cap radius.  Meissl 

(1971) found that the function could be made continuous by subtracting the value of 

the kernel at the cap radius from the kernel itself.  This modification, termed the 

Meissl modification (abbreviated ML), is: 

 ( ) ( ) ( )0 0

0

cos cos for 0
cos

0 forML

S S
S

ψ ψ ψ ψ
ψ

ψ ψ π
− ≤ ≤��= �

< ≤��
 (5.19) 

Substituting Equation (5.19) into Equation (5.15) gives the ML-modified version of 

Stokes’s function: 

 ( )02

0 0
cos sinM

ML M MLS g d d
π ψ

ζ ζ κ ψ ψ ψ α= + ∆� �  (5.20) 

with a truncation error of: 
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 ( )2
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π π
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and an associated error kernel of: 
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ML is now a continuous function across the cap radius and takes the constant value 

of ( )0cosS ψ within the spherical cap. 

The Fourier series expansion for the ML error kernel is: 

 ( ) { } ( ) ( )0
0

2 1
cos cos cos

2ML ML nn
n

n
K Q Pψ ψ ψ

∞

=

+=�  (5.23) 

where the ML truncation coefficients are given by: 

 { } ( ) ( ) ( )
0

0cos cos cos sinML ML nn
Q S P d d

π

ψ
ψ ψ ψ ψ ψ α= �  (5.24) 

and the spectral representation of the ML truncation error becomes: 

 { } { } ( )01
1

cosML ML nn
n M

c Q gδζ ψ
∞

= +
= ∆�  (5.25) 

where c = 2�� = R/2� and �gn is the n-th degree surface spherical harmonic of the 

gravity anomalies given by Equation (3.2): 

While Jekeli (1981b) showed that although the Fourier coefficients of a continuous 

function converge to zero faster than that of a discontinuous function, Smeets (1994) 

showed that the consequent improved convergence rate did not guarantee a smaller 

error.  Because much of the power of the error occurs in the low degrees, if nmax < 2 

(i.e. no harmonic terms are used) then the error {��ML}1 will be larger than the 

corresponding error �� in Equation (5.14) for �0 < 40° (Jekeli 1980).  As the value of 

nmax increases (e.g., nmax = 20 or 36) the low degree harmonics enter primarily into 

the computation of N and not the truncation error, however it does not necessarily 

follow that the RMS error is also decreased (Jekeli 1980, 1981b).  Featherstone 

(2003c) points out that the use of a GGM to provide the low-degree gravity field will 

overcome this problem. 
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5.3.3 Wong and Gore 

The spheroidal Stokes kernel (Section 5.2.3) and the modification of Wong and Gore 

(1969) (abbreviated to WG) are obtained by removing the low-degree Legendre 

polynomial terms of degrees 2 n P≤ ≤  from the spherical Stokes kernel.  This gives 

the WG modified kernel as (cf. Equation 5.4): 
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 (5.26) 

where P corresponds to the degree of spheroidal kernel modification.  Here it is 

assumed that P is less than or equal to the maximum degree M of the geopotential 

model.  When P = M, Equation (5.26) is the spheroidal Stokes kernel that is implicit 

to the generalised Stokes scheme (Vaní�ek and Kleusberg, 1987; Vaní�ek and 

Sjöberg, 1991, Martinec and Vaní�ek, 1996) as described in Section 5.2.3.  When P 

< M, Equation (5.26) is the WG modification of the spherical Stokes kernel.  The 

case where P > M will not be considered here because it causes additional terms to 

rise that are not really necessary and thus impractical to compute (Featherstone, 

2003c). 

When Equation (5.26) is substituted in Equation (5.15) and Stokes’s integral is split 

into the sum integration domains between the spherical cap and the remainder of the 

sphere: 
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In practise, where P � M, the quasigeoid height is approximated by the truncated 

integral: 

 ( )02

0 0
cos sinM

P M PS g d d
π ψ

ζ ζ κ ψ ψ ψ α+ ∆� ��  (5.28) 

This has a corresponding spheroidal (if P = M) or WG (if P < M) truncation error of: 



128 

 ( )

{ } ( )

2

0 0

0
1

cos sin

cos

P P

M
P

P nn
n M

K g d d

c Q g

π π

δζ ζ ζ

κ ψ ψ ψ α

ψ
∞

= +

= −

= ∆

= ∆

� �

�

 (5.29) 

where { } ( )0cosP n
Q ψ  are the spheroidal/WG truncation coefficients and the 

spheroidal/WG error kernel is defined as 

 ( ) ( )
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cos

cos forP
P
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ψ ψ
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 (5.30) 

This WG error kernel is a discontinuous function across the spherical cap radius (cf. 

Equation 5.11). Therefore, the expansion coefficients { } ( )0cosP n
Q ψ  of the 

spheroidal/WG error kernel decay and the truncation error (Equation (5.29) 

converges at the rate of ( )1n−
� .  Vaní�ek and Featherstone (1998) showed that the 

numerical values of the truncation coefficients from spheroidal modifications 

become unstable in the vicinity of M = 360.  This was attributed to the Gibbs 

phenomenon, where the spheroidal Stokes kernel is made discontinuous by the 

removal of the Legendre polynomials. 

It is shown by Vaní�ek and Featherstone (1998) (and reiterated by Featherstone, 

2003c) that the spheroidal Stokes kernel is a very efficient high-pass filter when 

using a global integration (i.e., no cap and global gravity data is available), but the 

power of the filter diminishes when a limited integration domain is used.  This means 

that leakage of low-frequency errors from the terrestrial gravity data will occur, but 

less so than would occur from using the truncated unmodified spherical Stokes 

kernel.  Because the low-order terms are normally determined from the satellite-only 

components of a GGM the spheroidal Stokes kernel can be considered superior to the 

spherical Stokes kernel. 

Featherstone (2003c) demonstrated that as the degree of spheroidal modification 

increases, the oscillation of the spheroidal kernel also increases due to the removal of 

the low-degree Legendre polynomials.  Although increasing the degree of the 

spheroidal modification increases the amount of high-pass filtering and counteracts 

the effect of using an integration cap, it needs to be balanced against the increasing 
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oscillation of the kernel and the resultant non-representative solutions (i.e., it 

becomes harder to get the average kernel using numerical integration).  When the 

kernel is oscillating it makes it difficult to solve Stokes’s integral numerically 

(Featherstone, 1992).  This means that only low degrees of the spheroidal/WG 

modification should be used. 

5.3.4 Vaní�ek and Kleusberg 

The kernel modification presented by Vaní�ek and Kleusberg (1987) applies the 

Molodensky et al. (1962) modification of the spherical Stokes kernel to the 

spheroidal kernel (cf. Equation 5.26) in conjunction with a Molodensky-type 

minimisation to the upper bound of the truncation error.  The Vaní�ek and Kleusberg 

(VK) modified kernel is also described in Vaní�ek and Sjöberg (1991) and is given 

by: 
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The superscript L indicates a Molodensky-type modification of degree L.  The cases 

where L > M and L > P are not considered here because they cause additional terms 

to arise that are not really necessary and are thus impractical to compute (cf. Section 

5.3.3).  M is the degree of the GGM used in the RCR scheme and P is the degree of 

spheroidal kernel modification. 

The VK modification coefficients ( )0coskt ψ  ( 2 k L≤ ≤ ) are determined by 

minimising the L2 norm of the error kernel (Equation 5.37), which generates the 

following set of linear equations (Vaní�ek and Kleusberg, 1987; Vaní�ek and 

Sjöberg, 1991): 
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where Qn are given by Equation (5.13), and: 
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Featherstone (2003c) also emphasises that the coefficients ( )0cosnke ψ  and hence 

( )0coskt ψ  depend on the integration cap radius, which must be selected before the 

VK modification is made.  For L � M and L � P, the quasigeoid height is 

approximated by: 

 ( )02
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with a truncation error of: 
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and the truncation coefficients given by: 
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and the associated error kernel: 
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5.3.5 Heck and Grüninger 

The modification proposed by Heck and Grüninger (1987) applies a Meissl (1971) 

modification to the WG (spheroidal) Stokes kernel.  Like the ML modification, to 

make the function continuous the value of the spheroidal kernel at the integration cap 

radius is subtracted from the WG kernel inside the cap. 

The Heck and Grüninger (HG) modified kernel is: 
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P P
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The quasigeoid height is approximated by: 

 ( )02

0 0
cos sinM

HG M HGS g d d
π ψ

ζ ζ κ ψ ψ ψ α+ ∆� ��  (5.39) 

with a truncation error of: 
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where { } ( )0cosHG n
Q ψ  are the HG truncation coefficients given by Equation (5.13) 

and the associated error kernel is: 
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The truncation coefficients for the expansion series of the HG error kernel satisfy the 

improved convergence rate of ( )2n−
�  (Featherstone, 2003c).  The convergence rate 

for the WG error kernel is ( )1n−
�  (see Section 5.3.3).  When combined with the 

RCR scheme for quasigeoid evaluation, the truncation error is reduced further 

(Featherstone, 2003c). 

Heck and Grüninger (1987) also propose an alternative approach to the subtraction in 

Equation (5.38), where L is chosen such that the spheroidal Stokes kernel is zero at 

the truncation radius.  While this ensures a continuous error kernel and an improved 

convergence rate for the truncation error, it also limits the combinations of �0 and L 

that can be used.  Because �0 normally depends on data availability, this would 

imply a high degree of modification which is undesirable due to the high-pass 

filtering properties (cf. Section 5.3.3). 

5.3.6 Featherstone, Evans and Olliver 

The modification published by Featherstone et al. (1998) applies a Meissl (1971) 

modification to the Vaní�ek and Kleusberg (1987) kernel [a Molodensky et al. 

(1962) modified WG (spheroidal) kernel with minimisation of the upper bound 
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error].  According to Featherstone et al. (1998) and Featherstone (2003c), this 

increases the rate of convergence of the truncation coefficients from ( )1n−
�  to 

( )2n−
�  and thus reduces the truncation error further when implemented with the 

RCR scheme.  This approach is similar to the alternative HG methodology (Section 

5.3.5) where the WG modification is chosen for a particular M such that the first zero 

point of the error kernel coincides with the truncation radius.   

The Featherstone, Evans and Olliver (FEO) modified kernel is: 
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The coefficients ( )0coskt ψ  are determined in the same way as for the VK 

modification (Section 5.3.4).  In practise for L � M and L � P, the quasigeoid height 

is approximated by: 
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with a truncation error of: 
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where { } ( )0cosFEO n
Q ψ  are the FEO truncation coefficients given by Equation (5.13) 

and the associated error kernel is the continuous function given by: 
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Featherstone et al. (1998) considered this modification to be an advance on the other 

deterministic modifications described in Sections 5.3.2 to 5.3.5 because it combines 

the perceived advantages of each into a single modification scheme.  As such, it was 

used for the development of the Australian gravimetric quasigeoid model, 

AUSGeoid98 (Featherstone et al., 2001). 
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5.4 Evaluation of kernel modifications 

5.4.1 Comparison of kernel modifications in the RCR approach 

From the literature discussing the above modifications, it is not clear which 

combination of kernel modification, integration cap size and degree removal (where 

applicable) provides the best results in a given location.  Theoretically, each of the 

modifications outlined above should be improvements on their predecessors.  

However, recent evidence has shown that no single combination provides the best 

result in all situations (e.g., Forsberg and Featherstone, 1998; Featherstone and 

Sideris, 1998; Higgins et al., 1998; Featherstone et al., 2004; Ågren, 2004; Ellmann, 

2005).  In addition, various studies that have investigated the differences between the 

modifications (e.g., Sjöberg and Hunegnaw, 2000; Omang and Forsberg, 2002; 

Featherstone, 2003c; Sjöberg, 2003d; Ellmann, 2005) have given inconclusive results 

in that they can not be generalised.  This is likely to be due to the spatially varying 

error characteristics of the different gravity data sources giving different results in 

their respective computation/evaluation areas. 

To ascertain the best combination of kernel modification and its associated 

parameters for the NZ quasigeoid, a comparison of different deterministic 

modifications was undertaken.  The five deterministic modifications described in 

Sections 5.3.2 to 5.3.6 above, as well as the unmodified spherical Stokes kernel, were 

implemented using the procedure documented in Section 5.2.4.  Stochastic kernel 

modifications were not considered in this study because accurate estimates of the 

errors in the NZ terrestrial gravity data are not currently available.   

All of the modified kernels discussed above (ML, WG, VK, HG and FEO) and the 

unmodified spherical Stokes kernel (SS) were computed with integration cap radii 

shown in Table 5.1.  The SS kernel was also evaluated with no integration cap 

(because the terrestrial gravity coverage is only 30° x 35° a 180° cap is the 

equivalent of not limiting the integration radius).  The WG, VK, HG and FEO 

modifications were also evaluated with each of the kernel modification degree values 

(L) given in Table 5.1 for each of the integration cap radii (�0).  The SS kernel and 

ML modification do not have degree removal in their definition so these have only 

been evaluated with the integration cap variations.  The computations have utilised 

�0 ranging from 0.25° (the Nyquist frequency of EGM96, M = 360) to 10° (M = 12).  
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The values selected for testing (Table 5.1) were chosen to provide a range of 

solutions that covered the extents of the NZ terrestrial gravity data.  The tested 

degrees of modification (L) were arbitrarily selected so that they broadly 

corresponded to the (currently available) range of the maximum degrees of complete 

harmonic expansion (Mmax) from satellite based GGMs. 

Integration cap radii, 
�0 

Degree of 
modification, L 

0.25° 2 
0.5° 5 
1.0° 10 
1.5° 15 
2.0° 20 
2.5° 25 
3° 30 
4° 40 
5° 50 
6° 60 
7° 70 
8° 80 
9° 90 

10° 100 
180° (SS only)  

Table 5.1  Parameters evaluated in kernel modification comparison 

5.4.2 Results of comparison 

The quality of the different kernel modification and parameter combinations can be 

determined by comparing agreement of the resulting quasigeoid with GPS-levelling 

derived geometric quasigeoid heights (albeit on different LVDs).  The “best” 

combination of modification, �0 and L will occur where the standard deviation of the 

comparison is at its minimum. 

To determine the optimum combination for NZ, the GPS-levelling dataset (Section 

3.8) was compared with each combination described in Table 5.1.  It is important to 

note that the NZ precise levelling heights have been observed in relation to different 

vertical datums that are offset from each other (cf. Section 5.4.4).  To ensure that the 

datum offsets (i.e., Section 2.4.3) do not affect the error estimate for each 

modification comparison the standard deviation �i for the GPS-levelling points on 

each datum was computed separately.  The separate �i were then combined using 
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Equation (5.46) to give a weighted average (�average) of the complete GPS-levelling 

dataset (1014 points); where Ni is the number of points on each datum i. 

 average
i i

i

N

N

σ
σ = �

�
  (5.46) 

The average standard deviations for each of the tested kernel modifications are 

shown in Figure 5.3 to Figure 5.7. 

The unmodified SS kernel (Figure 5.3) has a �0 minimum of 9.4 cm at 4° (from the 

range of �0 tested).  Another local minimum also occurs at 1°.  The distinctive 

oscillating shape of the SS curve was described by Kearsley (1988) as a “W-curve” 

and explained as an artefact of the residual gravity data used in the integration kernel.    

The “W-curve” is not visible in the ML modification results (Figure 5.3; cf. Stewart 

1990; Featherstone, 1992).  The ML curve has a single 7.6 cm minimum at 1.5° that 

is almost 2 cm lower than that achieved by the SS kernel. 

 
Figure 5.3  Standard deviation of the SS (solid line) and ML (dotted line) kernel 

quasigeoids when compared with GPS-levelling 

The WG kernel (Figure 5.4) is characterised by a range of local minima and maxima 

and a distinct spike with large integration caps (�0 < 7°).  The overall minimum of 

7.1 cm occurs where �0 = 2.5°, L = 50 - 80.  Because the WG modification should 

not be used with high values of L because of its high-pass filtering characteristics and 

the subsequent oscillating kernel (cf. Section 5.3.3; Featherstone, 1992), only low 
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values of L should be used (i.e., 2 - 30).  In this limited range, the minimum of 8.0 

cm occurs at �0 = 1.5°, L = 30.  Surface plots (e.g., Figure 5.4) are used (as opposed 

to line graphs or tables) to compare the different combinations of �0 and L (e.g., 

Figure 5.4) because they provide a better visual representation of the different 

combinations and make spurious results easier to detect. 

 
Figure 5.4  Standard deviation of the WG kernel quasigeoid compared with GPS-

levelling 

The HG kernel (Figure 5.5) produced a smooth surface that is similar to the ML 

kernel (Figure 5.3).  This was expected as the HG modification is based in similar 

principles in that it applies a ML modification to the WG kernel (cf. Section 5.3.5).  

Unlike WG (Figure 5.4), the HG comparison results are more stable.  The minimum 

value of 7.6 cm is achieved when �0 = 1.5° and L is between 0 - 30. 
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Figure 5.5  Standard deviation of the HG kernel quasigeoid compared with GPS-

levelling 

 
Figure 5.6  Standard deviation of the VK kernel quasigeoid compared with GPS-

levelling 
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The VK kernel (Figure 5.6) is similar to the WG kernel (Figure 5.4) at small 

integration caps (�0 < 4°).  The distinctive “bump” around �0 = 1° – 3° and “wing” 

around �0 = 7-10° (both at low L values) are present in both comparisons.  This 

similarity is expected because the VK kernel is obtained by applying the Molodensky 

et al. (1962) modification to the spheroidal WG kernel (cf. Section 5.3.3).  The 

significant difference is a large spike that is centred on the �0 = 6°, L = 90 

combination.  This spike is investigated further in Section 5.4.3.  The minimum of 

7.8 cm is achieved at �0 = 1.5°, L = 80 – 90. 

The FEO kernel (Figure 5.7) exhibits the same smooth surface of the HG kernel 

(Figure 5.5) except for the large spike centred on �0 = 6°, L = 90 that is caused by the 

VK kernel (Figure 5.6).  These similarities are expected because the FEO kernel is 

obtained by applying a ML modification to the VK kernel (cf. Section 5.3.6) and the 

HG kernel is a ML modified WG kernel.  This spike is investigated further in Section 

5.4.3.  The minimum of 7.6 cm is achieved at �0 = 1.5°, L = 2 – 40. 

 
Figure 5.7  Standard deviation of the FEO kernel quasigeoid compared with GPS-

levelling 
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Modification �0 L �average (m) 
SS 4° - 0.094 
ML 1.5° - 0.076 
WG 2.5° 50 – 80 0.071 
HG 1.5° 0 – 30 0.076 
VK 1.5° 80 – 90 0.078 
FEO 1.5° 2 – 40 0.076 

Table 5.2  Minimum average standard deviation range for each kernel modification 
compared to GPS-levelling 

It can be seen in Figures 5.3 to 5.7 that �average varies significantly depending on the 

modification, �0 and L chosen.  The overall �average minimum for each modification 

are summarised in Table 5.2.  In several cases, there is a range of L values given 

where the standard deviation was the same.  The overall minimum occurs using the 

WG modification for �0 = 2.5°, L = 50 - 80.  Because the WG modification should 

not be used with high degree modifications, this combination will not be used for the 

NZ quasigeoid computations.  Similarly, the relatively high L for the VK 

modification (80 - 90) indicates a numerically unstable solution (this is investigated 

in Section 5.4.3).  The remaining modifications (ML, HG and FEO) all have 

minimum values within 2 mm of each other.  Based on �average alone, no one kernel 

modification gives a significantly better result than another in NZ.  Therefore 

additional comparisons need to be made before a kernel modification can be chosen 

for the NZ quasigeoid computations. 

5.4.3 Numerical instabilities in the VK and FEO kernels 

A notable feature that is seen in both the VK and FEO solutions is the large spike 

that appears at �0 = 6°, L = 90 (Figures 5.6 and 5.7).  Because these spikes only 

occur with certain combinations of �0 and L, it is likely that it is due to either a 

numerical instability in the VK/FEO kernels or a problem in the Featherstone 

(2003c) software.  Only the VK kernel has been investigated to identify the cause of 

the spike.  This is because the FEO kernel is a modification of VK (and is computed 

with the same software code), so the spike can be attributed to it. 

To better understand the nature of the spike the VK kernel (Equation (5.31)) was 

evaluated for different L values using the Featherstone (2003c) software.  The VK 

kernel for L = 50 (Figure 5.8) produces the expected smooth asymptotic curves for 
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each �0 plotted.  When the same kernel is plotted with L = 100 (Figure 5.9) the 

resulting curves are more irregular.  They plot as expected up to �0 = 4°, above this 

the kernel becomes more erratic and large oscillations occur.  When �0 = 10° the 

kernel returns to the expected asymptotic shape.  The oscillations appear to achieve 

maximum values for �0 = 5° – 8°. 

Featherstone (2003c) showed that a numerical instability that occurs in the 

( )0coskt ψ  VK modification coefficients when small �0 are combined with large L.  

This instability was highlighted by examination of the determinant (cf. condition 

number) of the matrix that is inverted to compute the ( )0coskt ψ  coefficients, which 

becomes worse as it approaches unity.  To ascertain whether a numerical instability 

the ( )0coskt ψ  coefficient matrix was causing the oscillations in the VK kernel, the 

determinant of the matrix was evaluated for a range of �0, L combinations (Figure 

5.10).  The smooth S-shaped curves replicate those of Featherstone (2003c) and 

demonstrate the reported instability when small �0 are combined with large L (i.e. the 

determinant is close to unity).  Because the curves are smooth, regular and generally 

trend towards zero for all L this does not indicate a numerical instability in the 

( )0coskt ψ  coefficients causing the oscillations in Figure 5.9. 

 

Figure 5.8 VK modified kernel, L = 50 
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Figure 5.9 VK modified kernel, L = 100 

 

Figure 5.10 Determinant of the VK kernel modification coefficient matrix, 
( )0coskt ψ  

The other potential cause of the VK kernel oscillations is an error the Featherstone 

(2003c) software.  To isolate the location of potential software bugs each term of 

Equation (5.31) was evaluated separately; these are the SS kernel (Figure 5.2), the 

“spheroidal” term (Figure 5.11a) and the VK “subtracted” term (Figure 5.11b).  The 

kernel was computed for L = 100 and �0 = 4° – 9° because that incorporates the large 

oscillations seen in Figure 5.9.  It can be seen in Figure 5.11 that the kernel 

oscillations are originating in the VK “subtracted” term.  It is well known that the 
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subtraction of two similar terms can cause numerical instabilities in computer 

software as a result of arithmetic precision limitations.  It is possible that the 

oscillations in the “subtracted” term are being caused by this instability. 

 

 
Figure 5.11 VK kernel components, L = 100 (a) “spheroidal” term, (b) VK 

“subtracted” term 

Given the oscillations evident in Figure 5.11b and the smooth determinant for �0 and 

L (Figure 5.10) it is concluded that the oscillations in Figure 5.9 and the spike in 

Figure 5.6 are attributed to a spurious numerical instability in the VK kernel.  This 

then propagates into the FEO kernel resulting in the spike in Figure 5.7.  Because the 

spikes only occur with large �0, and the kernels perform best with relatively small 

�0, they will not impact on the choice of parameters for the NZ quasigeoid 
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computations.  Consequently, the cause of the numerical instability is not 

investigated further here. 

5.4.4 Results of datum offset comparison 

Because the standard deviation analysis did not conclusively provide a set of kernel 

modification parameters that were better than any others, some additional 

investigation was necessary.  This involved performing a datum-by-datum analysis 

that looked at the average computed LVD offsets (for each �0 and L combination) to 

determine which values looked reasonable based on the corresponding observed 

values (Table 5.3). 

Vertical Datum 
Datum Zero 
Ellipsoidal 

Height 

GGM 
quasigeoid 

Height 

Observed 
Offset 

Offset Less 
Wellington 

One Tree Point 1964 37.739 37.834 -0.095 0.295 
Auckland 1946 34.202 34.477 -0.275 0.116 
Moturiki 1953 30.949 31.197 -0.248 0.143 
Gisborne 1926 21.839 22.315 -0.475 -0.085 
Napier 1962 18.201 18.518 -0.318 0.073 

Taranaki 1970 22.800 22.854 -0.054 0.336 
Wellington 1953 12.719 13.110 -0.391 0.000 

Nelson 1955 16.158 15.820 0.338 0.729 
Lyttelton 1937 11.747 12.265 -0.518 -0.128 
Dunedin 1958 5.411 5.882 -0.471 -0.080 

Dunedin-Bluff 1958 4.757 5.363 -0.606 -0.216 
Bluff 1955 3.647 4.026 -0.379 0.012 

  Average -0.291 0.100 

Table 5.3 Observed NZ LVD offsets from GGM02S-EGM96 GGM and differences 
from Wellington 1953 datum offset (metres) 

The LVD offsets were computed from the difference between the ellipsoidal height 

of the datum zero level and the GGM used in the kernel modification comparisons 

(GGM02S/EGM96, Section 3.2.2).  Relative offsets for each datum were then 

computed by subtracting the Wellington 1953 offset from the other absolute values.  

The offsets (relative to the Wellington 1953 datum) were then combined using a 

weighted average (cf. Equation 5.46).  The relative offsets enable a better 

comparison of the performance of each �0 and L combination because they are all 

“centred” around a common zero point.  The Wellington 1953 datum was arbitrarily 

chosen as a reference datum because it is geographically central (in NZ).  The 

average offset with respect to the Wellington 1953 datum is +10 cm.  No offset has 
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been calculated for the Stewart Island 1977 datum because it was not possible to 

determine the ellipsoidal height of the datum zero point.  The Balclutha Fundamental 

(B3ME) was used as the “zero” of the Dunedin-Bluff 1958 datum as this datum does 

not have a tide gauge origin.  The accuracy of the offsets is estimated as 14 cm based 

on the accuracy of the (typically third order) ellipsoidal height of the LVD zero (cf. 

Section 3.8). 

The SS and ML kernel average offsets are shown in Figure 5.12.  The SS offsets 

(solid line) trends downwards with localised undulations that correspond to the “W-

curve” noted in Figure 5.3.  The average offsets oscillate around the observed offset 

(dashed line) up to �0 = 2.5° before diverging.  Because the offsets vary so much the 

choice of �0 is important to ensure a good agreement with the GPS-levelling 

observations.  The ML offsets (dotted line in Figure 5.12) change more smoothly 

than the SS values and generally agrees with the observed values between �0 = 1.5° 

and 7°; this broadly correlates with the shape of the standard deviation curve (Figure 

5.3). 

 
Figure 5.12  Average offsets (relative to Wellington) of SS (solid line) and ML 
(dotted line) kernel quasigeoids compared with GPS-levelling; and the observed 

average offset (dashed line) 

The WG kernel offsets produce an undulating surface that degrades with increasing 

�0 (Figure 5.13).  A large divergence can be seen when �0 < 6° and L > 10.  In 

contrast a positive divergence is seen when the L < 40.  These features correspond 
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well to the spikes in the standard deviation comparison (cf. Figure 5.4).  The offsets 

that are closest to the observed offset with �0 = 1.5° and L = 0 – 5. 

The HG kernel offsets (Figure 5.14) produce a smoother surface than the WG kernel 

that is similar to that from the standard deviation analysis (Figure 5.5).  The closest 

fit to the observed offset is around �0 = 5° and L = 15, because the surface is 

relatively flat many of the offsets are within 5 cm of the observed value. 

The VK kernel offsets (Figure 5.15) show striking similarities to the standard 

deviation comparison (Figure 5.6).  The numerical instability discussed in Section 

5.4.3 is clearly visible, although the previous maximum appears as a minima spike of 

1.1 m.  The small “wing” that occurred with high �0 and low L in the standard 

deviation comparison also translates to a minima in the offset comparison.  Again, 

there are large areas within 5 cm of the observed offset. 

 
Figure 5.13  Average offset (relative to Wellington) of WG kernel quasigeoid 

compared with GPS-levelling, observed average offset shown as horizontal plane 
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Figure 5.14  Average offset (relative to Wellington) of HG kernel quasigeoid 

compared with GPS-levelling, observed average offset shown as horizontal plane 

 
Figure 5.15  Average offset (relative to Wellington) of VK kernel quasigeoid 

compared with GPS-levelling, observed average offset shown as horizontal plane 
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The FEO kernel offsets (Figure 5.16) produce the smoothest surface if the spike 

centred on �0 = 6°, L = 90 is excluded.  Like for the VK kernel, the effect of the 

numerical instability in the FEO kernel can be seen at this location.  The otherwise 

smooth surface produces a wide range of �0, L combinations that give agreement 

with the observed offset (within 5 cm). 

 
Figure 5.16  Average offset (relative to Wellington) of FEO kernel quasigeoid 

compared with GPS-levelling, observed average offset shown as horizontal plane 

A combined analysis of the standard deviation and the average vertical datum offset 

(relative to Wellington 1953 datum) still does not give a single �0, L kernel 

modification combination that is significantly better than any other.  However, the 

FEO offset gives the smoothest surface (excluding the spike discussed in Section 

5.4.3) that is in agreement with the observed value, implying a more stable solution.  

The use of the offset analysis on its own is not a strong selection criterion, however, 

when combined with the standard deviation comparison (Section 5.4.2), it can be 

used to objectively choose the best parameters (within the 14 cm nominal error of the 

observed offset). 
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The standard deviation comparison (Section 5.4.2) concluded that the ML, HG and 

FEO modifications gave the best solutions.  Because the FEO modification also had 

the smoothest offset surface (i.e., the offset is relatively insensitive to changes in �0 

and L) it (with �0 = 1.5° and L = 40) was selected for use in the NZ quasigeoid 

computations. 

5.4.5 Summary of kernel modification comparisons 

In theory, the FEO modification claims to be the optimum selection because it 

combines the advantageous features of almost all the previous deterministic kernels 

(Featherstone et al., 1998).  Given its theoretical advantage and effective 

implementation in AUSGeoid98 (cf. Featherstone et al., 2001), the FEO model has 

been selected for usage in the quasigeoid computations described in Section 5.2.4.  

The FEO kernel minimum �average occurs at �0 = 1.5°, L = 40 (cf. Section 5.4.2; 

Figure 5.7).  Consequently these parameters will be used in for the NZ quasigeoid 

computations. 

This choice of parameters corresponds well with the �0 = 1°, L = 20 that was used in 

the development of AUSGeoid98 (Featherstone et al., 2001).  The larger integration 

cap for NZ (�0 = 1.5°) implies that the NZ gravity anomalies are better than in 

Australia (cf. Vaní�ek and Featherstone, 1998). The higher value of L selected for 

the NZ data is attributed to the inclusion of the recent GRACE data in the GGM02S 

GGM that was not available to Featherstone et al. (2001).  This data provides a better 

estimate of the long wavelength quasigeoid signal; hence a higher L than in Australia 

can be used (cf. Section 3.2). 

5.5 Summary 

This Chapter has described how gravity observations are converted into a gravimetric 

quasigeoid using the truncated and deterministically modified Stokes kernel to 

enhance a GGM.  It described five deterministic modifications to Stokes’s kernel and 

evaluated them over a range of �0 and L combinations.  Each solution was compared 

against GPS-levelling observations on the 13 NZ vertical datums and the resulting 

standard deviations and relative datum offsets used to ascertain the best modification 

for use in the NZ quasigeoid computations.  The standard deviation analysis revealed 
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a numerical instability in the VK and FEO modifications (�0 = 6° and L = 90) that 

was also reflected in the relative offsets.  The cause of this instability was not 

categorically identified; however, it did not affect the final �0 and L selection.  In the 

end, the FEO deterministic modification was selected with �0 = 1.5° and L = 40 for 

use in the NZ quasigeoid computations.  This combination gave the lowest �average 

and also exhibited a relative offset that was in agreement with the observed values.  

Because the FEO �average was not significantly better than the others, this choice 

remains somewhat arbitrary. 
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6 VERTICAL DATUM UNIFICATION 

6.1 Introduction 

To fix the heights of benchmarks on land requires that the height (or potential) of one 

(or more) points is fixed (Section 2.3.1).  These values are normally selected using 

long-period sea level observations so that the heights are broadly in agreement with 

local mean sea level (Section 2.3.2).  Sea surface topography (Section 2.3.3) or land 

movements (Section 2.3.4) lead to differences between different height datum 

systems (Arabelos and Tscherning, 2001).  The concept of vertical datum definition 

is described in detail in Chapter 2. 

It is well known that local vertical datums (LVDs) are often offset from each other.  

These LVD offsets can be on global [e.g., Colombo, 1980; Laskowski, 1983; Rapp 

and Balasubramania 1992; Heck, 1990), continental (e.g., Europe (Ihde et al., 2002), 

Africa (Merry, 2003), South America (Hernández et al., 2002)], country [e.g., 

Indonesia (Kasenda and Kearsley 2002), Uruguay (Subiza Piña et al., 2002), United 

Kingdom (Iliffe et al., 2003), Australia (Rizos et al., 1991; Kearsley et al., 1993; 

Featherstone 2000, 2002a), New Zealand (Hannah 2001), North America (Burša et 

al., 2007)] and local levels.  The ideal situation is that they can be unified by relating 

each datum to a common reference surface (e.g., a precise geoid/quasigeoid model). 

This section discusses the problem of LVD unification in NZ.  It describes three 

existing methods of achieving datum unification and highlights the shortcomings in 

these approaches.  Following this, a new iterative technique for unification that 

accounts for the effect of the offsets between the different datums is presented.  The 

new approach is then implemented over the 13 NZ vertical datums (Section 2.4.3; 

Figure 6.4) to unify them. 

6.2 Vertical datum offsets 

6.2.1 Datum reference surfaces 

In an ideal world, a geoid coincident with MSL would be able to be used as a global 

reference surface.  MSL would represent a constant equipotential at all locations, it 

would not change over time and it would be easy to define at coastal sites to establish 
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reference marks for the origins of local or national datums: this is not the case.  

Heights could then be transferred from these origin points using techniques such as 

precise spirit levelling, where precise levelling lines from adjacent datums meet the 

heights in terms of those datums would theoretically be identical (in the absence of 

errors in the precise levelling). 

The real world is, unfortunately, different from this ideal.  Phenomena such as tides 

(cf. Section 2.3.2), sea surface topography (cf. Section 2.3.3), currents and storm 

surges (cf. Section 2.4.5) collude to cause MSL to deviate from an equipotential 

surface.  The relationship between observed MSL and the land reference marks is not 

constant due to changes in sea level and the uplift/subsidence of the land (cf. 

Sections 2.3.4 and 2.4.6), thus datums defined at different times may refer to 

different levels.  This means that when local MSL is used to define a vertical datum, 

it is likely to be different to local MSL at a different location, consequently when 

vertical datums are compared; they are offset from each other. 

The above effects are compounded by differences in the choice of height system (cf. 

Section 2.2); Earth-tide model (cf. Section 2.3.5); datum definition (adjustment) 

technique (cf. Section 2.3.1); and errors in levelling.  From a vertical datum users’ 

perspective, it is useful to have all points within a given region that are at sea level to 

have a height equal to zero.  If a vertical datum is defined by fixing MSL at a single 

tide gauge point (e.g., NZ [Section 2.4.4]; United States NAVD 88 [Zilkoski et al., 

1992]) it can result in the “zero height” departing from MSL at other locations in the 

datum. 

A practise that has been adopted in many countries (e.g., Australia AHD [Roelse et 

al., 1975; Section 2.5.1]; Canada CGVD28 [Kingdon et al., 2005; Section 2.5.3]) is 

to constrain multiple tide-gauge MSL values to zero in their respective precise 

levelling adjustments.  This approach gives a vertical datum with a “zero level” that 

is close to the observed MSL at all locations, but it does not represent an 

equipotential surface.  For example, the Australian AHD adjustment fixes 30 tide-

gauges to “absorb” the effect of SSTop that is known to cause MSL to deviate by 70 

cm around the Australian coast (Featherstone and Kuhn, 2006).  If datums are not 

defined in relation to equipotential surfaces, it is more difficult to determine their 

relationship to other vertical datums (cf. Section 6.3). 
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6.2.2 Effect of vertical datum offsets on gravity observations 

When gravity observations are reduced to gravity anomalies, the “height” of the 

observation is an important quantity.  Heights are used for several reductions (cf. 

Section 3.3) and in the computation of terrain corrections (cf. Section 4.4).  Where 

all heights are in terms of the same datum, the reductions and calculations will be 

consistent. 

Where heights are not in terms of the same vertical datum or the vertical datum used 

is distorted, for example where adjacent datums abut or where a regional or global 

unification of vertical datums is being attempted, the different heights will be 

inconsistent.  It follows that the quantities derived from these heights, namely free-

air and Bouguer anomalies, will also be inconsistent (e.g., Section 3.3).  When 

inconsistent gravity anomalies are converted into a geoid, a step (smoothed by the 

filtering in Stokes function) will occur in the geoid surface that is related to the offset 

between the vertical datums (Figure 6.1).  The significance of these steps will be 

affected by the magnitude of systematic errors in the heights that are used to reduce 

the gravity anomalies. 

 

Figure 6.1  Height and datum offset relationships 
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6.2.3 Height and offset relationships 

When two or more vertical datums are not defined in terms of the same equipotential 

surface, they can not be unified by simply comparing heights in each system (i.e., 

points in the different systems with the same height “values” will not be located on 

the same equipotential surface).  Where the different datums physically abut, it can 

be possible to directly observe the datum offset (�) at that point by comparing the 

heights from the respective systems (i.e. � = Ha – Hb).  Obviously this approach is 

not possible where the datums are not physically connected due to the presence of 

water bodies, for example between the North and South Islands of NZ. 

Satellite-based GNSS positioning provides a method to transfer ellipsoidal heights 

across large distances.  When combined with a GGM, ellipsoidal heights can be 

converted into orthometric heights using the relationship given in Section 2.2.10 (and 

described further in Section 6.3.2).  This approach assumes that the GGM coincides 

with the “zero” of both vertical datums.  When these surface do not coincide an 

offset (�) exists: 

 ortho
a aH h N ο− − =   (6.1) 

where Ha is the orthometric height in terms of the local vertical datum, h is the 

ellipsoidal height and N is the geoid height.  Similarly for normal-orthometric heights 

(H N-O) and the quasigeoid (�) the offset is given by: 

 N O
a aH h ζ ο− − − =   (6.2) 

6.3 Vertical datum unification techniques 

If it is not possible to directly connect adjacent vertical datums, for example due to a 

body of water or large distances between benchmarks, an alternative method is 

required.  The following sections describe the main approaches that have been 

proposed by other authors for vertical datum unification. 

6.3.1 Geopotential numbers 

The global geopotential (W0), as specified by Gauss (1828) and Bessel (1837), 

represents the mean of the geopotential over the world’s oceans.  The global 

potential, W0, is given in Burša et al. (2007) as: 
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As stated in Section 6.2, most LVDs are defined in terms of one or more local tide 

gauge stations, and by definition local estimates of W0 (this is the case in NZ).  A 

description of the procedure to unify vertical datums using geopotential numbers is 

given in Burša et al. (1999a; 1999b; 2001; 2007).  In simple terms, the actual 

geopotential, ( )0 A
W , is computed at the origin (tide-gauge) of each LVD using a 

GGM and GPS-levelling.  These values are then compared with the global 

geopotential to give geopotential numbers using (cf. Equation 2.1): 

 ( )0 0A A
C W W= −   (6.4) 

 

The offset between the LVDs A and B is then given by (where γ is normal gravity): 

 A B
AB

C Cο
γ
−=   (6.5) 

This approach has been implemented in several locations, normally between 

countries, for example Grafarend and Ardalan (1997) in the Baltic region, Burša et 

al. (2007) in North America, and Burša et al. (1999a, 1999b; 2001; 2002; 2004) on 

several countries on a global scale.  This technique of datum unification requires 

GGM and GPS-levelling information at each of the datum origins (tide-gauges) to 

compute the geopotential for each LVD.  The downside of using a single point for 

each datum is that the assumptions must be made that the datum offsets are constant 

across the datum and that the datums are not inclined or distorted (e.g., due to 

multiple tide gauges being fixed in the precise levelling adjustment). 

6.3.2 Gravimetric geoid 

Different height systems can be related by using a geoid model and GPS-levelling 

observations to provide a consistent reference surface to which the systems can be 

related.  Given that the computation of precise regional geoids is becoming straight-

forward, this technique has been implemented extensively, for example: Arabelos 
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and Tscherning (2001); Goldan and Seeber (1994); Featherstone (2000); Kumar and 

Burke (1998); Nahavandchi and Sjöberg (1998b); Rapp (1995); Pan and Sjöberg 

(1998); Rizos et al. (1991); and Rapp and Balasubramania (1992).  However, geoids 

still have errors in them, so this approach does not give exact datum unification. 

If the orthometric heights of two points, ortho
AH  and ortho

BH , in two different height 

systems are known, then, given the ellipsoidal heights, hA and hB, of those same 

points, and the geoid height difference 

 AB A BN N N= −   (6.6) 

between the points.  The offset between the datums can be determined by:  

 ( ) ( )ortho ortho
AB A B AB A Bh h N H Hο = − − − −  (6.7) 

As the name of this approach suggests, the application of Equation (6.7) is dependent 

on the availability of accurate geoid height differences between the datums.  The 

common method of gravimetric geoid computation is the so-called “remove-

compute-restore” approach where a global spherical harmonic model is enhanced 

with additional gravity and topographic information.  Any error in the spherical 

harmonic model, particularly long wavelength errors that are not corrected by the 

additional gravity and topography data, will be transferred directly to the computed 

geoid when using the RCR technique (Section 5.2.4; Vaní�ek and Featherstone, 

1998).  These errors will then propagate into the calculated vertical offsets.  

However, when the datums are regional in nature and close together (as is the case in 

NZ), the long wavelength errors inherent in the spherical harmonic model will have a 

similar effect on all of the offsets. 

Arabelos and Tscherning (2001) have shown that the CHAMP mission, and 

predicted that the GRACE and GOCE, satellite gravity missions are likely to 

improve the long-wavelength spherical harmonic models.  The use of these more 

accurate spherical harmonic models, as they become available, will make this 

approach more accurate. 

For this approach to datum unification to be strictly followed, the orthometric 

heights, gravity data heights and topographic heights used to calculate the 
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gravimetric geoid need to be in terms of a consistent datum.  This is known to not be 

the case (and is the reason for undertaking datum unification in the first place). 

When datums are being unified by this technique, it is often assumed that each datum 

is constrained at a single fundamental reference point.  In this situation, it can 

normally be assumed that the offset by a constant value.  In Australia, for example, 

the AHD is constrained to 30 tide-gauges around the coast that are affected 

differently by SSTop (among other factors).  This meant that when datum unification 

was attempted between mainland Australia and Tasmania the computed offset 

changes depending on the subset of points that was used (Featherstone, 2000). 

6.3.3 Sea surface topography 

The sea surface topography (SSTop), which causes differences between vertical 

datums based on coastal MSL observations, is the effect of oceanographic 

phenomena such as oceanic currents, meteorological effects, spatial variation of 

temperature and salinity etc. (cf. Section 2.3.3).  If these phenomena can be 

modelled, then the resulting SSTop surface (which approximates the geoid at the 

metre level; e.g., Hipkin, 2000) can be used to relate different datums (Heck and 

Rummel, 1990). 

The main problems in this approach are the complexity and the lack of resolution of 

these techniques, especially in the coastal regions where the tide-gauges used to 

define vertical datums are typically placed (e.g., Lehmann, 2000).  This means that 

the height relationships between datums can not at present be modelled to a high 

precision.  A modification to this procedure is to locate the tide-gauges offshore 

(where the SSTop models are better), however then a precise geoid is required to 

relate the tide-gauge to the vertical datum that it is being used to define (Ihde, 2007). 

6.3.4 Limitations of geopotential and geoid approaches 

The information used by the geopotential (Section 6.3.1), gravimetric geoid (Section 

6.3.2) and the SSTop (Section 6.3.3) approaches to vertical datum unification 

typically includes GGMs, gravity observations/anomalies, orthometric or normal 

heights etc., and GPS (ellipsoidal) heights  This information is frequently reduced to, 

or is in terms of, the local datums that relate to different equipotential surfaces or to 
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surfaces that are not even equipotential (e.g., due to over-constrained levelling 

network adjustments).  Because these datums are offset from each other, the data that 

is being used to achieve the datum unification is not in terms of a common reference 

system.  This means the unification achieved using this data will be biased by any 

offset between the different vertical datums. 

Laskowski (1983) simulated datum offsets on a continental scale ranging from -55 

cm to +30 cm (approximating the effect of SSTop) and found that the cumulative 

error up to degree 180 in the geoid was 44.67 cm, which is almost the magnitude of 

the SSTop variation.  He then showed that 90 percent of that effect was attributed to 

the low order (up to degree 10) geopotential coefficients.  This simulation confirmed 

that the effect of the offset vertical datums is likely to be seen in the low-frequency 

part of the gravity spectrum, which is known to have a large effect on the 

geopotential and the geoid (e.g., Vaní�ek and Featherstone, 1998).  Where the 

datums are physically close together (as in NZ), the effect from the low-frequency 

part of the gravity spectrum on the geoid will be similar for each datum and the 

resulting datum offsets (cf. Section 6.3.2). 

In a strict sense, each data set should be reduced to a common reference surface 

before unification is attempted, thus accounting for the fact that the surface being 

used for the datum unification is itself distorted.  The challenge is that this problem is 

somewhat circular, namely to get the data on a common reference surface it needs to 

be unified, however the problem is that the datums are not unified. 

The GBVP and iterative geoid approaches, described next in Sections 6.3.5 and 6.4 

respectively, differ from the above two approaches in that they attempt to account for 

the datum offsets that are known to exist in the source data. 

6.3.5 Geodetic boundary-value problem approach 

Two vertical datums can be connected indirectly by means of a combination of 

precise geocentric positions of two points, their potential (or height) value in each 

respective datum and their geoid height difference.  Rummel and Teunissen (1988) 

presented a method of determining the geoid height difference based on an extended 

formulation of the GBVP which made the realistic assumption that the observable 
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potential (or height) and gravity values used in its solution refer to a variety of height 

datums with unknown height differences between them. 

The general solution to the GBVP approach is (Rummel and Teunissen, 1988): 

 ( ) ( ) 0

' 2
4 j

j
PQ Q j

GM GM R
T P S g C d

R Rσ

ψ σ
π

− � �= + ∆ +� �
� �

�  (6.8) 

where G is the gravitational constant, 'M  and M are the approximate and actual 

masses of the Earth respectively.  It is reasonable to make the assumption that 

' 0GM GM− =  because 'GM  can be accurately determined (Xu and Rummel, 

1991).  R is the radius of the Earth, ( )PQS ψ  is Stokes integral function, jg∆  the 

gravity anomaly, and 0jQC  the potential difference to datum j. 

A detailed description of the method is provided in both Rummel and Teunissen 

(1988) and Heck and Rummel (1990).  There are, however, three basic requirements 

for the method, these are (1) geodetic (φ, �, h) coordinates for at least one station in 

each datum, (2) precise orthometric (or normal) heights or potential differences are 

available for all stations, and (3) gravity anomalies referring to the (I + 1) vertical 

datums are known globally (Xu, 1992). 

An example of the linear adjustment model that can be formed for each of the K 

space stations Pk (Rummel and Teunissen 1988, Xu and Rummel 1991) is:  
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where 
iPQS  and 

k jP QS  are the Stokes’s integrals evaluated over the respective datum 

zones i and j at station Pk and γ is normal gravity.  With 1K I≥ +  and at least one 

station in each datum zone, the unknown 0iQC  and 0W∆  are estimable from Equation 

(6.9). 

Biases introduced by inconsistencies in gravity, vertical and horizontal datums; error 

due to use of a simplified free-air gravity reduction; and the combination of different 

height systems, are all detrimental to the precision of the computed terrestrial gravity 
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anomalies.  Other effects such as periodic and secular variations in the Earth’s 

gravity field, plate tectonics, glacial isostatic adjustment and atmospheric variations 

also impact the gravity field (cf. Section 2.3).  The GBVP approach relies on the 

vertical datum effect to be the only major systematic error source in the gravity 

anomaly data, consequently the data needs to be reduced for the other effects before 

correct offsets can be evaluated (Heck, 1990). 

Pan and Sjöberg (1998) used Equation (6.9) to determine the datum offset between 

the Swedish and Finnish height systems as part of a wider Fennoscandia datum 

unification study.  They found a “surprisingly good agreement” with the results of 

the precise levelling derived offsets, 19.3 cm versus the 16.2 cm and 19.2 cm from 

different levelling sources.  It was not possible to locate any other practical 

implementations of this technique.  However, it has been implemented theoretically 

by Xu and Rummel (1991) and Xu (1992) who performed implementations using 

simulated data.  In addition van Olsen and van Gelderen (1998) computed an error 

propagation solution to prove the viability of the technique. 

6.4 Iterative quasigeoid unification scheme 

6.4.1 Overview and principles 

The objective of vertical datum unification is to determine a relationship between 

each of the vertical datums so that the heights of points on each datum can be 

expressed in terms of a single common system.  Traditionally, local datums are based 

on MSL observed at tide gauges in the area of interest.  Because the mean sea surface 

in the open ocean is known to deviate from a constant surface by more than one 

metre (e.g., Section 2.3.3; Pugh, 2004) the (normally) equipotential surfaces that 

form local datums will not be coincident and will be offset from each other by an 

unknown amount. 

When observations are reduced using heights in terms of a LVD (e.g., gravity 

reductions) are combined with observations reduced using heights from an adjacent 

datum, their combination will be biased because the heights have not been reduced in 

terms of a consistent reference surface.  This effect was noted and quantified in 

relation to datum unification problems by Laskowski (1983).  He proposed a datum 
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offset correction (��g) to correct gravity observations for the effect of the offset 

vertical datums and thus convert them to a consistent reference system prior to 

quasigeoid computation.  ��g has the form of the (first-order) free-air gravity 

correction (cf. Section 3.3.2) and units of mgal. 

 * 0.3086
g

g g g
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δ ο ο∂∆ = ∆ −∆ = ≅
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 (6.10) 
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It is not necessary to use the second-order free air correction (Equation 3.7) in 

Equation (6.10) because of the small height differences involved ( 2 mο ≤ ). 

Laskowski (1983) showed, in relation to spherical harmonic analysis, that the zero 

height implied by different vertical datums is not unique and varies from datum to 

datum by 1-2 metres (approximately the magnitude of SSTop, cf. Section 2.3.3).  It 

was concluded that mean gravity anomaly data, g∆ , should be further reduced to the 

modelled quasigeoid by the height difference between the zero-height implied by 

each vertical datum and the zero-height implied by the modelled quasigeoid (in much 

the same way that the indirect effect is used to correct for the change of mass under 

Helmert’s condensation, cf. Section 4.6). 

A limitation of Laskowski’s (1983) approach is its requirement that the magnitude of 

the vertical datum offsets is known before the correction can be applied and the 

quasigeoid computed.  In many situations, the offset will not be known beforehand; 

for example, where it is not possible to directly measure between adjacent datums.  
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The iterative quasigeoid unification scheme proposed and used here utilises the 

gravimetric quasigeoid technique (Section 6.3.2) to initially estimate the offsets 

between vertical datums and then uses Laskowski’s (1983) height correction function 

to correct the gravity anomaly values for the effect of the offset vertical datums. 

The iterative scheme described above could be used as the basis for datum 

unification using the other techniques described in Section 6.3 (geopotential 

numbers, SSTop, GBVP).  The evaluation of these alternatives is beyond the scope 

of this research because: gravity observations are not available in NZ to compute 

geopotential numbers; SSTop models are not sufficiently accurate to relate the NZ 

LVDs; and the GBVP technique has not been practically implemented. 

6.4.2 Gravimetric quasigeoid computation 

The general process followed in the iterative unification procedure is shown in 

Figure 6.2.  The first step is to compute a preliminary gravimetric quasigeoid using 

gravity anomalies reduced to their respective local vertical datums.  The procedure 

used to compute the gravimetric quasigeoid has been documented in Section 5.2.4.  

Essentially, the quasigeoid should be determined using rigorously reduced data sets 

(cf. Chapter 3) best corrections (cf. Chapter 4) and optimised computation 

procedures (cf. Chapter 5) for the area concerned.  Studies by Featherstone (2003d) 

and Novák et al. (2001b) have shown that it is possible to determine the high-

frequency quasigeoid to an accuracy of approximately 1-cm using synthetic data 

(i.e., if the error in the GGM is ignored).  Using the recent GRACE-derived GGMs 

(cf. Appendix A.2.1) and correctly processed (real) data, it is probably possible to 

resolve a quasigeoid to ~10 cm or so on land. 
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Figure 6.2  Iterative quasigeoid unification procedure 

6.4.3 Vertical datum offset computation 

GPS-levelling observations are then used to estimate the datum offsets for each 

vertical datum.  It has been shown in Section 2.2.10 that the normal-orthometric 

( N OH − ), quasigeoid (�) and ellipsoidal (h) heights of a point are related by 
N Oh Hζ −= + .  In an ideal, errorless situation, where the origin of the vertical datum 

coincides with the quasigeoid, the datum offset (�) will equal zero: 

 0N OH hο ζ−= + − =   (6.11) 

In the real world, the origin of the local vertical datum will not coincide with the 

quasigeoid and errors exist in all of the above three heights used to determine e.  This 

causes the computed vertical datum offsets to contain both noise and a bias.  When 

GPS-levelling observations are used to estimate the datum offsets for each vertical 
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datum they will show an offset (average difference between quasigeoid and GPS-

levelling) and an error (standard deviation of the difference). 

6.4.4 Datum offset correction 

The computed offsets are then used with Equation (6.10) to determine ��g for each 

vertical datum.  The original gravity anomalies are then “corrected” by adding the 

applicable ��g for the datum to which they belong.  The effect of using ��g to unify 

two datums with the iterative geoid datum unification scheme is shown in Figure 6.3.  

The gravity anomalies are initially reduced to the respective LVD which are offset 

from each other, in this case, a or b.  This information is then used to compute a 

preliminary geoid (indicated by the dotted line in Figure 6.3).  It can be seen that 

where the two LVD meet a step (smoothed by the filtering in Stokes function) occurs 

in the computed geoid as a result of the offset. 

 

Figure 6.3  Iterative quasigeoid datum unification scheme 

The initial offsets for each datum, �1a and �1b, are evaluated from GPS-levelling 

information, an a priori gravimetric quasigeoid (�1) using: 
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 1 1 ( )N O
a aH hο ζ −= + −   (6.12) 

Equation (6.10) is then used to determine the effect of the offset on the gravity 

anomalies, δ∆g1a and δ∆g1b, on their respective datums.  The original anomalies (ga, 

gb) are then corrected by the addition of the offset effect: 

 1 1a a ag g gδ= + ∆   (6.13) 

It is pertinent to note that this assumes that the heights used to reduce the gravity 

anomalies were in fact in terms of the datums, and therefore subject to the datum 

bias. 

6.4.5 Re-compute gravimetric quasigeoid 

The “corrected” gravity anomalies are then used to evaluate a second quasigeoid (�2) 

(shown as a dashed line in Figure 6.2).  The step in the geoid at the datum boundary 

has been smoothed in comparison to the preliminary quasigeoid.  This is because the 

offset bias is being better modelled by the offset correction applied above.  The 

original GPS-levelling data is then used again with the second quasigeoid to re-

evaluate the datum offsets, �2a and �2b: 

 2 2 ( )N O
a aH hο ζ −= + −   (6.14) 

The offsets are then converted to the gravity effects, δ∆g2a and δ∆g2b (Equation 

6.10).  These are then applied to the original gravity anomalies to give: 

 2 2a a ag g gδ= + ∆   (6.15) 

The corrected anomalies (g2a, g2b) are then used to compute a third quasigeoid (�3), 

shown as a solid line in Figure 6.2.  This geoid is even smoother than the second 

geoid across the datum boundary.  Again the original GPS-levelling data is used to 

evaluate the datum offsets, �3a and �3b.  This process is repeated until the offsets 

computed in successive iterations are constant. 
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6.5 Implementation of the iterative quasigeoid computation scheme in NZ 

To determine the feasibility and practicality of the iterative quasigeoid computation 

approach to vertical datum unification, it has been implemented over NZ.  The NZ 

normal-orthometric heights (Section 2.4.3) are divided between thirteen vertical 

datums that are based on local determinations of sea level, in locations where these 

datums abut or overlap it has been shown that offsets exist between them (Section 

2.4.4). 

6.5.1 Gravity data division 

The gravity observations (Section 3.3) used for the computation of the quasigeoid are 

assumed to be reduced to the vertical datums in which they are located.  Because the 

spatial extents of the 13 LVDs are not explicitly defined and the datum used to 

reduce the gravity observations has not been recorded, it is not possible to 

categorically ascertain whether the reduction to the LVDs has occurred or not.  

However it is strongly suspected, and with the lack of evidence to the contrary, it is 

necessary to make this assumption. 

Before the iterative unification technique can be implemented, it is necessary to 

separate the gravity anomalies according to the LVD that they are situated in.  

Because the applicable LVDs are not recorded with the gravity observations it was 

necessary to deduce the likely LVD for each observation point.  A visual inspection 

of topographic maps that showed the locations of all geodetic marks with normal-

orthometric heights on each LVD (this includes low-accuracy heights) allowed lines 

to be drawn to approximate the LVD boundaries (Figure 6.4).  Where actual datum 

boundary points were known to exist these were used (cf. Table 2.3, Figures 2.4 and 

2.5).  However the majority of the boundaries were plotted by hand on 1:500,000 

topographic maps.  It is acknowledged that this method is approximate and that it 

ignores the situation where adjacent datums overlap.  Because the boundaries of the 

LVDs are not well-defined, this will affect the quality of the offsets computed from 

GPS-levelling points near to them. The majority of levelling points that are in the 

vicinity of the more arbitrary boundary positions are of lower accuracy and without 

ellipsoidal heights, therefore this demarcation procedure is considered acceptable. 
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Figure 6.4  New Zealand vertical datum extents, triangles show the location of 
geodetic marks with normal-orthometric heights (all orders) 
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The LVD boundaries shown in Figure 6.4 were then captured as regions in the 

MapInfo version 6.5 geographic information system software (www.mapinfo.com).  

These boundaries were used to allocate each terrestrial gravity observation into its 

respective vertical datum.  This resulted in separate gravity data file for each of the 

14 vertical datums (the 13 LVDs in Figure 6.4 and also the Chatham Islands). 

6.5.2 A priori geoid solution 

A gravimetric quasigeoid was computed over NZ using the datasets and following 

the procedure described in Section 5.2.4.  In summary, the gravity observations 

consisted of cross-over adjusted marine observations merged with satellite altimetry 

data in marine areas and terrestrial anomalies that had been terrain-corrected and 

densified using the 56-metre DEM.  The GGM02S-EGM96 merged GGM was used 

as a reference model in the modified RCR geoid computation procedure.  The 

Featherstone et al. (1998) deterministic modification with �0 = 1.5º and L = 40 was 

applied to Stokes’s integral before it was evaluated via a 1D-FFT. 

The average datum offsets were evaluated from the 1422 GPS-levelling points (cf. 

Section 3.8) that were divided into their respective LVDs using Equation (6.11).  

These points are not evenly distributed either spatially between the 13 LVDs or 

geographically because the precise levelling routes (the source of the normal-

orthometric heights) are located along the state highway network (cf. Figure 3.7). 

It was not possible to evaluate offsets in the Chatham Islands because there is 

currently no ellipsoidal height information at the small number levelling points on 

the island.  As such, the offset for the Chatham Island vertical datum has been 

assumed to be coincident with the quasigeoid in all computations (i.e., the offset was 

assumed to be zero).  The average offset and associated statistics for each datum are 

shown in Table 6.1.  The last two rows in Table 6.1 give respectively, the statistics of 

all 1422 points on a single datum (i.e. if the datum offsets are ignored), and the 

statistics when the average offset for each datum has been removed from the offset at 

each point (hence the zero average).  The standard deviation (STD) of last row is a 

useful estimate of the quality of the quasigeoid as the influence of the datum offsets 

has been reduced. 
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Datum Points Max Min Average STD 
One Tree Point 1964 51 -0.148 -0.414 -0.245 0.063 

Auckland 1946 137 -0.317 -0.658 -0.497 0.068 
Moturiki 1953 258 -0.169 -0.524 -0.316 0.061 
Gisborne 1926 61 -0.432 -0.698 -0.585 0.087 
Taranaki 1970 70 -0.326 -0.595 -0.457 0.066 
Napier 1962 54 -0.115 -0.467 -0.304 0.070 

Wellington 1953 78 -0.422 -0.616 -0.509 0.040 
Nelson 1955 111 -0.026 -0.434 -0.257 0.081 

Lyttelton 1937 251 +0.011 -0.614 -0.350 0.097 
Dunedin 1958 73 -0.152 -0.727 -0.491 0.162 

Dunedin – Bluff 1960 181 -0.025 -0.577 -0.261 0.076 
Bluff 1955 92 -0.207 -0.466 -0.380 0.051 

Stewart Island 1977 5 -0.238 -0.592 -0.398 0.116 

All Data 1422 +0.011 -0.727 -0.367 0.127 

All Data, Zero Datum 
Average 1422 +0.361 -0.315 0.000 0.081 

Table 6.1  Descriptive statistics of the comparison of the a priori quasigeoid with 
GPS-levelling points on the 13 LVDs (metres) 

A relatively large STD was observed on the Dunedin 1958 LVD (±0.162 m).  This 

was investigated and it was noted that the size of the quasigeoid and GPS-levelling 

residuals got systematically larger as the precise levelling lines moved north-west 

from the Dunedin tide-gauge (cf. Figures 2.5 and 3.7).  It is possible that this could 

be due to a tilt in the datum offset rather than the constant offset that has been 

assumed in this study.  The limited number and geographical extent of GPS-levelling 

points (cf. Figure 2.5) has meant that it was not possible to verify the cause of this 

anomaly.  Future studies (with additional GPS-levelling data) that investigate the use 

of inclined planes or even polynomial offset surfaces would help to isolate the cause 

of this discrepancy. 

Statistical tests were carried out to establish whether or not the observed datum 

offsets given in Table 6.1 are significant.  These tests (described in Appendix E.4) 

showed that all 13 offsets were significantly different to zero (Table E.1) and hence it 

can be concluded that the datums are in fact offset from the quasigeoid model.  It was 

also found that of the 16 abutments, the offsets at 14 were significantly different and 

only the Napier-Moturiki and Bluff-Stewart Island were not (the full analysis is 

provided in Table E.2).  These findings may be optimistic given that the analysis 
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does not address the potential presence of systematic errors in the heights used to 

reduce the gravity anomalies (cf. Section B.3).  Because the errors could not be 

reliably quantified they were not included them in the above analysis. 

An additional validation of the computed offsets can be obtained by comparing them 

with the observed differences at the junction points of the precise levelling lines (cf. 

Table 2.3, Figures 2.4 and 2.5).  The results of this comparison are summarised in 

Table 6.2 (the full analysis is in Table E.3).  It was found that ten of the 13 observed 

offsets agreed with the computed values (a combined standard deviation of ±0.071 m 

was conservatively estimated for the levelling heights).  The three observed offsets 

that did not agree with the computed offsets were Gisborne-Moturiki, Lyttelton-

Dunedin and Dunedin-Dunedin-Bluff.  The Lyttelton-Dunedin and Dunedin-

Dunedin-Bluff differences are likely to be caused by the high STD of the Dunedin 

1958 offset (Table 6.1) resulting from the potential tilt in the vertical datum.  The 

Gisborne-Moturiki difference might be caused by the poor spatial coverage of the 

GPS-levelling points used to evaluate the quasigeoid offset (cf. Figure 3.7).  The 

majority of the Gisborne 1926 datum, notably the large loop around East Cape (37° 

41’S, 178° 32’E) and the levelling line between AD2J and ABX2 (Figure 2.4), has 

no GPS-levelling observations on it. 

Offset 95% CI Offset 95% CI

Auckland One Tree Point -0.252 ± 0.021 -0.206 ± 0.139 Yes
Auckland Moturiki -0.181 ± 0.014 -0.070 ± 0.139 Yes
Gisborne Moturiki -0.269 ± 0.023 -0.075 ± 0.139 No
Gisborne Napier -0.281 ± 0.029 -0.166 ± 0.139 Yes
Moturiki Napier -0.012 ± 0.020 -0.099 ± 0.139 Yes
Taranaki Napier -0.153 ± 0.025 -0.046 ± 0.139 Yes
Taranaki Wellington 0.052 ± 0.018 0.147 ± 0.139 Yes
Taranaki Moturiki -0.141 ± 0.017 -0.162 ± 0.139 Yes
Napier Wellington 0.205 ± 0.021 0.237 ± 0.139 Yes
Nelson Lyttelton 0.093 ± 0.019 -0.027 ± 0.139 Yes

Lyttelton Dunedin 0.141 ± 0.040 -0.071 ± 0.139 No
Dunedin - Bluff Dunedin 0.230 ± 0.039 -0.019 ± 0.139 No
Dunedin - Bluff Bluff 0.119 ± 0.015 -0.001 ± 0.139 Yes

a priori  quasigeoid Offsets 
Agree?

Precise levelling
From To

 

Table 6.2  Summary of comparison between a priori quasigeoid and observed 
precise levelling offsets, full analysis is in Table E.3 (95% CI, Student t distribution, 

metres) 
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6.5.3 Second quasigeoid solution 

An offset correction gδ∆ was then computed for each LVD using the average offsets 

(Table 6.1) and Equation (6.11) and then added to the original terrestrial gravity 

anomalies.  A second gravimetric quasigeoid was then computed using the 

“corrected” gravity anomalies using exactly the same process as above (including 

gravity densification with the DEM).  The datum offsets were then re-evaluated 

using the same GPS-levelling data as above with the second gravimetric quasigeoid 

(Table 6.3).  The differences between the a priori and second quasigeoid computed 

offsets (Tables 6.2 and 6.3) are very small and statistically insignificant (Table E.4). 

Datum Points Max Min Average STD 
One Tree Point 1964 51 -0.145 -0.410 -0.242 0.063 

Auckland 1946 137 -0.309 -0.651 -0.491 0.068 
Moturiki 1953 258 -0.161 -0.517 -0.309 0.062 
Gisborne 1926 61 -0.424 -0.690 -0.578 0.087 
Taranaki 1970 70 -0.318 -0.590 -0.450 0.067 
Napier 1962 54 -0.108 -0.461 -0.298 0.070 

Wellington 1953 78 -0.415 -0.608 -0.503 0.039 
Nelson 1955 111 -0.020 -0.430 -0.252 0.082 

Lyttelton 1937 251 +0.019 -0.609 -0.343 0.097 
Dunedin 1958 73 -0.142 -0.721 -0.484 0.164 

Dunedin – Bluff 1960 181 -0.008 -0.572 -0.255 0.077 
Bluff 1955 92 -0.200 -0.463 -0.375 0.051 

Stewart Island 1977 5 -0.236 -0.589 -0.395 0.116 

All Data 1422 +0.019 -0.721 -0.361 0.127 

All Data, Zero Datum 
Average 1422 +0.362 -0.317 0.000 0.081 

Table 6.3  Descriptive statistics of the comparison of the second geoid with GPS-
levelling points on the 13 vertical datums (metres) 

6.5.4 Third geoid and unified vertical datum 

To confirm that the iterative solution had converged, the procedure was repeated for 

a third time.  Again the effect of the total datum offset was computed using Equation 

(6.11) and this total correction was then added to the original gravity anomalies.  The 

same quasigeoid computation procedure was again repeated to give a third 

quasigeoid.  Like before, this was then compared with the GPS-levelling 

observations to estimate the datum offsets given in Table 6.4.  The differences 
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between the second and third quasigeoid computed offsets (Tables 6.3 and 6.4) are 

very small and statistically insignificant (Table E.5). 

Datum Points Max Min Average STD 
One Tree Point 1964 51 -0.145 -0.411 -0.242 0.063 

Auckland 1946 137 -0.309 -0.651 -0.491 0.068 
Moturiki 1953 258 -0.161 -0.517 -0.309 0.062 
Gisborne 1926 61 -0.424 -0.690 -0.578 0.087 
Taranaki 1970 70 -0.318 -0.590 -0.450 0.067 
Napier 1962 54 -0.109 -0.461 -0.298 0.070 

Wellington 1953 78 -0.415 -0.608 -0.503 0.039 
Nelson 1955 111 -0.020 -0.430 -0.252 0.082 

Lyttelton 1937 251 +0.019 -0.610 -0.343 0.097 
Dunedin 1958 73 -0.141 -0.721 -0.484 0.164 

Dunedin – Bluff 1960 181 -0.009 -0.572 -0.255 0.077 
Bluff 1955 92 -0.200 -0.463 -0.376 0.051 

Stewart Island 1977 5 -0.236 -0.589 -0.395 0.116 

All Data 1422 +0.019 -0.721 -0.361 0.127 

All Data, Zero Datum 
Average 1422 +0.362 -0.317 0.000 0.081 

Table 6.4  Descriptive statistics of the comparison of the third quasigeoid with GPS-
levelling points on the 13 LVDs (metres) 

Offset 95% CI Offset 95% CI

Auckland One Tree Point -0.249 ± 0.021 -0.206 ± 0.139 Yes
Auckland Moturiki -0.182 ± 0.014 -0.070 ± 0.139 Yes
Gisborne Moturiki -0.269 ± 0.023 -0.075 ± 0.139 No
Gisborne Napier -0.280 ± 0.029 -0.166 ± 0.139 Yes
Moturiki Napier -0.011 ± 0.020 -0.099 ± 0.139 Yes
Taranaki Napier -0.152 ± 0.025 -0.046 ± 0.139 Yes
Taranaki Wellington 0.053 ± 0.018 0.147 ± 0.139 Yes
Taranaki Moturiki -0.141 ± 0.018 -0.162 ± 0.139 Yes
Napier Wellington 0.205 ± 0.021 0.237 ± 0.139 Yes
Nelson Lyttelton 0.091 ± 0.019 -0.027 ± 0.139 Yes

Lyttelton Dunedin 0.141 ± 0.040 -0.071 ± 0.139 No
Dunedin - Bluff Dunedin 0.229 ± 0.040 -0.019 ± 0.139 No
Dunedin - Bluff Bluff 0.121 ± 0.015 -0.001 ± 0.139 Yes

Offsets 
Agree?From To

Third quasigeoid Precise levelling

 

Table 6.5  Summary of comparison between third quasigeoid and observed precise 
levelling offsets, full analysis is in Table E.6 (95% CI, Student t distribution, metres) 
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The computed offsets were then compared with the observed differences at the 

junction points of the precise levelling lines (cf. Table 2.3, Figures 2.4 and 2.5).  The 

results of this comparison are summarised in Table 6.5 (the full analysis is in Table 

E.5).  In concurrence with the a priori geoid, it was found that ten of the 13 observed 

offsets agreed with the computed values.  

Table 6.6 is included for comparative purposes.  It shows the offsets computed from 

the three successive quasigeoid models.  It shows conclusively that the computed 

offsets have converged. 

Vertical Datum a priori Second Third 
One Tree Point 1964 -0.245 -0.242 -0.242 

Auckland 1946 -0.497 -0.491 -0.491 
Moturiki 1953 -0.316 -0.309 -0.309 
Gisborne 1926 -0.585 -0.578 -0.578 
Taranaki 1970 -0.457 -0.450 -0.450 
Napier 1962 -0.304 -0.298 -0.298 

Wellington 1953 -0.509 -0.503 -0.503 
Nelson 1955 -0.257 -0.252 -0.252 

Lyttelton 1937 -0.350 -0.343 -0.343 
Dunedin 1958 -0.491 -0.484 -0.484 

Dunedin – Bluff 1960 -0.261 -0.255 -0.255 
Bluff 1955 -0.380 -0.375 -0.376 

Stewart Island 1977 -0.398 -0.395 -0.395 

Table 6.6  Datum offsets computed from successive quasigeoid models (metres) 

The converged gravimetric quasigeoid solution (Table 6.4) represents a surface that 

has been corrected for the biases introduced as a result of the input data (i.e., gravity 

anomalies) being reduced in terms of offset vertical datums.  For this reason, the 

converged quasigeoid solution can be used as a transformation surface from the 

reference ellipsoid (in this case GRS80) to each of the local vertical datums when 

combined with the respective datum offset (Table 6.7).  For example, an ellipsoidal 

height can be transformed to its normal-orthometric equivalent in terms of LVD “a” 

using: 

 N O
a aH h ζ ο− = + +   (6.16) 
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Datum Offset (o) STD 
One Tree Point 1964 -0.24 0.06 

Auckland 1946 -0.49 0.07 
Moturiki 1953 -0.31 0.06 
Gisborne 1926 -0.58 0.09 
Taranaki 1970 -0.45 0.07 
Napier 1962 -0.30 0.07 

Wellington 1953 -0.50 0.04 
Nelson 1955 -0.25 0.08 

Lyttelton 1937 -0.34 0.10 
Dunedin 1958 -0.48 0.16 

Dunedin – Bluff 1960 -0.26 0.08 
Bluff 1955 -0.38 0.05 

Stewart Island 1977 -0.40 0.12 

Table 6.7  Final LVD offsets from NZ quasigeoid and standard deviations (metres) 

In this sense, it can be said that the NZ vertical datums have been unified. 

6.6 Summary 

This Chapter has discussed the practicalities of, and issues related to, the unification 

of vertical datums in NZ.  It was shown that combining gravity anomalies that have 

been reduced to different vertical datums introduces a bias when they are used to 

compute a gravimetric quasigeoid.  Similarly, the unification of vertical datums using 

ellipsoidal heights can be inhibited if the normal-orthometric heights are in terms of 

different datums.  Two existing techniques of datum unification were presented that 

used geopotential numbers and a gravimetric geoid respectively.  Although both 

approaches have been implemented, it was noted that they do not allow for the 

different vertical datums being offset for each other.  The GBVP approach was then 

described.  This method solves for the biases that occur between vertical datums, it 

relies on the datum offset being the only systematic error source and that all the other 

biases have been corrected for.  This approach has not been used to practically unify 

datums before.  The new iterative quasigeoid computation scheme was then 

described.  It uses a datum offset correction function to iteratively modify the input 

gravity anomalies used in the gravimetric geoid approach to datum unification.  The 

iterative approach was then successfully implemented over NZ to produce a 

gravimetric quasigeoid that can be used to unify the 13 disparate LVDs. 
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7 CONCLUSIONS AND RECOMMENDATIONS 

7.1 A new vertical datum for NZ 

The limitations of the current height NZ height systems and vertical datums were 

described in Chapter 2.  It has been the aim of this study to unify these 13 disparate 

vertical datums and to propose a modernised vertical reference system for NZ based 

on the iterative quasigeoid model computed in Section 6.5. 

7.1.1 Height system 

NZ currently uses the normal-orthometric height as its authoritative height system 

(Section 2.4.2).  Because gravity observations have not been made at many precise 

levelling benchmarks (and none is likely to be observed in the foreseeable future) the 

retention of the normal-orthometric height system is recommended.  It is not possible 

to implement Heck’s (2003a) rigorous normal-orthometric correction (NOC) 

(Equation 2.16) because the azimuth and position of the intermediate precise 

levelling setups are not known.  The approximate NZ NOC formula (Equation 2.19) 

could be updated from the GRS67 reference field to GRS80, however the difference 

between the two formulae is very small and can be considered to be only a technical 

change (as opposed to a change of practical significance) to reflect the use of GRS80 

in NZGD2000 (cf. Section 2.4.7). 

The official geocentric geodetic datum for NZ, NZGD2000, is defined in terms of the 

GRS80 reference ellipsoid (ITRF96, epoch 1 January 2000, Section 2.4.7).  Hence 

ellipsoidal heights (in terms of GRS80) are implicitly defined as the authoritative 

‘geometric” height system.  Since these heights are “compatible” with existing 

GNSS technology (and there is no other practical alternative), the continued use of 

GRS80 ellipsoidal heights (for geometric heighting) is recommended. 

NZ did not have a national quasigeoid available to transform heights between the 13 

normal-orthometric levelling datums and NZGD2000.  There is a pressing need for 

such a quasigeoid to be published so that GNSS technology (and NZGD2000) can be 

effectively used in NZ with the 13 LVDs (Section 2.6).  The work in this thesis has 

now rectified this deficiency. 
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7.1.2 Vertical datum 

A national NZ vertical datum can be defined using the gravimetric quasigeoid 

computed in Section 6.5 as its reference surface.  The calculated datum offsets (Table 

6.4) can then be used with the quasigeoid to convert the LVD normal-orthometric 

heights to NZGD2000 (GRS80) ellipsoidal heights (and vice versa).   

This approach retains the existing LVDs for “conventional” heighting applications 

and also enables the use of GNSS technology to derive gravity-related heights in NZ 

(Section 2.6).  It is also very similar to the method that is being implemented in 

Canada (Section 2.5.3). 

The use of a quasigeoid to define the national vertical datum is different to the 

“conventional” method which fixes the height/potential at one or more points and 

then uses a least-squares adjustment to combine precisely-levelled height differences 

(cf. Section 2.3.1).  The precise-levelling adjustment approach to datum definition 

was not used for the new NZ vertical datum because it would not give a national 

coverage, is not compatible with GNSS/NZGD2000 heights, and is expensive to 

maintain (cf. Section 2.4.7). 

7.1.3 Implementation of the new vertical datum 

The new NZ vertical datum can be practically implemented by LINZ with relative 

ease.  The LINZ geodetic database (www.linz.govt.nz/gdb) currently publishes 

ellipsoidal heights (in terms of NZGD2000) of all points where they are available.  

Similarly, for marks where normal-orthometric heights have been observed, these 

heights are also published in terms of one (or more) LVD.  To implement the new 

datum it is only necessary to embed the gravimetric quasigeoid (and offset) to 

provide the conversion between the different LVDs and the NZGD2000 (1 January 

2000) ellipsoidal heights. 

7.1.4 Longevity of the new vertical datum 

The geoid model computed in Section 6.5 is the best available at the end of 2006.  It 

is likely that with the imminent release of the new EGM07/8 model (in mid 2008) 

and the new GGMs that will result from the GRACE, upcoming GOCE gradiometry 
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satellite missions (Section A.3.3) that a better regional quasigeoid (and hence vertical 

datum) will be possible in the future.  The timing for a new quasigeoid can not be 

specified here because it depends on the availability of new global models, however, 

given that GOCE is scheduled for launch in 2008, it could be expected that results 

will be available from 2008/9. 

Another motivating factor for revising the vertical datum in the future relates to the 

IAG Inter-Commission Project (ICP) 1.2 on vertical reference frames.  If the 

recommendations of the ICP are adopted by the IAG in 2007 and they recommend a 

different W0 to that which is used in the GGM02S GGM (this GGM was used as the 

basis for the NZ geoid) then it may be necessary to update the vertical datum to 

reflect this change. 

When the decision is made (by LINZ) to update the NZ vertical datum, this should 

only be done if it results in a “significant” improvement to the users of the datum.  

Nevertheless the proposed vertical datum is a significant improvement on the 

existing situation in NZ and should be a suitable until the improved GGMs described 

above are available.  If a datum (vertical or otherwise) is updated too frequently there 

is a risk that users will become confused between the different systems or subjected 

to additional data migration costs.  Similarly, if datums are updated for no 

perceivable benefit to its users, it is likely that the change to a new datum will be 

resisted (cf. Section 2.5.5; Cross et al., 1987). 

The NZGD2000 is a semi-dynamic datum in that its observations are “corrected” for 

the effects of horizontal deformation using a deformation model from the time of 

observation to a reference epoch (cf. Section 2.4.8).  At present, no vertical 

deformation model exists for NZ, however with the increased promulgation of 

continuous GNSS receivers throughout NZ [e.g., PositioNZ 

(www.linz.govt.nz/positionz); GeoNet (www.geonet.org.nz); Section 2.4.6] it is 

possible that such a model could be developed in the future.  If a model does become 

available, then the practicality of a time-varying vertical datum that accounts for the 

effects of deformation should be investigated as a method of extending the longevity 

of NZ vertical datums. 
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7.2 Summary of research 

This objective of this study was to unify the 13 disparate LVDs that are currently 

used in NZ and to propose a modernised national vertical reference system in NZ.  

Before defining a new national vertical datum, it was important to assess and 

compare the different height systems and vertical datums that are currently used in 

NZ and those that could be used in the future.  Chapter 2 presented the different 

height systems (which depend on the way that the Earth’s gravity field is treated).  It 

also discussed the different ways that vertical datums can be defined and identified 

the ways that they can be distorted. 

Importantly, to provide an international context, the height systems and vertical 

datums of five different jurisdictions were also evaluated with respect to NZ.  The 

Chapter concluded with a proposal for a NZ vertical datum that retained the existing 

normal-orthometric LVDs and uses a gravimetric quasigeoid to model the difference 

between them and the NZGD2000 ellipsoidal heights.  Therefore, the thesis was 

mainly concerned with the development of the gravimetric quasigeoid, the effect of 

the offset LVDs on its constituent data sets and their use in the iterative quasigeoid 

method of vertical datum unification. 

The different data sets and their preparation for use in the quasigeoid computations 

were described in Chapter 3.  A number of GGMs were evaluated (including some 

merged models created specifically for this study) against GPS-levelling, terrestrial 

gravity and vertical deflection datasets.  These comparisons concluded that the 

GGM02S/EGM96 merged GGM was the “best” global geopotential model for the 

NZ region.  The terrestrial gravity anomalies from GNS Science were re-reduced to 

ensure that they were in terms of a consistent gravity datum.  A significant aspect of 

the data preparation involved the crossover adjustment of the marine ship-track 

gravity observations.  This was completed under contract by Intrepid Geophysics and 

then combined with a grid of satellite altimetry derived gravity anomalies using LSC.  

The 56-metre DEM and the 1422 GPS-levelling observations were also presented.  

Chapter 4 discussed the different topographic reductions that are applied to gravity 

observations before geoid computation by Stokes’s formula.  Three techniques of 

computing TCs were compared, these were: planar TCs by FFT and prism 

integration, and spherical TCs using Hammer charts.  It was concluded that while the 
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Hammer TCs were theoretically better, their low spatial density meant that they were 

inappropriate for use in a national quasigeoid.  The FFT TCs were unstable in areas 

of steep terrain, while the prism TCs (which took much longer to compute) appeared 

to give better results. 

Because the gravity observations are spaced irregularly, it was necessary to 

“reconstruct” mean gravity anomalies using a DEM for the evaluation of Stokes’s 

formula by FFT.  A number of different gravity anomaly and TC combinations were 

compared to determine the best fit to the NZ GPS-levelling observations.  It was 

concluded that gridding refined Bouguer anomalies (that had been reduced with the 

prism TCs at the DEM resolution) gave the optimum interpolation solution.  This 

agreed with similar experiments performed in Canada (Janák and Vaní�ek, 2005).  

Based on the results of the TC and gridding comparisons the prism integration 

computed TCs were selected for use in the NZ quasigeoid computations.  

The physical computation of gravimetric quasigeoids using Stokes function was 

discussed in Chapter 5.  This involved the comparison of five deterministic 

modifications to Stokes’s integration kernel that all aim at reducing the truncation 

error associated with using a limited integration radius and that have different 

filtering properties.  These comparisons involved evaluating each modification with a 

range of integration caps and modification degrees and then evaluating them against 

the standard deviation and offset fit to the GPS-levelling observations (after 

accounting for the offsets).  This analysis showed a numerical instability in the VK 

kernel, but the FEO modification was optimum for NZ when combined with a cap of 

0 1.5ψ = °  and a modification degree of L = 40. 

The unification of vertical datums was addressed in Chapter 6.  Three existing 

techniques of achieving datum unification were presented (these were geopotential 

numbers, gravimetric geoids and solving the GBVP).  These methods did not 

adequately deal with the effect caused by datum offsets in the quasigeoid 

computation datasets in NZ.  To remedy this limitation, a new process that modifies 

the gravimetric quasigeoid approach was proposed.  This process accounts for datum 

offsets by using an initial quasigeoid solution to estimate the offsets and then corrects 

the source observations for its effect.  The quasigeoid is then subsequently 

recomputed iteratively to produce a model that is not biased by the offset datums.  
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This new approach was then successfully implemented over NZ to give a quasigeoid 

that can be used to unify the 13 LVDs.  Most importantly, these results agreed with 

the offsets computed at the junction points of the precise levelling LVDs. 

A new vertical datum for NZ was then proposed in Section 7.1.  This new datum will 

enable the unification of the 13 LVDs through the gravimetric quasigeoid model and 

an additional offset per LVD.  This will allow users of the NZ vertical datum to 

convert heights between the official geometric and normal-orthometric height 

systems as needed.  The production of this unified vertical datum provides NZ with a 

modern height system. 

7.3 Recommendations for future work 

The computed gravimetric quasigeoid and the new national vertical datum proposed 

for NZ in Section 7.1 are likely to meet the needs of a majority of users at the current 

time (cf. Pearse, 2001).  A number of issues were raised during this study that 

warrant further investigation if a better quasigeoid and vertical datum are desired for 

the future, these are described below (in addition to the points raised in Section 

7.1.4). 

The proposed vertical datum only uses a constant offset between the geoid and each 

LVD.  It is possible that due to the way that the LVDs are defined (i.e. MSL at a 

single tide-gauge) that the use of an offset is not the best approach.  Future 

investigations should evaluate the use of inclined planes or even polynomial surfaces 

to optimise the transformation between gravimetric and geometric height systems.  

An inclined plane could be of benefit for the Dunedin LVD where the standard 

deviation of the GPS-levelling fit was much larger than that seen for the other 

datums (Table 6.3).  Caution needs to be taken with polynomial surfaces because 

they effectively model and absorb the difference between the LVD and quasigeoid 

and so, inherently produce very good fits (cf. Featherstone, 2006). 

Additional GPS-levelling observations should be acquired where possible (cf. 

Section 3.8).  If more observations are available to evaluate the datum offsets and the 

quasigeoid fit then a better overall vertical datum will be possible.  The most 

beneficial locations for additional GPS-levelling points are in mountainous areas 

(where the quasigeoid is harder to model) and in regions/LVDs where few points 
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currently exist (e.g., the East Cape of the North Island and the West Coast of the 

South Island, Figure 3.7). 

The computation of the TCs is an area that could be re-visited for the evaluation of a 

future gravimetric quasigeoid.  The use of a higher-resolution DEM in the 

computations would provide more topographic information in the immediate vicinity 

of the gravity observation, as well as a better representation of the topography further 

away.  The topography near to the gravimeter has the biggest effect on the TC (and 

also DC, Section 4.5), so if a DEM with a 20 metre resolution was used (instead of 

the current 56 m) this may improve the quality of the TC (and DC) when combined 

with the gravity reconstruction process (Section 4.11.2).  The use of spherical (or 

global) TCs (Section 4.4) should be trialled as they are conceptually more realistic 

than the planar approximation. 

The effect of marine bathymetry on the reduction of the ship-track gravity 

observations should be investigated since it is known that in parts of the NZ coast it 

is very steep (e.g. Fiordland, Kaikoura coast). 
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APPENDIX A - GLOBAL GEOPOTENTIAL MODELS 

A.1 Introduction 

This Appendix describes the three main types of GGM that are available for use in 

regional geoid computations.  It also provides a brief description of the current 

satellite gravimetry missions that are providing information on the Earth’s gravity 

field.  It concludes with a series of graphs showing the merged GGMs compared in 

Section A.4. 

A.2 Types of GGM 

GGMs can be classified according to the data and method of their computation, 

namely: satellite only, combined, and tailored (e.g., Rapp, 1997b; Balmino et al., 

1999; Featherstone, 2002b; Rummel et al., 2002). 

A.2.1 Satellite-only GGMs 

Satellite-only GGMs are derived from the analysis of satellite-based gravity 

observations.  The accuracy and precision of satellite-only GGMs was historically 

limited by factors such as (from Featherstone, 2002b): the power-decay of the 

gravitational field with increasing altitude; the requirement to track complete satellite 

orbits using ground-based stations; imprecise modelling of non-Earth gravity field 

induced satellite motions such as atmospheric drag and third-body influences; and 

the incomplete sampling of the global gravity field due to limitations in the coverage 

of the satellite ground-tracks. 

This means that although some satellite-only GGMs are available above degree 70 

(cf. Table 3.1), the higher degree coefficients, say greater than 20 (e.g., Vaní�ek and 

Sjöberg, 1991) or 30 (e.g., Rummel et al., 2002), are heavily contaminated by noise 

(cf. Koch, 2005).  However, several of the above limitations have now been 

redressed by the use of the dedicated satellite gravimetry missions, whose concepts 

are summarised in, for example, Tapley et al. (2004), Rummel et al. (2002) and 

Featherstone (2002b).  It can be seen by comparing UCPH2002_02 (Figure A.4) and 

the more recent GGMs, based on additional satellite mission data, such as GGM02S 

(Figure A.8) and EIGEN-GRACE02S (Figure A.10) that the error degradation in 
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degrees 20 to 100 is significantly reduced.  Koch (2005) found that for a CHAMP 

derived GGMs that the use of coefficients above degree 62 added no extra 

information to the geopotential model.  Reigber et al. (2005b) and Mayer-Gürr et al. 

(2005) found similar results (maximum GGM power at degree 60-65) with GRACE 

data. 

A.2.2 Combined GGMs 

Combined GGMs are derived from the combination of satellite-based data, land and 

marine terrestrial gravity observations, airborne gravity data and also marine 

anomalies derived from satellite radar altimetry (cf. Section 3.5; e.g., Nerem et al., 

1995; Rapp, 1997b).  This combined solution generally enables the maximum degree 

of harmonic expansion of the GGM to be increased due to the higher resolution of 

the terrestrial data. 

It is important to note that the quality of combined models is limited by the quality of 

their input data.  Namely, the same problems of the (older) satellite GGMs described 

in Section A.2.1 and also by the spatial distribution and quality of the terrestrial data.  

An example of this is the distortions in and offsets among the different vertical 

datums used to reduce terrestrial gravity anomalies can cause long-wavelength errors 

(Heck, 1990) can generate low-frequency errors in the GGMs if not properly 

removed by high-pass filtering (cf. Vaní�ek and Featherstone, 1998). 

A.2.3 Tailored GGMs 

Tailored GGMs build on an existing satellite-only or combined GGM using 

additional gravity data to extend the solution to higher degrees.  This is normally 

achieved through the application of integral formulae to apply “corrections” to the 

existing geopotential coefficients and to add new ones.  The main drawback with 

(regionally) tailored GGMs is that they are only applicable to the area that they have 

been tailored over because spurious effects occur outside the computation area (e.g., 

Li, 1993; Kearsley and Forsberg, 1990; Featherstone, 2002b). 
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A.3 Satellite Gravity Missions 

The estimated quality of the satellite-derived component of the GGMs will be 

improved by the inclusion of data from the different dedicated satellite gravity 

missions.  The CHAllenging Mini-satellite Payload (CHAMP) and Gravity Recovery 

and Climate Experiment (GRACE) missions have been launched and Gravity field 

and steady state Ocean Circulation Explorer (GOCE) is currently planned for late 

2007.  Each mission is described in the following Sections. 

A.3.1 CHAMP 

The German CHAllenging Mini-satellite Payload (CHAMP) mission consists of a 

dedicated gravimetry satellite (launched 15 July 2000) in a near-circular orbit at an 

initial altitude of 454 km and an inclination of 87.3º (Reigber et al., 2002).  The 

satellite uses the high-low satellite-to-satellite tracking (hl-SST) system where high-

Earth orbiting satellites (notably GPS) are used to determine its position (Figure 

A.1). 

 

Figure A.1  The CHAMP concept of satellite-to-satellite tracking in the high-low 
mode (adapted from Rummel et al., 2002) 

This allows a near-global coverage of gravity field data that was previously 

unavailable with ground tracked satellites at limited inclinations.  The CHAMP 

satellite also houses a three-axis accelerometer to help reduce the effect of non-
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gravitational perturbations (Schwintzer et al., 2000).  The CHAMP satellite has 

produced global gravity models that identify features with a size of a few thousand 

kilometres (ESA, 2006). 

A.3.2 GRACE 

The Gravity Recovery and Climate Experiment (GRACE) is a joint German-United 

States dedicated satellite mission (launched 17 March 2002) whose objective is to 

map the global gravity field with a spatial resolution of 400 km to 40,000 km every 

30 days (Tapley et al., 2004).  The mission consists of two identical satellites 

equipped with micro-accelerometers in near-circular orbits of 450 km altitude and 

separated by approximately 240 km along track (Figure A.2).  The twin GRACE 

satellites use the low-low satellite-to-satellite tracking configuration to measure the 

distance between them (e.g., Featherstone, 2003d). 

Like CHAMP, the GRACE satellites are also tracked by high-Earth orbiting (GNSS) 

satellites (hl-SST) giving a near-global coverage (Rummel et al., 2002).  The 

GRACE mission aims to map the temporal changes in the Earth’s gravity field by 

producing monthly solutions for features with a size as small as 600 km to 1,000 km 

(ESA, 2006). 

 

Figure A.2  The GRACE concept of satellite-to-satellite tracking in the low-low 
mode combined with satellite-to-satellite tracking in the high-low mode (adapted 

from Rummel et al., 2002) 
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A.3.3 GOCE 

The Gravity field and steady state Ocean Circulation Explorer (GOCE) satellite is 

being developed by the European Space Agency (ESA) with a scheduled launch date 

in 2007.  It has the mission to measure the Earth’s gravity field and model the geoid 

with extremely high accuracy and resolution (Drinkwater et al., 2003).  GOCE will 

use the hl-SST configuration with GPS and GLONASS (Globalnaya 

Navigaysionnaya Sputnikovaya Sistema) GNSS satellites.  It differs from CHAMP 

and GRACE in that it uses a 3-D gravity gradiometer (consisting of three pairs of 

accelerometers) to measure the Earth’s gravity field in three-dimensions without a 

preferred direction (Figure A.3). 

GOCE is expected to generate a global geoid with a resolution better than 100 km 

and an accuracy of 1-2 cm (ESA, 2006).  It will complement the GRACE mission 

(which concentrates more on temporal gravity changes) by focussing on attaining the 

maximum spatial resolution (Rummel et al., 2002).  The data from the GOCE 

mission has the potential to significantly improve the quality of high-resolution 

regional geoids that are currently available (Featherstone, 2003d). 

 

Figure A.3  The GOCE concept of satellite gradiometry combined with satellite-to-
satellite tracking in the high-low mode (adapted from Rummel et al., 2002) 



213 

A.4 Merged GGMs 

Merged GGMs are formed by combining two existing GGMs to exploit the 

advantages of both (cf. Vergos et al., 2006).  A detailed description is provided in 

Section 3.2.2.  This Section provides graphs showing the different merged GGMs 

that have been used in this study. 

 

Figure A.4  Error-degree (edv) and degree (dv) variance of UCPH2002_02 and 
EGM96 global geopotential models 

 

Figure A.5  Error-degree (edv) and degree (dv) variance of UCPH2004 and EGM96 
global geopotential models 
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Figure A.6  Error-degree (edv) and degree (dv) variance of EIGEN-2 and EGM96 
global geopotential models 

 

Figure A.7  Error-degree (edv) and degree (dv) variance of GGM01S and EGM96 
global geopotential models 
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Figure A.8  Error-degree (edv) and degree (dv) variance of GGM02S and EGM96 
global geopotential models 

 

Figure A.9  Error-degree (edv) and degree (dv) variance of EIGEN-CHAMP03S and 
EGM96 global geopotential models 
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Figure A.10  Error-degree (edv) and degree (dv) variance of EIGEN-GRACE02S 
and EGM96 global geopotential models 
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APPENDIX B - LAND GRAVITY DATA AND PROCESSING 

B.1 Introduction 

The gravity database supplied by GNS Science (www.gns.cri.nz) comprises 40,737 

gravity observations acquired for mapping purposes that cover the main islands in 

the New Zealand (North, South and Stewart/Rakiura) and Chatham (Chatham and 

Pitt) Island groups (Figure 3.2), a number of smaller offshore islands and 176 sea-

floor observations in the Tasman and Golden Bays in the north of the South Island 

(Figure B.1).  The database includes gravity observations, corrections, and other 

auxiliary information (cf. Table B.1). 

 

Figure B.1  New Zealand and Chatham Islands land gravity coverage (Mercator 
projection) 
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The approximate average spatial density of these data is one observation per 7.5 km-

squared, but this is higher in areas of scientific or commercial interest and lower in 

areas where it is impractical or difficult to collect ground gravity data (notably in 

mountainous areas).  Because the observations were originally reduced for 

geophysical mapping purposes at the time (Reilly, 1972), it was necessary to re-

compute the gravity anomalies to more stringent geodetic requirements to enable 

their use in gravimetric geoid computations (e.g., Featherstone and Dentith, 1997).  

While the differences between the reduction schemes are small, they are systematic, 

so it is essential for them to be re-computed (Featherstone, 1995). 

B.2 Horizontal datum transformation 

The observations are numbered sequentially according to the 1:250,000 geological 

mapping sheets in which they fall.  The observation coordinates are in terms of three 

different transverse Mercator projections shown in Table B.2.  The datum used 

depends on the map sheet that the observation is located.  The North and South 

Island projections in Table B.2 are in terms of the NZ Geodetic Datum 1949 

(NZGD49) datum (Lee, 1978) and the Chatham Island projection is in terms of the 

Chatham Islands datum 1971.  Both datums use the International 1924 reference 

spheroid/ellipsoid (a = 6,378.388 km, f = 1/297, Hayford, 1909). 

The horizontal coordinates of each station were estimated from the most detailed 

topographic maps available at the time of observation.  Where NZ Map Service 

Series 1 (NZMS 1) National Yard Grid maps were available (1:63,360) the 

coordinates are estimated to be accurate to around 100 yards (~100 metres).  Where 

it was necessary to use NZMS 10 (1:253,440) or the later NZMS 18 (1:250,000) the 

accuracy may be at worst 1 km to 2 km (Reilly, 1972).  As well as causing incorrect 

mapping, erroneous positions can also cause an error in the computation of the 

gravity anomaly, e.g. 100 m position variation ≅ 0.1 mGal in normal gravity (cf. 

Equation 3.5). 
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Record Description 

Sheet Number Refers to 1:250,000 Geological Map Series (sheets 1-12 North 
Island; 13-27 South Island; and 523 Chatham Island 

Station Number Sequential number for each sheet 

Easting Yards, based on a different NZGD49 transverse Mercator 
projection for North, South and Chatham Islands. 

Northing Yards, based on a different NZGD49 transverse Mercator 
projection for North, South and Chatham Islands. 

Height (metres) Metres 

Height Type 0 = Benchmark, 1 = spot height, 2 = barometric height 

Gravity µN/kg in New Zealand Potsdam System (Robertson and Reilly, 
1960) less 9,750,000 (1 µN/kg = 0.1 mGal) 

Gravimeter Code Identifier of gravimeter (cf. Table 4 in Woodward, 1982) 

Date of Observation In yymmdd format (all years in 1900s) 

Inner Terrain Correction Calculated from Hammer charts, outer radius depends on terrain 
code 

Outer Terrain Correction Calculated from Hammer charts to 22.4 kilometres 

Terrain Code Method of terrain calculation (cf. Table 1 in Woodward, 1982) 

Topographic Correction Correction for topography from 22.4 to 166 kilometres 

Free-Air Anomaly Calculated according to Reilly (1972) using the International 
gravity Formula 1930 

Bouguer Anomaly 
Calculated according to Reilly (1972) using a Bouguer plate and 
constant density, and also accounting for the indirect effect and 
the above terrain corrections 

Isostatic Anomaly Calculated according to Reilly (1972) using the Airy-Heiskanen 
model 

Observer Code Identifier of observer (cf. Table 2 in Woodward, 1982) 

Authority Code Identifier of observing agency (cf. Table 3 in Woodward, 1982) 

Table B.1  Data fields in GNS Science terrestrial gravity database (from Woodward, 
1982) 

Datum Longitude 
Origin 

Latitude 
Origin 

False 
Easting 
(Yards) 

False 
Northing 
(Yards) 

North Island Yard Grid 175° 30’ E 39° 06’ S 300,000.0 400,000.0 

South Island Yard Grid 171° 30’ E 44° 06’ S 500,000.0 500,000.0 

Chatham Island TM 1979 176° 30’ W 44° 00’ S 400,000.0 800,000.0 

Table B.2  Transverse Mercator projections used for the GNS Science gravity 
database 
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Before the observations can be reprocessed, it is necessary to transform the 

horizontal coordinates to a geocentric datum.  For convenience and consistency with 

the other New Zealand datasets, NZ Geodetic Datum 2000 (NZGD2000, cf. Section 

2.4.7) was used.  The transformation was carried out using the LINZ CONCORD 

coordinate conversion software (www.linz.govt.nz/downloadsoftware).  This 

software first converts the projection coordinates to NZDG49 geodetic coordinates 

and then implements the LINZ transformation grid (Pearse and Crook, 1997) to 

convert coordinates between the NZGD49 and NZGD2000/World Geodetic System 

1984 (WGS84) datums (Crook and Pearse, 2001).  The transformation grid is the 

official method of converting between the two systems (seven and three parameter 

options are also available) and gives a transformation accuracy of better than 10 cm.  

Given the accuracy of the horizontal coordinates (100 m to 2 km) this method is 

more than adequate. 

B.3 Observation heights 

The heights of the observations are given in metres.  However, the source, 

calculation method and consequently the accuracy of the heights is varied.  The types 

of height are indicated in Table B.1.  Benchmark heights are generally determined by 

precise levelling and have an accuracy of 10 cm – 15 cm (cf. Section 2.4.2).  

Observations located at spot heights on topographic maps (located from map in the 

field) have a nominal accuracy of 5 m (NTHA, 2006).  The majority of the gravity 

observations have heights obtained from barometric levelling (cf. Woodward, 1982; 

Reilly and Woodward, 1971).  Reilly (1972) indicates that under ideal circumstances 

the accuracy of this technique is probably in the range of 2 m to 5 m.  However, 

under windy conditions in mountainous areas (which is not uncommon in NZ) the 

accuracy could fall to 10 m to 20 m.  It is not clear which vertical datum the heights 

are in terms of.  Therefore, it is assumed that they are in relation to the nearest local 

datum (cf. Sections 2.4 and 6.5.1). 

B.4 Gravity datum shift 

The gravity values, and hence the pre-computed gravity anomalies, in the GNS 

Science land gravity database are referred to the Potsdam (New Zealand) gravity 

datum 1959 (Robertson and Reilly, 1960).  It has been known for a long time that the 
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Potsdam datum contains an error (e.g., Torge, 1989).  Therefore, a constant value of 

15.27 mGal (e.g., Hunt and Ferry, 1975; Torge, 1989) was subtracted from all 

gravity values in the database to convert them from Potsdam (New Zealand) to the 

International Gravity Standardisation Network 1971 (IGSN71) global gravity datum 

(Morelli et al., 1974). 

B.5 Free-air anomalies 

Free-air anomalies were then computed from the IGSN71-corrected gravity 

observations by subtracting the normal gravity at the geocentric observation latitude 

and adding an atmospheric correction (Equation 3.5) and second-order free-air-

correction (Equation 3.6) for the observation elevation (above local MSL). 

B.6 Bouguer anomalies 

Simple planar Bouguer gravity anomalies were also recomputed from the above free-

air anomalies using (Equation 3.7).  The simple anomalies use an infinite lateral plate 

of thickness equal to the ground height to model the gravitational attraction of 

topography (cf. Section 3.3).  Spherical Bouguer anomalies were not computed (cf. 

Section 4.4). 

B.7 Terrain corrections 

The database also includes gravimetric terrain corrections (Table B.1), which have 

been computed from topographic maps using Hammer (1939) charts out to zones L-

M (Reilly, 1972), which equates to a distance for 22.4 km.  The terrain corrections 

for the inner zones (Hammer zone F or 590 m) were calculated from the field 

estimations of topography (Hammer, 1939; Woodward and Ferry, 1972).  The 

corrections for the outer zones to Hammer zone M (21.94 km) were estimated from 

the mean elevation on each 1,000 yard grid square on the national yard grid maps 

(Woodward, 1982). 

The corrections were either computed by interpolation from the correction tables in 

Woodward and Ferry (1972) or by the software described in Woodward (1982).  The 

extent and method of computing both the inner and outer corrections is indicated by 

the terrain correction code in Table B.1 from Woodward (1982).  The terrain 
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corrections are analysed in detail in Chapter 4, where they are also compared with 

alternative computation techniques. 

The topographic correction field in Table B.1 allows for the topographic effect from 

zone M (22.6 km) to zone O (166 km).  Unlike the inner and outer terrain 

corrections, the topographic correction is computed from the departure of the 

land/seabed surface from sea level (not the station height).  A consequence of this is 

that the correction can be either positive or negative (Reilly, 1970). 

B.8 Summary 

The gravity observations and derived anomalies supplied in the GNS Science 

database were in terms of the Potsdam (New Zealand) gravity datum.  They were 

also reduced using less rigorous methods than is required for geodetic applications.  

To enable the observations to be used for gravimetric geoid computations the gravity 

observations were first converted to the IGNS71 gravity datum and the requisite 

anomalies were recomputed with rigorous formulae.  The resulting free-air 

anomalies, Bouguer anomalies and terrain corrections are evaluated in Chapter 5. 
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APPENDIX C - MARINE GRAVITY DATA AND CROSSOVER 
ADJUSTMENT 

C.1 Introduction 

The NZ marine ship-track gravity data has been collected over the past 50 years.  

The data are of varying quality for a variety of reasons (e.g., purpose of cruises, type 

of gravimeter and positioning system, equipment calibration).  Woodward (pers. 

comm., 2002) estimates the gravity observations to be within 1.0 mGal and notes that 

the errors in the early positions can be quite large.  In general, the later the data, the 

more accurate both the gravity and position will be.  Until now the data has been 

stored in a variety of formats, and in terms of several different datums.  To enable it 

to be effectively used in gravimetric geoid computations for the NZ region, it was 

essential to first combine all of the information into a single consistent dataset.  This 

Section describes the processes used to correct the ship-track data into a single 

reference system and then to cross-over adjust the same data into a consistent dataset 

(cf. Brett, 2004; Amos et al., 2005). 

C.2 Ship-track data 

The crossover adjustment of the ship-track gravity observations surrounding New 

Zealand (Figure C.1) was carried out by Intrepid Geophysics (www.intrepid-

geophysics.com) under contract to Land Information New Zealand (Brett, 2004). 

A total of 3,119,289 ship-track gravity observations were collated from recent 

surveys conducted for New Zealand’s UNCLOS (United Nations Convention on the 

Law of the Sea) continental shelf claim, GNS Science (GNS), the US National 

Oceanographic and Atmospheric Administration (NOAA) Geophysical Data System 

(GEODAS) and Geoscience Australia (GA).  The area was restricted to 160°E – 

170°W and 25°S – 60°S (2,401,932 points) since this is the region of the NZ 

continental shelf and the area over NZ which the gravimetric quasi-geoid model is to 

be computed. 
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Figure C.1  Coverage of 2,409,932 ship-track gravity observations around New 
Zealand (Mercator projection) 

Where necessary, the gravity datum was transformed from the 1959 New Zealand 

(Potsdam) datum to IGSN71 by subtracting 15.21 mGal (Section B.4).  All 

horizontal positions were assumed to be on a geocentric horizontal geodetic datum 

because the survey methods had not been stored in the respective databases (except 

the UNCLOS data, which is on WGS84 from GPS navigation).  Also where 

necessary, the free-air gravity anomalies were converted from to GRS80 (Moritz 

1980a).  This was achieved by transforming the GRS67 free-air anomalies to 

“observed” gravity and then reducing them to free-air anomalies in the GRS80 

system. 
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The marine anomalies were provided in terms of the mean Earth-tide system (see 

Section 2.3.5).  To comply with the International Association of Geodesy resolution 

on Earth-tide models (IAG, 1984) the anomalies were converted to the zero-tide 

system using Equation 2.18. 

C.3 The Intrepid Geophysics marine gravity crossover adjustment 

The ship-track data were checked (by Intrepid Geophysics) for spikes using a fourth-

difference examination of each profile.  In addition, statistical reporting (min, max, 

mean, and standard deviation) was also performed on all data.  Any outlier values 

(e.g., obvious spikes, anomalously high gravity values, high misclosures) were then 

examined more closely with an interactive data viewer and editor, and a human 

judgement was made as to whether the spike or feature should be removed or 

retained. 

When initially imported, the data for each ship cruise were stored as a single, long 

‘line’ of data.  A necessary step prior to crossover adjustment was to split the cruise 

data into shorter, approximately straight-line-segments.  The advantage of this is that 

two straight lines either do not cross, or if they do cross, then there is a single 

crossover.  Given this pre-condition, the INTREPID computer software 

(www.intrepid-geophysics.com) uses an efficient algorithm to locate all crossovers 

without discarding any data.  The only outcome was that all points were grouped into 

line-segments for the purpose of identifying crossovers.  The estimated crossover 

correction was applied to the cruise as a whole, taking no account of the breakdown 

into ‘lines’. 

The INTREPID computer software also allows for the horizontal positions of the 

gravity observations to be adjusted.  However, their experiments indicated that this 

made little difference to the results (i.e., crossover statistics), so the horizontal 

positions were left unchanged. 

The datasets were ranked (by Intrepid) according to their perceived reliability.  This 

ranking determined the preferred processing order.  Starting with the UNCLOS 

datasets, internal and external crossovers were computed.  On the basis of this and 

the area of coverage the ‘res00-11’ cruise was ranked highest.  Systematic offsets 

(i.e., biases) were applied to each of the other UNCLOS datasets to reduce the 
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misclosure statistics for the UNCLOS cruises as a whole.  The next ranked dataset 

was the GNS data, followed by the NOAA data, and then the GA data.  This order 

was determined by Intrepid on the basis of internal crossover statistics, data coverage 

and visual inspection of the raw data. 

After applying the offsets to the individual UNCLOS datasets, they were 

concatenated into a single dataset.  This was then adjusted using Intrepid’s process 

called “loop closure levelling”.  This procedure is a single process that consists of 

several steps.  Firstly, the crossovers of a dataset are identified (as described above).  

Each crossover was then quantified (bias only), where two crossovers were within ~1 

km only one bias was evaluated.  The misclosure errors around closed loops were 

then distributed using a least-squares solution of bias and tilt for the network 

adjustment to produce a correction function.  The final levelling adjustment, at every 

observation point, was then interpolated from the correction function using an Akima 

spline (Akima, 1978). 

The loop closure levelling was then applied to the GNS dataset.  The levelled GNS 

data was gridded and the Intrepid GridMerge process used to determine an offset of 

4.35 mGal to align it with the UNCLOS data.  The GNS data was then appended to 

the UNCLOS data at the loop closure levelling repeated.  The same process was 

followed to progressively include the NOAA (5.94 mGal offset) and GA (8.16 mGal 

offset) datasets. 

C.4 Adjustment results 

Comparing the absolute misclosures at the crossover points in Table C.1 and Table 

C.2 shows a 714% improvement in the standard deviation (STD) of the crossovers, 

as well as a significant reduction in the mean differences.  Table C.3 gives the 

statistics of the ship-track gravity anomalies before and after the crossover 

adjustment. 
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Data Crossovers Max Min Mean STD 
UNCLOS 345 79.7 0.0 7.6 12.9 

GNS 57512 271.3 0.0 2.5 7.6 
NOAA 971988 236.1 0.0 0.7 0.7 

GA 36271 52.6 0.0 1.6 2.7 
All data 1069289 271.3 0.0 0.8 2.0 

Table C.1  Absolute misclosure statistics for the original ship-track observations 
(mGal) 

Data Crossovers Max Min Mean STD 
UNCLOS 345 12.1 0.0 0.45 1.39 

GNS 57512 68.9 0.0 0.19 1.50 
NOAA 971988 1.9 0.0 0.09 0.08 

GA 36271 14.9 0.0 0.04 0.11 
All data 1069244 93.4 0.0 0.05 0.28 

Table C.2  Absolute misclosure statistics for the adjusted ship-track observations 
(mGal) 

Adjustment Max Min Mean STD 
Original 477.0 -813.6 4.1 43.2 
Adjusted 455.6 -807.7 6.9 42.6 

Table C.3  Statistics of the original and adjusted ship-track observations (mGal) 

C.5 Summary 

This appendix has summarised the crossover adjustment of approximately 90,000-

line-km of 2,409,932 ship-track gravity observations around NZ undertaken by 

Intrepid Geophysics.  The standard deviation of the ~106 crossovers was reduced 

from ~2.0 mGal to ~0.3 mGal. 
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APPENDIX D -  DESCRIPTIVE STATISTICS OF GRAVITY GRIDDING 
QUASIGEOID / GPS-LEVELLING COMPARISONS 

The following tables provide the descriptive statistics of the comparisons between 

the different gravity gridding quasigeoid solutions and the 1422 GPS-levelling points 

described in Section 4.11.5. 

Datum Points Max Min Average STD 
One Tree Point 51 0.426 -0.202 0.086 0.158 

Auckland 137 -0.002 -0.579 -0.234 0.129 
Moturiki 258 0.459 -0.989 -0.252 0.290 
Gisborne 61 -0.117 -0.650 -0.407 0.110 
Taranaki 70 0.2003 -1.014 -0.288 0.307 
Napier 54 0.502 -0.479 -0.153 0.255 

Wellington 78 -0.028 -1.051 -0.562 0.205 
Nelson 111 1.132 -0.669 0.283 0.430 

Lyttelton 251 1.421 -1.046 -0.454 0.535 
Dunedin 73 -0.272 -1.266 -0.713 0.256 

Dunedin-Bluff 181 0.102 -1.453 -1.033 0.294 
Bluff 92 -0.248 -1.318 -0.507 0.216 

Stewart Island 5 -0.358 -0.675 -0.533 0.116 
All Points 1422 1.421 -1.453 -0.394 0.472 

Table D.1  Statistics of comparisons between the GGM02S/EGM96 GGM and GPS-
levelling points on respective vertical datums (metres) 

Datum Points Max Min Average STD 
One Tree Point 51 -0.139 -0.423 -0.238 0.067 

Auckland 137 -0.323 -0.642 -0.496 0.069 
Moturiki 258 -0.107 -0.508 -0.273 0.064 
Gisborne 61 -0.346 -0.664 -0.527 0.111 
Taranaki 70 -0.277 -0.562 -0.415 0.072 
Napier 54 -0.080 -0.420 -0.283 0.075 

Wellington 78 -0.347 -0.555 -0.452 0.043 
Nelson 111 0.238 -0.258 -0.067 0.109 

Lyttelton 251 0.147 -0.585 -0.245 0.146 
Dunedin 73 0.019 -0.656 -0.391 0.196 

Dunedin-Bluff 181 0.952 -0.343 0.280 0.260 
Bluff 92 0.971 0.217 0.710 0.175 

Stewart Island 5 0.124 -0.141 -0.026 0.094 
All Points 1422 0.971 -0.664 -0.172 0.354 

Table D.2  Statistics of comparisons between the MSB (Moritz FFT TC, simple 
Bouguer) quasigeoid and GPS-levelling points on respective vertical datums (metres) 
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Datum Points Max Min Average STD 
One Tree Point 51 -0.144 -0.427 -0.242 0.067 

Auckland 137 -0.335 -0.651 -0.502 0.066 
Moturiki 258 -0.171 -0.517 -0.307 0.060 
Gisborne 61 -0.397 -0.698 -0.570 0.104 
Taranaki 70 -0.312 -0.606 -0444 0.069 
Napier 54 -0.151 -0457 -0.329 0.066 

Wellington 78 -0.381 -0.588 -0.484 0.043 
Nelson 111 -0.008 -0.354 -0.201 0.070 

Lyttelton 251 -0.005 -0.636 -0.362 0.097 
Dunedin 73 -0.148 -0.691 -0.464 0.154 

Dunedin-Bluff 181 -0.020 -0.580 -0.270 0.074 
Bluff 92 -0.210 -0.468 -0.383 0.052 

Stewart Island 5 -0.211 -0.599 -0.382 0.134 
All Points 1422 -0.005 -0.698 -0.362 0.127 

Table D.3  Statistics of comparisons between the PSB (Prism integration TC, simple 
Bouguer) quasigeoid and GPS-levelling points on respective vertical datums (metres) 

Datum Points Max Min Average STD 
One Tree Point 51 -0.130 -0.4158 -0.232 0.069 

Auckland 137 -0.325 -0.640 -0.496 0.069 
Moturiki 258 -0.118 -0.504 -0.289 0.064 
Gisborne 61 -0.382 -0.679 -0.553 0.100 
Taranaki 70 -0.310 -0.583 -0.438 0.065 
Napier 54 -0.118 -0.434 -0.308 0.067 

Wellington 78 -0.399 -0.592 -0.482 0.042 
Nelson 111 -0.036 -0.313 -0.203 0.057 

Lyttelton 251 0.086 -0.593 -0.289 0.118 
Dunedin 73 -0.087 -0.673 -0.441 0.163 

Dunedin-Bluff 181 0.084 -0.559 -0.235 0.084 
Bluff 92 -0.181 -0.457 -0.369 0.054 

Stewart Island 5 -0.208 -0.592 -0.372 0.129 
All Points 1422 0.086 -0.679 -0.336 0.135 

Table D.4  Statistics of comparisons between the HRB (Hammer Chart TC, refined 
Bouguer) quasigeoid and GPS-levelling points on respective vertical datums (metres) 
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Datum Points Max Min Average STD 
One Tree Point 51 -0.129 -0.415 -0.231 0.068 

Auckland 137 -0.316 -0632 -0.488 0.070 
Moturiki 258 -0.112 -0.496 -0.268 0.063 
Gisborne 61 -0.346 -0.661 -0.526 0.101 
Taranaki 70 -0.278 -0.556 -0.411 0.070 
Napier 54 -0.072 -0.417 -0.279 0.076 

Wellington 78 -0.357 -0.560 -0.452 0.043 
Nelson 111 0.208 -0.259 -0.087 0.096 

Lyttelton 251 0.116 -0.573 -0.242 0.140 
Dunedin 73 -0.020 -0.658 -0.417 0.176 

Dunedin-Bluff 181 0.157 -0.544 -0.207 0.095 
Bluff 92 -0.162 -0.447 -0.359 0.055 

Stewart Island 5 -0.199 -0.586 -0.362 0.130 
All Points 1422 0.208 -0.661 -0.304 0.154 

Table D.5  Statistics of comparisons between the MRB (Moritz FFT TC, refined 
Bouguer) quasigeoid and GPS-levelling points on respective vertical datums (metres) 

Datum Points Max Min Average STD 
One Tree Point 51 -0.134 -0.418 -0.234 0.068 

Auckland 137 -0.326 -0.640 -0.494 0.068 
Moturiki 258 -0.170 -0.506 -0.300 0.060 
Gisborne 61 -0.398 -0.691 -0.567 0.100 
Taranaki 70 -0..311 -0.591 -0.438 0.066 
Napier 54 -0.129 -0.449 -0.318 0.068 

Wellington 78 -0.392 -0.592 -0.482 0.043 
Nelson 111 -0.009 -0.337 -0.206 0.062 

Lyttelton 251 0.156 -0.612 -0.340 0.097 
Dunedin 73 -0.149 -0.680 -0.456 0.150 

Dunedin-Bluff 181 -0.024 -0.569 -0.257 0.074 
Bluff 92 -0.201 -0.460 -0.375 0.052 

Stewart Island 5 -0.205 -0.593 -0.370 0.130 
All Points 1422 0.156 -0.692 -0.352 0.126 

Table D.6  Statistics of comparisons between the PRB (Prism integration TC, refined 
Bouguer) quasigeoid and GPS-levelling points on respective vertical datums (metres) 
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APPENDIX E - SIGNIFICANCE TESTS FOR VERTICAL DATUM 
OFFSETS 

This Appendix describes the statistical tests that were performed to determine the 

significance of the computed and observed vertical datum offsets.  In all cases, the 

95% confidence level (95% significance) has been evaluated. 

E.1 Significance of computed offsets 

To ascertain if the computed offsets were significant (i.e., non-zero) the 95% 

Students t confidence interval (CI) was determined using: 

 ( ) ( )0.025, 1 0.025, 1
S S

n nx t x t
n n

σ σµ− −− ≤ ≤ +  (F.1) 

where x is the average offset, �s is the sample standard deviation, n is the number of 

observations and t is the Students t critical value.  The null hypothesis was H0: µ = 0 

and the alternate H1: µ 
 0.  If the null hypothesis is false then the computed offset is 

statistically significant. 

E.2 Significance of adjacent computed offsets 

To determine if two computed datum offsets were significantly different to each 

other the pooled two-sample Students t CI was determined.  For this test the null 

hypothesis was 0 1 2: 0H µ µ− =  and the alternate 1 1 2: 0H µ µ− ≠ , where the 

subscripts indicate the two offsets being considered.  The degrees of freedom are 
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If the null hypothesis is false, then the computed datum offsets are significantly 

different. 

E.3 Significance of computed and observed offsets 

The computed vertical datum offsets can be validated by comparing them with 

offsets “observed” where the precise levelling lines in the vertical datums abut (cf. 

Table 2.3).  The pooled two-sample Students t CI for the computed offsets was 

evaluated using Equation (F.3). 

The Students t CI for the precise levelling offsets was computed using: 

 ( ) ( )
lev lev

lev lev0.025, 0.025,
lev lev
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n n
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If the two CI overlap, then the computed and precise levelling offsets agree. 

E.4 a priori quasigeoid statistical tests 

To ascertain whether the a priori quasigeoid computed datum offsets are significant 

(i.e. non-zero) the 95% Student t CI was established using Equation (F.1) to assess 

the null hypothesis H0: � = 0 (cf. Section 6.5.2).  The CI are summarised in Table 

E.1. 

Datum n x σσσσ s H 0
Significant 

offset?

One Tree Point 51 -0.245 0.063 -0.262 � µ � -0.228 FALSE Yes
Auckland 137 -0.497 0.068 -0.508 � µ � -0.486 FALSE Yes
Moturiki 258 -0.316 0.061 -0.323 � µ � -0.309 FALSE Yes
Gisborne 61 -0.585 0.087 -0.607 � µ � -0.563 FALSE Yes
Taranaki 70 -0.457 0.066 -0.472 � µ � -0.442 FALSE Yes
Napier 54 -0.304 0.070 -0.323 � µ � -0.285 FALSE Yes

Wellington 78 -0.509 0.040 -0.518 � µ � -0.500 FALSE Yes
Nelson 111 -0.257 0.081 -0.272 � µ � -0.242 FALSE Yes

Lyttelton 251 -0.350 0.097 -0.362 � µ � -0.338 FALSE Yes
Dunedin 73 -0.491 0.162 -0.528 � µ � -0.454 FALSE Yes

Dunedin-Bluff 181 -0.261 0.076 -0.272 � µ � -0.250 FALSE Yes
Bluff 92 -0.380 0.051 -0.390 � µ � -0.370 FALSE Yes

Stewart Island 5 -0.398 0.116 -0.500 � µ � -0.296 FALSE Yes

95% CI

 

Table E.1  Significance of a priori quasigeoid vertical datum offsets (95% CI 
Student t distribution, metres) 
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To ascertain whether the adjacent a priori quasigeoid computed datum offsets are 

different the 95% Student t CI was established using Equation (F.3) to assess the null 

hypothesis H0: �1 - �2 = 0 (cf. Section 6.5.2).  The results are summarised in Table 

E.2. 

To ascertain whether the a priori quasigeoid computed datum offsets are the same as 

the observed (by precise-levelling) offsets the 95% Student t CI was established 

using Equations (F.3) and (F.4) respectively (cf. Section 6.5.2).  If the two CI overlap 

the computed and observed offsets agree.  The comparisons are summarised in Table 

6.2. 

E.5 Second quasigeoid statistical tests 

To ascertain whether the datum offsets computed from the a priori and second 

quasigeoids are different the 95% Student t CI was established using Equation (F.3) 

to assess the null hypothesis H0: �1 - �2 = 0 (cf. Section 6.5.3).  The results are 

summarised in Table E.4. 

E.6 Third quasigeoid statistical tests 

To ascertain whether the datum offsets computed from the second and third 

quasigeoids are different the 95% Student t CI was established using Equation (F.3) 

to assess the null hypothesis H0: �1 - �2 = 0 (cf. Section 6.5.4).  The results are 

summarised in Table E.5. 

To ascertain whether the third quasigeoid computed datum offsets are the same as the 

observed (by precise-levelling) offsets the 95% Student t CI was established using 

Equations (F.3) and (F.4) respectively (cf. Section 6.5.4).  If the two CI overlap the 

computed and observed offsets agree.  The comparisons are summarised in Table 

E.5. 
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Table E.2  Comparison of adjacent a priori quasigeoid vertical datum offsets (95% 
CI Student t distribution, metres) 
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Table E.3  Comparison of a priori quasigeoid and precise levelling derived vertical 
datum offsets (95% CI Students t distribution, metres) 
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Table E.4  Comparison of a priori and second quasigeoid vertical datum offsets 
(95% CI Students t distribution, metres) 
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Table E.5  Comparison of second and third quasigeoid vertical datum offsets (95% 
CI Students t distribution, metres) 
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Table E.6  Comparison of third quasigeoid and precise levelling derived vertical 
datum offsets (95% CI Students t distribution, metres) 
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